
SciPost Physics Submission

Absence of quantum features in sideband asymmetry

J.D.P. Machado1*, Ya.M. Blanter1

1 Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ
Delft, The Netherlands

*M2501@gmx.com

September 5, 2019

Abstract

Sideband asymmetry in cavity optomechanics has been explained by particle
creation and annihilation processes, which bestow an amplitude proportional
to ’n+1’ and ’n’ excitations to each of the respective sidebands. We discuss
the issues with this interpretation and why a proper quantum description of
the measurement should not display such imbalance. Considering the case
of linearly coupled resonators, we find that the asymmetry arises from the
backaction caused by the probe and the cooling lasers.
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1 Introduction

Biased misconceptions often become dogmas provided that a blurry experimental connex-
ion is found. It is thus with the quantum interpretation of sideband asymmetry.

Sideband asymmetry (SA) refers to the difference in the spectral height of the side
peaks accompanying a drive frequency. When a system is driven coherently at a frequency
ωL and it is coupled to an oscillator (such as a mechanical resonator), the spectrum acquires
peaks (the sidebands) at ωL±Ω, with Ω the mechanical frequency. This phenomenon was
first observed with trapped ions [1, 2] and neutral atoms [3], where laser cooling unveiled
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motional sidebands around atomic transitions. With the emergence of optomechanics, SA
was observed in systems with larger mechanical elements such as nanobeams [4, 5], LC-
resonators [6], ultracold atoms [7], and membranes [8,9]. In the absence of any symmetry
breaking mechanism, it would be expectable for the sidebands to be equal. However, ex-
perimental observations reveal that one sideband is larger than the other. This imbalance
has been justified by an asymmetric role of zero-point motion (ZPM) in the computed
spectrum [10–14]. Such quantum exegesis originates from proclaiming ex cathedra that
the measurement outcome is described by

SXX(ω) =

∫
R
eiωt〈x̂(t)x̂(0)〉thdt = δ(ω + Ω)n̄th + δ(ω − Ω)(n̄th + 1) , (1)

where x is the displacement of the oscillator, and n̄th its thermal occupancy. By identifying
±Ω with the sidebands, SA would be naturally explained by ZPM, and consequently prove
the quantum nature of the mechanical element (regardless of its state). Thus, by cooling
the resonator sufficiently, the asymmetry as well as the quantum nature of the macroscopic
resonator would become visible, and no classical theory could explain this phenomenon
[4]. Furthermore, SA promised an experimental paradise where temperature could be
determined without any calibration [7–9]. Following such experimental observations, the
quantum nature of SA was deemed true.

The desire to observe quantum effects at the macroscopic scale was stimulated by
developments in nanomechanics, and it raised the question of where does the quantum
realm frontier lie. This question has increased the necessity for a strict limit, where past
a given borderline, certain phenomena would necessarily have a fundamental quantum
nature. Though it remains unanswered, it led to the recognition that the use of an op-
erator formalism does not imbue a quantum nature for the system under consideration,
and it allowed for deeper analyses on the nature of SA. Alternative interpretations and
explanations such as interference between different noise channels [6, 15] and laser phase
noise [16] have been discovered. Despite certain flaws of the new interpretations 1, the
claim of a quantum nature for SA became disputable [17].

Regarding SA, a pervasive problem plagues its interpretation: a priori definitions.
The interpretation of SA differs for different operator orders (arising from different detec-
tor models [18]), and to assert that by definition, the experimental apparatus measures
a particular operator order, does not force a detector to measure that specific order.
Theoretical interpretations should be based on the physical situation, instead of the ex-
perimental validation being subdued to theoretical postulates. This constitutes a problem
for experimental validation, as biased premises have been the starting point.

In this article, we start by discussing the problems with the standard interpretation
of SA, their connection to how measurements are performed, and the role of ZPM in the
spectrum. We proceed to compute the response function for the cases of a system composed
by two driven optical modes and a mechanical one, and of a system composed by two
modes (cavity + mechanical), but driven with multiple tones. Considering the symmetric
noise power spectral density for both cases, we show that ZPM does not contribute to the
asymmetry and that SA naturally arises from the backaction between the cavity and the
mechanical oscillator.

