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Abstract1

The Riemann surface for polylogarithms of half-integer index, which has the2

topology of an infinite dimensional hypercube, is studied in relation to one-3

dimensional KPZ universality in finite volume. Known exact results for fluc-4

tuations of the KPZ height with periodic boundaries are expressed in terms of5

meromorphic functions on this Riemann surface, summed over all the sheets6

of a covering map to an infinite cylinder. Connections to stationary large7

deviations, particle-hole excitations and KdV solitons are discussed.8
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1 Introduction86

KPZ universality in 1+1 dimension [1–9] describes large scale fluctuations appearing in87

a variety of systems such as growing interfaces [10], disordered conductors [11], one-88

dimensional classical [12–14] and quantum [15–17] fluids, or traffic flow [18]. The height89

field hλ(x, t) characterizing KPZ universality depends on position x ∈ R, time t ≥ 0,90

and on a parameter λ > 0 quantifying the strength of non-linear effects and the non-91

equilibrium character of the dynamics. The fluctuations of hλ(x, t) are believed to be92

universal in the sense that for a given geometry (infinite system, presence of various kinds93

of boundaries) and a given initial condition, the probability distribution of the appropriate94

height field hλ(x, t) is independent of the specific setting in KPZ universality and of the95

precise microscopic model studied at large scales. A prominent model, which has given its96

name to the universality class, is the KPZ equation [19], defined as the properly renormal-97

ized [20–22] non-linear stochastic partial differential equation ∂thλ = 1
2∂

2
xhλ−λ(∂xhλ)2 +η98

with η a unit space-time Gaussian white noise, and which is related by the Cole-Hopf99

transform Zλ(x, t) = e−2λhλ(x,t) to the stochastic heat equation with multiplicative noise100

∂tZλ = 1
2∂

2
xZλ − 2λZλη and Ito prescription in the time variable.101

Of particular interest is the limiting object h(x, t) = limλ→∞(hλ(x, t/λ)− λ2t/3) into102

the regime where non-linear effects dominate, and for which a number of exact results have103

been obtained in the past 20 years [23–34] for the infinite system geometry x ∈ R. Most104

notably, connections to random matrix theory have been identified: for given time t→∞105

and position x ∈ R, the probability distribution of h(x, t) for specific initial conditions are106

equal to Tracy-Widom distributions [35], known for describing fluctuations of extremal107

eigenvalues in random matrix theory.108

We are interested in this paper in KPZ universality in finite volume, specifically with109

periodic boundary conditions x ≡ x+ 1, in the strongly non-linear regime λ→∞. There,110

the standard deviation of h(x, t) grows as t1/3 at short times like in the infinite system111

x ∈ R, before eventually saturating after the statistics of fluctuations has relaxed to a112

stationary distribution where x 7→ h(x, t) is Brownian. Large deviations in the stationary113

state away from typical Gaussian fluctuations are known explicitly [36,37], and long time114

corrections to large deviations have been obtained explicitly [38] for a few specific initial115

conditions. Interestingly, the exact expressions in [36–38] involve polylogarithms with116

half-integer index. The analytical and topological structure of these special functions is117

at the heart of the present paper.118

The complete evolution in time of KPZ fluctuations with periodic boundaries, crossing119

over between the short time limit, where the correlation length is much smaller than the120

system size and the fluctuations of the infinite system are recovered, and the long time limit121

where stationary large deviations appear, has been studied recently. Exact expressions122

have been obtained for the one-point [39–41] distribution P (h(x, t) < u) of the height123

field for specific (sharp wedge, stationary and flat) initial conditions, as well as for the124

general, multiple-time joint distribution P (h(x1, t1) < u1, . . . , h(xn, tn) < un) for sharp125

wedge initial condition [42]. All these exact expressions have a somewhat complicated126
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structure involving combinations of square roots and half-integer polylogarithms.127

A goal of the present paper is to show that the full crossover regime for KPZ fluctua-128

tions in finite volume have rather simple expressions using objects from algebraic geometry129

directly connected to stationary large deviations. More precisely, considering the (infinite130

genus) Riemann surface Ř on which polylogarithms with half-integer index are defined131

globally, the exact expression for the probability P(h(x, t) < u) with flat initial condition132

is rewritten as the integral around an infinitely long cylinder C of a holomorphic differen-133

tial on Ř summed over all the sheets of a ramified covering from Ř to C, see equation (1).134

Similar expressions are obtained for sharp wedge and stationary initial conditions, with135

an additional summation over finite subsets ∆ of Z+ 1/2, and Ř replaced by related Rie-136

mann surfaces R∆, see equations (6), (11). Multiple integrals around the cylinder as well137

as meromorphic functions on pairs of Riemann surfaces R∆×RΓ are additionally needed138

for the multiple-time joint distribution with sharp wedge initial condition, see equation139

(16).140

The paper is organized as follows. In section 2, our main results expressing KPZ fluc-141

tuations with periodic boundaries in terms of infinite genus Riemann surfaces Ř, R∆ and142

ramified coverings from them to the infinite cylinder C are given. Interpretations in terms143

of particle-hole excitations and KdV solitons are pointed out at the end of the section. In144

section 3, we recall some classical aspects of the theory of Riemann surfaces and ramified145

coverings used in the rest of the paper, and define the Riemann surfaces Ř and R∆. In146

section 4, we study several meromorphic functions defined on these Riemann surfaces and147

needed for KPZ fluctuations. Finally, we explain in section 5 how our main results from148

section 2 are related to earlier exact formulas [39–42]. Some technical calculations are149

presented in appendix.150

2 KPZ fluctuations and Riemann surfaces151

In this section, we give exact expressions for KPZ fluctuations with periodic boundary152

conditions equivalent to those obtained in [39–42], but written in a more unified way by153

interpreting various terms as natural objects living on Riemann surfaces evaluated on154

distinct sheets. Connections to stationary large deviations and interpretations in terms of155

particle-hole excitations and KdV solitons are discussed in some detail toward the end of156

the section.157

2.1 Riemann surfaces Ř and R∆
158

The exact formulas for KPZ fluctuations given below involve Riemann surfaces Ř and159

R∆, quotient under groups of holomorphic automorphisms of a Riemann surface R which160

has the topology of an infinite dimensional hypercube and which is a natural domain of161

definition for some infinite sums of square roots with branch points 2iπa, a ∈ Z+ 1/2. An162

introduction to several topics related to Riemann surfaces used in this paper is given in163

section 3, starting with a finite genus analogue RN of R before giving precise definitions164

of Ř and R∆.165

The Riemann surface R has a kind of translation invariance inherited from that of the166

branch points 2iπa, and which is eliminated by definition in Ř. The Riemann surfaces167

R∆ are indexed by finite sets ∆ of half-integers, which we write as ∆ @ Z + 1/2. The168

elements a ∈ ∆ index branch points 2iπa that have been removed from the infinite sum169

of square roots defined on R. The translation invariance of R implies that R∆ ∼ R∆+1
170

are isomorphic Riemann surfaces.171
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Ř
Π̌
↗

ρ̌

↘
R Π−→ C −→

λ
C∗

↘
Π∆

↗
ρ∆

R∆

Figure 1: Summary of several useful covering maps between the Riemann surfaces consid-
ered in this paper.

The Riemann surface R can be partitioned into sheets CP , P @ Z+ 1/2, copies of the172

complex plane glued together along branch cuts of the square roots, and we write [v, P ],173

v ∈ C, P @ Z + 1/2 for a point of R with branch cuts chosen as in figure 18 right. The174

Riemann surfaces Ř and R∆ are identified as fundamental domains for corresponding175

group actions on R, see respectively sections 3.8.2 and 3.8.3, and may be partitioned176

by portions of the sheets CP . For Ř, one can choose the union of infinite strips S0
P =177

{[v, P ],−π < Im v ≤ π}, P @ Z + 1/2, see figure 13 left. For R∆, a possible fundamental178

domain is the union of all CP , P ∩ ∆ = ∅, see figure 16. Additionally, the collection of179

non-isomorphic R∆, ∆ ≡ ∆ + 1, may also be partitioned into the infinite strips S0
P from180

all R∆ without the restriction ∆ ≡ ∆ + 1, see figure 17.181

The definitions of Ř and R∆ from R provide covering maps Π̌ and Π∆ from R to Ř182

and R∆, see figure 1. Additionally, there exists natural covering maps ρ̌ and ρ∆ from Ř183

andR∆ to the infinite cylinder C = {v ∈ C, v ≡ v+2iπ}, with ramification points [2iπa, P ],184

a ∈ Z + 1/2 (and additionally a 6∈ ∆ for ρ∆). One-point statistics of the KPZ height field185

with periodic boundaries are expressed below for various initial conditions as an integral186

over a loop around the cylinder. The integrand involves holomorphic differentials traced187

over the covering maps ρ̌ or ρ∆, i.e. summed over all the sheets of the Riemann surfaces188

covering the cylinder. The functions and meromorphic differentials needed are studied in189

detail in section 4.190

2.2 Flat initial condition191

We consider in this section the one-point distribution Pflat(h(x, t) > u) of KPZ fluctuations192

with periodic boundary conditions, h(x, t) = h(x+1, t), and flat initial condition h(x, 0) =193

0. We claim that the properly renormalized random field h(x, t) has the cumulative density194

function 1
195

Pflat(h(x, t) > u) =

∫
γ
(trρ̌ Z

flat
t,u )(ν) , (1)

with γ a loop around the infinite cylinder C with winding number 1. The holomorphic196

differential Zflat
t,u on the Riemann surface Ř, defined away from ramification points of ρ̌ as197

Zflat
t,u ([ν, P ]) = exp

(∫ [ν,P ]

[−∞,∅]
Sflat
t,u

) dν

2iπ
, (2)

1The definition of h(x, t) used in this paper corresponds to a growth of the height function for TASEP
in the positive direction, which after proper rescaling gives a growth of the KPZ height function in the
negative direction, h(x, t)→ −∞ when t→∞, corresponding to a negative coefficient −λ→ −∞ in front
of the non-linear term in the KPZ equation. The same convention for the sign of u is used in [39]. The
opposite convention is used in [40], with the notation x = −u there.
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is built from an integral of the meromorphic differential Sflat
t,u on Ř given by198

Sflat
t,u (p) =

(
tχ′(p)− uχ′′(p)− 1/4

1 + e−v
+
χ′′(p)2

2

)
dv (3)

at p = [v, P ] ∈ Ř away from ramification points of ρ̌. Here, χ, χ′, χ′′ are meromor-199

phic functions on Ř, obtained by analytic continuations of the polylogarithm χ∅(ν) =200

−Li5/2(−eν)/
√

2π and its derivatives, see sections 4.4 and 4.5, and equations (66), (64),201

(57), (50) for precise definitions. We also refer to section 4 for explicit formulas for analytic202

continuations and proofs that Zflat
t,u is indeed holomorphic on Ř and independent from the203

path of integration in (2).204

The trace of a meromorphic differential with respect to a covering map is defined in205

(34). For the covering map ρ̌ : [ν, P ] 7→ ν from the Riemann surface Ř to the infinite206

cylinder C, the trace trρ̌ consists in summing over all the infinite strips S0
P = {[ν, P ],−π <207

Im ν ≤ π} partitioning Ř, see sections 3.8.1 and 3.8.2 for a precise definition of Ř, and208

especially the left side of figure 13 for a graphical representation of how Ř is partitioned209

into infinite strips. The integral in (1) is independent of the loop γ, since trρ̌ Z
flat
t,u is210

holomorphic on the cylinder C by the properties of the trace. With the change of variable211

z = eν , defining a covering map λ from C to the punctured plane C∗ = C \ {0}, the212

expression (1) can alternatively be written as the integral over a loop encircling 0 in C∗,213

and Pflat(h(x, t) > u) is then the residue at the essential singularity z = 0 of trλ◦ρ̌ Z
flat
t,u .214

The trace in (1) can be evaluated explicitly by considering a partition into infinite215

strips S0
P , P @ Z+1/2 of the Riemann surface Ř, see figure 13 left, so that (trρ̌ Z

flat
t,u )(ν) =216 ∑

P@Z+1/2 Z
flat
t,u ([ν, P ]). In terms of the functions χP and I0 defined in (64), (68) one has217

Pflat(h(x, t) > u) =
∑

P@Z+1/2

(−1)|P | V 2
P

4|P |

∫ c+iπ

c−iπ

dν

2iπ
etχP (ν)−uχ′P (ν)+I0(ν)+ 1

2
−
∫ ν
−∞ dv χ′′P (v)2

, (4)

with c ∈ R∗. The summation is over all finite subsets P of Z + 1/2, and VP is the218

Vandermonde determinant219

VP =
∏
a,b∈P
a>b

(2iπa

4
− 2iπb

4

)
. (5)

The function χP is the restriction of χ to the sheet CP , I0 is given by eI0(ν) = (1 + eν)−1/4
220

if c < 0 or eI0(ν) = e−ν/4(1+e−ν)−1/4 if c > 0, and −
∫ ν
−∞ dv χ′′P (v)2 = limΛ→∞−|P |2 log Λ+221 ∫ ν

−Λ dv χ′′P (v)2. The extra factor (−1)|P | V 2
P /4

|P | in (4) compared to (1) comes from the222

analytic continuation of
∫ ν
−∞ dv χ′′∅(v)2 from C∅ to CP , see sections 4.7 and 4.8.223

The expression (1) is justified in section 5.1 by showing that (4) is equivalent to ex-224

act results obtained previously in [39, 40] from large scale asymptotics for the totally225

asymmetric simple exclusion process (TASEP), a discrete interface growth model in KPZ226

universality. This shows in particular that the corresponding expressions from [39] and [40]227

agree, which had not been properly derived before, and simply represent distinct choices228

for a fundamental domain Ř in R.229

The probability Pflat(h(x, t) > u) is interpreted in section 2.6.3 as aN -soliton τ function230

for the KdV equation, N → ∞, averaged over the common velocity ν of the solitons,231

which is also identified as a moduli parameter for specific singular hyperelliptic Riemann232

surfaces.233
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2.3 Sharp wedge initial condition234

We consider in this section one-point statistics of KPZ fluctuations with sharp wedge 2 ini-235

tial condition h(x, 0) = − |x−1/2|
0+ , where h(x, t) is defined after appropriate regularization.236

More generally, it is expected from large deviation results [38] that any initial condition237

of the form h(x, 0) = h0(x)/ε where h0 is continuous on the circle x ≡ x+ 1 with a global238

minimum 0 reached at x = 1/2 only, is equivalent in the limit ε → 0+ to sharp wedge239

initial condition.240

We show in section 5.2 that known exact formulas [39, 40] for the cumulative density241

function of the KPZ height are equivalent to242

Psw(h(x, t) > u) =
∑

∆@Z+1/2
∆≡∆+1

Ξ∆
x

∫
γ

(
trρ̌∆ Z

∆,sw
t,u

)
(ν) , (6)

with γ as in (1), ρ̌∆ = ρ∆, ∆ 6= ∅ the covering map defined in section 3.8.3 from R∆ to243

the infinite cylinder C and ρ̌∅ = ρ̌ the covering map defined in section 3.8.1 from Ř to C,244

where Ř = R/ǧ is the quotient of R∅ = R by a group ǧ of translation automorphisms245

that exist only for ∆ = ∅. The trace with respect to ρ̌∆ gives a holomorphic differential246

on the cylinder C, periodic in ν with period 2iπ. The sum over non-isomorphic Riemann247

surfaces R∆ is weighted by248

Ξ∆
x = (i/4)|∆|

∑
A⊂∆

|A|=|∆\A|

e
2iπx
( ∑
a∈A

a−
∑

a∈∆\A
a
)
V 2
A V

2
∆\A . (7)

with VA the Vandermonde determinant (5) and 2π(
∑

a∈A a−
∑

a∈∆\A a) the momentum249

coupled to the coordinate x along the interface, which appears only through Ξ∆
x in (6).250

Only sets ∆ with cardinal |∆| even contribute. The holomorphic differential251

Z∆,sw
t,u ([ν, P ]) = exp

(
−
∫ [ν,P ]

[−∞,∅]
S∆,sw
t,u

) dν

2iπ
(8)

is built from an integral with appropriate regularization at [−∞, ∅] of the meromorphic252

differential S∆,sw
t,u on R∆ given by253

S∆,sw
t,u (p) =

(
tχ′∆(p)− uχ′′∆(p) + χ′′∆(p)2

)
dv (9)

at p = [v, P ] ∈ R∆ away from ramification points of ρ∆. The functions χ∆, χ′∆, χ′′∆,254

analogues of χ, χ′, χ′′ from the previous section with ramification points [2iπa, P ], a ∈ ∆255

removed, are defined in (86), (91).256

The trace in (6) can be evaluated more explicitly by considering appropriate parti-257

tions into sheets of the Riemann surfaces Ř and R∆. For the term ∆ = ∅, one has258

(trρ̌ Z
∅,sw
t,u )(ν) =

∑
P@Z+1/2 Z

∅,sw
t,u ([ν, P ]) like for flat initial condition, see figure 13 left.259

For ∆ 6= ∅, one has to sum instead over all strips SmP , P ∩∆ = ∅, m ∈ Z, see figure 16,260

leading to an integral between c − i∞ and c + i∞ of Z∅,swt,u ([ν, P ]), summed over all P ,261

P ∩∆ = ∅. The symmetry of the extension to R of Z∅,swt,u under the holomorphic automor-262

phism T defined in (44), see section 3.8.4, allows to sum instead over all ∆ and not just263

equivalence classes ∆ ≡ ∆ + 1, and integrate only over the strip S0
P from each R∆. Using264

2Also called step or domain wall initial condition in the context of TASEP as a microscopic model.
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explicit analytic continuations from section 4.9.2, we finally obtain that (6) is equivalent265

to the more explicit expression266

Psw(h(x, t) > u) =
∑

∆@Z+1/2

Ξ∆
x

∑
P@Z+1/2
P∩∆=∅

(i/4)2|P |

(∏
a∈P

∏
b∈P∪∆
b 6=a

(2iπa

4
− 2iπb

4

)2
)

×
∫ c+iπ

c−iπ

dν

2iπ
etχ

∆
P (ν)−uχ′∆P (ν)+−

∫ ν
−∞ dv χ′′∆P (v)2

, (10)

with |P | the number of elements in P , χ∆
P the restriction of χ∆ to the sheet CP of R∆

267

given in (87), and −
∫

the regularized integral subtracting the divergent logarithmic term268

at −∞ like in (92). The expression (10) is derived in section 5.2 from earlier works [39]269

and [40] using the structure of the Riemann surfaces R∆ detailed in section 3.8.3 and270

explicit analytic continuations obtained in section 4.9.2. This shows in particular that271

the expressions from [39] and [40] about sharp wedge initial condition agree, which was272

missing so far.273

2.4 Stationary initial condition274

Exact results have also been obtained for one-point statistics of the KPZ height with275

stationary initial condition [39,41], where x 7→ h(x, 0) is a standard Brownian bridge. The276

formulas in that case are essentially the same as for sharp wedge initial condition, with277

only an additional harmless factor. Starting either with equation (7) of [39] (for x = 0) or278

with equation (2.1) of [41] for general x, we obtain by comparison to (6)279

Pstat(h(x, t) > u) =
∑

∆@Z+1/2
∆≡∆+1

Ξ∆
x

∫
γ
(trρ̌∆ Z

∆,stat
t,u )(ν) , (11)

with280

Z∆,stat
t,u ([ν, P ]) = −

√
2π e−ν ∂u Z

∆,sw
t,u ([ν, P ]) (12)

and the same notations as in (6). A more explicit formula can be written by inserting the281

extra factor −
√

2π e−ν ∂u into (10).282

2.5 Multiple-time statistics with sharp wedge initial condition283

The joint distribution of the height at multiple times 0 < t1 < . . . < tn and corresponding284

positions xj was obtained by Baik and Liu for sharp wedge initial condition in [42]. After285

some rewriting in section 5.3.1 based on explicit analytic continuations from section 4.9286

and 4.10, we obtain287

P(h(x1, t1) > u1, . . . , h(xn, tn) > un) (13)

=

(
n∏
`=1

∑
∆`@Z+1/2

∑
P`@Z+1/2

P`∩∆`=∅

) ∫ c1+iπ

c1−iπ

dν1

2iπ
. . .

∫ cn+iπ

cn−iπ

dνn
2iπ

Ξ∆1,...,∆n
x1,...,xn (ν1, . . . , νn)

×

(
n∏
`=1

e(t`−t`−1)χ∆`−(u`−u`−1)χ′∆`+2J∆` (p`)

)(
n−1∏
`=1

e−2K∆`,∆`+1
(p`, p`+1)

)
,

with t0 = u0 = 0, cn < . . . < c1 < 0, p` = [ν`, P`] a point on the Riemann surface R∆` , χ∆
288

and χ′∆ holomorphic functions on R∆ given in (86), (91), e2J∆
the meromorphic function289
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on R∆ from (96) and e2K∆,Γ
a meromorphic function on R∆ ×RΓ defined by (118). The290

collection of Riemann surfaces R∆` in (13) is weighted by the meromorphic function on291

Cn292

Ξ∆1,...,∆n
x1,...,xn (ν1, . . . , νn) (14)

=

(
n∏
`=1

∑
A`@∆`

|A`|=|∆`\A`|

)
n∏
`=1

(
(i/4)|∆`| V 2

A`
V 2

∆`\A` e
2iπ(x`−x`−1)

(∑
a∈A`

a−
∑
a∈∆`\A`

a
))

×
n−1∏
`=1

(1− eν`+1−ν`)|∆`|/2 (1− eν`−ν`+1)|∆`+1|/2

(1− eν`+1−ν`)VA`,A`+1
(ν`, ν`+1)V∆`\A`,∆`+1\A`+1

(ν`, ν`+1)
,

with x0 = 0, VA the Vandermonde determinant (5) and293

VA,B(ν, µ) =
∏
a∈A

∏
b∈B

(2iπa− ν
4

− 2iπb− µ
4

)
. (15)

Since Ξ∆1,...,∆n
x1,...,xn (ν1, . . . , νn) = 0 when any of the |∆`| is odd because of the constraints294

|A`| = |∆` \A`|, only sets ∆` containing an even number of elements contribute to (13).295

The same reasoning as the one between (10) and (6) allows to express (13) in terms of296

non-isomorphic Riemann surfaces and a trace over covering maps. One has297

P(h(x1, t1) > u1, . . . , h(xn, tn) > un)

=

(
n∏
`=1

∑
∆`@Z+1/2
∆`≡∆`+1

) ∫
γ1

. . .

∫
γn

Ξ∆1,...,∆n
x1,...,xn (ν1, . . . , νn) (16)

× trρ̌∆1 . . . trρ̌∆n

∏n
`=1 Z

∆`,sw
t`−t`−1,u`−u`−1

(ν`)∏n−1
`=1 e2K∆`,∆`+1 (ν`, ν`+1)

,

with trρ̌∆` acting on ν`, Z
∆,sw
δt,δu the holomorphic differential from (8), and a loop γ` with298

winding number 1 around the infinite cylinder C for the variable ν`. Because of the299

trace, the integrand in (16) is meromorphic in Cn. The loops γ` do not cross each other,300

as the order Re νn < . . . < Re ν1 must be preserved because of the presence of simple301

poles at ν`+1 = ν` + 2iπm, m ∈ Z. Interestingly, it can be shown that such poles exist302

only when ∆`+1 = ∆` + m and P`+1 = P` + m (and only the sector A`+1 = A` + m of303

Ξ∆1,...,∆n
x1,...,xn contributes to them), corresponding to points p` = [ν`, P`] and p`+1 = [ν`+1, P`+1]304

coinciding on the Riemann surface R∆` ∼ R∆`+1 , see section 5.3.2.305

2.6 Discussion306

In this section, we discuss various interpretations of the exact formulas given above for307

KPZ fluctuations with periodic boundaries.308

2.6.1 Full dynamics from large deviations309

310

In the long time limit, KPZ fluctuations in finite volume converge to a stationary state311

where the interface has the same statistics as a Brownian motion with appropriate bound-312

ary conditions. Large deviations corresponding to fluctuations of the height with an ampli-313

tude of order t when t→∞ are on the other hand non-Gaussian and can be characterized314

by a generating function of the form [36,43]315

〈esh(x,t)〉 ' θ(s) et e(s) , (17)
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where e(s) involves an infinite sum of square roots. At finite time, the generating function316

of the height is given exactly by a sum of infinitely many terms of the same form,317

〈esh(x,t)〉 =
∑
n

θn(s)et en(s) (18)

with n an index labelling sheets of Riemann surfaces, see equations (122), (131). Known318

results for the spectrum of TASEP [44, 45] indicate that the stationary contribution cor-319

responds to the sheet C∅ of R when Re s > 0.320

These observations suggest the possibility to guess the full finite time dynamics of321

KPZ fluctuations in finite volume from the solution of the static problem of stationary322

large deviations alone. For flat initial condition in particular, the functions θP (s), eP (s)323

(or, more properly, their analogues for the probability (4) after Fourier transform, see324

section 5.1.1) are simply analytic continuations of θ∅(s), e∅(s) to all the sheets of the325

Riemann surface Ř. The situation is less straightforward for sharp wedge and stationary326

initial conditions, where a natural interpretation is still missing for the coefficients Ξ∆
x327

weighting the Riemann surfaces R∆ covered by R in (6) and (11).328

The stationary large deviations problem can be studied independently from the dynam-329

ics, using e.g. matrix product representations for discrete models [46, 47]. This approach330

was recently exploited in [38] to express the factor θ(s) in (17) for general initial condition331

as the probability that a gas of infinitely many non-intersecting Brownian bridges with332

density 1/s stays under the graph of the initial condition h(x, 0) = h0(x). More precisely,333

it was shown that334

θ(s) =
P(b−1 < h0| . . . < b−2 < b−1)

P(b−1 < b0| . . . < b−2 < b−1, b1 < b2 < . . .)
, (19)

where bj(x)− bj(0), j ∈ Z are independent standard Brownian bridges with bj(0) = bj(1),335

distances between consecutive endpoints bj+1(0) − bj(0) are independent exponentially336

distributed random variables with parameter s, and b0(0) = h0(0). Deriving exact formulas337

from the Brownian bridge representation is still an open problem, though, even for the338

simple initial conditions (flat, Brownian, sharp wedge) for which the result is known from339

Bethe ansatz, see however [48] for related work.340

The idea that the contributions of the excited states of a theory should follow from341

that of the ground state by analytic continuation with respect to some parameter is not342

new, see for instance [49] for the quantum quartic oscillator, [50] for the Ising field theory343

on a circle (where the ground state energy is interestingly also given by an infinite sum344

of square roots, but with conjugate branch points paired), or [51] for models described345

by the thermodynamic Bethe ansatz. In the context of the Schrödinger equation for a346

particle in a potential, a unifying scheme appears to be exact WKB analysis [52], which347

uses tools from the theory of resurgent functions in order to reconstruct a single valued348

eigenfunction from the multivalued classical action. Such an approach might be useful for349

