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Abstract

Searching for new physics in large data sets needs a balance between two com-
peting effects—signal identification vs background distortion. In this work,
we perform a systematic study of both single variable and multivariate jet
tagging methods that aim for this balance. The methods preserve the shape
of the background distribution by either augmenting the training procedure
or the data itself. Multiple quantitative metrics to compare the methods are
considered, for tagging 2-, 3-, or 4-prong jets from the QCD background. This
is the first study to show that the data augmentation techniques of Planing
and PCA based scaling deliver similar performance as the augmented training
techniques of Adversarial NN and uBoost, but are both easier to implement
and computationally cheaper.
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1 Introduction

As the search for new resonances continues at the Large Hadron Collider (LHC), it is
increasingly important to develop and apply search strategies that are sensitive to a wide
class of signals. For hadronically decaying resonances, there has been considerable effort
in the past to develop various methods, targeted at the boosted regime (pT � m) of these
resonances. Such boosted resonances appear in many generic Beyond Standard Model
(BSM) scenarios, as well as in hadronic channels of boosted W/Z in the Standard Model
(SM) itself. In the boosted regime, the resulting jets from the hadronic decay of these
resonances are merged, and the result is a fat jet of wide radius. Using the difference in
radiation pattern inside these fat jets, captured by various substructure variables, single
variable (SV) [1,2] as well as multi-variable (MV) machine learning based methods [3–24]
have been shown to allow a good discrimination of these signals from QCD background
(see [25,26] for a review of machine learning based techniques in high energy physics).

While entirely focusing on the best discriminant to distinguish between signal and
background is desirable, it is only a first step. In realistic searches for these resonances,
one needs to model the background with confidence, given that QCD is hard to estimate
entirely analytically. This is usually accomplished by looking at distributions of variables
in which the background is smooth and featureless, while the signal is not—an example
of such a variable being the invariant mass of the jet. Using sideband analysis or control
regions, one can model the background, and therefore look for new resonances using a
bump hunt strategy.

The substructure of a fat jet is related to kinematic variables such as the jet mass,
m, and transverse momentum, pT . As a result, the application of any classifier for signal
isolation tends to distort the background distribution for m and pT . This leads to intro-
ducing spurious features in the distributions, making a bump hunt harder to implement
with statistical confidence. It is not surprising that such a distortion for the background
distribution occurs, because a good discriminant should reject a large fraction of back-
ground events, so that the events that survive are necessarily signal like, and hence the
background distribution starts to look signal like. The right optimization requires taking
these two competing effects into account—a strong signal discrimination vs an undistorted
background distribution.

Specifically, there are two side effects that come as a result of the correlation of the
jet mass with the classifier output. The first is that the classifier is only good for a signal
of a given mass. This is less than ideal as a broad search strategy for new physics. One
would either need to train multiple classifiers to cover the mass range, or need to use
other techniques such as parametrized networks [5, 27]. The other side effect is related
to systematics. If the only background that makes it through the selection criteria looks
exactly like the signal, it can be hard to estimate the level of background contamination.
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While unintuitive, it can be better to have a classifier which removes less background,
if it does so in such a way that the systematics are decreased. The overall goal is to

maximize the significance, which is approximately given by S/
√
B + σ2

sys. Allowing more

background can lead to a better significance if it decreases the systematic uncertainty σsys.
Recent work, based on both single variable and multivariate approaches have addressed

this constrained optimization problem. For example, a decorrelated τ21, called τDDT
21 has

been shown to be effective in keeping background distributions unaffected [28, 29]. While
this single variable method has the advantage of being simpler to implement, it will not
be useful for more complicated boosted jets. Multivariate methods, while more power-
ful in general as compared to single variable based methods, are also prone to distorting
the background distributions more, and require more sophisticated training augmenta-
tion based approaches. For example, multivariate methods based on Boosted Decision
Trees (BDT) use a modified algorithm called uBoost to perform this constrained opti-
mization [30]. Multivariate methods based on Neural Networks (NN) use an adverserial
architecture [27,31,32] to accomplish the same. However, these multivariable methods are
significantly more involved and require tuning additional hyperparameters for optimal per-
formance. In a recent work [33], the ATLAS collaboration has studied mass decorrelation
in hadronic 2-body decays for both single and multivariate approaches.

In addition to these, there are data augmentation based approaches that aim for a
middle ground.1 The idea is to decorrelate the input to multivariate methods, so that any
dependence on a given background variable is reduced significantly. While these methods
are not as efficient in keeping the distributions undistorted, they are quick to implement
and still enjoy the power of multivariate discrimination. Two such approaches, PCA [7,28]
(based on principal component analysis, from which it derives the name) and Planing [4,9]
are shown to be efficient in benchmark cases.

There is a general need to compare and understand the advantages and limitations
of these methods, when requiring both high signal isolation and undistorted background
distribution. A classification of these methods, and quantifying their performance using
suitable metrics, for varying levels of signal complexity (in terms of prongedness) is desired.
Depending on the situation at hand, one may want to work with higher/lower signal
efficiency or lower/higher background rejection, for a given background distortion. This
should be quantified for various methods and signal topologies. This can give a clear
picture of when is a given method suitable, and how to augment one with the other if
needed. This is the aim of the present work.

The outline of the paper is as follows. A brief overview of the Monte Carlo simulation
used to generate the signal and background events is given in Sec. 2. In Sec. 3, we classify
and describe the representative methods for decorrelation, first focusing on the general idea
and then on specific details. We present the results in Sec. 4, comment on future work
in Sec. 5, and conclude in Sec. 6. Appendix A shows the results of the parameter sweep
used to choose the adversarial network studied in this work. A comparison of popular
histogram distance metrics is shown in App. B. A side-by-side graphical comparison of all
of the decorrelation methods applied to all of the signals considered is shown in App. C.
Code to reproduce our results can be found on GitHub.

1In the machine learning literature, data augmentation is a technique to modify an input and add to
the existing training set. This can make a classifier more robust to noise or underlying symmetries. We
use data augmentation instead to remove information that we don’t want to be learned.
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2 Simulation details

In this section, we provide the details about the Monte Carlo simulated dataset used in this
study. While this study does not rely on any specific model where the fat jets with some
level of prongedness come from, we choose to work with a model which can give signals
with 2- as well as 3- and 4-pronged jets, in suitable parts of parameter space. Studying
higher pronged signals is useful in the context of mass decorrelation methods—apart from
broadening the scope of the study, higher pronged jets are also sufficiently distinct from
the background QCD jets, so that the importance of de-sculpting of mass distribution
is changed compared to lower pronged jets. We quantify these statements in the next
sections.

The model considered is based on warped extra-dimensional RS models with more than
2 branes (see Ref. [34] for theory and [35–37] for phenomenological details). The relevant
degrees of freedom for our case are the KK modes of the EW gauge boson (massive
spin-1 EW charged particles, denoted by ZKK/WKK) and the radion (a massive spin-0
singlet under SM, denoted by R). In this “extended” RS model, the radion coupling
to tops/higgs/gluons is highly suppressed as compared to usual RS models, so that the
dominant way to produce the radion is through the spin-1 KK EW gauge boson’s decay
into SM gauge bosons and a radion. This further leads to the dominant decay modes
of the radion to be into SM W/Z. In the fully hadronic decay channel of W/Z from
radion decay, one expects 4-pronged jets when the radion and/or the intermediate W/Z
are boosted (see Ref. [37] for a detailed discussion on various regimes of boosted topology
depending on the mass of the radion). The spin-1 KK EW gauge boson couples to SM
particles like its SM counterpart. For preparing a 2-pronged signal sample, we use the
process p + p → ZKK + j, ZKK → jj, for a 200 GeV mass ZKK. The produced ZKK

is boosted due to recoil with the first jet, so that in its fully hadronic decay, we get a
2-pronged jet. For a 3-pronged jet, we use the process p + p → ZKK → tt̄, with the
usual 3-pronged fully hadronic top decay. In this case, the ZKK is not boosted. Choosing
the mass of ZKK to be 1500 GeV, the tops from its decay are sufficiently boosted, so
that we get a boosted 3-pronged sample. Finally, for the 4-pronged case, we consider
p + p → ZKK → Z(→ νν̄) R(→ WW → jjjj). The ZKK mass is taken to be 1500 GeV,
and is produced unboosted. For a light radion of mass 200 GeV, the radion is produced
boosted, and in its fully hadronic decay mode through Ws, we get a 4-pronged jet. Note
that if one of the W from the radion decays leptonically, we would get non-isolated leptons
inside a 2-pronged jet, which would be rejected by usual isolation criteria. Further, in the
case of radion decay to two Zs, if one of the Z decays invisibly, we would again be led to
a 2-pronged jet. We avoid these complications by simply focusing on the fully hadronic
decay mode of the radion through Ws.