1see App. 4 for details
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2 The measurement problem

The problem over the nature of SA can be traced back to its measurement. In contrast to
its classical counterpart, defining the power spectral density in a quantum framework poses
a problem regarding the operators’ order. Direct substitution of the fields by operators
in classical formulas is dangerously arbitrary, as there is a multitude of possibilities and
not all of them have a physical meaning. The problems with defining a quantum spectral
density and the meaning of the distinct possibilities were raised before [17,19] but remain
unsolved. The usual way to address these issues is to take the specific measurement
procedure into consideration. SA can be measured using well-known linear detection
schemes such as homodyne or heterodyne detection. The quantum description of these
techniques [20–22] typically focuses on the quadrature measurement and noise response
on the time-domain, leaving issues with the frequency domain unmentioned. To measure
the field quadrature X(t) = as(t) + a†s(t) (where as is the annihilation operator for the
signal), linear detection schemes combine the signal input with a local oscillator, and split
them into two detectors. The intensity difference between the detectors is proportional
to X(t), but it is in the frequency domain that the noise response is computed via the
quadrature variance. This poses the problem of defining the variance of X(ω). As X(ω) is
a complex operator, there are different possible orderings, such as (#1)〈(X(ω))†X(ω)〉 or
(#2)〈X(ω)(X(ω))†〉 as well as any convex linear combination. Each possibility produces
a different outcome, but the uniqueness of the spectrum implies that only one should
represent the observed spectrum. The noise power spectral density is obtained with the
Fourier transform of the average of the product between different measurement outcomes.
As X(t) is hermitian, the measurement outcome is a real number, and so is the product
at different times. However X(t)X(t′) is not strictly hermitian, and therefore it can have
non-real values as a possible outcome. Therefore 〈X(t)X(0)〉 cannot represent the physical
measurement, and so can neither Eq.(1). The only hermitian possibility that can represent
the measurement is the symmetric combination of X(t)X(t′) with its hermitian conjugate.
Therefore, the most suitable spectral density to describe the measurement is

S̄XX(ω) =
1

2

〈
X(ω)X(−ω) +X(−ω)X(ω)

〉
. (2)

An alternative way to measure SA is with photodetection, and for this case the ordering
issues are usually bypassed by choosing a detector model and establishing a link with the
measurement outcomes. The typical detector model consists of a single qubit interacting
briefly with the measured field via a weak dipolar coupling [23,24]. The excitation proba-
bility Pexc of a qubit in the ground state for short time-scales and coupled to a stationary
random field can be computed with perturbation theory, and it is [19]

Pexc ∝
∫ t

−t
eiεt

′〈X(t′)X(0)〉dt′ . (3)

By identifying the qubit energy splitting ε with the frequency ω, and Pexc with the mea-
sured signal, Eq.(3) has been employed as a quantum spectral density. However, such toy
model is unable to completely model the measurement because: (1) spectrometers are not
composed of a single qubit, and a single qubit alone cannot provide the spectral density
for a wide frequency range. Models with several qubits lead to higher order correlation
functions [24] and higher spin states do not lead to Eq.(3) [25]; (2) Eq.(3) is valid for short
time-scales, where the transition rate is a constant given by the Fermi golden rule. To
obtain the spectral density, the system has to be monitored for extended time-intervals,
after which the validity of this result breaks down; (3) other detection models lead to
different operator orders, such as anti-normal order in photon counters [26].
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Irrespectively of the model and definitions considered, ZPM should not play a physical
role in the asymmetry. Even though the measured field quadrature is associated with the
operator X, the outcome of a measurement is a scalar x, and it is with the measurement
record x(t) that the spectrum is obtained. For the scalar x(t), the order issue does not
exist, the spectral density is well-defined, and there is no reason for ZPM to affect the
sidebands differently. Nevertheless, ZPM plays a role in the variance of X, and there is a
link between X(t) and the measurement outcome. As X is monitored in time, a definite
proof might rest in the theory of quantum continuous measurements. The formalism of
continuous position measurements already exists [27,28], as well as analogous formalisms to
model photodetection [29]. However, we are unaware of similar approaches to describe the
spectral density. A closely related approach to describe homo- and heterodyne detection
featuring quantum trajectories is also available in the literature [30] but such approach
still relies on operator order postulates to evaluate the spectrum and not solely on the
measurement record.

3 Measurement strategies

For the reasons exposed above, Eq.(2) shall be used to compute the spectrum. To examine
the nature of SA, we consider the optomechanical case where the sidebands are measured
via a signal coming from an optical (or microwave) cavity coupled to a mechanical res-
onator. From input-output relations, the signal amplitude is proportional to the cavity
field, and for linear couplings, the cavity field yields a linear relation with the mechanical
displacement. For this reason, when the cavity is driven, the coupling to the mechanical
resonator produces sidebands around the drive frequency that contain information about
the mechanical motion.