KPZ in order to derive known exact formulas without having to consider discrete models,350

by starting directly from the associated backward Fokker-Planck equation, a rather formal351

infinite dimensional linear partial differential equation acting on the functional space of352

allowed initial heights.353

2.6.2 Particle-hole excitations354

355

The finite sets of half-integers labelling the sheets of the Riemann surfaces Ř, R∆ con-356

sidered in this paper have a natural interpretation in terms of particle-hole excitations357

10
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Figure 2: Picture of particle-hole excitations at both edges of the Fermi sea corresponding
to sets P , H of half-integers. The notations P±, H± indicate the positive and negative
elements of the sets.

at both edges of a Fermi sea, see figure 2. This is most clearly seen on the expressions358

from [39] for the generating function 〈esh(x,t)〉 of the KPZ height discussed in sections 5.1.1359

and 5.2.1.360

From the exact Bethe ansatz solution of TASEP, eigenstates of the time evolution361

operator in the KPZ scaling regime are labelled by sets P and H corresponding to particle-362

hole excitations, interpreted respectively as momenta of quasiparticle and hole excitations363

relative to the Fermi momentum on both sides of the Fermi sea, see figure 2. Excitations364

only occur in particle-hole pairs, with “neutral charge”: no particle or hole excitation365

alone occurs. The stationary state P = H = ∅ corresponds in particular to the completely366

filled Fermi sea.367

For sharp wedge initial condition, the sets P and H must satisfy the constraint |P |± =368

|H|∓ that the number of positive elements of P is equal to the number of negative elements369

of H and vice versa, see equations (131), (133). This corresponds to the fact that particle-370

hole excitations occur independently on both sides of the Fermi sea, i.e. quasiparticles371

at a finite distance from either side of the Fermi sea may be excited above the Fermi372

momentum but will stay at a finite distance of the same edge of the Fermi sea: excitation373

from one edge to the other (known as Umklapp processes in condensed matter physics) are374

suppressed for KPZ. It is remarkable that the constraints |P |± = |H|∓ are automatically375

verified in (6), (11) from the way the collection of non-isomorphic Riemann surfaces R∆
376

are partitioned into sheets CP , with H = P 	 ∆ the symmetric difference of P and ∆377

(union minus intersection), see section 5.2.1.378

Flat initial condition (122), (123) corresponds to the special case P = H, where mo-379

menta of quasiparticles excitations on one side of the Fermi sea are identical to momenta380

of hole excitations on the other side of the Fermi sea. It is again quite remarkable that the381

resulting constraint |P |+ = |P |− naturally appears for the sets P labelling (half)-sheets382

of the Riemann surface Ř, see figure 13 on the right. The extra constraint P = H for flat383

initial condition is understood from TASEP as the fact that a specific microscopic state384

representing a flat interface has nonzero overlap only with Bethe eigenstates correspond-385

ing to particle-hole excitations satisfying the constraint [53]. This has the consequence to386

increase the spectral gap (i.e. to reduce the relaxation time) compared to a generic initial387

state, as was already recognized in [54].388

Compared to the states contributing for flat initial condition, which have zero momen-389

tum, a non-empty symmetric difference ∆ = P 	H corresponds to an imbalance between390

both sides of the Fermi sea, and is related through the coefficients Ξ∆
x in (7) to motion391

along the KPZ interface, with momentum 2π(
∑

a∈P a−
∑

a∈H a).392

The interpretation of KPZ fluctuations in terms of particle-hole excitations close to the393

Fermi level is reminiscent of Luttinger liquid universality describing large scale dynamics394

of one-dimensional quantum fluids, with however several important distinctions. In addi-395

tion to the absence mentioned above of Umklapp terms for KPZ, unlike in the Luttinger396

liquid setting, the dispersion relation, linear for the Luttinger liquid by construction after397

11



SciPost Physics Submission

expanding around the Fermi level, is given for KPZ by κa(ν)3 ∼ |a|3/2 at large wave num-398

ber 2πa, indicating the existence of a singularity at the Fermi level. From a mathematical399

point of view, the difference amounts to the presence of polylogarithms with integer index400

(especially the dilogarithm Li2) for various quantities in the Luttinger liquid case, while401

half-integer polylogarithms appear for KPZ.402

2.6.3 KdV solitons403

404

The exact formula for the probability Pflat(h(y, 3t) > x) 3 with flat initial condition has405

a nice interpretation in terms of a solution to the Korteweg-de Vries (KdV) equation406

representing infinitely many solitons in interaction, see e.g. [55–57] for an introduction to407

classical non-linear integrable equations. As explained below, the relation to KdV suggests408

that the parameter ν appearing in various expressions in sections 2.2 to 2.5 should be409

interpreted as a moduli parameter for a class of degenerate hyperelliptic Riemann surfaces.410

The relation to KdV is most visible on the Fredholm determinant expression (22), (23)411

for Pflat(h(y, 3t) > x), which has the same kind of Cauchy kernel (24) as KdV N -soliton412

τ functions with N →∞.413

We recall that any determinant of the form τ(x, t) = det(1 − MKdV
N (x, t)) where414

MKdV
N (x, t) is a N ×N square matrix with matrix elements MKdV

N (x, t)a,b = e2xκa+2tκ3
a+λa415

/(κa + κb) depending on 2N arbitrary coefficients κa, λa is called a τ function for KdV,416

such that u(x, t) = 2∂2
x log τ(x, t) is a solution of the KdV equation417

4∂tu = 6u∂xu+ ∂3
xu . (20)

Such a solution corresponds to N solitons in interaction, the constants κa determining the418

asymptotic velocities −κ2
a of the solitons when they are far away from each other, and419

the whole Cauchy determinant det(1 −MKdV
N (x, t)) describing how the solitons interact420

otherwise.421

The KdV equation (20) belongs to a family of non-linear partial differential equations422

known as the KdV hierarchy. The n-th equation of the hierarchy, n odd, involves deriva-423

tives with respect to the space variable x and to a time variable tn. The case n = 3424

corresponds to (20), with t3 = t. Soliton solutions to higher equations in the hierarchy are425

obtained by replacing 2tκ3
a in MKdV

N (x, t)a,b above by 2tnκ
n
a .426

We observe that the probability Pflat(h(y, 3t) > x) of the KPZ height with flat initial427

condition, independent of y, can be written as an integral over ν of a determinant (of428

Fredholm type, i.e. corresponding to an infinite dimensional operator) with a kernel of429

the same form as MKdV
∞ (x, t) above. Indeed, using (4), (64), (51), (184) and the Cauchy430

determinant identity431

det
( 1

κa + κb

)
a,b∈P

=

∏
a>b∈P (κa − κb)2∏
a,b∈P (κa + κb)

, (21)

see section 5.1.2 for more details, one has432

Pflat(h(y, 3t) > x) =

∫ c+iπ

c−iπ

dν

2iπ
τflat(x, t; ν) , (22)

with the τ function defined by 4
433

τflat(x, t; ν) = e3tχ∅(ν)−xχ′∅(ν)+I0(ν)+J∅(ν) det(1−Mflat(x, t; ν)) , (23)

3The change (t, u, x)→ (3t, x, y) in this section is needed to conform to standard notations for KdV.
4The exponential of a linear function of x in front of the Fredholm determinant does not contribute to

uflat = 2∂2
x log τflat, which is thus still solution of the KdV equation.
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where χ∅ is defined in (57), I0 in (68) and J∅ in (74). The operator Mflat(x, t; ν), acting434

on sequences indexed by Z + 1/2, has the kernel435

Mflat(x, t; ν)a,b =
e

2xκa(ν)+2tκ3
a(ν)+2

∫ ν
−∞ dv

χ′′∅ (v)

κa(v)

κa(ν) (κa(ν) + κb(ν))
(24)

with κa(v) a specific branch of
√

4iπa− 2v defined in (50). When c < 0, this is directly436

the result from [40], see equations (124), (125). When c > 0, a little more work is needed437

in order to rewrite into (22) the integral for ν between c− i∞ and c+ i∞ of the Fredholm438

determinant in [39], which corresponds to a representation of Ř distinct from the one in439

(4), see section 5.1.1.440

KPZ with flat initial condition thus involves a τ function for KdV, i.e. uflat(x, t; ν) =441

2∂2
x log τflat(x, t; ν) is a solution of the KdV equation (20) for any ν. This solution corre-442

sponds to a gas of infinitely many solitons with (complex) velocities −κ2
a(v) = 2ν − 4iπa,443

a ∈ Z + 1/2. The probability Pflat(h(y, 3t) > x) is obtained by averaging τflat(x, t; ν) over444

the common velocity modulo 2iπ of the solitons. Time variables for higher equations in445

the KdV hierarchy naturally appear in (24) as t2m+1 = χ
(m+2)
∅ (ν)/(2m+1)!!, see equation446

(187).447

The possibility to interpret KPZ as a gas of solitons was put forward by Fogedby [58]448

starting with the WKB solution of the Fokker-Planck equation in the weak noise limit, with449

in particular the prediction of the dispersion relation |k|3/2 as a function of momentum k,450

corresponding in our notations to κ3
a(ν) ∼ |a|3/2 for large a, see also [59] for recent related451

work.452

Since flat initial condition corresponds to h(y, 0) = 0, the probability Pflat(h(y, 3t) > x)453

is expected to converge to 1{x<0} when t→ 0. Furthermore, since the KPZ height in finite454

volume at short time must have the same statistics as the KPZ fixed point on R [60], one455

should have Pflat(h(y, 4t) > −t1/3 x) → F1(x) when t → 0, where F1 is the GOE Tracy-456

Widom distribution from random matrix theory. This was checked numerically with good457

agreement in [39]. In terms of the KdV interpretation, we conjecture that the short time458

limit corresponds to the known scaling solution (t/4)2/3u(−(t/4)1/3x, t/3) = V ′(x)−V 2(x)459

of (20), where V is a solution of the Painlevé II equation V ′′(z) = 2V 3(z) + zV (z) +α and460

α a constant which may depend on ν, see e.g. [61].461

The relation to KdV allows to interpret the integration variable ν in (1) as a mod-462

uli parameter for a class of singular hyperelliptic Riemann surfaces with infinitely many463

branch points. A soliton solutions of KdV can indeed be seen as the limit δ → 0 of a464

solution of KdV built in terms of the theta function of the hyperelliptic Riemann surface465

with branch points 0, ∞, κ2
a + δ, κ2

a − δ when branch points κ2
a ± δ merge together on the466

Riemann surface, see [55, 56]. The ∞-soliton solution uflat corresponds in particular to467

the hyperelliptic Riemann surface with branch points 0, ∞ and singular points 4iπa− 2ν,468

a ∈ Z+ 1/2, or equivalently to branch points ν, ∞ and singular points 2iπa, a ∈ Z+ 1/2.469

The Riemann surface R on which the parameter ν lives before taking the trace in (1)470

thus describes the monodromy of the branch point ν of the hyperelliptic Riemann surface471

above around the singular points 2iπa.472

For sharp wedge initial condition, the Fredholm determinant expressions for Psw(h(2y,473

3t) > x) from [39, 40] are instead reminiscent of soliton solutions for the Kadomtsev-474

Petviashvili (KP) equation 3∂2
yu = ∂x(4∂tu − (6u∂xu + ∂3

xu)), a generalization of the475

KdV equation for a function u(x, y, t) with two spatial dimensions, see e.g. [55–57]. The476

τ functions related to u by u(x, y, t) = 2∂2
x log τ(x, y, t) and corresponding to N -soliton477

solutions of the KP equation are of the form τ(x, y, t) = det(1−MKP
N (x, y, t)), where the478

N × N matrix MKP
N (x, y, t)a,b = ex(κa−ηb)+y(κ2

a−η2
b )+t(κ3

a−η3
b )+λa/(κa − ηb) depends on 3N479
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arbitrary constants κa, ηb, λa. For KPZ with sharp wedge initial condition, calculations480

similar to the ones leading to (22), see section 5.2.2 for more details, allow to rewrite (10)481

in terms of a Fredholm determinant as482

Psw(h(2y, 3t) > x) =

∫ c+iπ

c−iπ

dν

2iπ
etχ∅(ν)−uχ′∅(ν)+2J∅(ν) det(1−Msw(x, y, t; ν)) , (25)

with Msw(x, y, t; ν) = Lsw(x, y, t; ν)Lsw(x,−y, t; ν) and483

Lsw(x, y, t; ν)a,b =
e
xκa(ν)+yκ2

a(ν)+tκ3
a(ν)+2

∫ ν
−∞ dv

χ′′∅ (v)

κa(v)

κa(ν)(κa(ν) + κb(ν))
. (26)

When c < 0, this is essentially the result from [40], see section 5.2.2. A similar Fredholm484

determinant was also given in [39] for c > 0, corresponding to a distinct representation of485

the Riemann surfaces in (10).486

The dependency on x, y and t in (25) is essentially the same as for KP solitons,487

with N → ∞, κa = κa(ν) and ηb = −κb(ν). The rest of the expression is similar to but488

different from the Cauchy determinant MKP
N required for KP solitons. Interestingly, proper489

∞-soliton solutions of the KP hierarchy are known to appear for Laplacian growth [62],490

which belongs to a universality class of growing interfaces distinct from KPZ.491

A paper by Quastel and Remenik [63] about KPZ fluctuations on R appeared shortly492

after our paper. There, the one-point cumulative distribution function with general initial493

condition is shown to be a τ function for the KP equation, without an extra integration494

like in (22), while multiple-point distributions at a given time correspond to a matrix495

generalization of KP. This suggest that there might still be a way to properly understand496

(25) in terms of KP solitons, maybe a matrix generalization such as the one in [63].497

Additionally, the distinction between the solutions of Quastel-Remenik and ours for KPZ498

fluctuations is highly reminiscent of the one for the KdV / KP equations between solutions499

on the infinite line, where an extension to more singular initial conditions is required for500

KPZ [63], and quasi-periodic solutions involving compact Riemann surfaces, which appear501

to become non-compact for KPZ.502

2.7 Conclusions503

Several exact results for KPZ fluctuations with periodic boundaries have been reformulated504

in this paper in a compact way in terms of meromorphic differentials on Riemann surfaces505

related to polylogarithms with half-integer index. We believe that KPZ universality would506

benefit from a more systematic use of tools from algebraic geometry, especially more recent507

developments about non-compact Riemann surfaces of infinite genus [64]. Conversely, the508

very singular and universal nature of KPZ fluctuations suggests that objects appearing509

naturally for KPZ might also be of some interest in themselves for the field of algebraic510

geometry, especially when studying limits where the genus of Riemann surfaces goes to511

infinity.512

A possible extension concerns the renormalization group flow hλ(x, t) from the equilib-513

rium fixed point λ→ 0 to the KPZ fixed point λ→∞ considered in this paper. Whether514

the dynamics for finite λ may also be expressed in a natural way in terms of Riemann515

surfaces is unclear at the moment. Hints of a duality [65] between the equilibrium fixed516

point in an infinite system and the KPZ fixed point for periodic boundaries, with half-517

integer polylogarithms describing large deviations on both sides [66], suggest however the518

existence of a tight structure holding everything together. Partial exact results relevant519

to finite λ with periodic boundaries have been obtained using the replica solution [37] of520

the KPZ equation and a weakly asymmetric exclusion process [67,68] (see also [69,70] for521
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recent exact results with arbitrary asymmetry). The appearance of half-integer polylog-522

arithms and ζ functions in related contexts of non-intersecting lattice paths [71], largest523

eigenvalues in the real Ginibre ensemble [72,73] and return probabilities for the symmetric524

exclusion process [74] and quantum spin chains [75] on Z with domain wall initial condition525

might also have some connections to the equilibrium side of the duality.526

Finally, the results of this paper are based on complicated asymptotics of Bethe ansatz527

formulas for TASEP in the limit where the number of lattice sites L and the number of528

particles N go to infinity with fixed density N/L [39–42]. A natural question is whether529

TASEP with finite L, N can already be described in terms of (finite genus) Riemann530

surfaces, so that the infinite genus Riemann surface R would emerge in a more transparent531

fashion in the large L, N limit. Tools from algebraic geometry have already been used in532

the study of the more complicated Bethe equations for the asymmetric exclusion process533

with hopping in both directions [76] and the related XXZ spin chains with finite anisotropy534

[77, 78]. The limit where the anisotropy of the spin chain goes to infinity, corresponding535

for the exclusion process to the TASEP limit, seems however a better starting point since536

the Bethe equations have a much simpler structure in that case, see e.g. [79,80] for related537

works.538

3 Riemann surfaces and ramified coverings539

In this section, we recall a few classical results about (compact) Riemann surfaces and540

ramified coverings. The various properties are illustrated using two examples: hyperelliptic541

Riemann surfaces HN , which are the proper domain of definition for square roots of542

polynomials, and Riemann surfaces RN defined from sums of square roots, which have543

the topology of N−1-dimensional hypercubes. The Riemann surfaces RN are finite genus544

analogues of the non-compact Riemann surfaces R introduced in section 3.8 and used for545

KPZ fluctuations in section 2. We refer to [81–83] for good self-contained introductions546

to compact Riemann surfaces and ramified coverings.547

3.1 Analytic continuation and Riemann surfaces548

Let us consider a function g0 analytic in the complex plane C except for the existence of549

branch cuts, i.e. paths in C across which g0 is discontinuous. Extremities of branch cuts,550

called branch points, correspond to genuine singularities of the function g0. The branch551

cuts themselves, on the other hand, are somewhat arbitrary. The domain of definition552

of g0 can be extended by analytic continuation along paths crossing the branch cuts. In553

the favourable case considered in this paper, successive iterations of this procedure lead554

to functions gi, i ∈ I analytic in C except for the same branch cuts as g0, such that555

the function gi on one side of a branch cut continues analytically to another function gj556

on the other side of the same branch cut. The collection of all branches gi represents a557

multivalued function. Multivalued basic special functions usually come with a standard558

choice for the principal value g0.559

Considering the domains of definition of the functions gi as distinct copies Ci of the560

complex plane 5, the Riemann surface M for the function g0 is built by gluing together561

the sheets Ci along branch cuts, and we use the notation [z, i], z ∈ C for the points on the562

5For the sake of simplicity, we consider in this paper concrete Riemann surfaces, defined in terms of
analytic continuation of functions and close to Riemann’s original presentation, and not the more abstract
modern formalism in terms of an atlas of charts and transition functions. All the Riemann surfaces
considered in this paper can be understood as the natural domain of definition of some explicit multivalued
function, and thus come with a natural ramified covering from the Riemann surface to C.
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y = −
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Figure 3: Neighbourhood of a point q = [z∗,C+] = [z∗,C−] in a Riemann surface (right)
such that z∗ is a branch point of the function g0 from which the Riemann surface is built.
The neighbourhood is formed by gluing together along the branch cut originating from
q two half-disks obtained from taking the square root of full disks from the sheets C±
(left). The complex numbers z± parametrize half a neighbourhood of q in C±. The local
parameter y at q is a complex number that fully parametrizes the neighbourhood of q.

sheet Ci of M. More precisely, let z∗ be a branch point of gi and γ a branch cut issued563

from z∗. Calling by “left” and “right” the two sides of γ, we glue the left side of the cut564

in the sheet Ci to the right side of the cut in the sheet Cj if gi is analytically continued565

from the left to gj across the cut, and we glue the right side of the cut in the sheet Ci to566

the left side of the cut in the sheet Ck if gi is analytically continued from the right to gk567

across the cut. Additionally, the branch points [z∗, i], [z∗, j], [z∗, k] of the sheets Ci, Cj ,568

Ck represent a single point on M, [z∗, i] = [z∗, j] = [z∗, k]. The Riemann surface M is569

independent of the precise choice of branch cuts for g0: the branch cuts only determine570

a partition of M into sheets Ci, and the notation [z, i] for the points of M thus depends571

implicitly on the choice of branch cuts.572

A function g can then be defined on the Riemann surface M by g([z, i]) = gi(z).573

Locally, the neighbourhood of any point ofM looks like an open disk of C, and the function574

g is analytic there. This is obvious by construction, except around branch points where575

one needs to introduce a non-trivial local coordinate y to parametrize the neighbourhood.576

We mainly consider in the following branch points z∗ of square root type, such that577

gi(z) ' g̃i(z)
√
z − z∗ when z → z∗, where the g̃i are analytic and with a branch cut for the578

square root determined by the branch cuts of the gi. A possible local parameter is then579

y =
√
z − z∗, and gi(z) ' y g̃i(z∗ + y2) is indeed analytic around y = 0. A neighbourhood580

of z∗ in M may be built using the local parameter y by gluing together two half-disks as581

in figure 3.582

All the construction goes through in the presence of isolated poles, with analytic func-583

tions replaced by meromorphic functions. Additionally, it is often convenient to make584

Riemann surfaces compact by adding the points at infinity of the sheets, with appropriate585

local parameters ensuring that the neighbourhoods of these points are regular. In the586

simplest case where g0 is a rational function without branch points andM is thus made of587
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z1

z2

zN

z1

z2

zN

z1

z2

zN

Figure 4: Three different choices of branch cuts (solid lines) for the function h+ defined
in (27) with N = 5. The branch points zj are represented by dots. The function h+ is
multiplied by −1 after crossing any branch cut.

a single sheet C, the associated compact Riemann surface is called 6 the Riemann sphere588

Ĉ = C ∪ {∞}.589

3.2 The Riemann surfaces HN and RN590

We consider in this section two concrete examples of the construction above. Let z1, . . . ,591

zN be distinct complex numbers, that are fixed in the following. We choose for simplicity592

of the pictures (and also because it will be the case of interest for KPZ) the zj ’s to be593

purely imaginary and equally spaced, Im z1 < . . . < Im zN , but this choice is not essential594

here. We define the functions595

h+(z) =
√
z − z1 × . . .×

√
z − zN (27)

and596

f∅(z) =
√
z − z1 + . . .+

√
z − zN (28)

of a complex variable z, which inherit branch cuts from the square roots (see respectively597

figures 4 and 5 for some possible choices of branch cuts). The functions h+ and f∅ can be598

extended by the procedure described in the previous section to analytic functions h and599

f defined on compact Riemann surfaces HN and RN . The Riemann surface HN , called600

hyperelliptic and used here mainly for illustrative purpose, has links to the KdV equation601

discussed in section 2.6.3. The Riemann surface RN , on the other hand, is a simplified,602

finite genus version of the Riemann surface R introduced in section 3.8, and in terms of603

which KPZ fluctuations are expressed in section 2.604

We begin with the function h+ defined in (27), analytic on a sheet called C+, with605

the choice of branch cuts on the left in figure 4. Analytic continuation across branch cuts606

gives h− = −h+, which lives on another sheet C−. The Riemann surface HN is formed607

by the two sheets C± glued together, and h+ extends analytically to a function h defined608

on HN by h([z,±]) = h±(z). Locally, the neighbourhood of any point of HN looks like609

an open disk of C (see figure 3 for the neighbourhood of [zj ,±]), and the function h is610

analytic there. The points at infinity [∞,±] are poles of the function h. A local parameter611

y for these points is y = z−1 if N is even and y = z−1/2 if N is odd. In the former case,612

the poles of h at [∞,+] and [∞,−], which are distinct points of HN , are of order N/2.613

In the latter case, ∞ is a branch point of h± and the point [∞,+] = [∞,−] is a pole of614

order N of h. The function h also has N zeroes, the points [zj ,+] = [zj ,−], j = 1, . . . , N .615

6Other notations for Ĉ include C, C∞, or P1(C), CP1 when interpreted as the complex projective line.
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GP

P 	 {1}

P 	 {2}

P 	 {3}

P 	 {4}

P 	 {5}

z1

z2

z3

z4

z5

FP

P 	 {1}

P 	 {1, 2}

P 	 {1, 2, 3}

P 	 {1, 2, 3, 4}

P 	 {1, 2, 3, 4, 5}

z1

z2

z3

z4

z5

Figure 5: Two different choices of branch cuts (solid lines) for the function f∅ defined
in (28) with N = 5. The branch points are represented by dots. The sets labelling the
sheet reached after crossing branch cuts from either side starting from the sheet labelled
by P ⊂ {1, 2, 3, 4, 5} is indicated near the branch cuts.