The details of the signal process considered are shown in Tab. 1, along with the masses
and the kinematic cuts chosen (at generation level) to produce boosted jets of desired
prongedness. The background for these signals is taken to be QCD jet, generated by p+
p→ Z+j, Z → νν̄, at leading order in QCD coupling. A sample size of 500K is generated
for each signal category, while 1M events are generated for the QCD background,2 using
MadGraph@aMC 2.6.4 [38] for parton-level events generation (14 TeV center of mass
energy), Pythia 8 [39] for parton showers and hadronization, and Delphes 3.4.1 [40] for
detector simulation. Jets are constructed from the track and tower hits, using the anti-kt
algorithm implementation in FastJet, with a jet radius R = 1.2. The clustered jets are
required to satisfy pT,J > 500 GeV and −2.5 ≤ ηJ ≤ 2.5. A mass cut of 50 ≤ mJ( GeV) ≤
400 is further imposed on the groomed mass of the jet, where grooming is performed by

2We do not use jet matching or merging and only take the hardest jet in the event.
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Prong Process Parameters (TeV) Kinematic Cuts (GeV)

2P p+ p→ j + ZKK, ZKK → j j mKK = 0.2 pT,min = 50, p≥1
T,min = 400

3P p+ p→ ZKK → t t̄ mKK = 1.5 pT,min = 50

4P p+ p→ ZKK → Z(νν̄) +R(jjjj) mKK = 1.5, mR = 0.2 pT,min = 50

Table 1: Details of the signal process used in the event generation, along with the choice of
parameters and generation level kinematic cuts.
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Figure 1: Distributions of the transverse momentum of the hardest jet.

Pruning [41] with Cambridge-Aachen algorithm, with zcut = 0.1 and Rcut = 0.5. The
highest pT jet is considered as the candidate jet, from which the higher level NN inputs
are constructed using the Nsubjettiness module in FastJet for axis choice of OnePass
KT Axes, for the same jet radius used in the construction of the original jet.

After the pre-selection cuts, the original 1M sample of QCD jets is cut down to 151 559.
Similarly, the 500k events for the different BSM jets are reduced to 187 659, 303 917, and
177 418 for the 2-, 3-, and 4-prong signals, respectively. The pT distributions for the
different samples are shown in Fig. 1. Training the machine learning algorithms is done
on 70% of the combined datasets with 15% set aside for validation and 15% for independent
testing.

3 Classification of Methods

In this section, we introduce various methods for decorrelating the mass distribution from
classifier output. For classifiers, we consider single variable, such as τ21, as well as multi-
variate based architectures such as BDTs and NNs. We note that typically, multivariate
analysis refer to shallow NNs or BDTs, as opposed to the more modern machine learning
architectures. For mass decorrelation, we consider either augmenting the data, to reduce
the correlation of jet mass from the input to the classifier, or augmenting the training,
where the optimization procedure is modified to decorrelate the classifier output from
mass. We also introduce the benchmark classifiers, which are needed for comparison.
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3.1 Classification without decorrelation

To allow a comparison for the performance of various decorrelation methods, we need to
introduce the corresponding benchmark methods, which do not take any decorrelation
into account. Jet classification is often done using the substructure within the jet. The

N -subjettiness observables τ
(β)
N [1,2,42] can quantify the substructure, and are defined as

τ
(β)
N =

1

pTJ

∑
i∈Jet

pTi min
{

∆Rβ1i, ∆Rβ2i, · · · , ∆RβNi

}
, (1)

where pTJ is the transverse momentum of the whole jet, pTi is the transverse momentum
of the ith constituent of the jet, ∆RAi is the distance between axis A and constituent i
and β is a real number. The distance is defined as

∆RAi =
√

∆φ2
Ai + ∆η2

Ai . (2)

Suitable choices of the sub-jet axes lead to small values for different τ
(β)
N . For instance, a

boosted, hadronically-decaying W will have two hard partons in the jet. If the axes are

chosen to be along the directions of these two partons, the value of τ
(β)
2 will be much lower

than τ
(β)
1 where only one axis is considered. In contrast, a QCD jet will have a radiation

pattern taking up more of the jet area, leading to constituents further away from the axes;

both τ
(β)
1 and τ

(β)
2 will be relatively large. With this, a common method for classifying

jets with 2-prong structure is to examine the ratio between the two,

τ21 ≡
τ

(1)
2

τ
(1)
1

. (3)

For our 2-prong signal (described in more detail in Sec. 2), using τ21 results in an area
under the receiver operating characteristic curve (AUC) of 0.747. An AUC of 0.5 is the
equivalent of randomly guessing, and an AUC of 1.0 is a perfect classifier. Thus, τ21 is
a simple, single observable which significantly aids in discriminating 2-prong jets. When
looking for boosted jets with more prongs, an analogous strategy is applied. For 3-prong

jets, we use τ32 = τ
(1)
3 /τ

(1)
2 and the observable τ43 = τ

(1)
4 /τ

(1)
3 is used for 4-prong jets.

The corresponding AUCs are 0.819 and 0.938. Once again, these simple single variable
observables are strong discriminators of the corresponding signal topologies.

We use τ21, τ32, and τ43 as examples of single variable based classifiers. The benefit
of these is that the variable is physics based and the systematics can be readily studied.
However, a single variable may not be able to take advantage of the correlations of other
observables in the data (e.g. see [43] for a BSM example). To fully incorporate all of the
information, multivariate analysis is needed. We study two such multivariate methods,
based on boosted decision tree and neural network architectures, which have been shown
to lead to increased discrimination.3

The authors of [44] introduced a minimal but complete basis for a jet with M -body
phase space. In particular, they showed that the dimension of the M body phase space is

3M − 4 and can be spanned using combinations of the τ
(β)
N . In our study, we examine jets

with up to 4-prong structure. We use a 5-body phase space for our multivariate analyses,
as the performance is seen to saturate for 4-prong signals for a larger basis. For jets with

3We do not use convolutional neural networks (jet images), but only focus on the jet substructure
variables to keep the data representation constant across all methods.
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Figure 2: The architecture of a BDT. We take the BDT to be made of 150 DTs, with a max depth
of 4. The input to the BDT are the variables that span the 5-body jet phase space, see Eq. (4).
The indicated parameters αi represent the weight associated with the particular DT.

fewer prongs, the 5-body basis is over-complete and the results saturate as well. This
5-body phase space basis is given as

X =
{
τ

(0.5)
1 , τ

(1)
1 , τ

(2)
1 , τ

(0.5)
2 , τ

(1)
2 , τ

(2)
2 , τ

(0.5)
3 , τ

(1)
3 , τ

(2)
3 , τ

(1)
4 , τ

(2)
4

}
. (4)

These observables are used as the inputs for all of the multivariate approaches studied
here. While this basis covers the substructure, the overall scale of the jet is not taken
into account. Including the overall scale by using the transverse momentum or jet mass
allows the classifiers to achieve better background rejection for a given signal efficiency,
but at the expense of more sculpting. In the interest of not sculpting, and to have a fair
comparison with the single variable taggers, we do not use the transverse momentum or
the jet mass as an input for the machine learning algorithms.4

The first multivariate method we consider is based on a boosted decision tree (BDT)
architecture. A BDT is made of decision trees (DT), which are a tree of binary decisions on
various variables, leading to a final binary classification of data. Boosting is the technique
to allow an ensemble of DT with weak predictions to build an overall strong classifier,
thereby boosting the performance. The DTs are ordered such that each subsequent DT
learns on the failures of its predecessors, by assigning higher weights to the misclassified
events. Figure 2 shows the architecture of a BDT successively made from many DTs.
BDTs have the advantage of being faster to train, less prone to overfitting and easier to
see inside the box, as compared to methods based on Neural Networks (NN). However,
they are more sensitive to noisy data and outliers.