A method to measure SA is to send a probe beam at ωcav − Ω and measure the
red-sideband at ωcav, and then change the probe frequency to ωcav + Ω to measure the
blue-sideband at ωcav (see Fig.1). This way, each sideband is enhanced separately while
the other sideband is off-resonant, and SA is measured more easily. Additionally, in a
typical experimental situation, the mechanical resonator is cooled via an independent
source. This source can be a distinct cavity mode driven at the red-sideband, and this
approach is analysed in subsec.3.1. An alternative way to measure SA with only one cavity
mode is to simultaneously drive the system with two probe tones (see Fig.1), with these
two tones slightly detuned by δ from ω = ωcav±Ω such that the sidebands do not overlap
at ωcav. This approach is analysed in subsec. 3.2.

3.1 Multimode approach

To better compare with the experimental situation, we consider two cavity modes: a
cooling mode, and a read-out mode with a frequency far away from the cooling mode.
The equations of motion describing this system are [6]

idtb =
(

Ω− iΓ
2

)
b−

∑
j

gj(aj + a†j) + ηb , (4)

idtaj =
(
−∆j − i

κj
2

)
aj − gj(b+ b†) + ηj , (5)

where Γ is the mechanical dissipation and ∆j , κj , and gj are the detuning, cavity linewidth
and coupling strength for mode j. The detuning ∆j = ωL,j − ωcav,j accounts for the shift
of each mode j from their respective drive reference frame, i.e. a reference frame with
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Figure 1: Different schemes to measure sideband asymmetry. The sidebands can be mea-
sured one at a time by placing the probe red(blue)-detuned (panel a (b)). Alternatively, a
single cavity mode can be probed with 2 tones, which create sidebands within the cavity
linewidth (panel c). The sidebands can also be measured directly with a probe tone on
resonance (panel d). Cooling tones are also represented for completeness.

frequencies displaced from the drive frequencies ωL,j . Here and onwards, the cavity fre-
quency shift produced by the static displacement of the resonator is included in ωcav,j .
Furthermore, b represents the phonon annihilation operator and ar, ac the photon anni-
hilation operators for the read-out and cooling modes. At last, {ηj} are the noise terms,
with the properties

〈η†j(t)ηl(t
′)〉 =

κj
2π
n̄jδjlδ(t− t′) , (6)

〈ηj(t)η†l (t
′)〉 =

κj
2π

(n̄j + 1)δjlδ(t− t′) , (7)

where n̄j is the thermal occupancy for mode j. An analogous relation holds for the
mechanical noise. Note that the system behaves linearly as long as the interaction is weak
enough to prevent entering the amplification regime. When this regime is reached, an
instability takes place (primarily at ∆ = Ω), leading to a behaviour very different than
just the creation of sidebands. Moreover, in the strong coupling regime, hybridisation
between the cavity and the mechanics occurs, leading to additional spectral features, such
as a frequency splitting at ∆ = −Ω. As we are only concerned in addressing the SA issue,
only the weak-coupling regime gj < κj ,Ω shall be considered, and since cooling occurs at
the red-sideband, we set ∆c = −Ω. Performing a Fourier transform in Eqs.(4-5) leads to
the linear response function of the systems. The read-out field has the form

ar(ω) = q1ηr(ω) + q2[ηr(−ω)]† + q3ηB(ω) + q4[ηB(−ω)]† + q5ηc(ω) + q6[ηc(−ω)]† , (8)
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where the Fourier coefficients {qj} are

q1 (ω)ג=

[(
Ω2 −

(
ω + i

κc
2

)2)((
Ω2 −

(
ω + i

Γ

2

)2)(
∆r − ω − i

κr
2

)
+ 2Ωg2

r

)
− 4g2

cΩ
2
(

∆r − ω − i
κr
2

)]
, (9)

q2 =− 2Ωg2(ω)ג
r

(
Ω2 −

(
ω + i

κc
2

)2
)
, (10)

q3 gr(ω)ג=

(
∆r − ω − i

κr
2

)(
Ω + ω + i

Γ

2

)(
Ω2 −

(
ω + i

κc
2

)2
)
, (11)

q4 gr(ω)ג=

(
∆r − ω − i

κr
2

)(
Ω− ω − iΓ

2

)(
Ω2 −

(
ω + i

κc
2

)2
)
, (12)

q5 2Ωgrgc(ω)ג=

(
∆r − ω − i

κr
2

)(
Ω + ω + i

κc
2

)
, (13)

q6 2Ωgrgc(ω)ג=

(
∆r − ω − i

κr
2

)(
Ω− ω − iκc

2

)
, (14)

with (
(ω)ג

)−1
=

(
Ω2 −

(
ω + i

Γ

2

)2
)(

∆2
r −

(
ω + i

κr
2

)2
)(

Ω2 −
(
ω + i

κc
2

)2
)