The total number of poles of h, counted with multiplicity, is thus equal to its number of616

zeroes. This is in fact a general property valid for any meromorphic function on a compact617

Riemann surface.618

Compared to the hyperelliptic case discussed above, analytic continuations across619

branch cuts of f∅ defined in (28) have a richer structure, since all the square roots are inde-620

pendent: each one may change sign independently across branch cuts. The corresponding621

Riemann surface RN is thus made of 2N sheets labelled by sets of integers between 1622

and N , P ⊂ [[1, N ]], indicating the square roots coming with a minus sign. It will be623

convenient in the following to distinguish two systems of sheets GP and FP partitioning624

RN , corresponding respectively to the choice of branch cuts on the left and on the right625

in figure 5. The points of RN will be written as [z,GP ] or [z,FP ] when specifying the626

choice of sheets is needed, and simply as [z, P ] otherwise. The analytic function f on RN627

induced by f∅ is defined by f([z, P ]) = fP (z), with fP (z) =
∑N

j=1 σj(P )
√
z − zj and628

σa(P ) =

{
1 a 6∈ P
−1 a ∈ P . (29)

The number of square roots that have changed sign in fP compared to f∅ is equal to the629

number |P | of elements in P .630

The connectivity of the sheets GP and FP in RN following from analytic continuation631

can be expressed in terms of the symmetric difference operator 	, defined as union minus632

intersection:633

P 	Q = (P ∪Q)\(P ∩Q) . (30)

The symmetric difference operator 	 is associative, commutative and verifies P 	 P = ∅634

and 7 P 	Q+ n = (P + n)	 (Q+ n) for n ∈ Z. A collection of sets closed under union,635

intersection and complement forms a group with the operation 	. The identity element is636

the empty set ∅, and the maps σa act as group homomorphisms, σa(P	Q) = σa(P )σa(Q).637

Crossing the branch cut associated to zj from the sheet GP leads to GP	{j} (see fig-638

ure 5), and one has the local parameters y = ±√z − zj with the same half-disk construc-639

7We choose symmetric difference to have precedence over addition, so that P	Q+n means (P	Q)+n.
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FP	[[1,j]]

z

FP	{j}

z

RN

y
y =
√
z − zjy = −√z − zj

y = i
√
zj − z

y = −i
√
zj − z

FP

z

FP	[[1,j−1]]

z

Figure 6: Neighbourhood of q = [(zj)r,FP ] = [(zj)l,FP	[[1,j]]] = [(zj)r,FP	{j}] =
[(zj)l,FP	[[1,j−1]]], 2 ≤ j ≤ N − 1 in RN , formed by gluing four quarter-disks obtained
from taking the square root of half-disks in the sheets FP , FP	[[1,j]], FP	{j} and FP	[[1,j−1]].
The complex numbers z parametrize quarters of neighbourhoods of q in the various sheets.
The local parameter y fully parametrizes a neighbourhood of q, with y = 0 corresponding
to q.
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z1

z2
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z4

z5

∞1

∞2

∞3

∞4
∞5

FP

z1

z2

z3

z4

z5

∞

Figure 7: Compact representation of branch cuts for the sheets GP (left) and FP (right)
of R5 after adding the points at infinity. The branch cuts are represented as straight lines
for clarity, and distances are not meaningful.

tion of figure 3 as for HN around the points [zj ,GP ] = [zj ,GP	{j}]. In the sheet FP on640

the other hand, crossing the branch cut between zj and zj+1 (with zN+1 = ∞) leads to641

FP	[[1,j]] (see figure 5). There, an additional difficulty for constructing local parameters is642

that the branch points zj , j = 2, . . . , N−1 lie on branch cuts, and must thus be labelled by643

an additional index l or r depending on whether the point is on the left side (l) or the right644

side (r) of the cut. A neighbourhood of [(zj)r,FP ] = [(zj)l,FP	[[1,j]]] = [(zj)r,FP	{j}] =645

[(zj)l,FP	[[1,j−1]]] is constructed in figure 6 by gluing quarter disks together.646

The points at infinity are branch points of the functions fP . Considering the partition647

of RN with sheets FP , one has [∞,FP ] = [∞,FP	[[1,N ]]], see figures 5 and 7 right. For648

the sheets GP , points at infinity can be reached from N directions in figure 5 left, and649

one has to distinguish points [∞j ,GP ], j = 1, . . . , N , with the identifications [∞j ,GP ] =650

[∞j−1,GP	{j}], see figure 7 left.651

3.3 Genus652

From a purely topological point of view, a Riemann surface is a two-dimensional connected653

manifold. In the case of a closed (i.e. without boundary), compact Riemann surface such654

as Ĉ, HN or RN above, the manifold is fully characterized up to homeomorphisms (i.e.655

continuous deformations with continuous inverse) by a single non-negative integer, its656

genus g, corresponding to the maximal number of simple non-intersecting closed curves657

along which the manifold can be cut while still being connected. The case g = 0 corre-658

sponds to a sphere, g = 1 to a torus and g ≥ 2 to a chain of g tori glued together, see659

figure 8.660

The additional complex structure of Riemann surfaces detailing how sheets are glued661

together gives more freedom, and two Riemann surfaces of the same genus are not necessar-662

ily isomorphic (i.e. there may not exist a holomorphic homeomorphism with holomorphic663

inverse transforming one into the other). The genus 0 case is an exception, for which a664

single Riemann surface exists up to isomorphism, the Riemann sphere Ĉ. For genus 1, the665

equivalence classes up to isomorphism are indexed by a single complex number τ (defined666

up to modular transformations), such that the parallelogram with vertices 0, 1, 1 + τ, τ667

becomes a torus when opposite sides are glued together. For higher genus g ≥ 2, the668

moduli space of all Riemann surfaces is parametrized by 3g − 3 complex parameters.669

The Riemann surfaces H1 and H2 are both isomorphic to the Riemann sphere, while670

H3 and H4 are tori. More generally, the genus of the hyperelliptic Riemann surface HN671
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∼ ∼

∼

Figure 8: Sphere, torus, and surface with genus g = 5, along with hypercubes of dimensions
1, 2, 3 made of spheres connected with cylinders that can be mapped to them by continuous
deformations.

is known to be equal to either (N − 1)/2 or (N − 2)/2 depending on the parity of N .672

Similarly, R1 (which is exactly the same as H1 since f∅ = h+ when N = 1) and R2 (see673

figure 9) are also isomorphic to the Riemann sphere, while R3 is a torus, see figure 10.674

More generally, the genus gN of RN grows exponentially fast with N , as675

gN = 1 + (N − 3)2N−2 , (31)

which can be proved by induction on N . Indeed, cutting RN along a path joining [zN ,FP ]676

and [∞,FP ] in every sheet FP splits RN into two disconnected pieces (corresponding to677

sheets FP with either N ∈ P or N 6∈ P ), each component having 2N−1 boundaries cor-678

responding to the cycles [∞,FP ] = [∞,FP	[[1,N ]]] → [(zN )l,FP	[[1,N ]]] = [(zN )r,FP ] →679

[∞,FP ]. Both pieces are homeomorphic to RN−1 with 2N−1 boundaries, which are con-680

nected two by two in RN . This leads to the recurrence relation gN+1 = 2gN + 2N−1 − 1,681

since gluing together both pieces along a first boundary leads to a surface with twice682

the genus of RN−1, and each additional gluing adds a handle to the surface and hence683

increases the genus by 1. We observe that the Riemann surface RN is thus homeomor-684

phic to a N − 1-dimensional hypercube [84] whose nodes are spheres and edges cylinders685

connecting the spheres, see figure 8.686

3.4 Ramified coverings687

Maps between Riemann surfaces acting as holomorphic functions on local parameters,688

called holomorphic maps, are a powerful tool in the study of Riemann surfaces. They689

allow in particular to define a notion of equivalence between Riemann surfaces having690

essentially the same complex structure: two Riemann surfaces are called isomorphic when691

there exists a bijective holomorphic map with holomorphic inverse between them.692

Given two Riemann surfaces M and N , a ramified covering (or branched covering, or693

simply covering map 8 here for simplicity) such thatM covers N (or N is covered byM)694

is a non-constant holomorphic map fromM to N , which is then surjective by analyticity.695

Ramified coverings allow to relate complicated Riemann surfaces to simpler Riemann696

surfaces. In particular, for any Riemann surface M, there exists at least one ramified697

covering from M to the Riemann sphere Ĉ, i.e. a non-constant meromorphic function on698

M. Conversely, defining a concrete Riemann surface M = {[z, i], z ∈ Ĉ, i ∈ I} by gluing699

8Not to be confused with the topological notion of a covering, which does not have ramification points.
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G∅

z1

∞

z2

−→
open the cut

G∅
G{1}

G{2}

G{1,2}

z1

∞∞

z2

z1

z2

Figure 9: Representation of the surface corresponding to the Riemann surface R2. The
sheet G∅ is represented on the left, with a cut linking the points [z1,G∅], [z2,G∅] and [∞,G∅].
Opening the cut, all the other sheets G{1}, G{2}, G{1,2} fit within the opening. The graph

made by the cuts of all sheets is planar, and R2 is isomorphic to the Riemann sphere Ĉ.

∅

{1}

{2} {3}

{1, 2} {1, 3}

{2, 3}

{1, 2, 3}

Figure 10: Representation of the torus homeomorphic to the Riemann surface R3. Oppo-
site sides of the fundamental domain represented by the region in the middle are identified.
The connectivity of the sheets GP partitioning R3 is represented by the labels P ⊂ {1, 2, 3}
of the sheets.
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domains of definition of branches i ∈ I of a multivalued function gives the natural covering700

map [z, i] 7→ z.701

Let ρ : M → N be a branched covering and p ∈ M. Then, there exists a unique702

positive integer ep ∈ N∗ such that one can choose local coordinates y and z for the703

neighbourhoods around p and ρ(p) in such a way that z = yep . The integer ep is called704

the ramification index of the point p for the covering map ρ. A ramification point of ρ is705

then a point p ∈ M such that ep ≥ 2, with ep = 2 corresponding to ramification points706

of square root type. Around such points, the mapping ρ is not injective, and the inverse707

function ρ−1 is multivalued. The branch points q ∈ N of ρ are the images by ρ of the708

ramification points p ∈M.709

Ramification points form a discrete subset of M. Furthermore, if M is compact, the710

number of branch points is finite, and so is the number of preimages of any q ∈ N by711

ρ. In that case, there exists a unique positive integer d ∈ N∗, the degree of the branched712

covering, such that for any q ∈ N , d =
∑

p∈ρ−1(q) ep. For generic points q ∈ N not branch713

points of ρ, the set of preimages ρ−1(q) ⊂M has exactly d distinct elements.714

The construction of a concrete Riemann surfaceM by gluing together a discrete num-715

ber of copies Ĉi, i ∈ I of the Riemann sphere along branch cuts of some function, which716

we used above to define HN and RN , naturally gives the ramified covering [z, i] 7→ z from717

M to Ĉ.718

New meromorphic function can be built from known ones using ramified coverings.719

Let ρ : M → N be a branched covering and ϕM, ϕN meromorphic functions defined720

respectively on M and N . Then, the composition ϕN ◦ ρ is a meromorphic function721

on M. For instance, the ramified covering ρ : [z, P ] 7→ [z, (−1)|P |] from RN to HN722

generates from the function h on HN defined from (27) the function h ◦ ρ meromorphic723

on RN , which is essentially the same function as h but defined on a bigger space: HN is724

only the “minimal” closed, compact Riemann surface on which h± can be extended to a725

meromorphic function.726

Conversely, tracing over preimages of ρ defines a function trρ ϕM as727

(trρ ϕM)(q) =
∑
p∈M
ρ(p)=q

ϕM(p) , (32)

which can be shown [85] to be meromorphic on N . This can be illustrated by considering728

the covering map ρ : [z, P ] 7→ z from RN to Ĉ. Starting with the function f meromorphic729

on RN defined from (28), all the square roots cancel in the trace and one has trρ f = 0730

which is indeed defined on Ĉ. Less trivially, allowing essential singularities at infinity, the731

function (trρ eλf )(z) = 2N
∏N
j=1 cosh(λ

√
z − zj) is also analytic in C.732

The Riemann-Hurwitz formula gives a relation between ramification indices ep for a733

branched covering ρ :M→N of degree d and the respective genus gM, gN of the Riemann734

surfaces M and N :735

gM = d(gN − 1) + 1 +
1

2

∑
p∈M

(ep − 1) , (33)

where only ramification points contribute to the sum. In particular, one has always736

gM ≥ gN . Considering a triangulation of M with vertices at ramification points of ρ,737

the Riemann-Hurwitz formula is a simple consequence of the expression for the Euler738

characteristics χ = 2 − 2g in terms of the number of vertices, edges and faces of the739

triangulation.740

The Riemann-Hurwitz formula allows one to recover the expression (31) for the genus741

of RN . We introduce the ramified covering [z, P ] 7→ z from RN to Ĉ for some choice742

of branch cuts. This covering has degree d = 2N , and its ramification points, all with743
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ramification index 2, are the [zj , P ] and [∞, P ]. Each one is shared between two sheets (or744

four half-sheets, compare figures 3 and 6), so that the total number of ramification points745

is equal to (N + 1)2N−1. Taking gN = 0 in (33) since the target space is Ĉ gives again746

(31).747

3.5 Quotient under group action748

Quotients of Riemann surfaces by the action of their holomorphic automorphisms (i.e.749

bijective holomorphic maps from the Riemann surface to itself) generate new Riemann750

surfaces. Let M be a Riemann surface and h a group of holomorphic automorphisms751

of M acting properly discontinuously on M, i.e. for any point p ∈ M, there exists752

a neighbourhood U of p in M such that the set {h ∈ h, hU ∩ U 6= ∅} is finite, with753

hU = {h q, q ∈ U}. The quotient M/h is then also a Riemann surface, whose points754

q ∈ M/h are identified to orbit of p ∈ M under the action of h, and the covering map755

p 7→ q from M to M/h is ramified at the fixed points of h.756

Instead of considering the points of M/h as equivalence classes under the action of h,757

it is often convenient to choose a fundamental domain F inM such that {hF , h ∈ h} is a758

partition of M. Then, M/h can be identified as F with additional boundary conditions.759

A genus 1 Riemann surface, which has the topology of a torus, can for instance be defined760

as the quotient of C by a group of translations in two directions, and the fundamental761

domain may always be chosen as a parallelogram whose opposite sides are glued together,762

see figure 10.763

Given two Riemann surfacesM, N and a covering map ρ fromM to N , a holomorphic764

automorphism h of M is called a deck transformation for ρ if h is compatible with ρ, i.e.765

ρ ◦ h = ρ. A deck transformation is fully determined by the permutation it induces on766

ρ−1(q) with q ∈ N not a branch point of ρ.767

3.6 Homotopy and homology768

Let M be a Riemann surface and p ∈ M. Closed loops on M with base point p are769

continuous paths on M starting and ending at p. The set of equivalence classes of such770

loops under homotopy (i.e. continuous deformations) forms a group π1(M) for the con-771

catenation of the paths, called the first homotopy group (or fundamental group), which is772

independent from the base point up to group isomorphism.773

Let M and N be two Riemann surfaces, ρ : M → N a covering map, p ∈ M not a774

ramification point of ρ and γ a continuous path in N starting at ρ(p) and avoiding the775

branch points of ρ. The lift γ ·p of γ to the point p is the unique path in M starting at p776

whose image by ρ is γ. Considering a partition of M into sheets Ci such that any point777

q ∈ N has a single preimage under ρ in each sheet Ci, we also write γ ·Ci for the lift of778

the path γ ⊂ N to the preimage p ∈ Ci of the starting point of γ. Even if γ is a closed779

path on N , the lift γ ·Ci is not necessarily a loop on M, since its endpoint may be in any780

sheet Cj , but loops from any equivalence class in π1(M) may be obtained by the lifting781

procedure.782

Considering the example of the covering map ρ : [z,GP ] 7→ z from RN to Ĉ, we call θj783

the loop in Ĉ encircling only the branch point zj , once in the counter-clockwise direction.784

Then, the lift θ2
j ·GP is homotopic to an empty loop on RN , see dashed path in figure 3.785

Any loop on RN may be written up to homotopy as θjk . . . θj1 ·GP , where each θj appears786

an even number of times in the product so that the final sheet GQ, Q = P	{j1}	. . .	{jk}787

is the same as the initial sheet GP .788

Considering several loops based at a point p of a Riemann surface M, the homotopy789

class of their product γ may depend on the order of the loops in γ. On the other hand, the790
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Figure 11: Homology class of a loop γ = θjk . . . θj1·GP on the Riemann surfaceRN rewritten
as a combination of loops `a,b ·GQ.

integral of a holomorphic differential (see next section) over γ is independent of the order791

of the loops in γ. This motivates the definition of the first homology group H1(M,Z),792

a commutative version of the fundamental group π1(M), for which an additive notation793

is used for the concatenation of loops. For a compact Riemann surface of genus g, it is794

known that a minimal set of generators of H1(M,Z) must have 2g elements.795

An overcomplete set of generators for H1(RN ,Z) is given by the loops `a,b ·GP , 1 ≤796

a < b ≤ N , P ⊂ [[1, N ]], with `a,b = θbθaθbθa. Indeed, considering a general loop γ =797

θjk . . . θj1 · GP of π1(RN ), the sets P = Q0, Q1, . . . , Qk−1, Qk = P indexing the sheets798

GQ crossed by γ are such that two consecutive sets Qi, Qi+1 may only differ by a single799

element, and their cardinals |Qi|, |Qi+1| differ by ±1. Choosing an index i such that |Qi| is800

a local maximum in the sequence, two situations can occur: if Qi−1 = Qi+1, then ji−1 = ji801

and θjiθji−1 is homotopic to the identity and can be erased. Otherwise Qi−1 6= Qi+1, and802

there exists a, b ∈ [[1, N ]], a 6= b such that Qi contains both a and b, Qi−1 = Qi \ {b} and803

Qi+1 = Qi \ {a}. The loop then contains the factor θbθa, which can be replaced by θaθb,804

reducing the value of |Qi| by 2 at the price of adding `a,b·Qi−1 to the loop, which has the805

form desired, see figure 11 for an example.806

3.7 Differential 1-forms807

Let M be a concrete Riemann surface equipped with a covering map ρ : [z, i] 7→ z from808

M to Ĉ. A meromorphic differential ω on M, also called an Abelian differential, is a809

differential 1-form such that at any p = [z, i] ∈ M away from branch points of ρ one can810

write ω(p) = hi(z)dz with hi the branch of a meromorphic function h on the sheet Ci811

of M. At a ramification point [z∗, i] of ρ with ramification index e ≥ 2, one has instead812

ω([z∗, i]) = e ye−1 hi(z∗ + ye)dy in terms of the local coordinate y, ye = z − z∗.813

A meromorphic differential has a pole (respectively a zero) of order n at p = [z, i] away814

from ramification points if the function h as above has a pole (resp. a zero) of order n at815

p, and the residue of the pole is equal to the corresponding residue of hi. For ramification816
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points with local coordinate chosen as above, poles and zeroes of ω correspond to poles and817

zeroes of e ye−1 hi(z∗ + ye) at y = 0, and the residue of a pole, equal to the corresponding818

residue at y = 0, is independent from the choice of local coordinate. We observe that poles819

of h at branch points may be cancelled in ω by the factor ye−1 if the order of the pole820

is strictly lower than the ramification index. For a compact Riemann surface of genus g,821

the degree of a meromorphic differential, i.e. the total number of zeroes minus the total822

number of poles counted with multiplicity, is equal to 2g − 2.823

It is convenient to classify meromorphic differentials into three kinds depending on their824

poles. Meromorphic differentials of the first kind, also called holomorphic differentials,825

correspond to the special case where the differential has no poles. Holomorphic differentials826

are closed, i.e. the integral of a holomorphic differential on a path on M does not change827

if the path is deformed continuously while its endpoints are kept fixed. Equivalently, the828

integral of a holomorphic differential over a loop depends only on the equivalence class829

of the loop under homology. In particular, if the loop is homologous to 0 ∈ H1(M,Z),830

the integral is equal to 0 ∈ C even though the loop may not be homotopic to an empty831

loop. Holomorphic differentials form a vector space H1(M,C) of dimension 2g, dual to the832

first homology group H1(M,Z), and are the basic ingredients to build theta functions,833

a fundamental object in the theory of compact Riemann surfaces in terms of which τ834

functions for the KdV equation can for instance be built. For the Riemann surface RN , a835

basis of holomorphic differentials is given by the ωQ,k, Q ⊂ [[1, N ]], k integer with 0 ≤ k ≤836

(|Q| − 3)/2, equal at [z, P ] not a ramification point to ωQ,k([z, P ]) = zkdz/
∏
`∈Q
√
z − z`.837

One can check that there are indeed 2gN holomorphic differentials ωQ,k, each one having838

degree 2gN − 2 with gN given by (31).839

Meromorphic differentials of the second and third kind have poles. Meromorphic dif-840

ferentials of the second kind only have multiple poles with no residues, and are thus closed841

like holomorphic differentials. Meromorphic differentials of the third kind, on the other842

hand, also have poles with non-zero residue, and the integral over a small loop with winding843

number 1 around a pole is equal to 2iπ times the residue of the pole, like for meromorphic844

functions on C.845

As with meromorphic functions, the trace of a meromorphic differential ω on M with846

respect to a covering map ρ from M to N is defined as a sum over all preimages of ρ,847

(trρ ω)(q) =
∑
p∈M
ρ(p)=q

ω(p) . (34)

If ω is holomorphic onM, trρ ω is then holomorphic on N [85]. This observation is crucial848

for the application to KPZ in section 2 in order to move freely contours of integration849

between the left side and the right side of the cylinder C.850

3.8 Infinite genus limit851

We consider in this section an infinite genus version R of the Riemann surface RN . Rie-852

mann surfaces Ř and R∆ in terms of which KPZ fluctuations are described in section 2 are853

constructed as quotients of R under the action of groups of holomorphic automorphisms.854

3.8.1 Riemann surface R855

856

The Riemann surface R can be understood informally as a limit N →∞ of RN with the857

choice of branch points 2iπ(Z + 1/2) for the covering map [v, P ] 7→ v. Topologically, R is858

thus an infinite dimensional hypercube made of spheres connected by cylinders, see figure 8859
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CP	B−2

CP	B−1

CP	B1

CP	B2

[−5iπ, P ]

[−3iπ, P ]

[−iπ, P ]

[iπ, P ]

[3iπ, P ]

[5iπ, P ]

Figure 12: Choice of branch cuts (red, vertical lines) partitioning the Riemann surface R
into the sheets CP , P @ Z + 1/2. The ramification points of the covering map Π from R
to the infinite cylinder C are represented with red dots. The connectivity of the sheets is
indicated near the cuts, with Bn defined in (35) and 	 the symmetric difference operator
from (30).

for finite genus analogues RN . The Riemann surface R is understood more concretely in860

section 4.4 as a natural domain of definition for polylogarithms with half-integer index,861

which generalize the finite sum of square roots (28) on RN .862

Branch cuts are chosen such that R is partitioned into infinitely many sheets CP in-863

dexed by subsets P of Z+1/2 9, copies of the complex plane slit along the cut (−i∞,−iπ]∪864

[iπ, i∞) with the points on the cut belonging by convention to e.g. the left part of the cut.865

Introducing for n ∈ Z the sets866

B0 = ∅ n = 0
Bn = {1/2, 3/2, . . . , n− 1/2} n > 0
Bn = {n+ 1/2, . . . ,−3/2,−1/2} n < 0

, (35)

the sheets CP and CP	Bn are glued together along both sides of the cut 2iπ(n−1/2, n+1/2)867

10, with 	 the symmetric difference operator defined in (30), see figure 12.868

Since the branch points 2iπa, a ∈ Z + 1/2 are equally spaced, there exists a covering869

map Π : [v, P ] 7→ v−2iπ[ Im v
2π ], with [ Im v

2π ] the integer closest to Im v
2π , from R to the infinite870

cylinder C = {v ∈ C, v ≡ v + 2iπ}, see figure 1. Using the covering map λ : v 7→ ev,871

the infinite cylinder is completely equivalent to C∗ = C \ {0}, i.e. the Riemann sphere872

punctured twice C∗ = Ĉ \ {0,∞}.873

A subtle issue concerns whether sheets indexed by infinite sets P should be considered874

when building R, as such sheets can not be reached from sheets indexed by finite sets875

without crossing infinitely many branch cuts. Since only sheets indexed by finite sets876

appear in our formulas for KPZ fluctuations in section 2, we avoid this issue completely877

and define R by gluing together only the sheets indexed by finite sets P @ Z + 1/2 with878

cardinal |P |. A related issue concerns the status of the points at infinity in R. Unlike879

in RN , we may not add these points to R since they correspond to an accumulation of880

9The choice of sets of half-integers instead of integers to label the sheets is for symmetry between
analytic continuations above and under the real axis for the functions of section 4.

10The choice of “vertical” branch cuts like for the sheets FP of RN instead of “horizontal” branch cuts
like for the sheets GP is for better compatibility with translations by integer multiples of 2iπ later on.
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ramification points for the covering map [z, P ] 7→ z. The two points at infinity on each881

sheet (on the left side and on the right side of the cut) are thus considered as punctures882

of R, i.e. infinitesimal boundaries.883

Homology classes of loops onR avoiding the punctures are generated by the same loops884

`a,b·P , a < b ∈ Z+ 1/2 as the ones defined for the finite genus analogue RN in section 3.6,885

with θa now encircling 2iπa. Additionally, paths between punctures play an important886

role for explicit computation of analytic continuations between the various sheets CP for887

the functions needed to express KPZ fluctuations.888

3.8.2 Riemann surface Ř889

890

Anticipating the fact that some functions onR defined in section 4 have special symmetries891

when their variable [v, P ] ∈ R is replaced by [v + 2iπ, P ], we are lead to define also the892

quotient Ř of R under the action of a group of translations.893

Let us consider the bijective operators Tl|r
11 acting on finite sets P @ Z + 1/2 by894

TlP = P + 1 and TrP = (P + 1) 	 {1/2}. For any m ∈ Z, the iterated composition of895

these operators is given by896

Tml P = P +m (36)

Tmr P = (P +m)	Bm .

The operators Tl|r generate two groups Gl|r = {Tml|r ,m ∈ Z} acting on Z+ 1/2. The empty897

set is invariant under Tl, and {∅} thus constitutes an orbit under the action of Gl. The898

other orbits under the action of Gl are the infinite collections of sets P obtained from one899

another by shifting all the elements by an integer m, and equivalence classes of sets in the900

same orbit may be labelled by e.g. sets P whose smallest element is equal to 1/2. Each901

orbit under the action of Gr, on the other hand, contains infinitely many elements. The902

identity903

|(P +m)	Bm|+ − |(P +m)	Bm|− = |P |+ − |P |− +m , (37)

with |P |+ (respectively |P |−) denoting the number of positive (resp. negative) elements904

of the set P , indicates that each orbit under the action of Gr contains a single element P905

with |P |+ = |P |−, which may be used to label the equivalence class.906

Let us now consider the map T defined on the left side of the sheet C∅ of R by907

T [v, ∅] = [v + 2iπ, ∅], Re v < 0. The map T can be extended from the left side of C∅ to R908

by lifting as follows: let v0 ∈ C with Re v0 < 0 and γ = {γ(t), 0 ≤ t ≤ 1}, a path contained909

in C \ 2iπ(Z + 1/2) starting at γ(0) = v0. The lifts γ ·∅ and (γ + 2iπ)·∅ are paths on R910

starting respectively at [v0, ∅] and [v0 +2iπ, ∅]. Calling [v, P ] the endpoint of γ·∅, induction911

on the number of times γ crosses the imaginary axis implies that the endpoint of (γ+2iπ)·∅912

is [v + 2iπ, P + 1] if Re v < 0 and [v + 2iπ, (P + 1)	 {1/2}] if Re v > 0, independently of913

v0 and γ. Checking carefully what happens when v is on the imaginary axis, especially in914

a neighbourhood of points of the form [(2iπa)l|r, P ], we observe that the map T defined915

by T ([v, P ]) = [v + 2iπ, P + 1] when Re v < 0, T ([v, P ]) = [v + 2iπ, (P + 1) 	 {1/2}]916

when Re v > 0 and extended by continuity to Re v = 0 is a homeomorphism of R, and917

hence an automorphism since it is locally holomorphic. The map T is additionally a deck918

transformation for the covering map Π from R to the infinite cylinder C. The iterated919

composition T m, m ∈ Z is given by920

T m([v, P ]) =

{
[v + 2iπm, Tml P ] Re v < 0
[v + 2iπm, Tmr P ] Re v > 0

(38)

11We write l|r in the following as a shorthand for either the left side l or the right side r of a cut.
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S2
P

S1
P

S0
P

S−1
P

S−2
P

R

minP = 3/2

Sl,1
∅

minP = 1/2

Sl,0
∅

minP = −1/2

Sl,−1
∅

|P |+ = |P |− + 1

|P |+ = |P |−

|P |+ = |P |− − 1

Figure 13: Two choices for a fundamental domain of R under the action of ǧ, from which
Ř = R/ǧ is built. The fundamental domain is the hatched portion. How sheets are glued
together along branch cuts (red lines, with dots for the branch points) is not represented
for clarity. The picture on the left represents all sheets CP , P @ Z+1/2 above one another,
with the fundamental domain made of the infinite strips S0

P corresponding to points [v, P ]
with −π < Im v ≤ π. The picture on the right represents half-sheets Cl

P grouped according

to the value of minP (if P 6= ∅; the half-sheet Cl
∅ is cut into half-infinite strips S l,m

∅ ) and
half-sheets Cr

P grouped by the value of |P |+ − |P |−.

with Tml|r defined in (36). The group ǧ = {T m,m ∈ Z} acts properly discontinuously on921

R, and we call Ř = R/ǧ the Riemann surface quotient of R under the action of ǧ.922

The Riemann surface Ř may be partitioned into half-sheets Cl|r
P by taking as a funda-923

mental domain for ǧ the left side of the sheets CP of R with some choice of representatives924

P for the orbits under the action of Gl plus the right side of the sheets CP with some choice925

P of representatives for the orbits under the action of Gr, with the additional identification926

v = v + 2iπ for the sheet Cl
∅ since {∅} is an orbit under the action of Gl, see figure 13927

right. How sheets are glued together along the cuts depends on which representatives are928

chosen for the orbits.929

S0
P

S0
P−1

S0
P+1

S0
P	{1/2}−1

S0
(P+1)	{1/2}

Figure 14: Connectivity of the infinite strips S0
P , P @ Z + 1/2 partitioning the Riemann

surface Ř. The red dots represent ramification points for the covering map ρ̌ sending all
the strips to the infinite cylinder C.
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[v, ∅]

[v + 2iπ, ∅] 4iπ
2iπ

2iπ
4iπ

5iπ

3iπ

iπ

−iπ

−3iπ

−5iπ

Figure 15: Examples of paths on R which are also closed loops on Ř. The solid curves
belong to C∅ and the dashed lines to CBm , m = 2, 1,−1,−2 from top to bottom.