Before training, the inputs are first scaled using the StandardScaler of scikit-
learn so that each variable has zero mean and unit variance on the training set. The data
is split into three separate sets, one for training, one for validation, and one for testing. The
same StandardScaler is used for all of the sets. We use the standard implementation
of the gradient boosting classifier within the scikit-learn framework [45]. In particular,
we use 150 estimators, a max depth of 4, and a learning rate of 0.1. This leads to good
discrimination, with an AUC of 0.863—a 15% increase compared to using just τ21—for
the same two-prong jets as before.

4The τ
(2)
1 observable is related to the ratio of m/pT , so including the transverse momentum would allow

the multivariate analysis the possibility to learn the jet mass.
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Figure 3: Many of the methods explored in this paper use a neural network classifier. For
consistency, we always use a network with three hidden layers, each of which has 50 nodes and
uses the ReLu activation function. The output is a single node with a sigmoid activation function.

Our input data are the 11 τ
(β)
N variables of 5-body jet phase space shown in Eq. (4).

The second multivariate method we consider is based on neural networks. Figure 3
shows the basic setup of our network, which is implemented in the Keras [46] package
with the TensorFlow backend [47]. Unless otherwise stated, all neural networks in this
study use the same architecture, with three hidden layers of 50 nodes each. The nodes are
activated using the Rectified Linear Unit (ReLu). The last layer contains a single node
with a Sigmoid activation function so that the output is a number between 0 and 1. We
experimented with increasing or decreasing the number of layers, and found that three
hidden layers is where performance saturated. Adding more nodes was not found to be
helpful.

Training is done using the Adam optimizer [48] to minimize the binary cross entropy
loss function, which is given by:

Lclassifier = − 1

N

N∑
i

wi

[
yi ln fC

(
Xi

)
+
(
1− yi

)
ln
(

1− fC
(
Xi

))]
, (5)

where yi is the true label, fC
(
Xi

)
is the network output, and wi is the weight for the ith

event. It is standard for all of wi to be taken to be one, but in the case of unbalanced
classes with significant difference in the number of training samples, it is useful to set wi
to a specific value per class so that the effective number of training samples for each class
becomes equal; these are called class weights. We implement class weights throughout
as it was found to improve the classifiers, even though we do not have badly imbalanced
classes. In Sec. 3.2.2, we explore another application of using weights during training.

The learning rate is initially set to 10−3. The loss is computed on the validation set
after each epoch of training to ensure that the network is not over fitting. If the validation
loss has not improved for 5 epochs, the learning rate is decreased by a factor of 10, with
a minimum of 10−6. Training is stopped when the validation loss has not improved for 10
epochs. Training usually takes between 30-40 epochs.

To have a fair comparison with the BDT, the network is trained on the same training
set, using the same pre-processing. In addition, a common test set is used for all compar-
isons. The depth of the network allows it to learn more of the non-linearities between the
input features than the boosted decision tree, yielding a AUC of 0.872. This is only a 1%
increase in the AUC, but this can have large impacts on the potential discovery of new
physics. For instance, at a fixed signal efficiency of 0.5, the background rejection increases
from a factor of 13 to a factor of 15, allowing for 16% more background rejection.5

5Here, and in the rest of the paper, we define the background rejection over the whole jet mass range
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Figure 4: The left panel shows the ROC curves for three traditional methods, two based on
machine learning, to classify a 2-prong signal jet from a QCD jet. The machine learning based
methods achieve an area significantly higher than the single variable τ21 based classifier. The
right panels show the background only distributions for successively tighter cuts in the solid lines:
signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple), 0.7 (brown), 0.6 (pink) and 0.5
(yellow). The signal with no cuts is shown in the filled-in, grey distribution. The only background
events which pass the cuts end up having masses similar to that of the signal, even though the
machine learning models do not have access to the mass.

A summary of the application of the three different methods presented so far is in
Fig. 4. The left panel shows the ROC curves, where better classifiers are up and to the
right. In what follows, we will always use a solid line to denote a neural network based
classifier, a dashed line for a BDT, and a dotted line for a single variable analysis. The
two multi-variate analysis are similar and do much better than the single variable τ21.
The right panels highlight the main problem explored in this work. The solid black line
and the grey, shaded regions show the jet mass distributions for the QCD background and
the 2-prong signal, respectively. The different colored lines show the resulting QCD only
distribution when cutting to signal efficiencies of 0.95, 0.9, 0.8, 0.7, 0.6, and 0.5. The τ21

classifier removes much of the QCD background at low jet masses, but allows many more
events at high masses, so the background efficiency changes drastically as a function of
the jet mass. This is even worse for the multivariate analyses, which drastically sculpt the
background distributions. Even though they are only using substructure information, and
do not have access to the overall scale of the jet, the QCD events that make it through are
peaked at the signal mass. This better background rejection comes at the cost of having
both the signal and background shapes becoming very similar, which makes estimating
systematic uncertainties much harder.

With this motivation, we now turn to the different approaches of decorrelating the
output of a classifier with a given variable such as jet mass. These approaches broadly
fall into two categories. The first is to augment the data on which the model is trained,
while leaving the training procedure unchanged. The second category is to not augment
the data, but to alter the training algorithm itself. We discuss these two in turn next.

3.2 Decorrelation based on data augmentation

The general idea of data augmentation is to reduce as much as possible the correlation of
the classifier input to the jet mass. This can be done for both single and multivariable
methods. For single variable classifier, this can be done analytically, which we review
below. For multivariable classifiers, the decorrelation must be done numerically, which we

considered: 50 ≤ mJ( GeV) ≤ 400. We expect this choice to give the same qualitatively result which would
be obtained by defining the background rejection on a smaller mass window (more details on this can be
found in section 4.).

9
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study using two recently proposed methods: Planing [9] and PCA-based rescaling [7, 28].
Both of these methods can be used for NNs and BDTs; in this section we only show the
examples for the NN. These methods are fast, and have little application-time computation
cost.

3.2.1 Analytic decorrelation

For classification based on a single variable such as τ21, analytic decorrelation methods
have been proposed [28, 29], where a modified variable is constructed which is explicitly
designed to preserve the background distribution. The appropriate scaling variable for
QCD jets is the dimensionless ratio ρ = log(m2/p2

T ). A plot of τ21 vs ρ shows that
background jets in different pT ranges are linearly shifted from one another, and that
there is a linear relation between τ21 and ρ for a certain range of ρ. With this information,
the decorrelation with mass can be performed in two steps. The pT dependence is removed
by defining ρ′ = ρ+log (pT /µ) where the value of µ is chosen phenomenologically (taken to
be 1 GeV in [28]). The linear correlation between τ21 and ρ′ can be removed by considering
a modified variable—the so-called “Designed Decorrelated Tagger”, τDDT

21 = τ21 −Mρ′,
where M is the numerically calculated slope of the τ21 vs ρ′ curve. Apart from being simple
to implement, the background systematics are easier to study because the method only
involves a linear shift of the original observable. However, this method fails to generalize

to more complex topologies, as there is not a simple linear relation between τ
(1)
N /τ

(1)
N−1 and

ρ′ for N > 2.
Using τDDT

21 as a single variable classifier on a 2-prong signal gives an AUC of 0.687,
which is the lowest among the decorrelation methods considered in this work. Compared
to τ21, the Designed Decorrelated Tagger has an AUC that is 8% lower, though only a
nominally smaller background rejection at a fixed signal efficiency of 50%, as seen in the
left panel of Fig. 5. The right panels of Fig. 5 show how the background distribution
changes as tighter cuts are made on the signal efficiency. τDDT

21 sculpts far less than τ21

(See App. C for a side-by-side comparison), and by eye, seems to perfectly preserve the
shape of the QCD background distribution. We quantify these statements in the next
sections.

3.2.2 Planing

Data planing [9] is a procedure that was initially designed to better understand what
information an MV model is learning. This is accomplished by using the “uniform phase
space” scheme introduced in [4] to restrict the model’s access to a certain observable, and
looking for a subsequent drop in performance during testing. It turns out, however, that
limiting what information the neural network is capable of learning and decorrelating the
network output from a given observable are similar tasks.