+ 4Ω∆rg
2
r

(
Ω2 −

(
ω + i

κc
2

)2
)
− 4Ω2g2

c

(
∆2
r −

(
ω + i

κr
2

)2
)
. (15)

In general, the read-out field does not have the same intensity at the red- and blue-
sidebands because of the backaction from the cooling and read-out modes. This can be
verified by evaluating, for example, the case with ∆r = 0 (corresponding to the experi-
mental situation in [8, 9]) in the limit Γ� gj , κj ,Ω, which gives∣∣∣∣ q1(Ω)

q1(−Ω)

∣∣∣∣ =

∣∣∣∣A− + iB−
A+ − iB+

∣∣∣∣ 6= 1 , (16)

where A± ≈ 2(1+Cc)Ω− κ2
4Ω(κr±κcCr), B± ≈ κr(1+Cc)+κc

(
1
2±Cr

)
, and Cj =

4g2j
Γκj

is the

cooperativity for mode j. Thus, the asymmetry does not present a method for absolute
self-calibrated thermometry.

With the expressions above, we can evaluate the situation where each sideband is
driven separately. At the enhanced red-sideband+cavity peak, the field amplitude for the
read-out mode at ∆r = −Ω is

ar(ω) ≈ Q−ηr(ω)−R−
(
ηB(ω)− 2iξcηc(ω)

)
, (17)

while at the enhanced blue-sideband+cavity peak, the field amplitude of the probe at
∆r = Ω is

ar(ω) ≈ Q+ηr(ω)−R+

(
[ηB(−ω)]† − 2iξc[ηc(−ω)]†

)
, (18)

with ξj = gj/κj and

Q± ≈

(
1− i κr4ΩCr + Cc

)
ω ± Ω + iκr2 (1 + C±eff )

, (19)

R± ≈
2iξr

ω ± Ω + iΓ
2 (1 + C±eff )

, (20)

C±eff = Cc ∓ Cr , (21)

6



SciPost Physics Submission

and considering the limit gj � κj � Ω. With Eqs. (2) and (17-21), the spectral density
for each enhanced sideband is found to be

S̄±XX ≈
(1 + Cc)

2 + κ2r
16Ω2C

2
r

(ω ± Ω)2 + κ2r
4 (1 + C±eff )2

κr(n̄r + 1/2) +
4ξ2
rΓ(n̄B + 1/2 + Cc(n̄c + 1/2))

(ω ± Ω)2 + Γ2

4 (1 + C±eff )2
, (22)

where X = a + a† and ± correspond to the blue(+) or red(−) sidebands. As seen from
Eq.(22), the only difference in the expression for the sidebands lies in the denominator,
where the interaction gives a different contribution for the linewidth of each sideband. It
is also clear that ZPM does not contribute to the imbalance, and that the origin of the
asymmetry for the weak-coupling and resolved sideband regime is the distinct effective
optomechanical dampings for each sideband. Thus, instead of the height of the sidebands
being given by n and n + 1, we find that the height of both sidebands is proportional
to n + 1/2, with n the number of thermal excitations. A consequence of this difference is
that at T = 0, the red sideband does not vanish. One could think that at T = 0, the
absence of phonons would prevent the sideband to exist. However, as we are considering
quadrature measurements instead of photon counting, the ZPM of the resonator affects
the measurement of its position, and allows for the existence of the red sideband.

The asymmetry is quantified experimentally via the noise power I±, which is obtained
by integrating the area of the resonant sidebands S± over all frequencies. The asymmetry
factor ζ quantifying the imbalance is given by

ζ =
I+

I−
− 1 =

2Cr
1− Cr + Cc

=
8g2
rκcQ

κrκcΩ− 4(g2
rκc − g2

cκr)Q
. (23)

As backaction already occurs at the classical level, Eq.(23) shows a classical origin for SA.
For real physical systems, the mechanical quality factor Q varies with the temperature,
which leads to a temperature dependent asymmetry. For small cooperativities, the asym-
metry is directly proportional to the quality factor. Whenever the quality factor decreases
linearly with increasing temperature (at least for a given temperature range), then the
qualitative temperature dependence of the asymmetry matches the standard result.