Alternatively, we consider a partition of R into half-infinite strips930

S l,m
P = {[v, P ],Re v ≤ 0, 2π(m− 1/2) < Im v ≤ 2π(m+ 1/2)} (39)

Sr,m
P = {[v, P ],Re v > 0, 2π(m− 1/2) < Im v ≤ 2π(m+ 1/2)} .

The domain SmP = S l,m
P ∪Sr,m

P , contained in the sheet CP , is connected only when m = 0,931

see figure 13 left. A fundamental domain for the action of ǧ in R may be chosen as the932

S0
P indexed by all P @ Z + 1/2. In the Riemann surface Ř, the upper part Im v = π of933

S0
P is glued to the lower part Im v → −π of S0

P−1 on the left side, while the upper part of934

S0
P is glued to the lower part of S0

P	{1/2}−1 on the right side, see figure 14. This choice of935

a fundamental domain naturally defines the covering maps Π̌ : [v, P ] 7→ [v − 2iπ[ Im v
2π ], P ]936

from R to Ř and ρ̌ : [v, P ] 7→ v from Ř to the infinite cylinder C. KPZ fluctuations937

with flat initial condition are expressed in section 2.2 in terms of the trace over ρ̌ of a938

holomorphic differential on Ř.939

The existence of the covering map Π̌ from R to Ř implies that any loop `a,b ·P on R940

project to a loop on Ř. There exists however loops on Ř that may not be obtained in941

such a way, for instance starting from C∅, the paths [v − iπ, ∅]→ [v + iπ, ∅], Re v < 0 and942

[v, ∅] → [(2iπm)l, ∅] = [(2iπm)r, Bm] → [v + 2iπm,Bm], Re v > 0, m ∈ Z represented in943

figure 15 are closed on Ř but not on R.944

3.8.3 Riemann surface R∆
945

946

We define in this section Riemann surfaces R∆, ∆ @ Z + 1/2 such that the elements947

a ∈ ∆ correspond to branch points 2iπa that have been “removed” compared to R.948

Let us consider the involutions Da, a ∈ Z + 1/2 acting on finite sets P @ Z + 1/2 by949

DaP = P 	 {a} . (40)

For ∆ @ Z + 1/2, we call G∆ the commutative group generated by the Da, a ∈ ∆. The950

orbit of any P @ Z + 1/2 under the action of G∆ is the collection of all sets Q @ Z + 1/2951

such that Q\∆ = P \∆, and orbits can thus be labelled by the sets P such that P ∩∆ = ∅.952

The group G∆ acting on sets can be upgraded to a group acting on the Riemann953

surface R. By the commutativity of symmetric difference, the maps Da, a ∈ Z + 1/2954

defined by955

Da[v, P ] = [v,DaP ] (41)

are holomorphic automorphisms of R, and deck transformations for the covering map Π956

from R to the infinite cylinder C. The group g∆ generated by the Da, a ∈ ∆ acts properly957
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R

a 6∈ P

a ∈ P

lDa ↓ Π∆

R

P ∩ {a, b} = ∅ P ∩ {a, b} = {a}

P ∩ {a, b} = {b} P ∩ {a, b} = {a, b}

lDb lDb

←→
Da

←→
Da

Figure 16: Choice of a fundamental domain of R under the action of g∆ with ∆ = {a}
(left) and ∆ = {a, b} (right). The sheets CP , partitioned along dashed lines into pairs

of half-infinite strips SmP = S l,m
P ∪ Sr,m

P from (39), are grouped together according to the
value of P ∩ ∆. The fundamental domain corresponding to R∆ is the hatched portion,
made from the sheets CP with P ∩ ∆ = ∅. How sheets are glued together along branch
cuts (red lines, with dots for the branch points) is not represented for clarity.

discontinuously on R, and the quotient R∆ = R/g∆ is a Riemann surface. One has in958

particular R∅ = R.959

Choosing for fundamental domain the collection of sheets CP with P ∩ ∆ = ∅, the960

construction above defines the covering map Π∆ : [v, P ] 7→ [v, P \ ∆] from R to R∆,961

and R∆ may be partitioned into sheets CP , P ∩ ∆ = ∅, images of the sheets of R by962

Π∆, see figure 16. The sheet CP of R∆ is glued to the sheet CP	(Bn\∆) along the cut963

v ∈ (2iπ(n− 1/2), 2iπ(n+ 1/2)).964

The sheets CP may be further partitioned into pairs of half-infinite strips SmP = S l,m
P ∪965

Sr,m
P , m ∈ Z with the same notations (39) as in the previous section. Unlike for Ř, we966

have not taken a quotient by translations of 2iπ here, so that all values m ∈ Z must be967

taken in the partition. This defines the covering map ρ∆ : [v, P ] 7→ v − 2iπ[ Im v
2π ] from R∆

968

to the infinite cylinder C, see figure 1 for a summary of useful covering maps.969

3.8.4 Collection R of Riemann surface R∆
970

971

The Riemann surfacesR∆ andR∆+1 are isomorphic since changing ∆ to ∆+1 amounts to972

relabelling the sheets. For the application to KPZ in section 2, it is sometimes convenient,973

however, to consider sheets from all R∆ without the identification ∆ ≡ ∆ + 1. In order to974

do this, we introduce bijective operators T l|r acting on pairs of sets (P,∆), P,∆ @ Z+1/2975

by T l(P,∆) = (P + 1,∆ + 1) and T r(P,∆) = ((P + 1) 	 ({1/2} \ (∆ + 1)),∆ + 1). For976

any m ∈ Z, the iterated composition of these operators is given by977

T
m
l (P,∆) = (P +m,∆ +m) (42)

T
m
r (P,∆) = ((P +m)	 (Bm \ (∆ +m)),∆ +m) .
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Figure 17: Two choices for the fundamental domain of the collection of Riemann surfaces
R under the action of g. The fundamental domain is the hatched portion. How sheets are
glued together is not represented for clarity. For the connected component R∅ = R of R,
the fundamental domain Ř is chosen as in figure 13 left.

The operators T l|r generate two groups Gl|r = {Tml|r,m ∈ Z} acting on subsets of (Z +978

1/2)× (Z+ 1/2). The sector {(P, ∅), P @ Z+ 1/2} is an invariant subset under Gl|r, which979

essentially reduce to the groups Gl|r of the previous section there, and have in particular980

the same orbits. Outside of that sector, equivalence classes of pairs of sets in the same981

orbit under Gl may be labelled by pairs (P,∆) with ∆ arbitrary and P such that its982

smallest element is equal to e.g. 1/2.983

The situation is more complicated for Gr. Introducing λ±(P,∆) = |P |± − |P 	∆|∓,984

one has for any P,∆ @ Z + 1/2 the identity985

(λ± ◦ T
m
r )(P,∆) = λ±(P,∆)±m , (43)

which implies in particular that |P | − |P 	∆| is invariant by T
m
r . The equivalence classes986

of pairs of sets (P,∆) in the same orbit under Gr may thus be labelled by pairs (P,∆) with987

|P |+ = |P 	∆|−. In the sector |P | = |P 	∆|, such pairs verify both |P |± = |P 	∆|∓.988

We consider the collection R of all Riemann surfaces R∆, ∆ @ Z + 1/2 and write989

[v, (P,∆)] ∈ R for the point [v, P ] ∈ R∆. The map T whose iterated composition is given990

by991

T m[v, (P,∆)] =

{
[v + 2iπm, T

m
l (P,∆)] Re v < 0

[v + 2iπm, T
m
r (P,∆)] Re v > 0

(44)

with T
m
l|r defined in (42) is a holomorphic automorphism of R generating a group g. The992

map T m restricts to an isomorphism between R∆ and R∆+m for any ∆ @ Z + 1/2. In993

particular, T has the same action on R∅ = R as T defined in (38).994

The quotient R/g corresponds to the collection of Riemann surfaces containing Ř995

and a representative R∆ from each equivalence class ∆ ≡ ∆ + 1 under isomorphism, see996

figure 17 left. Another choice of fundamental domain for the action of T consists in taking997

Ř plus the infinite strips S0
P , P ∩∆ = ∅ from all R∆ without the identification ∆ ≡ ∆+1,998

see figure 17 right.999
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4 Functions on the Riemann surfaces R, Ř, R∆
1000

In this section, we study polylogarithms with half-integer index and several functions built1001

from them living on the Riemann surfaces R, Ř, R∆ defined in section 3.8, and used for1002

KPZ fluctuations in section 2. The results presented until section 4.6 are not new and1003

merely serve to introduce notations. The explicit analytic continuations performed from1004

section 4.7 on the specific functions needed for KPZ are presumably new.1005

4.1 2iπ(Z + 1/2)-continuable functions, translation and analytic continu-1006

ations1007

Throughout section 4, we consider functions analytic in the domain1008

D = C \ ((−i∞,−iπ] ∪ [iπ, i∞)) , (45)

and which may be continued analytically along any path in C avoiding the points in1009

2iπ(Z+1/2), i.e. such paths never encounter branch points, poles or essential singularities.1010

We borrow the terminology 2iπ(Z+1/2)-continuable from the theory of resurgent function1011

for this class of functions. In the presence of branch points, which must necessarily belong1012

to 2iπ(Z + 1/2), new functions analytic in D are generated by crossing branch cuts.1013

We introduce the notation Al
nf (respectively Ar

nf) for the function obtained from a1014

2iπ(Z + 1/2)-continuable function f after crossing the (potential) branch cut (2iπ(n −1015

1/2), 2iπ(n + 1/2)), n ∈ Z from left to right (resp. from right to left), i.e. when the1016

function f is continued analytically along the path x+ 2iπn with x increasing from 0− to1017

0+ (resp. decreasing from 0+ to 0−), see figure 18 right. Both A
l|r
n f are understood as1018

analytic functions in D. When the analytic continuation from both sides gives the same1019

result, which happens if the branch points of f are of square root type, we write An instead1020

of Al
n or Ar

n. Since f is assumed to be analytic in D, there is no branch cut between −iπ1021

and iπ, and one has A
l|r
0 f = f . Furthermore, the operators Al

n and Ar
n are inverse of each1022

other, Al
nA

r
nf = Ar

nA
l
nf = f .1023

We will be interested in the following in the interplay between analytic continuation1024

and translation by integer multiples of 2iπ. Since we are working with functions analytic1025

in D, one has to distinguish the effect of translations on the left and on the right, as two1026

points apart of 2iπ moved from the left side to the right side end up crossing distinct branch1027

cuts. We introduce translation operators Tl|r acting on 2iπ(Z+ 1/2)-continuable functions1028

f , such that Tlf and Trf are analytic in D and verify respectively (Tlf)(v) = f(v + 2iπ)1029

when Re v < 0 and (Trf)(v) = f(v + 2iπ) when Re v > 0, see figure 18 right.1030

One has for any m,n ∈ Z the identities Al
m+n = T−mr Al

nT
m
l and Ar

m+n = T−ml Ar
nT

m
r .1031

In particular, since A
l|r
0 is the identity operator, we observe that the analytic continuation1032

can be deduced from translations on both sides:1033

Al
n = T−nr Tnl (46)

Ar
n = T−nl Tnr .

These identities are used in the following as a convenient way to derive analytic continu-1034

ations of functions defined as integrals of meromorphic differentials.1035

4.2 Polylogarithms1036

The polylogarithm of index s ∈ C is defined for |z| < 1 by the series1037

Lis(z) =

∞∑
k=1

zk

ks
. (47)
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When s is a non-positive integer, s ∈ −N, Lis(z) reduces to a rational function of z with1038

a pole at z = 1. Otherwise, analytic continuation beyond the unit disk allows to extend1039

Lis to an analytic function in C \ [1,∞), the principal value of Lis, with a branch point1040

at z = 1 and a branch cut traditionally chosen to be the real numbers larger than 1. For1041

s = 1, Li1(z) = − log(1−z), and the branch point is of logarithmic type. The function Li11042

can thus be extended to an analytic function on a Riemann surface built from infinitely1043

many sheets Ck, k ∈ Z, such that the top part of the cut in Ck is glued to the bottom1044

part of the cut in Ck+1.1045

Analytic continuations in the variable z of Lis(z) when s 6= 1 is more involved [86].1046

Indeed, after analytic continuation from below the cut [1,∞), the function Lis(z) becomes1047

Lis(z)− 2iπ(log z)s−1

Γ(s) with Γ the Euler gamma function. The power s− 1 in the extra term1048

leads to the same branch point z = 1 as Lis, while the logarithm gives an additional branch1049

point at z = 0, and makes the structure of the Riemann surface more complicated since1050

further analytic continuation must take into account how (log z)s−1 varies across branch1051

cuts.1052

Because of the extra logarithm obtained from analytic continuation, it is useful to1053

consider instead 12 the function Lis(−ev). In terms of the variable v, this function has an1054

alternative expression as the complete Fermi-Dirac integral1055

Lis(−ev) = − 1

Γ(s)

∫ ∞
0

du
us−1

eu−v + 1
(48)

for Re s > 0, and in terms of the Hurwitz zeta function ζ(s, u) =
∑∞

k=0(u+ k)−s as1056

Lis(−ev) =
Γ(1− s)
(2π)1−s

(
i1−sζ

(
1− s, 1

2
+

v

2iπ

)
+ is−1ζ

(
1− s, 1

2
− v

2iπ

))
. (49)

The function Lis(−ev) has the branch points 2iπa, a ∈ Z + 1/2. Crossing the branch cut1057

associated to 2iπa in the anti-clockwise direction relative to the branch point transforms1058

Lis(−ev) into Lis(−ev)− 2iπ(v−2iπa)s−1

Γ(s) , which has the same branch points as the principal1059

value: the function v 7→ Lis(−ev) thus belongs to the class of 2iπ(Z + 1/2)-continuable1060

functions defined in the previous section if the branch cut is chosen as (−i∞,−iπ]∪[iπ, i∞).1061

In the much studied case where s ≥ 2 is an integer, the extra terms obtained after1062

crossing branch cuts are polynomials in v, and are thus inert by analytic continuation:1063

crossing a branch cut twice in the same direction simply adds the same extra term once1064

more. All branch points are thus of logarithmic type. When s is not an integer, the1065

situation becomes more complicated since the extra terms are multiplied by a phase after1066

analytic continuation. After setting notations for square roots with specific branch cuts in1067

the next section, we focus in section 4.4 on the case where s is a half-integer, s ∈ Z+ 1/2,1068

which is the case of interest for KPZ.1069

4.3 Square roots κa(v)1070

Before considering polylogarithms with half-integer index, we introduce for convenience a1071

square root function κa, a ∈ Z + 1/2 with branch point 2iπa. We define1072

κa(v) =
√

4iπa

√
1− v

2iπa
=
√

sgn(a)i
√
|4πa|+ sgn(a)2iv , (50)

with the usual branch cut R− = (−∞, 0] for the square roots so that the branch cut of1073

κa is the interval sgn(a)2iπ(|a|,∞). In particular, κa is analytic in the domain D defined1074
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Figure 18: Two possible choices of branch cuts for the function χ∅. The choice on the left,
corresponding to the principal value of the polylogarithm Li5/2 in (56), is not convenient
because of the presence of symmetries v 7→ v + 2iπ. The choice on the right, which is the
one actually used in the paper, defines by removing the cuts a space D = C\((−i∞,−iπ]∪
[iπ, i∞)) on which the chosen determination of χ∅ is analytic. Examples of paths of analytic
continuation for the translation operators Tl, Tr and the analytic continuation operators
Al
n, Ar

n, n ∈ Z defined in section 4.1 are also indicated on the right with dashed arrows.

in (45). The expression (50) for κa reduces to κa(v) =
√

4iπa− 2v when Re v < 0 and1075

κa(v) = sgn(a)i
√

2v − 4iπa when Re v > 0.1076

We list a few useful properties of the functions κa. The derivative κ′a, also analytic in1077

D, is equal to1078

κ′a = − 1

κa
. (51)

For v ∈ D, the possible locations of κa(v) in the complex plane are such that both log κa1079

and log(κa+κb), a, b ∈ Z+1/2 are analytic in D with the branch cut of the logarithm taken1080

as R−, see appendix C.1. Finally, shifting v by an integer multiple of 2iπ is equivalent1081

to shifting a, up to a possible minus sign: κa(v + 2iπn) = κa−n(v) when Re v < 0 and1082

κa(v + 2iπn) = σa(Bn)κa−n(v) when Re v > 0, with σa given in (29) and Bn in (35). For1083

the logarithm of κa, using (180), one has instead log κa(v + 2iπn) = log κa−n(v) when1084

Re v < 0 and log κa(v + 2iπn) = log κa−n(v) + 1{a∈Bn}iπ sgn(n) when Re v > 0. In terms1085

of the translation operators of section 4.1, these identities can be written as1086

Tnl κa = κa−n (52)

Tnr κa = σa(Bn)κa−n .

Using (46), this leads for the analytic continuation from either side of the cut to1087

Anκa = σa(Bn)κa , (53)

which is already obvious from the definition of κa. The analytic continuation gives the1088

same result from both sides of the cut since the branch point of κa is of square root type.1089

12The minus sign in front of ev is introduced to make formulas symmetric under complex conjugation.
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Similarly, one has for the logarithm of κa1090

Tnl log κa = log κa−n (54)

Tnr log κa = log κa−n + 1{a∈Bn}iπ sgn(n) ,

which using (46), leads to distinct analytic continuations from either side,1091

Al
n log κa = log κa − 1{a∈Bn}iπ sgn(n) (55)

Ar
n log κa = log κa + 1{a∈Bn}iπ sgn(n) ,

and the branch point of log κa is of logarithmic type.1092

4.4 Half-integer polylogarithms and function χ on R1093

We introduce the function1094

χ∅(v) = −
Li5/2(−ev)
√

2π
, (56)

The branch points of χ∅ are the 2iπa, a ∈ Z+ 1/2. If the principal value of Li5/2 is chosen1095

in (56), the branch cut associated to the branch point a is 2iπa + (−∞, 0], see figure 181096

left. We choose instead the branch cut (−i∞,−iπ]∪ [iπ, i∞) in the following, see figure 181097

right, so that χ∅ is analytic in the domain D defined in (45). Using (49), this can be done1098

explicitly by writing χ∅(v) as1099

χ∅(v) =
8π3/2

3

(
eiπ/4ζ

(
− 3

2
,
1

2
+

v

2iπ

)
+ e−iπ/4ζ

(
− 3

2
,
1

2
− v

2iπ

))
, (57)

which is indeed analytic for v ∈ D if the usual branch cut R− is chosen for the Hurwitz ζ1100

function ζ(−3/2, ·).1101

From (47), the polylogarithm expression (56) gives for large |v|, Re v < 0 the convergent1102

expansion1103

χ∅(v) ' − 1√
2π

∞∑
j=1

(−1)jejv

j5/2
' ev√

2π
. (58)

Using the asymptotic expansion for the Hurwitz zeta function in terms of Bernoulli num-1104

bers Br,1105

ζ(s, u) ' − 1

1− s

∞∑
r=0

(
1− s
r

)
Br

ur+s−1
(59)

when |u| → ∞ away from the negative real axis R−, the expression (57) for χ∅ gives the1106

asymptotic expansion on the other side of the branch cut,1107

χ∅(v) ' 32π3/2

15

∞∑
r=0

(
5/2

2r

)
(−1)r(21−2r − 1)B2r

( v
2π )2r−5/2

' (2v)5/2

15π
+
π
√

2v

6
− 7π3

360(2v)3/2
(60)

when |v| → ∞, Re v > 0. The function χ∅ has thus an essential singularity at infinity: on1108

the left side of the cut, the convergent expansion (58) for χ∅(v) is given as a series in ev,1109

while on the right side of the cut, the expansion (60) of χ∅(v) has a vanishing radius of1110

convergence in the variable 1/v.1111

From the Hurwitz zeta representation (57), it is possible to rewrite χ∅ as an infinite1112

sum of powers 3/2. In terms of the square root functions κa defined in (50), the identity1113
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ζ(s, u+ 1) = ζ(s, u)−u−s, valid for any s ∈ C \ {1}, even though ζ(s, u) =
∑∞

k=0(u+k)−s1114

only holds when Re s > 1, leads for any non-negative integer M to1115

χ∅(v) =
8π3/2

3

(
eiπ/4ζ

(
− 3

2
,M +

1

2
+

v

2iπ

)
+ e−iπ/4ζ

(
− 3

2
,M +

1

2
− v

2iπ

))
(61)

−
M−1/2∑

a=−M+1/2

κ3
a(v)

3
,

where the sum is over half integers a ∈ Z + 1/2 between −M + 1/2 and M − 1/2. In1116

the expression above, the first term containing the ζ functions is analytic in the strip1117

−(M + 1/2)π < Re v < (M + 1/2)π: the only branch points in the strip are contributed1118

by the sum. Our choice of branch cuts for the functions κa and ζ(−3/2, ·) then agrees1119

with the requirement that the expression (61) must be analytic in D.1120

Taking M →∞ and using the asymptotic expansion (59), we finally obtain χ∅ as1121

χ∅(v) = lim
M→∞

(
− 4(2πM)5/2

15π
− 2v(2πM)3/2

3π
(62)

+
(π2 + 3v2)

√
2πM

6π
−

M−1/2∑
a=−M+1/2

κ3
a(v)

3

)
.

In this expression, each term of the sum is analytic for v ∈ D with our choice of branch1122

cut for the functions κa. The two choices of branch cuts in figure 18 are thus analogous1123

to the ones in figure 5 for the finite sum of m square roots defined in (28).1124

Analytic continuation of χ∅ across the branch cut (2iπ(n− 1/2), 2iπ(n+ 1/2)) changes1125

the signs of a finite number of terms in the infinite sum representation (62). After a finite1126

number of branch cut crossings, the function χ∅ is replaced by1127

χP (v) = lim
M→∞

(
− 4(2πM)5/2

15π
− 2v(2πM)3/2

3π
+

(π2 + 3v2)
√

2πM

6π
(63)

−
M−1/2∑

a=−M+1/2

σa(P )
κ3
a(v)

3

)
,

P @ Z + 1/2, where the sign σa(P ) is defined in (29). The set P contains the indices1128

a ∈ Z + 1/2 for which the sign of κ3
a(v) has been flipped an odd number of times after1129

crossing branch cuts, and depends on the path along which the analytic continuation is1130

taken. When P is the empty set ∅, χP reduces to χ∅. The difference between χP and χ∅1131

is a finite sum,1132

χP (v) = χ∅(v) +
∑
a∈P

2κ3
a(v)

3
. (64)

The expressions (63) and (64) for χP are manifestly analytic in D with our choice of branch1133

cuts for χ∅ and κa.1134

In terms of the operators An defined in section 4.1, analytic continuations across branch1135

cuts of χP are simply given by1136

AnχP = χP	Bn , (65)

where the symmetric difference operator 	 and the set Bn are defined in (30) and (35).1137

Since all the branch cuts of χP are of square root type, the analytic continuations are1138

independent of the side from which the branch cut is crossed.1139
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The functions χP on D define a function χ analytic 13 on the Riemann surface R of1140

section 3.8.1 by1141

χ([v, P ]) = χP (v) . (66)

Derivatives of χ∅ can also be extended to functions on R. The function χ′, defined by1142

χ′([v, P ]) = χ′P (v) is still analytic on R. The function χ′′, defined by χ′′([v, P ]) = χ′′P (v)1143

is only meromorphic on R, as it has poles at the points [(2iπa)l|r, P ].1144

4.5 Symmetries of χ1145

The expansion Lis(z) =
∑∞

k=1 z
k/ks, valid for |z| < 1, indicates that χ∅(v) is periodic with1146

period 2iπ in the sector Re v < 0. This is no longer true when Re v > 0 since the points v1147

and v+ 2iπ end up in distinct sheets of R when moved continuously from Re v < 0, which1148

leads to more complicated symmetries.1149

The action of translations on χP can be deduced from its expression (63) as an infinite1150

sum. Recalling the translation operators Tl|r from section 4.1 and using κa(v) '
√

4iπa−1151

v/
√

4iπa when |a| → ∞, the identities (52) lead to1152

T−nl χP = χP+n (67)

T−nr χP = χ(P+n)	Bn

for any n ∈ Z, with Bn defined in (35). More explicitly, χP (v − 2iπn) = χP+n(v) when1153

Re v < 0 and χP (v − 2iπn) = χ(P+n)	Bn(v) when Re v > 0. The identities (67) are1154

compatible with analytic continuation (65) through (46) since (P	Bn)−n = (P−n)	B−n.1155

In terms of the map T defined in (38), the identities (67) correspond to the symmetry1156

χ◦T = χ for the function χ on R. Since the Riemann surface Ř is defined as the quotient1157

of R by the group generated by T , this means that χ may also be defined as an analytic1158

function on Ř. In the following, we use the same notation χ for both the function defined1159

on R and on Ř, and similarly for the functions χ′ and χ′′ built from the derivatives χ′P1160

and χ′′P .1161

4.6 Function I01162

We consider for ν ∈ D the function1163

I0(ν) = −1

4

∫ ν

−∞

dv

1 + e−v
= −1

4

∫ ν

−∞
dv
(1

2
+

∑
a∈Z+1/2

1

v − 2iπa

)
, (68)

with a path of integration contained in D, see figure 19. Since the integrand is analytic in1164

D, I0 is independent from the path of integration. Because of the poles located at 2iπa,1165

a ∈ Z+ 1/2, however, the function I0 is defined with the branch cut (−i∞,−iπ]∪ [iπ, i∞).1166

The integral can be performed explicitly, and one has the alternative expression1167

I0(ν) =

{
−1

4 log(1 + eν) Re ν < 0
−ν

4 −
1
4 log(1 + e−ν) Re ν > 0

. (69)

An expression manifestly analytic in D follows from the reflection formula for the Euler Γ1168

function Γ(1
2 − iz)Γ(1

2 + iz) = π/ cosh(πz),1169

I0(ν) = − log(2π)

4
− ν

8
+

1

4
log Γ

(1

2
− ν

2iπ

)
+

1

4
log Γ

(1

2
+

ν

2iπ

)
. (70)

13We recall that the points at infinity, where χP has an essential singularity, are understood as punctures
and do not belong to R.
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Here, log Γ(z) is the principal value of the log Γ function 14, which is analytic for z ∈ C\R−.1170

Alternatively, the log Γ function may be written as an infinite sum of logarithms, and one1171

has1172

I0(ν) = − log 2

4
− ν

8
− 1

4

∑
a∈Z+1/2

log
(

1− ν

2iπa

)
. (71)

When Re ν < 0, the function I0 verifies from (69) the identity I0(ν+ 2iπn) = I0(ν) for1173

n ∈ Z. When Re ν > 0, one has instead I0(ν + 2iπn) = I0(ν) − iπn/2. In terms of the1174

translation operators defined in section 4.1, one can write1175

Tnl I0 = I0 (72)

Tnr I0 = I0 − iπn/2 .