At its core, planing is a weighting technique that takes a given distribution, and weights
the data such that this distribution is now uniform over the range of values in consideration.
Our choice to weight both the signal and the background to be uniform is not unique—one
could instead weight the signal to the background shape or vice versa, as long as they have
the same distribution after the procedure. For a set of input features, Xi, where i denotes
a given event, and m is the feature to be planed, the weights can be computed as:

[w (Xi)]
−1 = C

dσ (Xi)

dm

∣∣∣∣
m=mi

, (6)

where σ(Xi) is the distribution of the data as a function of feature X, and C is a dimen-
sionful constant common to both signal and background. This is required, as signal and
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Figure 5: The left panel shows the ROC curves for the data augmented neural network methods
of PCA and planing as well as the single variable DDT. The network trained on PCA-rescaled
data is the best classifier, followed by the network trained on planed data. Both MV decorrelation
techniques result in better classification than the single variable τDDT

21 based classification. The
right panels show the background only distributions for successively tighter thresholds for the DDT,
Planed, and PCA classifiers: signal efficiency of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple),
0.7 (brown), 0.6 (pink) and 0.5 (yellow). For context, the 2-pronged signal distribution is shown
as grey filled-in region. All three methods reduce the background sculpting when compared to
their Fig. 4 counterparts. A full side-by-side comparison for 2, 3, and 4 prong signals is shown in
App. C.

background are planed separately. In practice, these weights are determined by uniformly
binning the events, and then inverting the resulting histogram. This introduces some fi-
nite binning effects, which tend to be more pronounced near the ends of the distribution.
However, these effects can be easily mitigated, and do not have a significant impact on
training, see Ref. [49] for a method to compute the weights without binning.

The planed feature does not necessarily have to be an input to the network. In this
work, we are interested in decorrelating the network output from the jet mass, so this is
the variable we apply the planing procedure to. As mentioned in Sec. 3.1, it is possible
to add event-by-event weights to the loss function when training, treating some events as
more or less important than others. Planing uses the weights in Eq. (6) and treats events
that weigh less (more) as more (less) important. When training a network on planed data,
the weights in the binary cross-entropy, Eq. (5), are the product of the planing weights,
Eq. (6), and the class weights discussed previously.

Figure 6 highlights the key features of planing. In the left panels, we show the jet mass
distributions for the 2-pronged signal events and the QCD background events. These dis-
tributions are planed separately, and the lower left panel shows the resulting distributions
after planing away the jet mass information. Both are uniform over the relevant mass
range, though there are some finite binning effects visible near the high- and low-mass
ends of the planed distributions. The two center panels show one of the network inputs,

τ
(1)
1 , before and after planing. Before planing there is a clear separation between the signal

and background distributions, which means that there is discriminating power available to
the network from this feature alone. After weighting this input, we see that the signal and

background τ
(1)
1 look much more similar, so there is now less discriminating power in this

planed feature. However, planing does not reduce the discriminating power of every input

feature. In the rightmost panels, we see that before planing, the distributions of τ
(1)
2 are

nearly identical for signal and background. After applying the weights from the planing
procedure, we see that there is now more distinction between the two, with the added
benefit that this extra classifying power does not come at the cost of further sculpting the
background jet mass distribution.

The MV classifier is trained on planed data, but is tested using unaltered data. Com-
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Figure 6: The upper and lower panels show distributions before and after planing away the jet
mass, respectively. The left panels show the jet mass distribution for the 2-pronged signal and
QCD background. By design, both distributions are (nearly) identical, and uniform across the

entire mass range after planing. The center panels show τ
(1)
1 , one of the input variables for the

classifiers. Before planing, this variable has discriminating power, but that was correlated with

the jet mass and got removed by the planing process. The right panels show τ
(1)
2 , which has more

separation between signal and background after planing.

pared to a network with the same architecture, but trained on unaugmented data, the
network trained on planed data is only able to achieve an AUC of 0.778—nearly 11%
lower. This reduction in AUC corresponds to a background rejection nearly 3 times
smaller at a fixed signal efficiency of 50% compared to the network trained on data which
has not been planed, as seen in the left panel of Fig. 5. The right panels of Fig. 5 shows
how the background distribution changes as tighter cuts are made on the signal efficiency.
Comparing these distributions to the right panels of Fig. 4, it is clear that a network
trained on planed data sculpts far less than any of the MV techniques discussed thus far.
A side-by-side comparison can be found in App. C. We quantify these statements in the
next sections.

3.2.3 PCA

Another preprocessing procedure which aims to decorrelate the discrimination power of

the NN from the jet mass was proposed in [7]. The basic idea is to preprocess the τ
(β)
N

variables in such a way that their distribution for QCD events is no longer correlated to
the jet mass. This is achieved by first binning the standardized data (zero mean and unit
standard deviation for each variable) in jet mass, with a variable binning size to have
the same number of QCD events in each bin. Then, in each bin, the standardized input
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Figure 7: Scatterplot of two benchmark τ variables for QCD events in three different mass win-
dows. The left panel shows the original variables, before any kind of preprocessing. The events
from different mass bins are well separated. The center panel shows the same events after removing
the mean and setting the variance of each variable in each bin to unity. The different mass bins
now have the same range, but the 2D correlations are still distinct. In the right panel, the events
have been standardized and PCA transformed on a linearly independent basis. The different mass
ranges are now hard to distinguish.

variables are transformed as follows:

~τ std
i → ~τ PCA

i = R−1
i SiRi ~τ

std
i , (7)

where ~τ std
i (~τ PCA

i ) is a 11 dimensional vector made of standardized (PCA transformed)
variables in bin i, Ri is the matrix that diagonalizes the covariance matrix for the QCD
τ variables in that given bin, and Si makes the covariance matrix unity in that bin.
The action of Ri is to induce a rotation into a basis where all the variables are linearly
uncorrelated (this is the typical procedure used in principal component analysis (PCA),
from which the method derives its name). Typically, after this rotation the data needs to
be standardized again, requiring the action of the diagonal Si matrix. The effect of PCA
preprocessing procedure is illustrated by the scatter plot in Fig. 7, for two of the variables

τ
(1)
1 and τ

(1)
2 , for three mass bins. In the scatter plot, the differences for the mass bins in

the original variables are very easy to see, and also noticeable in the standardized variable.
However, the mass bins look much more similar for PCA transformed variables. Notice
that, while both the R and S are computed (bin-by-bin) only using the QCD sample, the
transformation, Eq. (7), is then applied both to the QCD and signal events (both during
the training of the NN and when applying the tagger to the test data).6

The network trained on PCA scaled data is able to achieve an AUC of 0.829, which is
only a 4% reduction compared to the network with the same architecture trained on the
unaltered data. This is shown in the left panel of Fig. 5. The right panel of Fig. 5 shows
how the background distribution changes as tighter cuts are made on the signal efficiency.
Comparing these distributions to the right panels of Fig. 4 (see App. C for the side-by-side
comparison), it is again clear that a network trained on PCA scaled data sculpts less. We
quantify these statements in the next sections.

3.3 Decorrelation based on training augmentation

The general idea of training augmentation is to assign a penalty to distorting a background
distribution that is desired to be uncorrelated with the classifier. This allows the optimal
solution to balance the performance with decorrelation. Further, the decorrelation is not

6This is different than the case of planing, where the test set does not use data augmentation.
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Figure 8: The network architecture used in the uBoost algorithm. Each BDT has the same
layout as those in Fig. 2, and is tasked with keeping the background uniform at a given target
signal efficiency. We use 20 BDTs to cover the entire efficiency range, and results are interpolated
between target efficiencies to keep the background uniform over the whole efficiency range. The
Gini index is used to measure the quality of a split, and the best split is taken when creating new
branches.

requested at just one step in the process, like in data augmentation based approach, but
rather at each step in the process. In this category, we study two of recently proposed
methods uBoost and Adverserial Neural Networks.