3.2 Multitone approach

We will now consider the case where the sidebands are created simultaneously by inde-
pendent driving tones. For the sidebands to be enhanced, they must fall within the cavity
linewidth, but in order to make them distinguishable, the tones must be slightly detuned
from the red and blue sidebands by an amount δ (with Γ � δ � κ so that the peaks do
not overlap and remain within the cavity linewidth). To fully describe the experimental
situation, we consider an additional cooling tone of frequency ωcav−Ω−δc, with δc � δ+Γ
so that the cooling tone does not overlap with the red sideband probe tone. In this multi-
tone case, the appearance of beats between the different tones $j is inevitable, and the
linear interaction of Eq.(5) can no longer be made time-independent. Thus, the original
form of the interaction must be considered, and the equations of motion for the system
are now [6]

idta =
(
ωcav − i

κ

2

)
a− g0(b+ b†)a+ ηA(t) +

∑
j

sje
−i$jt , (24)

idtb =
(

Ω− iΓ
2

)
b− g0a

†a+ ηB(t) , (25)
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where {sj} are the tones’ amplitudes, and the sum in j is over the $j frequencies {ωcav ±
(Ω + δ), ωcav − Ω− δc}. The driving terms can be removed with the shift

a(t) = A(t) +
∑
j

e−i$jtαj , b = β +B(t) , (26)

where
αj =

sj
∆j + iκ2

, β =
g0

Ω− iΓ
2

∑
j

|αj |2 . (27)

With this shift, the resonant part of the interaction is enhanced by αj , and it becomes
linear in A and B. As g0 is negligible in comparison to the other parameters, the terms
linear in A and B suffice to account for the effects of the interaction. Disregarding the
nonlinear terms, and performing a Fourier transform at the equations of motion, we find
the cavity field to be

A(ω)D(ω) = i(ω)−
∑
p6=q

α∗qG(ω −$p)A(ω −$p +$q)−
∑
p,q

αqG(ω −$p)(A($p − ω +$q))
† ,

(28)

where

i(ω) = −
∑
q

( g0αqηB(ω −$p)

ω − ($p + Ω) + iΓ
2

− g0αq(ηB($p − ω))†

ω − ($p − Ω) + iΓ
2

)
− ηA(ω)−

∑
p,r 6=q

g0G(ω −$p)α
∗
qαrδ(ω −$p +$q −$r) , (29)

D(ω) = ω − ωcav + i
κ

2
−
∑
q

α∗qG(ω −$q) , (30)

G(ω −$p) =
2g0αpΩ

Ω2 − (ω −$p + iΓ
2 )2

. (31)

Eq.(28) provides a general framework for the cavity spectrum when linearly coupled to
another oscillator and driven by multiple tones. Obtaining an analytical solution for this
system is impractical, because the presence of several tones implies that all arbitrary
integer combinations of the tones’ frequencies must be evaluated. However, the higher
harmonics are off-resonant and they can be disregarded in the weak-coupling regime.
Using Eqs.(28-31), the same procedure leads to an equation analogous to Eq.(22), with an
effective cooperativity of

C±eff = Cc
Γ2

4(δc ± δ)2 + Γ2
∓ C± ± C∓

Γ2

16δ2 + Γ2
, (32)

where ± stands for the sideband at ωcav ± δ. Since Ceff is different for each sideband,
an imbalance occurs even if the red and blue-sideband tones have the same intensity
(C+ = C−). The difference between C+

eff and C−eff is due to the δ frequency shift from
the resonance. Thus, identically to the multimode case, backaction leads to an asymmetry
in the spectrum.

4 Conclusion

In conclusion, the undisputed existence of SA is not a proof of any quantum nature of the
system. By computing the symmetric noise power spectral density for a system of linearly
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coupled oscillators, we have shown that SA arises from the backaction caused by the laser
drive, and that no ZPM contributes to the asymmetry. The symmetric spectral density
has already been employed in [6, 17], but the asymmetry was attributed to interference
between the cavity noise and the mechanical resonator’s noise. Such misinterpretation
sprouts from miscalculations (see Appendix A). Here, only white noise was considered,
but the analysis can be extended for any type of noise. Nevertheless, we expect coloured
noise to be unimportant since only frequencies within a narrow bandwidth of Γ contribute
to the peak height.