The function I0 is 2iπ(Z + 1/2)-continuable, as defined in section 4.1. Analytic con-1176

tinuations across the branch cut can then be written solely in terms of the translation1177

operators on both sides as (46), and we obtain1178

Al
nI0 = I0 + iπn/2 (73)

Ar
nI0 = I0 − iπn/2 ,

which can also be proved more directly from e.g. (69).1179

We note that (73) implies that the domain of definition of the function I0 may not1180

be extended to the Riemann surfaces R or Ř. This is a consequence of the presence of1181

logarithmic branch points, coming from the integration of poles, instead of the square root1182

branch points required for R. The domain of definition of the function e2I0 , studied below1183

in section 4.8, can on the other hand be extended to both R and Ř.1184

4.7 Functions JP1185

We consider for ν ∈ D and P @ Z + 1/2 the function1186

JP (ν) =
1

2
−
∫ ν

−∞
dv χ′′P (v)2 = lim

Λ→∞

(
− |P |2 log Λ +

1

2

∫ ν

−Λ
dv χ′′P (v)2

)
, (74)

with χP given in (64), (57) and a path of integration contained in D, see figure 19. The1187

regularized integral −
∫

is defined for convenience by subtracting the divergent logarithmic1188

term at −∞ coming from (64), (58), with |P | the cardinal of P . The integrand in (74)1189

is analytic in D, and JP is independent from the path of integration. The function JP1190

has logarithmic singularities at 2iπa, a ∈ Z+ 1/2 since χ′′P (v)2dv is a meromorphic differ-1191

ential of the third kind with simple poles at the 2iπa. Additionally, J∅ has the large |ν|1192

asymptotics J∅(ν) ' e2ν

4π when Re ν < 0 and J∅(ν) ' ν2

π2 − log ν
6 when Re ν > 0.1193

From (67), the function JP transforms under translations of 2iπ as JP (ν − 2iπn) =1194

JP+n(ν) when Re ν < 0, since the path of integration may be chosen such that Re v < 0 ev-1195

erywhere along the path. The situation is more complicated on the other side. Shifting the1196

integration variable by 2iπn in (74), one has JP (ν−2iπn) = 1
2
−
∫ ν
−∞ dv χ′′P (v−2iπn)2, where1197

the path of integration crosses the imaginary axis in the interval (2iπ(n−1/2), 2iπ(n+1/2)).1198

Introducing ε > 0, ε→ 0, the path of integration can be split into a path from−∞ to 2iπn−1199

ε with Re v < 0 plus a path from 2iπn + ε to ν with Re v > 0. The translation identities1200

(67) for χP then imply JP (ν−2iπn) = 1
2
−
∫ 2iπn−ε
−∞ dv χ′′P+n(v)2 + 1

2

∫ ν
2iπn+ε dv χ′′(P+n)	Bn(v)2.1201

Completing the second term by adding the integral on a path from −∞ to 2iπn+ε crossing1202

the imaginary axis between −iπ and iπ, we arrive according to (65) at the integral of the1203

14And not merely the logarithm of the Γ function for some choice of branch cut for the logarithm.
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iπ

−iπ

ν
ν

Figure 19: Examples of paths of integration in D for I0(ν) in (68) and for JP (ν) in (74),
so that the functions are analytic in D. The vertical, red lines represent the branch cuts
C \ D. The bigger, red dots are the branch points 2iπa, a ∈ Z + 1/2.
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−iπ

−3iπ
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Figure 20: Paths β2 (solid curve) and β−1 (dashed curve) from −∞ to −∞ in C.

meromorphic differential χ′′(p)2dv on a path of the Riemann surface R (or Ř), from the1204

puncture [−∞, P + n] to the puncture [−∞, (P + n) 	 Bn], regularized in the usual way1205

at both punctures:1206

JP (ν − 2iπn) = J(P+n)	Bn(ν) +
1

2
−
∫
βn·(P+n)

χ′′(p)2dv , (75)

with −
∫
βn·(P+n) χ

′′(p)2dv = −
∫ 2iπn−ε
−∞ dv χ′′P+n(v)2 − −

∫ 2iπn+ε
−∞ dv χ′′(P+n)	Bn(v)2. Here, βn is a1207

path from −∞ to −∞ encircling the elements of 2iπBn in the clockwise direction if n > 01208

and in the anticlockwise direction if n < 0, see figure 20, while the path β0 is empty. The1209

path βn ·Q, Q @ Z + 1/2 lifting βn to R through the covering [v, P ] 7→ v is contained in1210

the sheets CQ ∪ CQ	Bn and links [−∞, Q] to [−∞, Q	Bn].1211

The integral −
∫
βn·(P+n) χ

′′(v)2dv is computed in appendix A. We find1212

1

2
−
∫
βn·P

χ′′(v)2dv = WP	Bn −WP−n (76)
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with1213

WP = iπ
(
|P |2+ − |P |2− −

∑
b∈P

b
)
− 2|P | log 2 +

1

2

∑
b,c∈P
b 6=c

log
π2(b− c)2

4
. (77)

Here, |P |+ (respectively |P |−) denotes the number of positive (resp. negative) elements1214

of P .1215

The identity (76) leads to JP (ν − 2iπn) = J(P+n)	Bn(ν) + W(P+n)	Bn − WP when1216

Re ν > 0. In terms of the translation operators defined in section 4.1, one has1217

T−nl JP = JP+n (78)

T−nr (JP +WP ) = J(P+n)	Bn +W(P+n)	Bn .

The function JP has the same branch points 2iπa, a ∈ Z + 1/2 as χP . Analytic1218

continuation across the branch cut (−i∞,−iπ) ∪ (iπ, i∞) can then be written solely in1219

terms of the translation operators as in (46). Using P 	 Bn − n = (P − n) 	 B−n, we1220

obtain1221

Al
nJP = JP	Bn +WP	Bn −WP−n (79)

Ar
nJP = JP	Bn +WP	Bn−n −WP .

Thus, JP is related to JP	Bn by analytic continuation across (2iπ(n− 1/2), 2iπ(n+ 1/2)),1222

just like the functions χP and χP	Bn . The extra termsWP	Bn−WP−n andWP	Bn−n−WP1223

are however distinct in general, as can be seen from the identity (205) in appendix E, and1224

JP may not be extended to an analytic function on R. Since the difference between the1225

extra terms is from (205) an integer multiple of iπ, it is natural to consider the function1226

eJP instead. This is done in the next section.1227

4.8 Functions e2I, eI+J and e2J defined on Ř1228

We consider in this section functions e2I , eI+J and e2J 15 built from the functions I0 and1229

JP defined respectively in (68) and (74), and which are shown below to be well defined on1230

the Riemann surface Ř. These functions are used as building blocks for KPZ fluctuations1231

in section 2.1232

We begin with the function I0 from section 4.6. Equation (73) implies that the analytic1233

continuation of the function e2I0 across the cut is independent of the side from which1234

the continuation is made, Ane2I0 = (−1)ne2I0 . It is then possible to extend e2I0 to a1235

meromorphic function e2I on R, defined as1236

e2I([ν, P ]) = (−1)|P | e2I0(ν) . (80)

The relations |P 	 Bn| = |P | + |Bn| − 2|P ∩ Bn| and |Bn| = |n| indeed imply that the1237

change of sign from An is equivalent to replacing P by P 	Bn in (80). Furthermore, the1238

function e2I verifies the symmetry relation e2I ◦ T = e2I with T defined in (38), and is1239

thus also well defined on the Riemann surface Ř. In fact, since e2I0(ν) = ±
√

1 + eν , the1240

function e2I can even be defined on the hyperelliptic-like Riemann surface with branch1241

points 2iπa, a ∈ Z + 1/2.1242

The function e2I is meromorphic on Ř, and has simple poles at the points [(2iπa)l|r, P ],1243

a ∈ Z + 1/2: for ν close to 2iπa, e2I([ν, P ]) ' ±i/
√
ν − 2iπa, which corresponds to a pole1244

in the local coordinate y =
√
ν − 2iπa. The differential defined at p = [ν, P ] ∈ Ř away1245

15We emphasize that only the combination of symbols e2I , eI+J and e2J are defined here: I and J alone
are not, as there is no meaningful way to extend I0 and JP to Ř.
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2iπa

2iπb

P

P 	 {a, b}

P 	 {a}

P 	 {b} = = +

Figure 21: Decomposition of a loop `a,b ·P , b < 0 < a in terms of paths of the form βn ·Q.
Paths on various sheets CP are represented differently.

from ramification points by e2I(p) dν is on the other hand holomorphic at [(2iπa)l|r, P ],1246

a ∈ Z+ 1/2, since the differential dν becomes proportional to y dy in the local coordinate1247

above at [(2iπa)l|r, P ] and compensates the pole of the function e2I .1248

We now consider the functions JP from section 4.7. Using the identities (207), (211)1249

for the quantities WP and the relation |P 	 Bn| = |P | +
∑

a∈Bn σa(P ), we obtain after1250

some simplifications1251

Al
n

((−1)|P | V 2
P

4|P |
eJP
)

= i−n
(−1)|P	Bn| V 2

P	Bn
4|P	Bn|

eJP	Bn (81)

Ar
n

((−1)|P | V 2
P

4|P |
eJP
)

= in
(−1)|P	Bn| V 2

P	Bn
4|P	Bn|

eJP	Bn ,

where VP is the Vandermonde determinant (5). Comparison with analytic continuations1252

(73) for I0 implies that the function eI+J , defined for ν ∈ D, P @ Z + 1/2 by1253

eI+J([ν, P ]) =
(−1)|P | V 2

P

4|P |
eI0(ν)+JP (ν) , (82)

is well defined on the Riemann surface R. Furthermore, using (72), (78) and (211), the1254

function eI+J verifies the symmetry eI+J ◦ T = eI+J , so that eI+J is also well defined on1255

Ř.1256

The function eI+J is meromorphic on Ř, with the same simple poles as e2I at the1257

points [(2iπa)l|r, P ], a ∈ Z + 1/2. The poles come from logarithmic singularities at the1258

points v = 2iπa in the integral representations (68) and (74) for the functions I0 and JP .1259

From the infinite sum representation (162) for χ′′P , the functions I0 and JP contribute each1260

half of the logarithmic terms, and one has eI+J([ν, P ]) ∝ 1/
√
ν − 2iπa when ν → 2iπa.1261

The meromorphic differential defined at p = [ν, P ] ∈ Ř away from ramification points by1262

eI+J(p) dν is holomorphic at [(2iπa)l|r, P ], a ∈ Z + 1/2 for the same reason as for e2I .1263

Finally, the function e2J = (eI+J)2/e2I , more explicitly1264

e2J([ν, P ]) = (−1)|P | 2−4|P | V 4
P e2JP (ν) , (83)

is also well defined and meromorphic on Ř, with simple poles at the points [(2iπa)l|r, P ],1265

a ∈ Z + 1/2, while the differential e2J(p) dν is holomorphic.1266

The functions e2I , e2J and eI+J are defined through I0(ν), JP (ν) as integrals on a1267

path contained in D between −∞ and ν according to (68), (74). An alternative point1268
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of view, which takes into account from the start that ν lives on Ř, consists instead in1269

writing directly e2I(p), e2J(p), eI+J(p) in terms of meromorphic differentials integrated1270

on a path of Ř between [−∞, ∅] and p. Defining a meromorphic function ϕ on Ř by1271

ϕ([v, P ]) = −1
2

1
1+e−v and the meromorphic differentials of the third kind 16

1272

Ω2I(q) = ϕ(q)dν

Ω2J(q) = χ′′(q)2dν (84)

ΩI+J(q) =
(ϕ(q)

2
+
χ′′(q)2

2

)
dν ,

at q = [ν, P ] away from ramification points, one has1273

e2I(p) = exp
(∫ p

[−∞,∅]
Ω2I

)
e2J(p) = exp

(∫ p

[−∞,∅]
Ω2J

)
(85)

eI+J(p) = exp
(∫ p

[−∞,∅]
ΩI+J

)
.

The fact that the functions e2I , e2J and eI+J are well defined on Ř imply that the integrals1274

on any loop in Ř of the meromorphic differentials Ω2I , Ω2J , ΩI+J are integer multiples1275

of 2iπ. For small loops around a point [(2iπa)l|r, P ], this is a consequence of Cauchy’s1276

residue theorem on the Riemann surface, both ϕ(q)dν and χ′′(q)2dν having a residue1277

−1 at that point 17. For non-contractible loops, this is a non-trivial statement. For1278

Ω2J , it can be checked directly for a given loop by expressing its homology class as a1279

sum of paths of the form βn ·P from figure 20 and using (76) to compute the integrals.1280

For example, considering the loops `a,b ·P which generate all loops on Ř that are also1281

closed on R and are defined in section 3.8.1, see also figure 21, we obtain after some1282

simplifications
∫
`a,b

Ω2J = 4iπ(−1 +σa(P )σb(P )( sgn a−sgn b
2 − sgn(a− b)1+sgn(ab)

2 )), which is1283

an integer multiple of 4iπ. For loops on Ř corresponding to open paths on R, the integral1284

is generally only an integer multiple of 2iπ: for instance, the integral of Ω2J on the loop1285

[v, {1/2}]→ [(4iπ)l, {1/2}] = [(4iπ)r, {3/2}]→ [v+2iπ, {3/2}], Re v < 0 is equal to −2iπ.1286

4.9 Functions on the Riemann surfaces R∆
1287

In this section, we study functions on the Riemann surfaces R∆ built in section 3.8.3 by1288

quotienting R by a group of involutions indexed by the elements of ∆ @ Z + 1/2. These1289

functions are used in sections 2.3 and 2.4 for KPZ fluctuations with sharp wedge and1290

stationary initial condition.1291

4.9.1 Function χ∆
1292

1293

Let ∆ @ Z + 1/2. The covering map Π∆ : [v, P ] 7→ [v, P \ ∆] from R to R∆ allows to1294

define the function χ∆ = 2−|∆| trΠ∆ χ analytic on R∆, see section 3.4. More explicitly, for1295

16With additional essential singularities for the points at infinity.
17The function v 7→ − 1

2
1

1+e−v has residues −1/2 in C instead. The distinction with ϕ comes from

the fact that the projection of a loop on Ř encircling [(2iπa)l|r, P ] to the complex plane by the covering
map [v, P ] 7→ v encircles 2iπa an even number of times, see figure 3. In terms of the local coordinate
y =
√
v − 2iπa at [(2iπa)l|r, P ], this is a consequence of dv/(v − 2iπa) = 2dy/y.
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any v ∈ C and Q @ Z + 1/2, Q ∩ ∆ = ∅, one has χ∆([v,Q]) = 2−|∆|
∑

P@Z+1/2
P\∆=Q

χP (v) =1296

2−|∆|
∑

A⊂∆ χQ∪A(v). Using (64), we find1297

χ∆([v, P ]) = χ∆
P (v) , (86)

where χ∆
P , given by 18

1298

χ∆
P (v) =

χP (v) + χP	∆(v)

2
, (87)

generalizes the function χP of section 4.5. The function χ∆
P has the infinite sum represen-1299

tation1300

χ∆
P (v) = lim

M→∞

(
− 4(2πM)5/2

15π
− 2v(2πM)3/2

3π
+

(π2 + 3v2)
√

2πM

6π
(88)

−
M−1/2∑

a=−M+1/2

1{a6∈∆} σa(P )
κ3
a(v)

3

)

with σa defined in (29) and κa in (50), and verifies χ∆
P = χ∆

P\∆.1301

Since χ∆ is analytic on R∆, the function χ∆
P defined on D has the analytic continuation1302

1303

Anχ
∆
P = χ∆

P	(Bn\∆) (89)

across branch cuts. Alternatively, (89) can be proved directly from (65) using the general1304

identity χ∆
P = χ∆

P	A, A ⊂ ∆ with A = Bn ∩∆. From (67), the functions χ∆
P also verify1305

the shift identities1306

T−nl χ∆
P = χ∆+n

P+n (90)

T−nr χ∆
P = χ∆+n

(P+n)	(Bn\(∆+n)) ,

where we used again χ∆
P = χ∆

P	A, A ⊂ ∆ for the second line. In terms of the collection R1307

of all Riemann surfaces R∆ of section 3.8.3, of the function χ([v, (P,∆)]) = χ∆
P (v) defined1308

onR, and of the holomorphic map T onR defined in (44), the identity (90) simply rewrites1309

as χ ◦ T = χ.1310

Finally, we also define functions χ′∆, χ′′∆ from derivatives of χ∆
P as1311

χ′∆([v, P ]) = χ′∆P (v) (91)

χ′′∆([v, P ]) = χ′′∆P (v) .

The function χ′∆ is analytic on R∆ while χ′′∆ is meromorphic on R∆. Both verify the1312

same translation symmetries as χ∆.1313

4.9.2 Functions J∆
P1314

1315

We now consider J∆
P generalizing the function JP of section 4.7, defined from the second1316

derivative χ′′∆P of χ∆
P as1317

J∆
P (ν) =

1

2
−
∫ ν

−∞
dv χ′′∆P (v)2 (92)

= lim
Λ→∞

(
− (|P |+ |P 	∆|)2

4
log Λ +

1

2

∫ ν

−Λ
dv χ′′∆P (v)2

)
,

18For later convenience, we define χ∆
P in (87) in terms of P 	∆ instead of P ∪∆ when P ∩∆ 6= ∅.
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for ν ∈ D, with a path of integration contained in D. One has J∆
P = J∆

P\∆.1318

The same reasoning as in section 4.7 gives for any n ∈ Z the identities J∆
P (ν− 2iπn) =1319

J∆+n
P+n (ν) when Re ν < 0 and J∆

P (ν−2iπn) = J(P+n)	(Bn\(∆+n))(ν)+1
2
−
∫
βn·(P+n) χ

′′∆+n(p)dv1320

with βn ·(P + n) the lift to the sheet P + n of R∆+n of the path in the complex plane βn1321

from figure 20. The integral over βn·(P +n) can be computed similarly as in appendix A.1322

We obtain eventually1323

T−nl J∆
P = J∆+n

P+n (93)

T−nr J∆
P = J∆+n

(P+n)	(Bn\(∆+n)) +W∆+n
(P+n)	(Bn\(∆+n)) −W

∆
P ,

where1324

W∆
P =

iπ

4

(
(|P |+ + |P 	∆|+)2 − (|P |− + |P 	∆|−)2

)
− iπ

2

(∑
b∈P

b+
∑

b∈P	∆

b
)

(94)

−(|P |+ |P 	∆|) log 2 +
1

4

∑
b,c∈P
b 6=c

log
π2(b− c)2

4
+

1

4

∑
b,c∈P	∆
b 6=c

log
π2(b− c)2

4

generalizes the constants WP = W ∅P of (77). Using (46), the analytic continuation of J∆
P1325

across branch cuts is given by1326

Al
nJ

∆
P = J∆

P	(Bn\∆) +W∆
P	(Bn\∆) −W

∆−n
P−n (95)

Ar
nJ

∆
P = J∆

P	(Bn\∆) +W∆−n
P	(Bn\∆)−n −W

∆
P .

As in section 4.7, the analytic continuation from each side of the branch cuts does not give1327

the same result, so that J∆
P may not be extended to R∆. For the application to KPZ in1328

sections 2.3 and 2.4, however, only e2J∆
P is needed. Using the identity (213), we find that1329

the function e2J∆
generalizing e2J = e2J∅ and defined by1330

e2J∆
([ν, P ]) = (i/4)2|P\∆|

( ∏
a∈P\∆

∏
b∈P∪∆
b 6=a

(2iπa

4
− 2iπb

4

)2
)

e2J∆
P (ν) (96)

is well defined on R∆. The prefactor of e2J∆
P (ν), which depends on P and ∆ only through1331

∆ and P \∆ since P ∪∆ = (P \∆) ∪∆, has been chosen equal to 1 when P = ∅. The1332

function e2J∆
can then be expressed alternatively as1333

e2J∆
(p) = exp

(
−
∫ p

[−∞,∅]
Ω∆

2J

)
, (97)

independently from the path between [−∞, ∅] and p in R∆, with Ω∆
2J the meromorphic1334

differential of the third kind1335

Ω∆
2J([ν, P ]) = χ′′∆([ν, P ])2 dν . (98)

The function e2J∆
has the simple poles [(2iπa)l|r, P ], a ∈ (Z+ 1/2)\∆, P @ (Z+ 1/2)\∆,1336

while the differential e2J∆
([ν, P ]) dν is holomorphic on R∆.1337

Additionally, for any m ∈ Z, the function e2J∆
verifies from (93), (212)1338

e2J∆
([ν − 2iπm,P ]) =

{
e2J∆+m

([ν, P +m]) Re ν < 0

e2J∆+m
([ν, (P +m)	 (Bm \ (∆ +m))]) Re ν > 0

. (99)

Extending e2J∆
to the collection R of all R∆ by e2J([ν, (P,∆)]) = e2J∆

([ν, P ]), the identity1339

(99) is equivalent to the symmetry e2J ◦ T = e2J with T defined in (44).1340
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4.10 Functions KP,Q, K∆,Γ
P,Q and e2K∆,Γ

1341

In this section, we study functions on products of Riemann surfaces needed for joint1342

statistics of the KPZ height at multiple times.1343

4.10.1 Functions KP,Q1344

1345

Given two finite sets of half-integers P and Q, and (ν, µ) in the simply connected domain1346

D2 = {(ν, µ) ∈ D× D, (Re ν 6= Reµ) or (Re ν = Reµ and Im(ν − µ) ∈ (0, 2π))} , (100)

we consider the functions1347

KP,Q(ν, µ) =
1

2
−
∫ 0

−∞
duχ′′P (u+ ν)χ′′Q(u+ µ) (101)

= lim
Λ→∞

(
− |P | |Q| log Λ +

1

2

∫ 0

−Λ
duχ′′P (u+ ν)χ′′Q(u+ µ)

)
.