3.3.1 uBoost

A BDT algorithm can be modified to leave some distributions of a given class unaffected
in the classification procedure, as proposed in [30], called uBoost.7 The basic idea is to
incorporate the cost of affecting the distribution that is desired to be unaffected in the
optimization procedure. This procedure necessarily depends on the efficiency of classifi-
cation, since the cost of affecting a distribution has to be measured for fixed efficiency.
In other words, a trivial way to not affect a distribution for a variable for a given class
is to have a very small efficiency to select the other class, so that no events of the other
class are selected and the distribution stays the same. Hence, the non-trivial optimization
algorithm is implicitly defined for a given efficiency, taken to be the average efficiency of
the BDT. The average efficiency of the overall BDT corresponds to a local efficiency for
each event. This local efficiency is calculated using k-nearest-neighbor (kNN) events that
pass the BDT cut, constructed from DTs up to this point. Hence this local efficiency
depends on both the event and the tree. Data points with a local efficiency lower than
average efficiency are given more importance, and those with a local efficiency higher than
average efficiency are given lesser importance. The relative importance is controlled by a
parameter βu (see Eq.(2.3) in Ref. [30]). The BDT then is optimized for a given efficiency.
One can then construct an even bigger ensemble of BDTs, each optimized for a given
efficiency, and design the response function in such a way that the right one is chosen for
a given efficiency. An illustration of this is sketched in Fig. 8.

The uBoost architecture we consider uses 20 BDTs to cover the full signal efficiency
range, with each BDT being comprised of 150 individual DTs, each with a maximum depth
of 4. The decision trees use the Gini Index to measure the quality of a split. Additionally,

7A follow up to the uBoost algorithm was developed in Ref. [50]. This new method achieves similar
classification and uniformity as uBoost, but only trains a single BDT with a modified loss function, rather
than training mulitple BDTs.
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Figure 9: The left panel shows the ROC curves for the adversarially trained neural network and
uBoost, along with the results of the base neural network and τ21, for comparison. The adversarial
results use λ = 50, and the uBoost results use βu = 1. The right panels show the background only
distributions as successively tighter cuts are made on the output of these classifiers: signal efficiency
of 1.0 (black), 0.95 (green), 0.9 (red), 0.8 (purple), 0.7 (brown), 0.6 (pink) and 0.5 (yellow). The
full 2-pronged signal is shown in the filled-in grey distribution for context. Both these methods
are able to preserve the background shape well, with only a marginal decrease in performance, but
take a factor of 10 to 100 more time to train. Compared to their MV counterparts in the upper
panels, it is clear that the training augmentation based approaches significantly reduce the extent
of the background sculpting. A full side-by-side comparison for 2, 3, and 4 prong signals is shown
in App. C.

we use k = 50 nearest neighbor events to compute the local efficiencies. As the authors
of [30] point out, there is very little change in the performance of uBoost for k ∈ [50, 1000],
but choosing k < 20 drastically increases the statistical uncertainty on the local efficiency,
which worsens the performance of the uBoost algorithm. The parameter βu which sets
the relative training importance of events with local efficiency more/less than the average
efficiency, is set to 1.

Using the uBoost algorithm for classification results in an AUC of 0.783, which is a
9% reduction when compared to classification using standard gradient boosted decision
trees. At a fixed signal efficiency of 50%, this translates into uBoost rejecting 23% less
background than a standard BDT operating at the same signal efficiency. However, this
reduction in classification power comes with the benefit of decreased background sculpting.
The right panel in Fig. 9 shows how the background distribution changes as tighter cuts are
made on the uBoost network output. By eye, uBoost sculpts the background considerably
less than a traditional BDT. Quantitative assessments are made in Section 4.

3.3.2 Adversarial

The idea to use adversarial networks to decorrelate jet mass from the output of a classifier
was first introduced in [27]. The authors showed that in the case of small systematic errors,
both adversarially trained networks and traditional neural networks lead to better chances
of discovery for 2-pronged jets than using traditional jet substructure or the DDT [28].
However, when the systematic uncertainty on the background is large, the traditional
neural network never does as well as the adversarially trained network or the analytic
taggers. The adversarially trained network remains better than the analytic methods.

The key aspect of adversarial training is using multiple neural networks, instead of
single one. First, the inputs are fed through a traditional classifier, as in Sec. 3.1. The
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Figure 10: The setup of our adversarially trained neural network. The classifier has the same
hyperparameters as in Fig. 3. The output of the classifier becomes the input of the adversary,
which attempts to predict which bin of the jet mass the QCD events came from. We use tanh
activation for the hidden layers of the adversary, and softmax activation for the final layer, with
10 outputs. The multi-class cross entropy loss function is used for the adversary.

output of the classifier is a number between 0 and 1. The next stage trains a second
network to infer the feature to be decorrelated (the mass for us) using only the output of
the classifier. An illustration of this is shown in Fig. 10.

The overall goal then becomes to train a classifier which not only classifies well, but
which also does not allow the adversary to infer the jet mass. This is done using a combined
loss function of the form

Ltagger = Lclassifier − λ Ladversary, (8)

where Lclassifier and Ladversary are usual classification loss functions. However, we only
calculate Ladversary for the QCD sample and not the signal samples. The parameter λ is a
positive hyperparameter set by the user, giving the relative importance of the two tasks;
classifying and decorrelating. A larger value of λ puts more emphasis on not allowing the
adversary to be able to infer the mass at the cost of poorer classification.

As done in Ref. [27], we use ten nodes for the output of the adversary, with the jet
mass digitized to ten bins with equal numbers of QCD jets per bin, treating the problem
as a multi-class classification problem. The activation for the last layer is the softmax
function and Ladversary is the multiclass cross entropy. This was found to lead to more
stable training than trying to regress the exact jet mass. In addition, we found that a tanh
activation function for the hidden layers of the adversary to be more stable than ReLu
activation. The ATLAS study in Ref. [33] also uses adversarial neural networks for mass
decorrelation, but does so by having the adversary predict the probability distribution
function of the background, as in Ref. [31], rather than predicting the mass bin.

The adversarial set-up makes training the networks more involved. First, we train the
classifier using only the binary cross entropy loss function. Next, the adversary is trained
alone, only using the output of the classifier. We found the training procedure which led
to the most stable results for the combined networks to be as follows. The adversary is set
to not be trainable, and the classifier weights are updated using the total loss of Eq. (8).
However, only a small number of updates to the weights of the classifier are allowed.
Then, the classifier weights are frozen and the adversary becomes trainable. It is given
substantially more time to adjust to the updated classifier, minimizing its own Ladversary

for many epochs. The process is then repeated many times, first making minor updates to
the classifier followed by ample time for the adversary to respond. This procedure takes
about a factor of 10-100 more time to train than other methods.

The other aspect of adversarial training which makes it more challenging is the choice
of the hyperparameter λ. A priori, the value of λ should be chosen so that the loss of the
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classifier is of order the same size as the loss of the adversary. However, the best value will
depend on the use case. The necessity of this optimization produces a family of classifiers
with trade-offs between classifying power and decorrelation abilities. This is in contrast to
analytic and data augmentation based decorrelation methods, which only give a single clas-
sifier. For our studies, we scanned over ranges of λ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}.
The results seem to saturate at λ = 50. The result of this hyperparameter scan are shown
in App. A. We tried smaller values as well, but these were seen to be nearly equivalent
with the traditional neural network. The longer training times, coupled with the need to
optimize λ greatly increases the computational overhead for using adversarial methods.

The adversarially-trained neural network (with λ = 50) achieves an AUC of 0.807,
which is a 7% reduction in AUC compared to the neural network considered in section 3.1.
At a fixed signal efficiency of 50%, this difference in AUC translates to the adversarially
trained network rejecting 33% less background than a traditionally trained neural network.
However, the adversarial approach still results in a better classifier than single variable
analyses, as shown in Fig. 9. The right panel of Fig. 9 shows how the background distribu-
tion changes as tighter cuts are made on the output of the adversarially trained network.
It is clear that the adversarial approach sculpts the background far less than traditional
neural networks. We make this statement more quantitative in Sec. 4.

4 Results

One of the considerations when choosing an analysis method is the computational over-
head. Table 2 shows the amount of time it takes to train the different classifiers. The
difference between the number of prongs is mostly dominated by the different sample sizes,
but also comes from how easy the minimum of the loss function is to find.

The neural network based methods take longer to train than the boosted decision
trees. As expected, the methods which augment the training process take longer to return
a good classifier. The uBoost method trains 20 different BDTs so it takes around 20 times
longer than the base BDT.8 Decorrelating the NN by using an adversary network takes
substantially longer to train, although as we show below, it does achieve the best results.
In contrast, the methods which augment the data beforehand show very little change in
the time it takes to train.