Although our analysis is restricted to coupled harmonic oscillators, the same procedure
can be generalized to analyze the trapped ions and neutral atoms case [1–3]. The role of
backaction has not yet been investigated in these systems, and a thorough analysis would
clarify the nature of the asymmetry for this case. Note that for the case of trapped ions
and atoms, their electronic quantum nature may lead to quantum signatures for the output
light which are not an intrinsic feature of the light field (neither of the mechanical motion),
much like in the case of Raman scattering [31].

We stress once more that there are no quantum features in SA. For a linear system,
the noise response function is identical in both classical and quantum descriptions, and
as Stokes and anti-Stokes processes provide different amplitudes for the sidebands, an
asymmetry naturally emerges.
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A Concise review

A few analyses of the role of noise in SA have been investigated in the literature in
order to ensure that the asymmetry is solely due to ZPM. Here we succinctly review and
examine some of them, presented in no particular order. The experiments carried in [6–9]
used (homo-)heterodyne detection to measure the sidebands, but the role of backaction
was not included. In [15], the system is modeled as two interacting harmonic oscillators,
identically to the case considered here. However, the noise response for the mechanical
oscillator in the frequency domain (Eq. (5) of [15]) does not follow from the equations of
motion in the frequency domain (Eqs. (3-4) of [15]), and thus it does not account properly
for the backaction effects. This affects the ‘quantum calibrated asymmetry’ presented in
Eq. (21) of [15], which is used as a parameter able to distinguish a classical effect from
a quantum one, while including backaction [4]. Other problems arise in the analysis of
laser phase noise. If the amplitude of an optical laser field (E0(t) = |E0|eiφ(t)) undergoes
random phase fluctuations (φ is a random variable with 〈φ〉 = 0), then 〈E∗0(τ)E0(0)〉 ≈
|E0|2

(
1− 1

2〈(φ(0)−φ(τ))2〉
)

, where the approximation holds for small phase fluctuations.

This result differs from the one presented between Eqs. (22),(23) of [15], and the difference
comes neglecting relevant 2nd order terms.

In [4], backaction for the read-out mode is taken into account, but no backaction of
the cooling mode is considered. As described in [4], the read-out laser is weaker than the
cooling laser, and backaction of the cooling mode should be considered as well, leading to
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the spectral density in Eq.(22). Moreover, spurious backaction contributions are considered
in Eq.(4) of [4] because the mechanical bath occupancy is mistaken with the mechanical
phonon number, and improper cooling corrections were applied. The same experiment
was also analysed from a theoretical point of view in [10] but considering the case of
heterodyne detection. To justify the use of a symmetric spectral density, it is claimed
an existent direct connection between heterodyne and photon counting measurements [10]
based on the assertion that the amplitude output quadrature Y obeys [Y (ω), Y †(ω′)] = 0.
A direct calculation using Eq.(30) of [10] reveals that this is not correct. The computed
spectrum (Eq.(37) of [10]) is obtained using Eq.(36) (of [10]), which is incorrect since the
quadratures are not independent. Additionally, backaction from the read-out is explicitly
ignored, discarding thus a source of SA.

Despite presenting an alternative interpretation, the explanation of SA as present
in [17] is also flawed due to miscalculations. The definition of the spectral density (Eq.(40)
of [17]) is always positive, but the results presented (namely Eq.(41)) can be negative.
Since the noise sources are uncorrelated, one can derive from the Eq.(40) of [17] that the
contribution of each noise source is always positive. A contradiction occurs because the
solutions to Eqs.(30-38) do not lead to Eqs.(41,42) of [17].

The same problem is present in [6]. Computing the spectral density as defined in
Eq.(2) of [6] using the solutions to the equations of motion does not lead to the spectral
densities presented in Eqs.(3-4) of [6]. As a side technical detail, the multitone situation
of [6] leads to an explicitly time-dependent linear system (Eqs.(A2a, A2b)), but the anal-
ysis is performed assuming that the sideband created by the red-detuned probe can be
treated independently from the sideband created by the blue-detuned probe without any
proper justification. Further, the computed spectral density (Eq.(A18) of [6]) exhibits
corrections to the linewidth of the sidebands, but these are only valid when the tones
are precisely on resonance, which can never be the case in order for the sidebands to be
resolved. Particularly, if both tones have the same intensity, one is lead to believe that the
contributions to the linewidth cancel. However, comparing the total damping presented
in [6] with Eq.(32) presented above, one can see that it is not the case because the devia-
tion from resonance is larger than the mechanical linewidth. If both probes are placed on
resonance, the linewidths are indeed the ones presented in [6], but the sidebands overlap
and it is no longer possible to distinguish the red- from the blue-sideband.
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