The path of integration is chosen such that u + ν and u + µ both stay in D, which is1348

possible 19 if (ν, µ) ∈ D2, see figure 22, and KP,Q is thus analytic in D2. When P = Q,1349

one recovers JP (ν) = limµ→ν KP,P (ν, µ).1350

Crossing the branch cuts µ, ν ∈ (−i∞,−iπ) ∪ (iπ, i∞), ν − µ ∈ (−i∞, 0) ∪ (iπ, i∞)1351

produces new functions analytic in D2. In order to obtain explicit formulas for the various1352

analytic continuations of KP,Q(ν, µ), it is useful to study first shifts by integer multiples1353

of 2iπ in the variables ν and µ. When both Re ν < 0 and Reµ < 0, the path of in-1354

tegration in (101) can be chosen such that Re(u + ν) < 0, Re(u + µ) < 0 everywhere,1355

see figure 22 top left, and one has from (67) the identity KP,Q(ν − 2iπn, µ − 2iπm) =1356

KP+n,Q+m(ν, µ). Similar reasonings leads to KP,Q(ν − 2iπn, µ) = KP+n,Q(ν, µ) when1357

Re ν < 0 and KP,Q(ν, µ− 2iπm) = KP,Q+m(ν, µ) when Reµ < 0. Shifting variables with a1358

positive real part is more complicated. Indeed, the argument of the functions χ′′P , χ′′Q has1359

then a positive real part on some portions of the path of integration in (101) and a negative1360

real part on other portions of the path, so that (67) gives several distinct expressions for1361

the shifts along the path. After some rewriting, one finds in all cases the identity1362

KP,Q(ν − 2iπn, µ− 2iπm) = KP̃ ,Q̃(ν, µ) (102)

+
1

2
−
∫
γn,m

duAu(χ′′P+n(·+ ν)χ′′Q+m(·+ µ))

with P̃ = P + n when Re ν < 0, P̃ = (P + n)	Bn when Re ν > 0 and Q̃ = Q+m when1363

Reµ < 0, Q̃ = (Q + m) 	 Bm when Reµ > 0. We used the notation
∫
γ duAuf for the1364

integral of the analytic continuation of a function f along a path γ. The path γn,m in the1365

complex plane depends on the real parts of ν and µ, see figure 23. When Re ν and Re ν1366

are both negative, the path is empty and the integral in (102) is equal to zero. When Re ν1367

and Re ν do not have the same sign, the path reduces to γn,m = βn− ν if Reµ < 0 < Re ν1368

and γn,m = βm − µ if Re ν < 0 < Reµ, with βn defined in section 4.7, compare with1369

figure 20. Finally, when Re ν and Reµ are both positive, the path goes from −∞ to −∞1370

and crosses the lines Re(u+ ν) = 0 and Re(u+µ) = 0 along the path at successive points1371

2iπn − ν, 2iπm − µ, −µ, −ν (respectively 2iπm − µ, 2iπn − ν, −ν, −µ) if Re ν > Reµ1372

(resp. Re ν < Reµ).1373

19At this point, KP,Q(ν, µ) is in fact analytic in a domain larger than D2: in the sector Re ν = Reµ,
Im(ν − µ) need not be restricted when the real parts are negative, and one requires only Im(ν − µ) ∈
(−2π, 2π) when the real parts are positive. Additional terms contributed later on by analytic continuation
are however only analytic in D2, and it is thus convenient to add this restriction from the beginning.
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0

−ν

−µ

0

−µ

−ν

0

−µ

−ν

0

−ν
−µ

Figure 22: Possible choices for the path of integration in the definition (101) for KP,Q. The
red, vertical lines are the branch cuts in the variable u of χ′′P (u+ν) and χ′′Q(u+µ), and the
red dots on the cuts are the associated branch points −ν + 2iπa, −µ+ 2iπa, a ∈ Z + 1/2.
The black curves, ending at u = 0, represent the path for the variable u. From left to
right, top to bottom, the four graphs represent respectively the situations Reµ < Re ν < 0;
Re ν < 0 < Reµ; Reµ > Re ν > 0; Re ν = Reµ > 0 with −π < Im(ν − µ) < π.
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0

−ν

−µ

−5iπ − µ

−3iπ − µ

−iπ − µ

iπ − µ

3iπ − µ

γ2,−1 = β2 − ν

P + n
Q+m

(P + n)	Bn
Q+m

0

−µ
−ν

γ2,−1 = β−1 − µ

P + n
Q+m

P + n

(Q+m)	Bm

0

−ν
−µ

γ2,1

P + n
Q+m

(P + n)	Bn
Q+m

(P + n)	Bn
(Q+m)	Bm

0

−ν
−µ

γ2,−1

P + n
Q+m

(P + n)	Bn
Q+m

(P + n)	Bn
(Q+m)	Bm

Figure 23: Path γn,m in (102) plotted for some choices of ν, µ ∈ D, n,m ∈ Z. From left
to right, top to bottom, the graphs represent γ2,−1 = β2 − ν for Reµ < 0 < Re ν, γ2,−1 =
β−1 − µ for Re ν < 0 < Reµ, γ2,1 for 0 < Reµ < Re ν, and γ2,−1 for 0 < Reµ < Re ν.
The smaller, black dots represent the points 0, −ν, −µ. The bigger, red dots represent
the branch points −ν + 2iπa, −µ + 2iπa, a ∈ Z + 1/2 of χ′′P+n(· + ν)χ′′Q+m(· + µ), and
the vertical, red lines the associated branch cuts. The solid / dotted / dashed portions
of the path γn,m correspond to distinct values of the sets P̂ , Q̂ in χ′′

P̂
(u+ ν)χ′′

Q̂
(u+ µ) =

Au(χ′′P+n(·+ ν)χ′′Q+m(·+ µ)) which are indicated next to the paths.
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It is sufficient for the following to consider shifts of ν and µ separately, and compute1374

the integrals over the paths γn,0 and γ0,m only. Anticipating the result, we define the1375

function1376

WP,Q(z) = 2|P | I0(z) + 2
∑
a∈P

∑
b∈Q

log
(κb−a+1/2(z)

√
8

)
, (103)

and the coefficients1377

ZP,Q =
∑
a∈P

(
− iπ(a− 1/2) + 2iπ sgn(a) |Q ∩Ba−1/2|

)
. (104)

The function WP,Q is analytic in D so that (ν, µ) 7→ WP,Q(µ − ν + iπ) and (ν, µ) 7→1378

WP,Q(ν − µ− iπ) are both analytic in D2. Additionally, using (54), (72) and sgn(n)|(Q−1379

a+ 1/2) ∩Bn| = sgn(n+ a)|Q ∩Bn+a−1/2| − sgn(a)|Q ∩Ba−1/2|, one has1380

WP,Q(z + 2iπn) = WP+n,Q(z) + 1{Re z>0}(ZP+n,Q − ZP,Q) . (105)

The integral over γn,0 is computed in appendix B. There, one finds1381

1

2
−
∫
γn,0

duAu(χ′′P+n(·+ ν)χ′′Q(·+ µ)) (106)

= 1{Re ν>0}

(
W(P+n)	Bn,Q(µ− ν + iπ)−WP+n,Q(µ− ν + iπ)

+1{Reµ>Re ν}(Z(P+n)	Bn,Q − ZP+n, Q)
)

and1382

1

2
−
∫
γ0,m

duAu(χ′′P (·+ ν)χ′′Q+m(·+ µ)) (107)

= 1{Reµ>0}

(
W(Q+m)	Bm+1,P (ν − µ− iπ)−WQ+m+1,P (ν − µ− iπ)

+1{Re ν>Reµ}(Z(Q+m)	Bm+1,P − ZQ+m+1,P )
)
.

As usual, it is useful to interpret (102), (106), (107) in terms of translation operators1383

mapping KP,Q to other functions analytic in D2. We define the operators Tn
i±
l|r

with i = 11384

corresponding to translation in the first variable, i = 2 to translation in the second variable,1385

and the indices l|r, ± indicating the sector for (Re ν,Reµ) in which the translation is1386

initially applied before reconstructing functions defined in D2 by analytic continuation, see1387

table 1. All eight operators are in principle distinct, even though some of them coincide1388

on KP,Q. Writing ν for the first variable and µ for the second variable of the function1389

KP,Q, one has1390

T−n
1±l
KP,Q = KP+n,Q (108)

T−n
1−r
KP,Q = K(P+n)	Bn,Q +W(P+n)	Bn,Q(µ− ν + iπ)−WP+n,Q(µ− ν + iπ)

+Z(P+n)	Bn,Q − ZP+n,Q

T−n
1+

r
KP,Q = K(P+n)	Bn,Q +W(P+n)	Bn,Q(µ− ν + iπ)−WP+n,Q(µ− ν + iπ)

for translations in the first variable and1391

T−m
2±l

KP,Q = KP,Q+m (109)

T−m
2−r

KP,Q = KP,(Q+m)	Bm +W(Q+m)	Bm+1,P (ν − µ− iπ)−WQ+m+1,P (ν − µ− iπ)

+Z(Q+m)	Bm+1,P − ZQ+m+1,P

T−m
2+

r
KP,Q = KP,(Q+m)	Bm +W(Q+m)	Bm+1,P (ν − µ− iπ)−WQ+m+1,P (ν − µ− iπ)
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Operators Sector

Tn
1−l

A
1−l
n Re ν < min(0,Reµ)

Tn
1+

l

A
1+

l
n Reµ < Re ν < 0

Tn
1−r

A1−r
n 0 < Re ν < Reµ

Tn
1+

r
A1+

r
n max(0,Reµ) < Re ν

Tm
2−l

A
2−l
m Reµ < min(0,Re ν)

Tm
2+

l

A
2+

l
m Re ν < Reµ < 0

Tm
2−r

A2−r
m 0 < Reµ < Re ν

Tm
2+

r
A2+

r
m max(0,Re ν) < Reµ

Table 1: Translation operators Tn, Tm and analytic continuation operators An, Am defined
on functions f analytic in D2. The translation operators verify (Tnf)(ν, µ) = f(ν+2iπn, µ)
(first four operators) or (Tmf)(ν, µ) = f(ν, µ+2iπm) (last four operators) in the specified
sector for (Re ν,Reµ). The operators An (first four operators) correspond to analytic
continuation in the first variable across the cut ν ∈ (2iπ(n − 1/2), 2iπ(n + 1/2)) and
the operators Am (last four operators) correspond to analytic continuation in the second
variable across the cut µ ∈ (2iπ(m−1/2), 2iπ(m+1/2)), starting from the specified sector
for (Re ν,Reµ).

for translations in the second variable.1392

Analytic continuation for the first and second variable across the branch cuts (2iπ(n−1393

1/2), 2iπ(n + 1/2)) can be expressed in terms of operators A
i±
l|r
n , with i = 1 and i = 21394

corresponding to analytic continuation respectively in the first and in the second vari-1395

able, and the indices l|r, ± indicating the sector for (Re ν,Reµ) from which the analytic1396

continuation is performed, see table 1. The same reasoning as in section 4.1 gives1397

A
i±l
n = T−n

i±r
Tn
i±l

(110)

Ai
±
r
n = T−n

i±l
Tn
i±r

(111)

for i = 1, 2. Using (108), (109), we observe that the analytic continuation for KP,Q is1398

in fact independent of the side l|r from which the analytic continuation is made, and we1399

simply write Ai
±
n instead of A

i±
l|r
n . Writing ν for the first variable and µ for the second1400

variable of KP,Q, we obtain1401

A1−
n (KP,Q +WP,Q(µ− ν + iπ) + ZP,Q) = KP	Bn,Q +WP	Bn,Q(µ− ν + iπ) + ZP	Bn,Q

A1+

n (KP,Q +WP,Q(µ− ν + iπ)) = KP	Bn,Q +WP	Bn,Q(µ− ν + iπ) (112)

for analytic continuations in the first variable and1402

A2−
n (KP,Q +WQ+1,P (ν − µ− iπ) + ZQ+1,P )

= KP,Q	Bn +WQ	Bn+1,P (ν − µ− iπ) + ZQ	Bn+1,P

A2+

n (KP,Q +WQ+1,P (ν − µ− iπ)) = KP,Q	Bn +WQ	Bn+1,P (ν − µ− iπ) (113)

for analytic continuations in the second variable. In particular, one has (A1−
n )2KP,Q =1403

(A1+

n )2KP,Q = (A2−
n )2KP,Q = (A2+

n )2KP,Q = KP,Q, and the branch points ν = 2iπa,1404

µ = 2iπa, a ∈ Z + 1/2 of KP,Q are of square root type.1405
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Analytic continuation for ν across (µ + 2iπn, µ + 2iπ(n + 1)) is represented by the1406

operator Dl,±
n (respectively Dr,±

n ) if the analytic continuation is made from the sector1407

Re ν < 0 (resp. Re ν > 0), the sign − corresponding to ν crossing the cut from the left1408

and the sign + from the right. Analytic continuation for µ across (ν+2iπ(n−1), ν+2iπn)1409

is represented by the operator Dl,±
−n (respectively Dr,±

−n ) if the analytic continuation is made1410

from the sector Reµ < 0 (resp. Reµ > 0). In terms of translation operators, one has1411

Dl,±
n = T−n

1∓l
Tn

1±l
(114)

Dr,±
n = T−n

1∓r
Tn

1±r
,

and one finds1412

Dl,±
n KP,Q = KP,Q

Dr,−
n KP,Q = KP,Q + ZP	Bn−n,Q − ZP−n,Q (115)

Dr,+
n KP,Q = KP,Q − ZP	Bn−n,Q + ZP−n,Q .

1413

4.10.2 Functions K∆,Γ
P,Q1414

1415

We now introduce a generalization of KP,Q depending on two finite sets ∆,Γ @ Z + 1/21416

similar to the generalization from JP to J∆
P in section 4.9.2. We define1417

K∆,Γ
P,Q (ν, µ) =

1

2
−
∫ 0

−∞
duχ′′∆P (u+ ν)χ′′ΓQ (u+ µ) , (116)

with χ∆
P defined in (87). We show in the following that e2K∆,Γ

P,Q can be extended to a1418

meromorphic function on R∆ ×RΓ. More precisely, introducing the function1419

Υ∆,Γ
P,Q(ν, µ) =

e2K∆,Γ
P,Q(ν,µ)

(1− eµ−ν)|P\∆|(1− eν−µ)|Q\Γ|
(117)

×

(∏
a∈P\∆

∏
b∈Q\Γ

(
2iπb−µ

4 − 2iπa−ν
4

))(∏
a∈P∪∆

∏
b∈Q∪Γ

(
2iπb−µ

4 − 2iπa−ν
4

))
(∏

a∈∆

∏
b∈Γ

(
2iπb−µ

4 − 2iπa−ν
4

)) ,

which verifies Υ∆,Γ
P,Q(ν, µ) = Υ∆,Γ

P\∆,Q\Γ(ν, µ), the function e2K∆,Γ
defined by1420

(e2K∆,Γ
)([ν, P ], [µ,Q]) = Υ∆,Γ

P,Q(ν, µ) (118)

is shown below to be meromorphic on R∆×RΓ when |∆| ∈ 2N and |Γ| ∈ 2N, which is the1421

case needed for KPZ fluctuations.1422

The function K∆,Γ
P,Q can be expressed in terms of KP,Q as1423

K∆,Γ
P,Q (ν, µ) =

KP,Q(ν, µ)

4
+
KP	∆,Q(ν, µ)

4
+
KP,Q	Γ(ν, µ)

4
+
KP	∆,Q	Γ(ν, µ)

4
, (119)
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and verifies K∆,Γ
P,Q (ν, µ) = K∆,Γ

P\∆,Q\Γ(ν, µ). Tedious computations using (108), (109), (112),1424

(113), (115) then lead for shifts by integer multiples of 2iπ to1425

T−n
1±l

Υ∆,Γ
P,Q = Υ∆+n,Γ

P+n,Q

T−n
1±r

Υ∆,Γ
P,Q = Υ∆+n,Γ

(P+n)	(Bn\(∆+n)),Q (120)

T−n
2±l

Υ∆,Γ
P,Q = Υ∆,Γ+n

P,Q+n

T−n
2±r

Υ∆,Γ
P,Q = (−1)|∆| |B−n\Γ|Υ∆,Γ+n

P,(Q+n)	(Bn\(Γ+n))

and for the analytic continuations to 20
1426

A1
nΥ∆,Γ

P,Q = Υ∆,Γ
P	(Bn\∆),Q

A2
nΥ∆,Γ

P,Q = (−1)|∆| |Bn\Γ|Υ∆,Γ
P,Q	(Bn\Γ) (121)

DnΥ∆,Γ
P,Q = Υ∆,Γ

P,Q .

The signs above disappear when |∆| and |Γ| are even numbers, and thus Υ∆,Γ
P,Q can indeed1427

be extended to a function meromorphic on R∆ ×RΓ in that case.1428

Additionally, extending e2K∆,Γ
to the collection R2

of all R∆ ×RΓ by e2K([ν, (P,∆)],1429

[µ, (Q,Γ)]) = e2K∆,Γ
([ν, P ], [µ,Q]), see section 3.8.4, the function e2K verifies from (120)1430

the symmetries e2K ◦ (T ⊗ 1) = e2K ◦ (1⊗ T ) = e2K with T defined in (44).1431

5 Relation with known formulas for KPZ1432

In this section, we show that several known results about KPZ fluctuations in finite volume1433

with periodic boundary conditions are equivalent to the results given in section 2 in terms1434

of the Riemann surfaces introduced in section 3.8 and meromorphic functions on them from1435

section 4. For flat initial condition considered in section 2.2, only the Riemann surface Ř1436

is needed. For sharp wedge and stationary initial conditions, discussed in sections 2.3, 2.41437

and 2.5, a summation over the Riemann surfaces R∆, ∆ @ Z + 1/2 is needed.1438

5.1 Flat initial condition1439

In this section, we show that the expression (4) for the probability of the KPZ height with1440

flat initial condition is equivalent to exact results from [39,40].1441

5.1.1 Relation with the generating function of the height1442

1443

The expression (4) follows directly from that of the generating function 〈esh(x,t)〉flat, s > 01444

obtained in [39], equation (8) 21, based on earlier works [44,45,53,54,87–90] on the Bethe1445

ansatz solution of TASEP with periodic boundaries. One has1446

〈esh(x,t)〉flat = s
∑

P@Z+1/2
|P |+=|P |−

V 2
P

4|P |
etχP (νP (s)) e

1
2
−
∫ νP (s)
−∞ dv χ′′P (v)2

χ′′P (νP (s)) eνP (s)/4 (1 + e−νP (s))1/4
, (122)

20We write Ain instead of A
i±
l|r
n and Dn instead of D

l|r,±
n when analytic continuations depends neither on

the signs of the real parts of the variables nor on the sign of the real part of their difference.
21The function κa was called ωa in [39].

52



SciPost Physics Submission

where νP (s) is the solution of the equation χ′P (νP (s)) = s, conjectured to be unique and to1447

verify Re νP (s) > 0 when s > 0. The probability density pflat(u) = −∂uPflat(h(x, t) > u) is1448

related by Fourier transform to the generating function as pflat(u) =
∫∞
−∞

ds
2π e−isu〈eish(x,t)〉flat.1449

Making the change of variables s = −iχ′P (ν) and integrating with respect to u then gives1450

for c > 01451

Pflat(h(x, t) > u) =
∑

P@Z+1/2
|P |+=|P |−

V 2
P

4|P |

∫ c+i∞

c−i∞

dν

2iπ

etχP (ν)−uχ′P (ν)+ 1
2
−
∫ ν
−∞ dv χ′′P (v)2

eν/4 (1 + e−ν)1/4
. (123)

At this stage, there are two differences between (123) and (4): the constraint |P |+ = |P |−1452

that P has as many positive and negative elements, and the integration range (c− i∞, c+1453

i∞) instead of (c − iπ, c + iπ). These differences correspond simply to distinct ways to1454

label the sheets of Ř, or equivalently to the choice of a fundamental domain in R for the1455

group action ǧ when writing Ř = R/ǧ, compare the two representations of R in figure 131456

on the right side Re ν > 0 of the branch cuts. Using (69), the expressions (123) and (4)1457

are equivalent explicit representations of (1) when c > 0 since |P |+ = |P |− implies that1458

|P | is even.1459

5.1.2 Relation with Fredholm determinants1460

1461

The probability distribution Pflat(h(x, t) > u) was also expressed in [39] as the integral1462

over ν, Re ν > 0 of a Fredholm determinant, using the Cauchy determinant identity (21),1463

see section 2.6.3. Another Fredholm determinant expression for Pflat(h(x, t) > u) was1464

proved by Baik and Liu in [40] using the propagator approach [91,92], but with a slightly1465

different kernel and an integral over ν, Re ν < 0 instead. Although it had been checked1466

numerically that both expressions do agree, a proper derivation was missing. We show1467

below that the expression in [40] agrees with (4) when c < 0. The analyticity on the1468

cylinder, consequence of the trace in (1), justifies that (4) gives the same result for c < 01469

and c > 0, and shows that the expressions in [39] and [40] for flat initial condition are1470

indeed equivalent.1471

We start with equation (4.2) of [40]. In our notations, Baik and Liu prove that the1472

height function h(x, t) for the totally asymmetric simple exclusion process with flat ini-1473

tial condition, appropriately rescaled according to KPZ universality, has the cumulative1474

distribution function Pflat(h(x, t) > u) = F1(−u; t), with1475

F1(−u; t) =

∮
|z|<1

dz

2iπz
e−uA1(z)+tA2(z)+A3(z)+B(z) det(1−K(1)

z ) . (124)

The contour of integration encircles 0 once in the anti-clockwise direction. Writing z =1476

−eν , Re ν < 0, one has in terms of the functions of section 4 the identifications A1(−eν) =1477

χ′∅(ν), A2(−eν) = χ∅(ν), A3(−eν) = I0(ν) and B(−eν) = J∅(ν). After some harmless1478

changes of notations using the fact that any ξ ∈ Sz,left in [40] is of the form −κa(ν) for1479

some a ∈ Z + 1/2, the discrete operator K(1)
z has for kernel1480

K(1)
z (a, b) =

exp(2t
3 κa(ν)3 + 2uκa(ν) + 2

∫ ν
−∞ dv

χ′′∅ (v)

κa(v) )

κa(ν)(κa(ν) + κb(ν))
, (125)

with a, b ∈ Z + 1/2 and a path of integration contained in D. The rest of the section1481

is essentially a more detailed version of the derivation of equation (22), run backwards.1482
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Expanding the Fredholm determinant in (124) as1483

det(1−K(1)
z ) =

∑
P@Z+1/2

(−1)|P | det(K(1)
z (a, b))a,b∈P , (126)

using the Cauchy determinant identity (21) and making the change of variable z = −eν ,1484

one finds for any real number c < 01485

F1(−u; t) =

∫ c+iπ

c−iπ

dν

2iπ
etχ∅(ν)−uχ′∅(ν)+I0(ν)+J∅(ν)

∑
P@Z+1/2

(−1)|P | (127)

×

(∏
a∈P

exp(2t
3 κa(ν)3 + 2uκa(ν) + 2

∫ ν
−∞ dv

χ′′∅ (v)

κa(v) )

κa(ν)

)∏
a,b∈P
a>b

(κa(ν)− κb(ν))2∏
a,b∈P (κa(ν) + κb(ν))

.

In terms of the functions χP , we obtain from (64), (51)1486

F1(−u; t) =

∫ c+iπ

c−iπ

dν

2iπ

∑
P@Z+1/2

(−1)|P | etχP (ν)−uχ′P (ν)+I0(ν)+J∅(ν)+
∫ ν
−∞ dv χ′′∅ (v)(χ′′P (v)−χ′′∅ (v))

×
(∏
a∈P

1

κa(ν)

)∏
a,b∈P
a>b

(κa(ν)− κb(ν))2∏
a,b∈P (κa(ν) + κb(ν))

. (128)

In terms of the regularized integral −
∫ ν
−∞ = limΛ→∞(. . .) log Λ +

∫ ν
−∞ subtracting appro-1487

priately logarithmic divergences used in the definition (74) for the functions JP , one has1488

J∅(ν) +

∫ ν

−∞
dv χ′′∅(v)(χ′′P (v)− χ′′∅(v)) (129)

= JP (ν)− 1

2
−
∫ ν

−∞
dv (χ′′P (v)− χ′′∅(v))2

= JP (ν)− 2
∑
a,b∈P

−
∫ ν

−∞

dv

κa(v)κb(v)

= JP (ν) +
∑
a,b∈P

log
((κa(ν) + κb(ν))2

8

)
,

where the first equality comes from (74), the second from (161) and the third from (184)1489

using the fact that 2 log(κa(ν) +κb(ν)) = log((κa(ν) +κb(ν))2) when Re ν < 0. We obtain1490

F1(−u; t) =

∫ c+iπ

c−iπ

dν

2iπ

∑
P@Z+1/2

(−1)|P |

4|P |
etχP (ν)−uχ′P (ν)+I0(ν)+JP (ν)

×
∏
a,b∈P
a>b

(κa(ν)2 − κb(ν)2

8

)2
. (130)

From the definition (50) of κa(ν), one has (κa(ν)2 − κb(ν)2)/8 = 2iπa/4 − 2iπb/4, which1491

finally gives (4) with c < 0.1492

5.2 Sharp wedge initial condition1493

In this section, we show that the expression (10) for the probability of the KPZ height1494

with sharp wedge initial condition is equivalent to exact results from [39,40].1495
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5.2.1 Relation with the generating function of the height from [39]1496

1497

The expression (6) for sharp wedge initial condition is a consequence of the generating1498

function obtained in [39], equation (9), and given for s > 0 by1499

〈esh(x,t)〉sw = s
∑

P,H@Z+1/2
|P |±=|H|∓

i|P |+|H| V 2
P V

2
H

4|P |+|H|
e2iπx(

∑
a∈P a−

∑
a∈H a) (131)

×etχP,H(νP,H(s)) limΛ→∞ Λ−|P |
2−|H|2 e

∫ νP,H (s)

−Λ dv χ′′P,H(v)2

χ′′P,H(νP,H(s))
,

with Vandermonde determinants VP , VH defined in (5),1500

χP,H(v) =
χP (v) + χH(v)

2
(132)

and νP,H(s) the solution of χ′P,H(νP,H(s)) = s, conjectured to be unique when Re s > 0.1501

The restrictions |P |+ = |H|−, |P |− = |H|+ on the number of positive and negative1502

elements of P and H imply in particular that we are summing only over sets P and H1503

with |P | = |H|.1504

As in section 2.2, the cumulative distribution function of the height can be derived1505

from the generating function by Fourier transform, and we obtain in terms of χ∆
P , J∆

P1506

defined in (87), (74)1507

Psw(h(x, t) > u) =
∑

P,H@Z+1/2
|P |±=|H|∓

i|P |+|H| V 2
P V

2
H

4|P |+|H|
e2iπx(

∑
a∈P a−

∑
a∈H a) (133)

×
∫ c+i∞

c−i∞

dν

2iπ
etχ

∆
P (ν)−uχ′∆P (ν)+2J∆

P (ν) ,

with c > 0 and ∆ = P 	H.1508

One has |P |+ |H| = 2|P \∆|+ |∆|,
∑

a∈P a−
∑

a∈H a =
∑

a∈A a−
∑

a∈∆\A a and1509

V 2
P V

2
H = V 2

A V
2

∆\A
∏

a∈P\∆

∏
b∈P∪∆
b6=a

(2iπa

4
− 2iπb

4

)2
, (134)

where ∆ = P 	H and A = P ∩∆. These identities allow to rewrite (133) as1510

Psw(h(x, t) > u) =
∑

∆@Z+1/2

∑
A⊂∆

∑
Q@Z+1/2
Q∩∆=∅

1{|P |±=|P	∆|∓} (i/4)2|P\∆|+|∆| V 2
A V

2
∆\A

×
( ∏
a∈P\∆

∏
b∈P∪∆
b 6=a

(2iπa

4
− 2iπb

4

)2
)

e2iπx(
∑
a∈A a−

∑
a∈∆\A a)

×
∫ c+i∞

c−i∞

dν

2iπ
etχ

∆
P (ν)−uχ′∆P (ν)+2J∆

P (ν) , (135)

where the sum over P = Q ∪ A and H = P ∪ (∆ \ A) has been replaced by a sum over1511

∆, A, Q. Since A ⊂ ∆ and the function χ∆
P verifies χ∆

P = χ∆
P\∆, all χ∆

P in the integral1512

can be replaced by χ∆
Q. Additionally, P \∆ = Q and P ∪∆ = Q ∪∆ shows that further1513

factors are independent of A. Finally |P |± = |Q|± + |A|±, |P 	∆|∓ = |Q|∓ + |∆ \A|∓ =1514
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|Q|∓+ |∆|∓−|A|∓, and the constraints |P |± = |P 	∆|∓ can be replaced by |A| = |∆\A|,1515

implying that |∆| is necessarily even, and |Q|+ − |Q 	 ∆|− = −|∆|/2, equivalent to1516

λ+(Q,∆) = −|∆|/2 with λ+ defined above (43).1517

In terms of Ξ∆
x defined in (7) and of the functions χ∆, χ′∆, e2J∆

on the Riemann1518

surface R∆ defined in (86), (91), (96), we obtain1519

Psw(h(x, t) > u) =
∑

∆@Z+1/2

Ξ∆
x

∑
Q@Z+1/2
Q∩∆=∅

1{λ+(Q,∆)=−|∆|/2} (136)

×
∫ c+i∞

c−i∞

dν

2iπ
(etχ

∆−uχ′∆+2J∆
)([ν,Q]) .