The computational overhead is not the only consideration. In the rest of this section, we
examine both the amount of background rejection and the degree to which the background
is sculpted. Depending on the particular analysis, it may be optimal to allow more or less
sculpting depending on the needed background rejection. The background rejections is
defined over the whole jet mass range considered: 50 ≤ mJ( GeV) ≤ 400. For the taggers
considered in this work, we expect this choice to give qualitatively the same results that
would be obtained by defining it in a narrower mass window centered around the signal.
This is because they are structured exactly to achieve this goal: to keep the background
rejection constant over the whole mass range.

To quantitatively define how much the classifier sculpts the background, we use the
Bhattacharyya distance, which is a popular measure of the distance between two proba-
bility distributions. For two given histograms H1 and H2 with N bins each, the distance

8The updated boosting methods found in [50] do not require training multiple BDTs, so their training
time is similar to a standard BDT.
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Method 2-prong 3-prong 4-prong

Base Network 409± 56.8 601± 82.9 483± 64.9

Base BDT 66± 2.7 88± 0.4 64± 1.1

PCA Network 421± 48.7 566± 63.6 366± 32.8

PCA BDT 70± 1.3 97± 1.3 69± 0.9

Planed Network 406± 44.2 604± 90.7 462± 81.7

Planed BDT 64± 1.0 88± 1.2 63± 0.8

Adversarial 49 429± 520.8 54 953± 683.3 49 003± 1892.0

uBoost 1495± 6.6 2047± 6.5 1430± 10.0

Table 2: The time in seconds to train a classifier on dual E5-2690v4 (28 core) processors. The mean
and standard deviation are calculated over 10 independent trainings. The large variance in the
neural network times is due to the early stopping condition, leading to a non-fixed number of epochs.
Note that the adversarially trained neural network statistics are over sampled once over each of
the nine different values of λ due to the long training time. In addition, the adversarial networks
used GPU nodes. BDTs are faster to train, but are not as effective classifiers. The Adversarial
and uBoost decorrelation methods take much longer than the PCA or Planing methods.

is given as:

dB(H1, H2) =

√
1− 1

N
√
〈H1〉〈H2〉

∑
I

(√
H1(I)H2(I)

)
, 〈HK〉 =

1

N

∑
J

HK(J) .

(9)

This distance has the nice property that it is normalized between 0 and 1, allowing for
a comparison of the sculpting from various taggers more easily. This choice of metric is
not unique. In App. B, we compare the Bhattacharyya distance with another distance
measure, the Jensen-Shannon distance (used in Ref. [33]). The two are seen to have similar
features.

4.1 Augmented training

In this section we examine the decorrelation methods which change the way the training
is done, namely the adversarial neural networks and uBoost. While these methods take
longer to train, their input data is unaltered, which is better for calibration and other
systematics. In all of the comparisons, we include the base neural network and the single-
variable analysis as benchmark references.

Figure 11 shows the ROC curves for decorrelation methods along with the benchmarks.
The left, middle, and right columns are for the 2-prong (boosted ZKK → qq̄), 3-prong
(boosted top), and 4-prong (boosted R→ qq̄q′q̄′) jets as described in Sec. 2, respectively.
The first noticeable trend is that the more prongs the signal sample contains, the easier
it is to distinguish from the QCD background, which is typically single pronged. In fact,
for many of our classifiers for the 4-prong signal, we run out of background events at a
signal efficiency of around 0.1. We will see evidence of this in the remaining metrics even
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Figure 11: ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background for the
methods which augment the training method to decorrelate the jet mass. The solid, dashed, and
dotted curves show results for neural networks, boosted decision trees, and single variable analysis,
respectively. The light blue curves are for the traditional method benchmarks. The purple and
dark-blue lines denote the adversarially trained network and uBoost decision tree. For the 3- and
4-prong cases, uBoost cannot classify as well as the adversarially trained neural networks, but still
does much better than using a single variable, τ3/τ2 and τ4/τ3, respectively

though the rapid removal of background events yields more statistical uncertainty on these
results.

The adversarially trained network with λ = 50 is shown in the solid light-purple line
and uBoost classifier is shown by the dashed blue line. This value of λ was around where
the performance saturated; Appendix A shows the results for all values of λ tested. For
the 2-prong signal, uBoost and the adversarially trained network have very similar curves.
These are roughly in the middle of the base MV methods and the single variable analysis.
Moving to the 3- and 4- prong signals, the adversarially trained network achieves better
background rejection than uBoost, but both of these are significantly better than a single
variable analysis. Note that currently there are no DDT type methods for 3- and 4-prong
jets.

The Bhattacharyya distance calculated on the QCD background only distributions is
shown in Fig. 12. Specifically, we calculate the distance between the original (no cuts)
jet mass distribution and the background distribution which passes a cut for the specified
signal efficiency (top row) or background rejection (bottom row). We see clearly that the
original NN and BDT give the greatest amount of distortion to the distributions, resulting
in larger distances. For the 2-prong jets, the distance for original MVs is around 0.5 for
most of the signal efficiencies, and τ21 slowly grows to the same values. For 3- and 4-prong,
the single N-subjettiness variable produce smaller distances than the original MVs over
the whole region.

The τDDT
21 classifier was specifically designed to remove the mass correlation; as such,

it produces the smallest distances for fixed signal efficiency. However, there are no 3-
or 4-prong versions. That being said, the adversarially trained neural network produces
distances that are comparable to τDDT

21 over the range of signal efficiencies. It also has
the smallest distances for the MV methods for the 3- and 4-prong signals. uBoost does
not achieve as low of distance scores but its distances are still generally closer to the
adversarially trained network than the originals, and trains about a factor of 30 faster
than the adversary.

Only looking at the distance compared to the signal efficiency does not take into
account how well the classifier separates the signal jets from QCD. Balancing the need for
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Figure 12: The Bhattacharyya distance for the QCD background distributions compared to the
original distributions. The distance is defined in Eq. (9), and a larger distance represents more
sculpting—lower on the plot is better. The upper and lower rows plot the distance as a function
of signal efficiency or background rejection, respectively. τDDT

21 produces the smallest distances
for fixed signal efficiency, but does not generalize to higher-prong jets. The adversarially trained
network yields a close approximation and generalizes to more prongs. uBoost falls between the
original methods and the adversarially trained network, but takes a factor of 30 less time to train.

unaltered distributions against the necessary background rejection is task specific, but can
be aided by plotting the two against each other. In the lower row of Fig. 12, we show the
parametric plots of the histogram distance versus the background rejection. In these plots,
the optimal classifier will be to the lower-left corner, yielding a small distance between the
distributions before and after cuts and simultaneously rejecting large backgrounds. These
are made by scanning over the values of the signal efficiency from 1 to 0.05, which is why
the curves do not extend all the way to the left. The points marked by circles, stars, and
squares are for fixed signal efficiencies of 0.75, 0.5, and 0.25, respectively.

The original MV methods, along with the single variable analysis, yield similar shaped
curves, offering the same amount of sculpting for a fixed amount of background rejection.
This is interesting because the τN/τN−1 distances were quite different when plotted against
the signal efficiency. This can be observed by examining the location of the marked points
along the curve, where the pink ones fall further to the left than do the light blue and
orange points.

The adversarially trained classifier sculpts the least for a given background rejection
for the different pronged jets, other than a small region where τDDT

21 is the least. uBoost
again falls between the original methods and the adversarially trained network, providing
a good compromise on computation time and decorrelation.

For the 4-prong jets, all of the classifiers give similar results with fairly large distances.
This indicates that the QCD is not 4-pronged, so all of the classifiers can cut out large
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amounts of the background. Even the methods which are supposed to produce smaller
histogram distances end up sculpting the backgrounds quite heavily. In any real analysis,
this is most likely not an issue because of the extensive background rejection.

Plotting the distance versus signal efficiency (top row of Fig. 12) makes it hard to see
trends in sculpting between the various pronged jets. However, in the bottom row, we
get a sense that the decorrelation techniques yield a certain distortion of the background
shape given the amount of rejection. For instance, with a background rejection of 10,
τDDT

21 , uBoost, and adversarially trained networks yield Bhattacharyya distances ∼ 0.1
for all of the prongs. Additionally, the distance is ∼ 0.25 for a background rejection of 100
for all prongs. This is expected because our different pronged signal distributions peak
at roughly the same mass (200 GeV for 2- and 4-pronged, and 173 GeV for 3-pronged).
Thus, for a fixed background rejection, the background events which remain mimic a signal
region that is approximately independent of the signal prongedness.

4.2 Augmented data

The previous section examined the extent to which uBoost and adversarially trained neural
networks can decorrelate the jet mass from the classifier output, which is achieved by
changing the training procedure. We now move on to focus on the methods proposed in
Sec. 3.2: altering the input data rather than the training. Augmenting the data rather
than the training procedure greatly reduces the amount of time required to train the
models, as shown in Tab. 2. Additionally, it allows us to test the methods using both
boosted decision trees and neural networks.

The overall ability to classify is shown in the ROC curves in Fig. 13. As with the
last section, the left, middle, and right plots have the signal jets with boosted two-body,
three-body, and four-body decays, respectively. In all of the plots, the blue, red, and green
lines are for the unaltered data, the PCA rotated data, and the Planed data respectively.
The solid lines represent the neural network results, and the dashed lines are the gradient
boosted decision tree. Additionally, we show the single N-subjettiness variable analyses
in the dotted lines.

In all of the plots, the unaltered neural network achieves the best classification. This
is expected, because neural networks can use more non-linearities, and the data has not
been processed to remove correlations with the jet mass. The 2-prong signal shows some
difference in the PCA and Planed neural network results, but for the 3- and 4-prong signal
neural nets, these methods yield similar classification. The BDTs show similar trends,
performing slightly worse than the neural networks in terms of pure classification. The
methods to decorrelate the jet mass from the MV output still achieve better background
rejection than the single variable analysis.

The degree of decorrelation is examined in Fig. 14 where the Bhattacharyya distance
is plotted against the signal efficiency in the upper row. The distance is calculated on the
background-only distributions and the color scheme is the same as the previous figure.
In almost every case, the BDT has smaller distances (less distortion) than the NN. The
classifiers trained on the PCA rotated data show much less distortion than the original
data other than for the 4-prong jets. For instance, the 2-prong jet mass distribution
distances are about half the value as the corresponding unaltered method. The method
of planing away the jet mass information shows nearly an additional factor of two less
sculpting than the PCA method for the 2-prong jets. However, the planing curves do not
reach as low of distances as τDDT

21 for most signal efficiencies.
The planing method produces the smallest distances out of the different methods con-

sidered here for the 3-prong jets. The 4-prong signal is particularly easy for the classifiers
to distinguish from the QCD background. As a result, even the MVs with attempts at
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Figure 13: ROC curves for the 2-, 3-, and 4-prong signal jets versus QCD background for the
methods which augment the data to decorrelate the jet mass rather than augment the training.
The dashed and solid lines show the gradient boosted decision trees (BDT) and neural networks
(NN), respectively. The blue, red, and green curves are for the data which has not been altered,
data which uses the PCA rescaling, and data which has the jet mass planed away. The dotted
lines show the results using a single combination of the N-subjettiness variables. Generally the
BDTs have slightly worse background rejection than the NNs. Similarly, the PCA rescaling based
methods tend to be between the unaltered methods and the planing methods, which are better
than the single variable analyses.

mass decorrelation have large Bhattacharyya distances for fixed signal efficiency. Out of
these, the planing method sculpts the distributions the least.

In the bottom row of Fig. 14 we again show the background rejection plotted against
the Bhattacharyya distance. We again find that for 2-prong jets, τDDT

21 sculpts the least for
a given background rejection. However, it does not reach the largest background rejection
values. The next best method is the neural network trained on planed data, which even
produces smaller distances for background rejection above around 20, as compared to
τDDT

21 . The planing methods seem different than the others in that the NN has less
sculpting than the BDT. The BDT trained on the PCA scaled data behaves similar to
the BDT trained on planed data, but reaches to larger background rejections and for a
fixed background rejection has better signal efficiency. The PCA scaled neural network
has slightly more sculpting for fixed background rejection than the other decorrelation
methods, but still has much smaller distances than the unaltered methods.

The 3-prong jet signal Bhattacharyya distance shows an interesting change when plot-
ted against the background rejection as opposed to the signal efficiency. In the middle
panel of Fig. 14, τ3/τ2 produces smaller distances for fixed signal efficiency than all of
the methods other than planing. However, for a fixed background rejection, it sculpts the
data more than nearly all of the MV methods. We again find that the neural network
trained on planed data provides the smallest distances for a given background rejection,
but the BDT is not far behind. The PCA-based methods also provide less sculpting than
the original methods.

The 4-prong jet results are more clustered, but τ4/τ3 (shown in pink) has smaller
distances for fixed background rejection than the original methods—and surprisingly—
the PCA based methods. That being said, the signal efficiencies are also much smaller.
The neural network trained on data which has had the jet mass planed away produces the
best curve.

The data augmentation methods explored in this section allow for using both BDTs and
NNs and training takes about the same amount of time as the unaltered data. However,
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Figure 14: The Bhattacharyya distance for the QCD background distributions compared to the
original distributions. The distance is defined in Eq. (9), and a larger distance represents more
sculpting—lower on the plot is better. The neural networks tend to sculpt the distributions worse
than the BDT, regardless of the data. Both the PCA rotations and Planing the jet mass result in
smaller distances than the classifiers trained on the original data.

by augmenting the data, it is possible to make the MVs sculpt the jet mass much less
than the original MVs. This does lower the overall background rejection for a given signal
efficiency, but for fixed background rejection, the degree of sculpting can be much less.
In this regard, these methods achieve similar results to the methods which augment the
training process instead of the input data which have already been studied in the literature.

4.3 Comparison

Finally, we want to get a sense for how the augmented training methods perform, as
compared to the data augmentation methods. In Fig. 15 we show the Bhattacharyya
distance versus the signal efficiency (top) and background rejection (bottom) for only the
decorrelation methods and not the original methods. We only show the neural networks
for the data augmentation methods because they achieve better background rejection
than BDTs, for fixed signal efficiency. For 2-prong jets, τDDT

21 has the least sculpting for
background rejections smaller than around a factor of 10, but for larger than this, the
adversarially trained network has the smallest distances. The network trained on planed
data has the next smallest distances for large background rejection. While the green line
is close to the purple adversary line, the marked points are further to the right, indicating
that the planed network does not have as much signal efficiency for the corresponding
background rejection/histogram distance. However, it is worth pointing out that planing
sculpts less than uBoost, and takes about a factor of three less time to train. For the
2-prong jets, the PCA based method sculpts the most out of the decorrelation methods.
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Figure 15: A comparison of all the MV based methods to decorrelate the jet mass from the
classifier output. The shown PCA and Planed results are for NN architecture. The analytical
τDDT
21 method sculpts the least for moderate background rejection, but for larger values does not

do as good as the adversarially trained neural network. The network trained on data augmented by
planing the jet mass do almost as good as the adversarially trained network, with uBoost and the
PCA based networks showing slightly more sculpting. With more prongs, planing and adversaries
are nearly identical to each other while PCA and uBoost are very similar to each other.

PCA, however, seems to perform far better when paired with BDTs rather than NNs.
Comparing Figs. 14 and 15, we see that augmenting the data using the PCA approach
and then training a BDT—as opposed to a NN—sculpts just about the same as uBoost
does for fixed background rejections, but takes less than 1/20 of the time to train.

The 3- and 4-prong jets show similar patterns in their results. As emphasized before,
there is currently not an analytic decorrelation method similar to τDDT

21 for higher prong
jets. The neural networks trained on the data with the jet mass planed away achieve very
similar curves to the adversarial network curves—and train about a factor of 100 times
faster. One may worry that this is a sign that the adversary is not actually doing well for
the higher pronged jets. In App. C we show the jet mass distributions and do not think
this is the case.

With these higher-pronged jets, the PCA based rotation method gives similar curves
to uBoost. However, the PCA method has two benefits over uBoost. First, the marked
points are further to the left, indicating that for fixed signal efficiency, the PCA networks
have more background rejection than uBoost. Second, the amount of time required to
train the machine is around a factor of four less.
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5 Outlook and Future Work

The significance of a discovery or exclusion will always be the primary factor when de-
termining which decorrelation method to use in an analysis. With this in mind, one
potential concern with the data augmentation techniques is that they may reduce the
statistical power of the data itself, especially when applied to data on the tails of the
distribution. We do not expect this to be the case since the PCA based approach involves
only linear transformations of the data and Planing only requires that the data used for
training be reweighted. In future work, we will answer this question concretely, as part
of a larger study where we explicitly look at a phenomenological proxy for the discovery
significance that properly accounts for systematic errors and further optimizes the working
point of the tagger.