We split
∫ c+i∞
c−i∞ into

∑∞
m=−∞

∫ c+2iπ(m+1/2)
c−2iπ(m−1/2) and shift ν by −2iπm. We then use the1520

symmetry by T defined in (44) of the extension to R of χ∆ and e2J∆
, i.e. we replace1521

[ν − 2iπm, (Q,∆)] by [ν, ((Q + m) 	 (Bm \ (∆ + m)),∆ + m)] everywhere since c > 0.1522

Making the change of variable Q → P 	 (Bm \ (∆ + m)) −m = (P −m) 	 (B−m \ ∆)1523

followed by ∆→ ∆−m, the constraint Q∩∆ = ∅ becomes P ∩∆ = ∅. Using Ξ∆−m
x = Ξ∆

x1524

then leads to1525

Psw(h(x, t) > u) =
∑

∆@Z+1/2

Ξ∆
x

∑
P@Z+1/2
P∩∆=∅

∞∑
m=−∞

1
{λ+

(
(P−m)	(B−m\(∆−m)),∆−m

)
=−|∆|/2}

(137)

×
∫ c+iπ

c−iπ

dν

2iπ
(etχ

∆−uχ′∆+2J∆
)([ν, P ]) .

Using (43), the condition λ+((P −m)	 (B−m \ (∆−m)),∆−m) = −|∆|/2 is equivalent1526

to λ+(P,∆) = m − |∆|/2. We observe that there exists a unique m ∈ Z such that the1527

constraint is verified when |∆| is even, and that no m ∈ Z satisfies the constraint when1528

|∆| is odd. Since Ξ∆
x = 0 when |∆| is odd, this leads to (10), using the definitions (86),1529

(96) of χ∆ and e2J∆
.1530

The slightly tedious derivation of (10) from (135) in this section can be understood1531

more directly, but at the price of heavier formalism, by considering a collection R of1532

copies of R and a covering map from R to R projecting each copy of R in R to a distinct1533

R∆ in R. The functions appearing in (135) can then be interpreted as functions on the1534

components R of R, equal at [ν, P ] ∈ R to the product of a constant depending only on1535

A = P ∩∆, which is eventually gathered into Ξ∆
x , and a function of [ν, P \∆] ∈ R∆.1536

5.2.2 Relation with the expression from Baik and Liu [40]1537

1538

In this section, we show that our result (6) for the cumulative distribution function of1539

KPZ fluctuations with sharp wedge initial condition agrees with the alternative formula1540

by Baik and Liu [40], with an integration on the left side of the branch cuts.1541

We start with equation (4.10) of [40]. In our notations, Baik and Liu prove that the1542

height function h(x, t) for the totally asymmetric simple exclusion process with domain1543

wall initial condition, appropriately rescaled according to KPZ universality, has the cu-1544

mulative distribution function Psw(h(x, t) > u) = F2(−u; t, x), with1545

F2(−u; t, x) =

∮
|z|<1

dz

2iπz
e−uA1(z)+tA2(z)+2B(z) det(1−K(2)

z ) . (138)

The contour of integration encircles 0 once in the anti-clockwise direction. Writing z =1546

−eν , Re ν < 0, one has in terms of the functions of section 4 the identifications A1(−eν) =1547
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χ′∅(ν), A2(−eν) = χ∅(ν) and B(−eν) = J∅(ν). After some harmless changes of notations1548

using the fact that any ξ ∈ Sz,left in [40] is of the form −κa(ν) for some a ∈ Z + 1/2, the1549

discrete operator K(2)
z has for kernel1550

K(2)
z (a, b) =

exp( t3 κa(ν)3 + uκa(ν) + 2iπax+ 2
∫ ν
−∞ dv

χ′′∅ (v)

κa(v) )

κa(ν)
(139)

×
∑

c∈Z+1/2

exp( t3 κc(ν)3 + uκc(ν)− 2iπcx+ 2
∫ ν
−∞ dv

χ′′∅ (v)

κc(v) )

κc(ν)(κa(ν) + κc(ν))(κb(ν) + κc(ν))
,

with a, b ∈ Z + 1/2. The rest of the section is essentially a more detailed version of the1551

derivation of (25), run backwards. Expanding the Fredholm determinant in (124) as1552

det(1−K(2)
z ) =

∑
P@Z+1/2

(−1)|P | det(K(2)
z (a, b))a,b∈P , (140)

using1553

det

( ∑
c∈Z+1/2

Ka,b,c
)
a,b∈P

=
( ∏
a∈P

∑
ca∈Z+1/2

)
det
(
Ka,b,ca

)
a,b∈P

, (141)

the Cauchy determinant identity1554

det
( 1

κca + κb

)
a,b∈P

=

(∏
a,b∈P
a>b

(κa − κb)
)(∏

a,b∈P
a>b

(κca − κcb)
)

∏
a,b∈P (κca + κb)

, (142)

and making the change of variable z = −eν , one finds for any real number c < 01555

F2(−u; t, x) =

∫ c+iπ

c−iπ

dν

2iπ
etχ∅(ν)−uχ′∅(ν)+2J∅(ν)

∑
P@Z+1/2

( ∏
a∈P

∑
ca∈Z+1/2

)
(−1)|P |

×

(∏
a∈P

exp( t3 κa(ν)3 + uκa(ν) + 2iπax+ 2
∫ ν
−∞ dv

χ′′∅ (v)

κa(v) )

κa(ν)

)
(143)

×

(∏
a∈P

exp( t3 κca(ν)3 + uκca(ν)− 2iπcax+ 2
∫ ν
−∞ dv

χ′′∅ (v)

κca (v))

κca(ν)

)

×

(∏
a,b∈P
a>b

(κa(ν)− κb(ν))
)(∏

a,b∈P
a>b

(κca(ν)− κcb(ν))
)

(∏
a∈P (κa(ν) + κca(ν))

)(∏
a,b∈P (κca(ν) + κb(ν))

) .

Because of the factor
∏

a,b∈P
a>b

(κca(ν) − κcb(ν)), only the tuples ca, a ∈ P with distinct1556

elements contribute, and one can replace these tuples by finite sets H @ Z + 1/2 with1557

|H| = |P | up to permutations. Using the identity1558

( ∏
a∈P

∑
ca∈Z+1/2

)
1{{ca,a∈P}=H}

(∏
a,b∈P
a>b

(κca − κcb)
)

(∏
a∈P (κa + κca)

)(∏
a,b∈P (κca + κb)

)
=

(∏
a,b∈P
a>b

(κa − κb)
)(∏

a,b∈H
a>b

(κa − κb)2
)

∏
a∈P

∏
b∈H(κa + κb)2

(144)
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for P,H @ Z + 1/2, |P | = |H|, (132), (64) and (161), this leads to1559

F2(−u; t, x) =

∫ c+iπ

c−iπ

dν

2iπ

∑
P,H@Z+1/2
|P |=|H|

(−1)|P | etχP,H(ν)−uχ′P,H(ν) e2iπx
(∑

a∈P a−
∑
a∈H a

)

×e2J∅(ν)+2
∫ ν
−∞ dv χ′′∅ (v)(χ′′P,H(v)−χ′′∅ (v))

(∏
a∈P

1

κa(ν)

)( ∏
a∈H

1

κa(ν)

)

×

(∏
a,b∈P
a>b

(κa(ν)− κb(ν))
)2(∏

a,b∈H
a>b

(κa(ν)− κb(ν))
)2

(∏
a∈P

∏
b∈H(κa(ν) + κb(ν))

)2 . (145)

In terms of the regularized integral −
∫ ν
−∞ = limΛ→∞(. . .) log Λ +

∫ ν
−∞ subtracting appro-1560

priately logarithmic divergences used in the definition (74) for the functions JP , one has1561

J∅(ν) +

∫ ν

−∞
dv χ′′∅(v)(χ′′P,H(v)− χ′′∅(v)) (146)

=
1

2
−
∫ ν

−∞
dv χ′′P,H(v)2 − 1

2
−
∫ ν

−∞
dv (χ′′P,H(v)− χ′′∅(v))2

=
1

2
−
∫ ν

−∞
dv χ′′P,H(v)2 − 1

2

∑
a,b∈P

−
∫ ν

−∞

dv

κa(v)κb(v)
− 1

2

∑
a,b∈H

−
∫ ν

−∞

dv

κa(v)κb(v)

−
∑
a∈P

∑
b∈H
−
∫ ν

−∞

dv

κa(v)κb(v)

=
1

2
−
∫ ν

−∞
dv χ′′P,H(v)2 +

1

2

∑
a,b∈P

log
(κa(ν) + κb(ν)√

8

)
+

1

2

∑
a,b∈H

log
(κa(ν) + κb(ν)√

8

)
+
∑
a∈P

∑
b∈H

log
(κa(ν) + κb(ν)√

8

)
,

where the first equality comes from (74), the second from (132), (161) and the third from1562

(184). We obtain1563

F2(−u; t, x) =

∫ c+iπ

c−iπ

dν

2iπ

∑
P,H@Z+1/2
|P |=|H|

i|P |+|H|

4|P |+|H|
etχP,H(ν)−uχ′P,H(ν)+−

∫ ν
−∞ dv χ′′P,H(v)2

(147)

×e2iπx
(∑

a∈P a−
∑
a∈H a

) ( ∏
a,b∈P
a>b

κa(ν)2 − κb(ν)2

8

)2( ∏
a,b∈H
a>b

κa(ν)2 − κb(ν)2

8

)2

.

From the definition (50) of κa(ν), one has (κa(ν)2 − κb(ν)2)/8 = 2iπa/4 − 2iπb/4, which1564

gives1565

F2(−u; t, x) =

∫ c+iπ

c−iπ

dν

2iπ

∑
P,H@Z+1/2
|P |=|H|

i|P |+|H| V 2
P V

2
H

4|P |+|H|
e2iπx

(∑
a∈P a−

∑
a∈H a

)

×etχP,H(ν)−uχ′P,H(ν)+−
∫ ν
−∞ dv χ′′P,H(v)2

. (148)

with VP the Vandermonde determinant defined in (5). Introducing ∆ = P 	H and the1566
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functions χ∆
P and J∆

P from (87), (92), we finally obtain1567

Psw(h(x, t) > u) =
∑

P,H@Z+1/2
|P |=|H|

i|P |+|H| V 2
P V

2
H

4|P |+|H|
e2iπx

(∑
a∈P a−

∑
a∈H a

)
(149)

×
∫ c+iπ

c−iπ

dν

2iπ
etχ

∆
P (ν)−uχ′∆P (ν)+2J∆

P (ν) ,

with ∆ = P 	H and VP , χ∆
P , J∆

P defined in (5), (87), (92). The sign of c, the integration1568

range and the constraint on the sets P and H differ from (133). This corresponds simply1569

to another choice of fundamental domain for the Riemann surfaces R∆. Indeed, writing1570

P = Q ∪A with A ⊂ ∆, Q ∩∆ = ∅ and using (134) as in the previous section leads to1571

Psw(h(x, t) > u) =
∑

∆@Z+1/2

∑
A⊂∆

∑
Q@Z+1/2
Q∩∆=∅

1{|P |=|P	∆|} (i/4)2|P\∆|+|∆| V 2
A V

2
∆\A

×
( ∏
a∈P\∆

∏
b∈P∪∆
b 6=a

(2iπa

4
− 2iπb

4

)2
)

e2iπx
(∑

a∈A a−
∑
a∈∆\A a

)

×
∫ c+iπ

c−iπ

dν

2iπ
etχ

∆
P (ν)−uχ′∆P (ν)+2J∆

P (ν) , (150)

which parallels (135). Since |P | = |P	∆| is equivalent to |A| = |∆\A|, the same reasoning1572

as from (135) to (136) finally gives1573

Psw(h(x, t) > u) =
∑

∆@Z+1/2

Ξ∆
x

∑
Q@Z+1/2
Q∩∆=∅

∫ c+iπ

c−iπ

dν

2iπ
(etχ

∆−uχ′∆+2J∆
)([ν,Q]) , (151)

which is precisely (10).1574

5.3 Multiple-time statistics with sharp wedge initial condition1575

In this section, we derive (13) starting with a result by Baik and Liu [42]. We also discuss1576

the pole structure on the Riemann surfaces R∆` of the final expression.1577

5.3.1 Derivation of (13) from Baik-Liu [42]1578

1579

The joint distribution of the height at multiple times 0 < t1 < . . . < tm and positions1580

xj was obtained by Baik and Liu in [42], equation (2.15), with the expression (2.21) for1581

C(z), and (2.51), (2.55) for D(z). Under the replacements τj → tj , γj → xj , xj → −uj ,1582
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one has Psw(h(x1, t1) > u1, . . . , h(xm, tm) > um) = F (~t, ~x, ~u) where1583

F (~t, ~x, ~u)

=

∮
dz1

2iπz1
. . .

dzm
2iπzm

(
m∏
`=1

( z`
z` − z`+1

e−u`A1(z`)+t`A2(z`)

e−u`A1(z`+1)+t`A2(z`+1)
e2B(z`,z`)−2B(z`+1,z`)

))

×
∞∑

n1,...,nm=0

(
m∏
`=1

1

(n`!)2

)(
m∏
`=2

((
1− z`−1

z`

)n` (
1− z`

z`−1

)n`−1
))

(152)

×

(
m∏
`=1

∑
P`,H`∈(Z+1/2)n`

)(
m∏
`=1

(∆(U (`))2∆(V (`))2

∆(U (`);V (`))2
f̂`(U

(`))f̂`(V
(`))
))

×

(
m∏
`=2

(∆(U (l);V (`−1))∆(V (l);U (`−1)) e−h(V (`),z`−1)−h(V (l−1),z`)

∆(U (l);U (`−1))∆(V (l);V (`−1)) eh(U(`),z`−1)+h(U(`−1),z`)

))
,

with |zm| < . . . < |z1| < 1, νm+1 = −∞, x0 = xm+1 = t0 = tm+1 = u0 = um+1 =1584

0. In terms of z` = −eν` , Re ν` < 0, −π < Im ν` < π, one has A1(z`) = χ′∅(ν`)1585

and A2(z`) = χ∅(ν`) with χ∅ given by (56) and B(z`1 , z`2) = K∅,∅(ν`1 , ν`2) with K∅,∅1586

given by (101). The n`-uples U (`), V (`) are defined in terms of the n`-uples P`, H` as1587

U (`) = (κa(ν`), a ∈ P`), V (`) = (−κa(ν`), a ∈ H`). The quantities ∆(W ), ∆(W ;W ′) for1588

tuples W = (w1, . . . , wn), W ′ = (w′1, . . . , w
′
n′) are defined as ∆(W ) =

∏
1≤i<j≤n(wj −wi),1589

∆(W ;W ′) =
∏n
i=1

∏n′

i′=1(wi − w′i′). The remaining factors are given by h(U (`1), z`2) =1590 ∑
a∈P`1

∫ 0
−∞ duχ′′∅(u+ ν`2)/κa(u+ ν`1), h(V (`1), z`2) =

∑
a∈H`1

∫ 0
−∞ duχ′′∅(u+ ν`2)/κa(u+1591

ν`1) and1592

f̂`(U
(`)) = (−1)n` e

2
∑
a∈P`

∫ ν`
−∞ dv

χ′′∅ (v)

κa(v)

∏
a∈P`

e(t`−t`−1)
κa(ν`)

3

3
+(x`−x`−1)

κa(ν`)
2

2
+(u`−u`−1)κa(ν`)

κa(ν`)

f̂`(V
(`)) = e

2
∑
a∈H`

∫ ν`
−∞ dv

χ′′∅ (v)

κa(v)

∏
a∈H`

e(t`−t`−1)
κa(ν`)

3

3
−(x`−x`−1)

κa(ν`)
2

2
+(u`−u`−1)κa(ν`)

κa(ν`)
. (153)

Because of the Vandermonde determinants ∆(U (`)), ∆(V (`)), only tuples P`, H` with1593

distinct elements contribute to (152). Since the summand is invariant under permutations1594

of the elements of P`, H`, one can sum over subsets P`, H` of Z + 1/2 instead, up to a1595

factor
∏m
`=1(n`!)

2 counting the number of permutations. Making the changes of variables1596

z` = −eν` , one finds after some simplifications1597

F (~t, ~x, ~u) =

∫ c1+iπ

c1−iπ

dν1

2iπ
. . .

∫ cm+iπ

cm−iπ

dνm
2iπ

(
m∏
`=1

∑
P`,H`@Z+1/2

|P`|=|H`|

)
(154)

×

(
m∏
`=1

(
(i/4)2n` V 2

P`
V 2
H`

e
2iπ(x`−x`−1)(

∑
a∈P`

a−
∑
a∈H`

a)

×e
(t`−t`−1)χ

∆`
P`

(ν`)−(u`−u`−1)χ
′∆`
P`

(ν`)+2J
∆`
P`

(ν`)
))

×
m−1∏
`=1

(1− eν`+1−ν`)−1+n` (1− eν`−ν`+1)n`+1 e
−2K

∆`,∆`+1
P`,P`+1

(ν`,ν`+1)(∏
a∈P`

∏
b∈P`+1

(
2iπb−ν`+1

4 − 2iπa−ν`
4

))(∏
a∈H`

∏
b∈H`+1

(
2iπb−ν`+1

4 − 2iπa−ν`
4

))
with cm < . . . < c1 < 0, n` = |P`| = |H`| and ∆` = P` 	H`.1598
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Using 2n` = 2|P` \∆`|+ |∆`| and (134), the general factor of the first product in (154)1599

rewrites in terms of the functions χ∆, χ′∆, e2J∆
on the Riemann surface R∆ defined in1600

(86), (91), (96) as1601

(i/4)2n` V 2
P`
V 2
H`

e
(t`−t`−1)χ

∆`
P`

(ν`)−(u`−u`−1)χ
′∆`
P`

(ν`)+2J
∆`
P`

(ν`)

= (i/4)|∆`| V 2
A`
V 2

∆`\A`

(
e(t`−t`−1)χ∆`−(u`−u`−1)χ′∆`+2J∆`

)
([ν`, P`]) (155)

with A` = P` ∩∆`. Furthermore, one has 1 − eν`+1−ν` = e−4I0(ν`+1−ν`+iπ), 1 − eν`−ν`+1 =1602

e−4I0(ν`−ν`+1−iπ) with I0 defined in (68), and the identities n` = |P` \∆`|+ |∆`|/2,1603 (∏
a∈P\∆

∏
b∈Q\Γ

(
2iπb−µ

4 − 2iπa−ν
4

))(∏
a∈P∪∆

∏
b∈Q∪Γ

(
2iπb−µ

4 − 2iπa−ν
4

))
(∏

a∈P
∏
b∈Q

(
2iπb−µ

4 − 2iπa−ν
4

))(∏
a∈P	∆

∏
b∈Q	Γ

(
2iπb−µ

4 − 2iπa−ν
4

))
=
∏
a∈∆

∏
b∈Γ

(2iπb− µ
4

− 2iπa− ν
4

) 1−σa(P )σb(Q)

2
(156)

lead for the general factor of the second product in (154) to1604

(1− eν`+1−ν`)n` (1− eν`−ν`+1)n`+1 e
−2K

∆`,∆`+1
P`,P`+1

(ν`,ν`+1)(∏
a∈P`

∏
b∈P`+1

(
2iπb−ν`+1

4 − 2iπa−ν`
4

))(∏
a∈H`

∏
b∈H`+1

(
2iπb−ν`+1

4 − 2iπa−ν`
4

)) (157)

=
(1− eν`+1−ν`)|∆`|/2 (1− eν`−ν`+1)|∆`+1|/2(∏

a∈∆`

∏
b∈∆`+1

(
2iπb−ν`+1

4 − 2iπa−ν`
4

) 1+σa(A`)σb(A`+1)

2

) × (e−2K∆`,∆`+1
(p`, p`+1)

)
,

where A` = P` ∩∆`, p` = [ν`, P`] is a point on the Riemann surface R∆` and e2K∆`,∆`+1
1605

a function meromorphic on R∆` × R∆`+1 defined in (118). Writing P` = Q` ∪ A` with1606

Q` ∩ ∆` = ∅ and A` ⊂ ∆` and using that χ∆([ν, P ]) = χ∆([ν, P \ ∆]), e2J∆
([ν, P ]) =1607

e2J∆
([ν, P \ ∆]), e2K∆,Γ

([ν, P ], [µ,Q]) = e2K∆,Γ
([ν, P \ ∆], [µ,Q \ Γ]) are independent of1608

P ∩∆ and Q ∩ Γ, we obtain1609

F (~t, ~x, ~u) =

∫ c1+iπ

c1−iπ

dν1

2iπ
. . .

∫ cm+iπ

cm−iπ

dνm
2iπ

(
m∏
`=1

∑
∆`@Z+1/2

∑
A`@∆`

|A`|=|∆`\A`|

∑
Q`@Z+1/2

Q`∩∆`=∅

)
(158)

×

(
m∏
`=1

(
(i/4)|∆`| V 2

A`
V 2

∆`\A` e
2iπ(x`−x`−1)(

∑
a∈A`

a−
∑
a∈∆`\A`

a)

×
(

e(t`−t`−1)χ∆`−(u`−u`−1)χ′∆`+2J∆`
)

(p`)
))

×

(
m−1∏
`=1

((1− eν`+1−ν`)|∆`|/2 (1− eν`−ν`+1)|∆`+1|/2

1− eν`+1−ν`

× e−2K∆`,∆`+1
(p`, p`+1)∏

a∈∆`

∏
b∈∆`+1

(
2iπb−ν`+1

4 − 2iπa−ν`
4 )

1+σa(A`)σb(A`+1)

2

))
,

where p` = [ν`, Q`]. This is essentially (13).1610
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5.3.2 Pole structure of (16)1611

1612

The integrand in (16) has potential poles and zeroes at ν`+1 = ν` + 2iπm, m ∈ Z. More1613

precisely defining from (14), (15) and (118) the integer1614

α` = −1 +
( |∆`|

2
+
|∆`+1|

2
− |A` ∩ (A`+1 −m)| − |(∆` \A`) ∩ ((∆`+1 \A`+1)−m)|

)
+
(
|P`|+ |P`+1|+ |∆` ∩ (∆`+1 −m)| (159)

−|P` ∩ (P`+1 −m)| − |(P` ∪∆`) ∩ ((P`+1 ∪∆`+1)−m)|
)

with P` ∩∆` = ∅, A` ⊂ ∆` and |A`| = |∆`|/2 as in (13), the integrand has at the point1615

ν`+1 = ν` + 2iπm a zero of order α` if α` > 0 and a pole of order −α` if α` < 0. We show1616

below that for any choice of the integer m and of the sets ∆`, A`, P`, ∆`+1, A`+1, P`+11617

as in (13), one has α` ≥ −1, with α` = −1 if and only if ∆`+1 = ∆` +m, A`+1 = A` +m1618

and P`+1 = P` +m.1619

We consider first the terms of (159) in the first line within the parenthesis. Using1620

|A` ∩ (A`+1−m)| ≤ min(|A`|, |A`+1|) = min(|∆`|, |∆`+1|)/2, and similarly for |(∆` \A`)∩1621

((∆`+1 \ A`+1) −m)|, the first parenthesis of (159) is non-negative, and equal to zero if1622

and only if ∆`+1 = ∆` +m and A`+1 = A` +m.1623

We consider then the terms in the second and third line of (159). After some manipu-1624

lations, we observe that the sum of these terms is equal to |P`|−|P`∩((P`+1−m)∪(∆`+1−1625

m))|+ |P`+1| − |(P` ∪∆`)∩ (P`+1 −m)|, which is manifestly non-negative. The integrand1626

in (13) may thus have a pole only if both parentheses in (159) are equal to zero. Provided1627

that ∆`+1 = ∆` +m, the second parenthesis is equal to zero if and only if P`+1 = P` +m,1628

which concludes the proof.1629

A Derivation of the identity (76)1630

In this appendix, we derive the identity (76) for the integral −
∫
βn·P χ

′′(v)2dv, n ∈ Z. The1631

identity is obviously true for n = 0 since β0·P is homotopic to an empty loop. We consider1632

first the case n = 1, for which a detailed calculation is needed, and then generalize to1633

arbitrary n ∈ Z by using translation properties of the functions JP .1634

A.1 Case n = 11635

We introduce positive numbers ε, δ, 0 < ε � δ � 1. By definition of the path β1 ·P , one1636

has1637

−
∫
β1·P

χ′′(v)2dv = −
∫ i(π+δ)−ε

−∞
dv χ′′P (v)2 − −

∫ i(π+δ)+ε

−∞
dv χ′′P	{1/2}(v)2 , (160)

with both paths of integration contained in D on the right hand side. The path for the1638

second integral on the right has to cross the imaginary axis in the interval −π < Im v < π,1639

see figure 20. At this point, δ need not be infinitesimal (we only require that 0 < δ < 2π),1640

but it will be convenient in the following in order to compute some integrals by expanding1641

close to the singularity at v = iπ.1642

From (64), (63), (50) and κ′′b = 3/κb, the function χ′′P (v) verifies1643

χ′′P (v) = χ′′∅(v) +
∑
b∈P

2

κb(v)
(161)
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and1644

χ′′P (v) = lim
M→∞

(√
2M

π
−

M−1/2∑
b=−M+1/2

σb(P )

κb(v)

)
. (162)

Since σ1/2(P ) = −σ1/2(P 	{1/2}), the function χ′′P (v) +σ1/2(P )/κ1/2(v) = χ′′P	{1/2}(v)−1645

σ1/2(P )/κ1/2(v) does not have a branch point at v = iπ, so that1646

−
∫ i(π+δ)−ε

−∞
dv
(
χ′′P (v) +

σ1/2(P )

κ1/2(v)

)2
− −
∫ i(π+δ)+ε

−∞
dv
(
χ′′P	{1/2}(v)−

σ1/2(P )

κ1/2(v)

)2
= 0 . (163)

This leads to1647

−
∫
β1·P

χ′′(v)2dv = −
∫ i(π+δ)−ε

−∞
dv
(
− 1

κ1/2(v)2
− 2σ1/2(P )

χ′′P (v)

κ1/2(v)

)
(164)

−−
∫ i(π+δ)+ε

−∞
dv
(
− 1

κ1/2(v)2
+ 2σ1/2(P )

χ′′P	{1/2}(v)

κ1/2(v)

)
,

which, using (161), gives1648

−
∫
β1·P

χ′′(v)2dv = σ1/2(P )−
∫ i(π+δ)−ε

−∞
dv
(σ1/2(P )− 2

κ1/2(v)2
−

2χ′′∅(v)

κ1/2(v)
−

∑
b∈P\{1/2}

4

κ1/2(v)κb(v)

)
−σ1/2(P )−

∫ i(π+δ)+ε

−∞
dv
(σ1/2(P ) + 2

κ1/2(v)2
+

2χ′′∅(v)

κ1/2(v)
+

∑
b∈P\{1/2}

4

κ1/2(v)κb(v)

)
. (165)

The integrals needed are computed in appendix C. Using (184) and (185), we obtain after1649

some simplifications1650

1

2
−
∫
β1·P

χ′′(v)2dv = iπ + σ1/2(P )

(
iπ(|P |+ − |P |− − 1/2)− 2 log 2 (166)

+
∑

b∈P\{1/2}

log
π2(b− 1/2)2

4

)
,

which is equivalent to (76) with n = 1.1651

A.2 Extension to n > 11652

For n ≥ 2, we write the telescopic sum1653

JP−n(ν − 2iπn)− JP	Bn(ν) =
n∑

m=1

(
J(P−m)	Bn−m(ν − 2iπm) (167)

−J(P−m+1)	Bn−m+1
(ν − 2iπ(m− 1))

)
.