One interesting extension of the techniques explored here would be to train networks
on jets in a given mass range, and then use these networks to classify jets in an entirely
different mass range. Neural networks offer a very flexible framework to train a wide
variety of models, but are far less adaptable once trained. The techniques studied here
distinguish signal from background with less reliance on the jet mass. Since they only rely
on substructure information, and not the absolute scale of the jet, they should be applicable
to other regions of the mass parameter space. Showing that such results are possible could
increase the usage of such MV techniques in large experimental collaborations, such as
those at the LHC.

Our comparisons used the same representation of the input data for all of the classifiers,
namely the N-subjettiness basis. However, there have been many studies of jet taggers
using other representations, such as images, sequences, or graphs. Mass decorrelation
has been done in images with Planing [4] and Adversarial training [32], but it would be
interesting to see how all of the techniques studied here could be applied to the different
representations, and if any additional advantage is offered. Additionally, decorrelating in
both the jet mass and the transverse momentum could make for a stable jet tagger (See
Ref. [49] for multidimensional decorrelation with Planing).

In this work, we applied all our methods to decorrelate the classifiers from the jet
mass by explicitly using the jet mass in the decorrelation procedure (flattening the jet
mass distribution for Planing; binning in jet mass for PCA). However, τDDT

21 uses ρ =
log(m2/p2

T ) in its analytic decorrelation. An interesting test would be to examine how
the decorrelation techniques work using this value (or just pT ) as opposed to the mJ

alone. Additionally, it would be worthwhile studying how robust these techniques are in a
more realistic experimental environment by testing how the classification and decorrelation
generalize to signals with mixed prongedness, and signal contamination. This is work we
intend to do, and leave to future study.

Code to reproduce our results can be found on GitHub.

6 Conclusion

New physics searches are challenging, especially when the processes are rare and the
backgrounds plentiful. Rejecting background events is necessary, but how the background
is removed is also important. Experimental efforts to look for new physics are greatly
aided by easy-to-model backgrounds, so the need for techniques that preserve the profiles
of the underlying background distributions cannot be understated.

In this work, we explored a variety of cutting-edge methods used in the classification
of boosted objects. We started by looking at how standard single- and multi-variate tech-
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niques achieve better classification at the cost of increased background sculpting. These
standard methods serve as a point of comparison to analytic [28] and multivariate [27,30]
methods designed specifically with mass decorrelation in mind. Previous studies of these
techniques [33] focused only on their application to searches for two-body hadronic res-
onances. We extended these analyses to see how existing methods perform when tasked
with classifying jets with more complex substructure. We also studied two data augmenta-
tion based techniques to decorrelate the classifier output from the mass of the jet, Planing
and PCA-based rescaling, as well as two training augmentation based techniques, uBoost
and Adversarial NNs.

All of the decorrelation techniques studied in this work reduce the extent to which the
background is sculpted, and could therefore be used to increase sensitivity in a new physics
search. We have shown that Planing and PCA give comparable performance to training
augmentation based methods, while taking only a fraction of the time and computational
overhead to train. These data augmentation techniques could be useful in situations such
as testing prototypes, where fast turnaround is desired.
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A Adversary decorrelation parameter

As mentioned in Sec. 3.3.2, adversarially-trained neural networks introduce a new positive
hyperparameter, λ, which must be chosen by the user. Higher values of λ increase the
importance of the adversary when minimizing the loss function of the tagger, which decor-
relates the output from the tagger from the jet mass at the cost of worse classification
when compared to standard neural networks.

In choosing a value of λ to use in our analysis, we examined the different metrics
and found that λ = 50 is where results start to saturate. Figure 16 shows the results
of this parameter sweep using the three metrics used in the main body of this work.
The ROC curves for the 2-, 3-, and 4-prong signals are shown in the top row. Darker
shades correspond to lower values of λ. As expected, using lower values of λ result in
better classification. In the middle row, we have plotted the Bhattacharyya distance as a
function of signal efficiency for every value of λ. The darkest curves look nearly identical
to the Original NN results of Fig. 12, and sculpt the background the most, while the
lightest curves (corresponding to higher values of λ) sculpt the least. From this row, we
can see that the mass decorrelation as measured by the Bhattacharyya distance saturate
at λ = 50. The bottom row shows a parametric plot of the Bhattacharyya distance and
the background rejection, made by scanning across the signal efficiencies. For a fixed level
of background rejection, we again see that the decorrelating benefits of the adversarial
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Figure 16: The top row shows the ROC curves for all of the adversarially-trained neural networks
tasked with distinguishing the 2-, 3-, and 4-prong signal jets from the QCD background. Lighter
shades correspond to increasingly larger values of λ. Larger values of λ put an increased emphasis
on making the network output less dependent on the mass, at the cost of worse classification. The
middle row shows how the Bhattacharyya distance for the QCD background changes as tighter
cuts are made on the network output. As expected, higher values of λ lead to less sculpting than
lower values of λ. The bottom row shows a parametric plot of the Bhattacharyya distance for the
QCD background versus the background rejection. The adversarially-trained networks are all able
to achieve similarly large background rejections, but networks using higher values of λ are able
to reject much of the background while preserving the profile of the underlying distribution. All
three rows show that the benefits of adversarial training saturate at λ = 50.

approach saturate at λ = 50.
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B Comparison of histogram distances

We have used Bhattacharya distance in this work to quantify the sculpting of jet mass
distribution from various jet tagging methods. This distance has the nice feature that it is
normalized and therefore allows fair comparison across various methods. It is certainly not
a unique choice. Another method used by ATLAS collaboration in Ref. [33] to quantify
the mass distortion is the Jensen-Shannon distance, which is given as

dJSD(P,Q) =

√
dKL(P, P+Q

2 ) + dKL(Q, P+Q
2 )

2
, (10)

where dKL is the Kullback-Leibler divergence, given by

dKL(P,Q) =
∑
i

pi log
pi
qi
, (11)

pi, qi being the value of the distribution P,Q in bin i. For us, P is the background
mass distribution before the application of a given tagger, and Q is the background mass
distribution after the application of a given tagger. In Fig. 17, we compare how the two
distances dB and dJSD compare. We see that the two distances are very similar to each
other for 2-pronged and 3-pronged signals, while have some differences in the 4-pronged
case. The general shape is the same however, and one can be chosen over the other without
biasing any inferences.
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Figure 17: Comparison of Bhattacharyya distance and Jensen-Shannon distance for 2-, 3-, and
4-pronged signals, as a function of signal efficiency for various decorrelation methods studied in
this work. The general trend for both metrics is seen to be the same.
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C Histogram Sculpting Comparison

Here we show a qualitative comparison of all of the decorrelation methods for all of the
different pronged signals considered in the main body of this work. The figures are or-

ganized as follows: the leftmost column shows the single-variable benchmark, τ
(1)
N /τ

(1)
N−1

(N = 2, 3, 4 for 2-/3-/4-pronged signal), as well as the Designed Decorrelated Tagger for
the 2-prong signal; the middle column shows how the BDT benchmark sculpts the back-
ground, followed by all of the BDT based decorrelation methods studied in this work—
uBoost, Planing, and PCA; the right column shows how the NN benchmark sculpts,
followed by all of the NN based methods studied, namely Adversarial NNs, Planing, and
PCA. A legend is provided in the lower left of each figure to remind the reader which
colors correspond to which cuts on the signal efficiency, εS .

Figure 18 shows the comparison of methods for the 2-pronged signal, Fig. 19 shows this
comparison for the 3-pronged signal, and Fig. 20 shows the comparison for the 4-prong
signal.
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Figure 18: Comparison of all decorrelation methods to the benchmarks for the 2-prong signal.
τN/τN−1 is τ2/τ1.
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Figure 19: Comparison of all decorrelation methods to the benchmarks for the 3-prong signal.
τN/τN−1 is τ3/τ2.
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Figure 20: Comparison of all decorrelation methods to the benchmarks for the 4-prong signal.
τN/τN−1 is τ4/τ3.
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