Noting that (P −m+1)	Bn−m+1 = ((P −m)	Bn−m+1)	{1/2}, see the group identity1654

(36), one has from (75)1655

1

2
−
∫
βn·P

χ′′(v)2dv =
1

2

n∑
m=1

−
∫
β1·((P−m)	Bn−m+1)

χ′′(v)2dv . (168)

Using the identity (76) with n = 1 derived previously, we arrive at1656

1

2
−
∫
βn·P

χ′′(v)2dv =
1

2

n∑
m=1

(
W(P−m+1)	Bn−m+1

−W(P−m)	Bn−m

)
, (169)

whose right hand side telescopically reduces to (WP	Bn −WP−n)/2. This proves (76) for1657

n ≥ 2.1658
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A.3 Extension to n < 01659

Let n be a positive integer. The replacements ν → ν + 2iπn and P → (P 	 Bn) − n in1660

(75) give1661

JP	Bn−n(ν) = JP (ν + 2iπn) +
1

2
−
∫
βn·(P	Bn)

χ′′(v)2dv . (170)

Changing the order of the terms and using P 	Bn − n = (P − n)	B−n, one has1662

JP (ν + 2iπn) = J(P−n)	B−n(ν)− 1

2
−
∫
βn·(P	Bn)

χ′′(v)2dv , (171)

which, from (75) with n replaced by −n, gives1663

1

2
−
∫
β−n·(P−n)

χ′′(v)2dv = −1

2
−
∫
βn·(P	Bn)

χ′′(v)2dv . (172)

Using the identity (76) for n > 0 derived previously, this leads to1664

1

2
−
∫
β−n·(P−n)

χ′′(v)2dv = −WP +WP	Bn−n . (173)

Replacing P by P + n finally leads to (76) with n replaced by −n < 0.1665

B Derivation of the identities (106) and (107)1666

In this appendix, we derive the identities (106) and (107) for some integrals over the paths1667

γn,0 and γ0,m. The identities are obviously true for n = 0 or m = 0 since the paths are1668

then homotopic to empty loops. We start with the identity (106), which is proved first for1669

n = 1, where a detailed calculation is needed, and then generalized to arbitrary n ∈ Z by1670

using translation properties of the functions KP,Q. The identity (107) is then obtained by1671

exchanging µ with ν and P with Q.1672

B.1 Case n = 1 for (106)1673

The integral −
∫
γ1,0

duAu(χ′′P (·+ν)χ′′Q(·+µ)) is equal to zero if Re ν < 0 since the path γ1,01674

is empty then. Therefore, we restrict to Re ν > 0 in the rest of this section. We introduce1675

positive numbers ε, δ, 0 < ε� δ � 1. We want to compute the integral1676

−
∫
γ1,0

duAu(χ′′P (·+ ν)χ′′Q(·+ µ)) (174)

= −
∫ i(π+δ)−ν−ε

−∞
duχ′′P (u+ ν)χ′′Q(u+ µ)− −

∫ i(π+δ)−ν+ε

−∞
duχ′′P	{1/2}(u+ ν)χ′′Q(u+ µ) ,

where the paths of integration in the second line are contained in D. The path for the last1677

integral in the second line has to cross the imaginary axis in the interval −π < Im v < π,1678

see figure 20. Additionally, if Reµ > Re ν, the paths of both integrals in the second line1679

must cross the line Re(u + µ) = 0 in the interval −π < Im(u + µ) < π. At this point, δ1680

need not be infinitesimal (we only require that 0 < δ < 2π), but it will be convenient in1681

the following in order to compute some integrals by expanding close to the singularity at1682

u = iπ − ν.1683
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Because of (162), the function χ′′P (v)+σ1/2(P )/κ1/2(v) = χ′′P	{1/2}(v)−σ1/2(P )/κ1/2(v)1684

does not have a branch point at v = iπ, so that1685

−
∫ i(π+δ)−ν−ε

−∞
du
(
χ′′P (u+ ν) +

σ1/2(P )

κ1/2(u+ ν)

)
χ′′Q(u+ µ) (175)

= −
∫ i(π+δ)−ν+ε

−∞
du
(
χ′′P (u+ ν)−

σ1/2(P )

κ1/2(u+ ν)

)
χ′′Q(u+ µ) = 0 .

This leads to1686

−
∫
γ1,0

duAu(χ′′P (·+ ν)χ′′Q(·+ µ)) (176)

= −σ1/2(P )

(
−
∫ i(π+δ)−ν−ε

−∞
du

χ′′Q(u+ µ)

κ1/2(u+ ν)
+ −
∫ i(π+δ)−ν+ε

−∞
du

χ′′Q(u+ µ)

κ1/2(u+ ν)

)
.

Using (161), one has1687

−
∫
γ1,0

duAu(χ′′P (·+ ν)χ′′Q(·+ µ)) (177)

= −σ1/2(P )

(∫ i(π+δ)−ν−ε

−∞
du

χ′′∅(u+ µ)

κ1/2(u+ ν)
+

∫ i(π+δ)−ν+ε

−∞
du

χ′′∅(u+ µ)

κ1/2(u+ ν)

+2
∑
b∈Q

(
−
∫ i(π+δ)−ν−ε

−∞

du

κ1/2(u+ ν)κb(u+ µ)
+ −
∫ i(π+δ)−ν+ε

−∞

du

κ1/2(u+ ν)κb(u+ µ)

))
.

The remaining integrals are computed in appendix D. Using (194) and (201), we find1688

1

2
−
∫
γ1,0

duAu(χ′′P (·+ν)χ′′Q(·+µ)) = 2σ1/2(P )
(
I0(µ−ν+iπ)+

∑
b∈Q

log
κb(µ− ν + iπ)√

8

)
. (178)

Noting from (103) that WP	{1/2},Q(z)−WP,Q(z) = 2σ1/2(P )(I0(z) +
∑

b∈Q log κb(z)√
8

) and1689

from (104) that ZP	{1/2},Q − ZP,Q = 0, we finally obtain (106) for n = 1 after replacing1690

P by P + 1 in (178).1691

B.2 Extension to n > 1 and n < 01692

The extension of (106) from n = 1 to all n ∈ Z works essentially the same as in appendix A.1693

B.3 Proof of (107)1694

Exchanging ν with µ and replacing n by m transforms the path γn,0 to γ0,m. Replacing1695

also P with Q in (106) gives1696

1

2
−
∫
γ0,m

duAu(χ′′Q+m(·+ µ)χ′′P (·+ ν)) (179)

= 1{Reµ>0}

(
W(Q+m)	Bm,P (ν − µ+ iπ)−WQ+m,P (ν − µ+ iπ)

+1{Re ν>Reµ}(Z(Q+m)	Bm,P − ZQ+m, P )
)
.

Using (105) then leads to (107).1697
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C Calculations of some integrals between −∞ and ν ∈ D1698

In this appendix, we compute some integrals between −∞ and ν ∈ D, with a path of1699

integration contained in D. For some integrals, indicated by the symbol −
∫

, a regularization1700

at −∞ is needed due to the presence of logarithmic divergences.1701

C.1 The functions log κa and log(κa + κb) are analytic in D1702

For any a ∈ Z + 1/2, the function κa defined in (50) is analytic in D. When Re v = 0,1703

−π < Im v < π and arg(κa(v)) = sgn(a)π/4. Otherwise, Re v is non-zero and one has1704

arg(κa(v)) ∈


(−3π/4,−π/4) Re v > 0 and a < 0

(π/4, 3π/4) Re v > 0 and a > 0
(−π/4, π/4) Re v < 0

, (180)

which implies in particular that log κa is analytic in D if the branch cut of the logarithm1705

is chosen as R−.1706

For a, b ∈ Z+1/2 and v ∈ D, the discussion above imply constraints on the argument of1707

κa(v)+κb(v), a, b ∈ Z+1/2. When Re v = 0, −π < Im v < π, one has arg(κa(v)+κb(v)) =1708

(sgn(a) + sgn(b))iπ/4. Otherwise, Re v is non-zero and (180) implies1709

arg(κa(v) + κb(v)) ∈


(−3π/4,−π/4) Re v > 0, a < 0 and b < 0
(π/4, 3π/4) Re v > 0, a > 0 and b > 0
(−π/4, π/4) Re v > 0, ab < 0
(−π/4, π/4) Re v < 0

, (181)

In the case Re v > 0, ab < 0, we have used κa(v) + κb(v) = 4iπ(a − b)/(κa(v) − κb(v)).1710

We observe in particular from (181) that arg(κa(v) + κb(v)) always stays between −3π/41711

and 3π/4, and thus κa(v) + κb(v) never reaches the negative real axis R−. The function1712

log(κa(v) + κb(v)) is thus analytic in D for any a, b ∈ Z + 1/2 with the branch cut of the1713

logarithm chosen as R−.1714

C.2 Integral of κa(v)−1κb(v)−1
1715

Let a, b ∈ Z+ 1/2 and ν ∈ D. We consider the integral
∫ ν
−Λ dv κa(v)−1κb(v)−1 with a path1716

of integration staying in D and |Λ| → ∞, Re Λ > 0. The identity1717

1

κa(v)κb(v)
= −∂v log(κa(v) + κb(v)) (182)

allows to compute the integral explicitly since log(κa(v) +κb(v)) is analytic in D when the1718

branch cut of the logarithm is chosen as R−, as showed in appendix C.1. Taking |Λ| → ∞,1719

Re Λ > 0, one finds1720 ∫ ν

−Λ

dv

κa(v)κb(v)
' log

√
8Λ− log(κa(ν) + κb(ν)) . (183)

For any ν ∈ D, the regularized integral is then equal to1721

−
∫ ν

−∞

dv

κa(v)κb(v)
= − log

(κa(ν) + κb(ν)√
8

)
. (184)

1722
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C.3 Integral of χ′′∅(v)/κa(v) between −∞ and a branch point1723

Let δ be a positive real number and θ 6= 0, −π < θ < π. In the limit δ → 0 one has1724 ∫ i(2πa+eiθδ)

−∞
dv

χ′′∅(v)

κa(v)
' log

√
4δ +

iθ

2
− sgn(θ)

iπ

4
+ 1{θ<0} iπa , (185)

which can be derived by taking µ = ν = 0 and υ = i(2πa + eiθδ) in (200), after rather1725

tedious simplifications using κa(i(2πa + eiθδ)) = e
iθ
2
−(1−4 1{θ<0}1{a>0})

iπ
4

√
2δ, κb(i(2πa +1726

eiθδ)) ' sgn(θ) e−sgn(a−b) iπ
4

√
|4π(a− b)| if sgn(a) = sgn(b) and |b| < |a|, and κb(i(2πa +1727

eiθδ)) ' e−sgn(a−b) iπ
4

√
|4π(a− b)| otherwise.1728

C.4 Integral of χ′′∅(v)/κa(v) as an infinite sum1729

The indefinite integral of χ′′∅(v)/κa(v) can be rewritten as an infinite sum by expanding1730

χ′′∅(v) as in (162) and computing the integrals using (51) and (184). After careful treatment1731

of the exchange between the integral and the infinite sum, one has1732 ∫ ν

−∞
dv

χ′′∅(v)

κa(v)
= lim

M→∞

(
− 2I0(ν)−

√
2M

π
κa(ν) +

κ2
a(ν)

8
(186)

+

M−1/2∑
b=−M+1/2

log
(

1 +
κa(ν)

κb(ν)

))
,

with I0 defined in (68). When κa(ν) is small enough, i.e. when ν is in the vicinity of 2iπa,1733

the logarithm can be expanded. Using 2I
(m)
0 (ν) = −δm,1/4+(2m−2)!!

∑
b∈Z+1/2 κb(ν)−2m

1734

and χ
(m+2)
∅ (ν) = −(2m− 1)!!

∑
b∈Z+1/2 κb(ν)−2m−1 for m ≥ 1, we obtain the identity1735

∫ ν

−∞
dv

χ′′∅(v)

κa(v)
= −

∞∑
m=0

(κa(ν)2m

(2m)!!
2I

(m)
0 (ν) +

κa(ν)2m+1

(2m+ 1)!!
χ

(m+2)
∅ (ν)

)
. (187)

1736

D Calculations of some integrals depending on (ν, µ) ∈ D21737

In this appendix, we compute some integrals depending on two variables ν and µ.1738

D.1 Domain of analyticity of functions log(eiθ(κa(ν) + κb(µ)))1739

Let a, b ∈ Z+ 1/2 and (ν, µ) ∈ D2. We are interested in the position in the complex plane1740

of κa(ν) + κb(µ). Using (180), we obtain1741

arg
(

i
sgn(a)−sgn(b)

2 (κa(ν) + κb(µ))
)
∈


(−3π/4, π/4) a < 0 b < 0
(−π/4, 3π/4) a > 0 b > 0
(−3π/4, 3π/4) ab < 0

(188)

for Re ν < Reµ,1742

arg
(

i
sgn(b)−sgn(a)

2 (κa(ν) + κb(µ))
)
∈


(−3π/4, π/4) a < 0 b < 0
(−π/4, 3π/4) a > 0 b > 0
(−3π/4, 3π/4) ab < 0

(189)
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for Re ν > Reµ, and1743

arg(κa(ν) + κb(µ)) ∈


(−3π/4, π/4) a < 0 b < 0
(−π/4, 3π/4) a > 0 b > 0
(−π/4,+π/4) ab < 0

(190)

for Re ν = Reµ, 0 < Im(ν − µ) < 2π.1744

This implies in particular that the function (ν, µ) 7→ log
(
i

sgn(a)−sgn(b)
2 (κa(ν) + κb(µ))

)
1745

is analytic in the domain {(ν, µ) ∈ D × D,Re ν < Reµ} while the function (ν, µ) 7→1746

log
(
i

sgn(b)−sgn(b)
2 (κa(ν) + κb(µ))

)
is analytic in the domain {(ν, µ) ∈ D× D,Re ν > Reµ}.1747

D.2 Integral of κa(u+ ν)−1κb(u+ µ)−1
1748

Let a, b ∈ Z + 1/2. We consider the integral
∫ υ
−Λ duκa(u + ν)−1κb(u + µ)−1 with a path1749

of integration such that (u+ ν, u+ µ) stays in D2 and |Λ| → ∞, Re Λ > 0. The identity1750

1

κa(u+ ν)κb(u+ µ)
= −∂u log(eiθ(κa(u+ ν) + κb(u+ µ))) (191)

allows to compute the integral explicitly by choosing θ appropriately so that log(eiθ(κa(u+1751

ν) +κb(u+µ))) is analytic everywhere on the path of integration, with R− the branch cut1752

of the logarithm. According to appendix D.1, one can take θ = θa,b(µ− ν) with1753

θa,b(z) = π sgn(Re z)
sgn(a)− sgn(b)

4
. (192)

Subtracting the leading term log
√

Λ in the limit Λ → ∞, Re Λ > 0, the regularized1754

integral is finally equal to1755

−
∫ υ

−∞

du

κa(u+ ν)κb(u+ µ)
= iθa,b(µ− ν)− log

(
eiθa,b(µ−ν) κa(υ + ν) + κb(υ + µ)√

8

)
. (193)

This expression simplifies further when υ → 2iπa − ν since then κa(υ + ν) → 0, and we1756

obtain1757

−
∫ 2iπa−ν

−∞

du

κa(u+ ν)κb(u+ µ)
= − log

(κb(µ− ν + 2iπa)√
8

)
. (194)

1758

D.3 Integral of κb(u+ µ)/κa(u+ ν)1759

Let a, b ∈ Z + 1/2. We consider the integral
∫ υ
−Λ duκb(u + µ)/κa(u + ν) with a path of1760

integration such that (u+ ν, u+ µ) stays in D2 and |Λ| → ∞, Re Λ > 0. The identity1761

κb(u+ µ)

κa(u+ ν)
= −∂u

(κa(u+ ν)κb(u+ µ)

2
(195)

+
(
(ν − 2iπa)− (µ− 2iπb)

)
log
(
eiθ(κa(u+ ν) + κb(u+ µ))

))
allows to compute the integral explicitly by choosing θ = θa,b(µ − ν) defined in (192) so1762

that log(eiθ(κa(u+ ν) +κb(u+µ))) is analytic everywhere on the path of integration. The1763

contribution of the lower limit of the integral −Λ is equal to1764

Λ + ((ν − 2iπa)− (µ− 2iπb)) log(
√

8Λ eiθa,b(µ−ν))− ν + µ− 2iπ(a+ b)

2
(196)
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when Λ → ∞. Defining the regularized integral by subtracting the divergent term Λ +1765

(ν−2iπa)−(µ−2iπb)
2 log Λ finally leads to1766

−
∫ υ

−∞
du

κb(u+ µ)

κa(u+ ν)
= −ν + µ− 2iπ(a+ b)

2
− κa(υ + ν)κb(υ + µ)

2
(197)

+((ν − 2iπa)− (µ− 2iπb))
(

iθa,b(µ− ν)− log
(

eiθa,b(µ−ν) κa(υ + ν) + κb(υ + µ)√
8

))
.

1767

D.4 Integral of χ′′∅(u+ µ)/κa(u+ ν)1768

Let a ∈ Z + 1/2. We consider the integral
∫ υ
−∞ duχ′′∅(u + µ)/κa(u + ν) with a path of1769

integration such that (u+ ν, u+ µ) stays in D2. Let M be a positive integer, that will be1770

taken to infinity in the end. Using (61), ∂uζ(s, u) = −sζ(s+ 1, u) and (51), one has1771

∫ υ

−∞
du

χ′′∅(u+ µ)

κa(u+ ν)
= −

M−1/2∑
b=−M+1/2

−
∫ υ

−∞

du

κa(u+ ν)κb(u+ µ)
(198)

− 1

2
√
π
−
∫ υ

−∞
du

eiπ/4 ζ(1
2 ,M + 1

2 + u+µ
2iπ ) + e−iπ/4 ζ(1

2 ,M + 1
2 −

u+µ
2iπ )

κa(u+ ν)
.

The large M asymptotics of the integral in the second line is dominated by the contribu-1772

tions u ∼M , for which (59) gives1773

− 1

2
√
π

(
eiπ/4 ζ

(1

2
,M +

1

2
+
u+ µ

2iπ

)
+ e−iπ/4 ζ

(1

2
,M +

1

2
− u+ µ

2iπ

))
=
κM (u+ µ)− κ−M (u+ µ)

2iπ
+O(M−3/2) . (199)

The integrals can then be computed using (193) and (197). After some simplifications,1774

one finds1775 ∫ υ

−∞
du

χ′′∅(u+ µ)

κa(u+ ν)
= lim

M→∞

(
−M logM +M

(
1− log

π

2

)
−
√

2M√
π

κa(υ + ν) (200)

−ν − µ− 2iπa

4
−

M−1/2∑
b=−M+1/2

(
iθa,b(µ− ν)− log

(
eiθa,b(µ−ν) κa(υ + ν) + κb(υ + µ)√

8

)))
.

with θa,b defined in (192). This expression can be simplified further when υ → 2iπa − ν1776

since κa(υ + ν)→ 0. Using (71), we obtain1777 ∫ 2iπa−ν

−∞
du

χ′′∅(u+ µ)

κa(u+ ν)
= −2I0(µ− ν + 2iπa) . (201)

1778

E Identities for the coefficients WP , W∆
P1779

In this appendix, we give some identities for the coefficients WP and W∆
P defined in (77)1780

and (94).1781
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E.1 Differences of WP1782

We observe that for any P @ Z + 1/2, the last two terms in the definition (77) are1783

unchanged if the set P is replaced by P − n, n ∈ Z. After some manipulations using1784

|P |+ + |P |− = |P |, |P |+ − |P |− =
∑

a∈P sgn(a) and sgn(a− n) = σa(Bn)sgn(a), one has1785

WP −WP−n = −iπn|P |+ sgn(n)2iπ|P | |P ∩Bn| , (202)

with sgn(0) = 0. Using this identity together with |P 	 Bn| = |P | + |n| − 2|P ∩ Bn| and1786

|(P 	Bn) ∩Bn| = |n| − |P ∩Bn|, we obtain1787

(WP	Bn −WP−n)− (WP	Bn−n −WP ) = sgn(n)iπ(|n| − 2|P ∩Bn|)2 , (203)

which can be rewritten as1788

(WP	Bn −WP−n)− (W(P	Bn)−n −WP ) (204)

= iπn+ 2iπ sgn(n)
( |n|(|n| − 1)

2
− 2|n| |P ∩Bn|+ 2|P ∩Bn|2

)
.

In particular, one has1789

(WP	Bn −WP−n)− (WP	Bn−n −WP ) ∈ iπn+ 2iπZ . (205)

1790

E.2 Ratios of eWP1791

We consider now the quantity eWP . Using again |P |2+ − |P |2− = |P |
∑

a∈P sgn(a), one has1792

in terms of the Vandermonde determinant VP defined in (5) the identity1793

eWP = (−1)
|P | (|P |−1)

2 e−iπ
∑
a∈P a

(−1)|P | V 2
P

22|P | . (206)

Considering ratios, one has in particular1794

eWP−n−WP = (−1)n|P | , (207)

which follows also directly from (202).1795

We are also interested in the quantity eWP	Bn−WP , which can be computed from (206)1796

using the summation identity1797 ∑
a∈P	Q

f(a)−
∑
a∈P

f(a) =
∑
a∈Q

σa(P )f(a) , (208)

where σa is defined in (29). The summation identity (208) is proved easily from the1798

Venn diagram for the sets P and Q. Applied to Q = Bn, f(a) = a, it gives after some1799

simplifications for P @ Z + 1/21800

e−iπ
∑
a∈P	Bn a = e−iπ

∑
a∈P a × (−1)n(n+1)/2 i

∑
a∈Bn σa(P ) . (209)

Similarly, the summation identity (208) implies |P 	 Bn| = |P | +
∑

a∈Bn σa(P ), which1801

leads to1802

(−1)
|P	Bn| (|P	Bn|−1)

2 = (−1)
|P | (|P |−1)

2 × i−n(−1)n|P | (−1)n(n+1)/2(−i)
∑
a∈Bn σa(P ) . (210)

Putting together the two identities above with (206), we finally obtain1803

eWP	Bn−WP = i−n(−1)n|P | ×
(−1)|P	Bn| V 2

P	Bn
22|P	Bn|

/ (−1)|P | V 2
P

22|P | . (211)

1804
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E.3 Ratios of e2W∆
P1805

We consider the quantity e2W∆
P with W∆

P defined in (94). Similar simplifications as in the1806

previous section give1807

e
2W∆+n

(P+n)	(Bn\(∆+n))
−2W∆

P =
X∆+n

(P+n)	(Bn\(∆+n))

X∆
P

(212)

and1808

e
2W∆

P	(Bn\∆)
−2W∆−n

P−n = e
2W∆−n

P	(Bn\∆)−n−2W∆
P =

X∆
P	(Bn\∆)

X∆
P

(213)

with1809

X∆
P = (i/4)2|P\∆|+|∆|

∏
a∈P\∆

∏
b∈P∪∆
b6=a

(2iπa

4
− 2iπb

4

)2
. (214)

1810

References1811

[1] T. Halpin-Healy and Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth,1812

directed polymers and all that. Aspects of multidisciplinary statistical mechanics,1813

Phys. Rep. 254, 215 (1995), doi:10.1016/0370-1573(94)00087-J.1814

[2] T. Kriecherbauer and J. Krug, A pedestrian’s view on interacting particle systems,1815

KPZ universality and random matrices, J. Phys. A: Math. Theor. 43, 403001 (2010),1816

doi:10.1088/1751-8113/43/40/403001.1817

[3] I. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Ma-1818

trices: Theory and Applications 1, 1130001 (2011), doi:10.1142/S2010326311300014.1819

[4] A. Borodin and V. Gorin, Lectures on integrable probability (2012), https://arxiv.1820

org/abs/1212.3351.1821

[5] J. Quastel and H. Spohn, The one-dimensional KPZ equation and its universality1822

class, J. Stat. Phys. 160, 965 (2015), doi:10.1007/s10955-015-1250-9.1823

[6] T. Halpin-Healy and K. Takeuchi, A KPZ cocktail-shaken, not stirred..., J. Stat.1824

Phys. 160, 794 (2015), doi:10.1007/s10955-015-1282-1.1825

[7] H. Spohn, The Kardar-Parisi-Zhang equation - a statistical physics perspective (2016),1826

https://arxiv.org/abs/1601.00499.1827

[8] K. Takeuchi, An appetizer to modern developments on the Kardar-Parisi-Zhang uni-1828

versality class, Physica A 504, 77 (2018), doi:10.1016/j.physa.2018.03.009.1829

[9] A. Saenz, The KPZ universality class and related topics (2019), https://arxiv.1830

org/abs/1904.03319.1831

[10] K. Takeuchi, M. Sano, T. Sasamoto and H. Spohn, Growing interfaces uncover univer-1832

sal fluctuations behind scale invariance, Sci. Rep. 1, 34 (2011), doi:10.1038/srep00034.1833

[11] A. Somoza, M. Ortuño and J. Prior, Universal distribution functions in1834

two-dimensional localized systems, Phys. Rev. Lett. 99, 116602 (2007),1835

doi:10.1103/PhysRevLett.99.116602.1836

71

http://dx.doi.org/10.1016/0370-1573(94)00087-J
http://dx.doi.org/10.1088/1751-8113/43/40/403001
http://dx.doi.org/10.1142/S2010326311300014
https://arxiv.org/abs/1212.3351
https://arxiv.org/abs/1212.3351
https://arxiv.org/abs/1212.3351
http://dx.doi.org/10.1007/s10955-015-1250-9
http://dx.doi.org/10.1007/s10955-015-1282-1
https://arxiv.org/abs/1601.00499
http://dx.doi.org/10.1016/j.physa.2018.03.009
https://arxiv.org/abs/1904.03319
https://arxiv.org/abs/1904.03319
https://arxiv.org/abs/1904.03319
http://dx.doi.org/10.1038/srep00034
http://dx.doi.org/10.1103/PhysRevLett.99.116602


SciPost Physics Submission

[12] H. van Beijeren, Exact results for anomalous transport in one-1837

dimensional Hamiltonian systems, Phys. Rev. Lett. 108, 180601 (2012),1838

doi:10.1103/PhysRevLett.108.180601.1839

[13] H. Spohn, Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys.1840

154, 1191 (2014), doi:10.1007/s10955-014-0933-y.1841

[14] V. Popkov, A. Schadschneider, J. Schmidt and G. Schütz, Fibonacci family of1842
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