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Abstract

We study deuteron- proton elastic scattering in the deuteron energy range between 500

MeV and 2 GeV at the cms scattering angle θ ∗ ≥ 140◦. The reaction is considered in the

relativistic multiple scattering expansion framework. The four reaction mechanisms are

included into consideration: one-nucleon exchange, single scattering, double scattering,

and the term corresponding to the delta excitation in the intermediate state.

The model is applied to describe the angular dependence of the differential cross sec-

tion at the deuteron energies of between 880 and 1300 MeV. Also the energy dependence

of the differential cross section and polarisation observables such as tensor analyzing

power T20 and polarization transfer from the deuteron to proton c are considered at the

scattering angle equal to 180◦. Contributions of the different reaction mechanisms into

the reaction amplitude are demonstrated in comparison with the existing experimental

data.
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1 Introduction

Elastic deuteron-proton scattering is the simplest example of the hadron nucleus collision.

Nowadays, a significant amount of the experimental data has been accumulated in a wide
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energy range both with unpolarized and polarized beams. However, we do not have any

theory to describe the data for the energies above a few hundred MeV, especially, at backward

scattering angles.

A good theoretical description of the deuteron-nucleon process was obtained at low ener-

gies, where the multiple scattering formalism based on the solution of the Faddeev equations,

has been applied to this problem [1]. However, at the nucleon energies above 130 MeV

there is some discrepancy between the experimental data and theoretical predictions in the

minimum of the differential cross section [2].

The Glauber theory taking into account both single and double nucleon-nucleon interac-

tion successfully describes the differential cross sections of the dp-elastic scattering at small

angles [3]- [4]. But it does not properly work at larger scattering angles.

In 1969 A.Kerman and L.Kisslinger supposed that resonances can play an important role

in deuteron-proton backward elastic scattering [5]. Later the double-scattering diagram with

∆-isobar in the intermediate state was taken into account in dp- backward scattering. The

significant contribution of this term to the reaction amplitude was demonstrated in refs. [6]-

[8]. However, the double scattering with nucleon in an intermediate state was not considered

in these papers. Perhaps, it was the reason why the description of the differential cross sections

energy dependence was not good enough.

The effort to take the ∆-isobar into account in order to describe dp-elastic scattering was

also done in [9], [10]. In these papers deuteron-proton scattering was considered in a whole

angular range, not only at θ ∗ = 180◦. Unfortunately, the process was studied at low energies,

Td < 200 MeV, where the ∆-isobar excitation effects are negligible.

We have previously proposed to use a model based on the multiple expansion of the

reaction amplitude in powers of the nucleon-nucleon t-matrix [11]- [13]. Here we apply

the model for description of the deuteron-proton elastic scattering in backward kinematics.

2 General formalism

According to the three-body collision theory, the amplitude of the deuteron-proton elastic

scattering J is defined by the matrix element of the transition operator U11:

Udp→dp = δ(Ed + Ep − E′d − E′p)J =

< 1(23)|[1− P12 − P13]U11|1(23)> . (1)

Here, the state |1(23) > corresponds to the configuration, when nucleons 2 and 3 form the

deuteron state and nucleon 1 is free. The permutation operators for two nucleons Pi j reflects

the fact that the initial and final states are antisymmetric due to the two particles exchange.

The transition operators for rearrangement scattering are defined by the Alt–Grassberger–

Sandhas equations:

U11 = t2 g0U21 + t3 g0U31,

U21 = g−1
0 + t1 g0U11 + t3 g0U31, (2)

U31 = g−1
0 + t1 g0U11 + t2 g0U21,

where t1 = t(2,3), etc., is the t-matrix of the two-nucleon interaction and g0 is the free three-

particle propagator. The indices i j for the transition operators Ui j denote free particles i and

j in the final and initial states, respectively.

Iterating these equations up to the t i-second-order terms, we can present the reaction

amplitude as a sum of the four contributions:

Jdp→dp = JONE+JSS +JDS+J∆, (3)
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Figure 1: The diagrams included into consideration: (a) the one-nucleon exchange

diagram; (b) the single scattering diagram; (c) the double scattering diagram with a

nucleon in the intermediate state; (d) the double scattering diagram with ∆-isobar

in the intermediate state.

one-nucleon exchange, single scattering, double scattering, and rescattering with∆ -excitation

in the intermediate state.

The first term in the dp-elastic scattering amplitude J in Eq.(3) is the one nucleon ex-

change (ONE) term.

JON E = −2< 1(23)|P12g−1
0 |1(23)> (4)

The corresponding diagram is presented in Fig.1a. Applying the definitions of the wave func-

tion of a moving deuteron and three- nucleon free propagator, we can write ONE amplitude

in the following form:

JON E = −
1

2
(Ed − Ep −
Æ

m2
N + ~p

2− ~Pd
2) · (5)

< ~p′m′;−~PdM
′
d |Ω

†
d
(23)[1+ (σ1σ2)]Ωd(23)|~PdMd ;~pm> ,

where the definition of the permutation operator in spin space P12(σ) =
1

2
[1+ (σ1σ2)] has

been applied.

All the calculations are performed in the deuteron Breit frame, where the deuterons move

in opposite directions with equal momenta (Fig.1). It allows us to minimize the relative mo-

menta of the nucleons in the both deuterons. As a consequence, the non-relativistic deuteron

wave function can be applied in the energy range under consideration.

In the rest frame the non-relativistic wave function of the deuteron depends only on one

variable ~p0, which is the relative momentum of the outgoing proton and neutron:

< µpµn|Ωd |Md >=
1
p

4π
< µpµn|{u(p0) +

w(p0)p
8
[3(σ1 p̂0)(σ2 p̂0)− (σ1 σ2)]}|Md >,
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where u(p0) and w(p0) describe the S and D components of the deuteron wave function [14],

[15], [16], p̂0 is the unit vector in ~p0 direction.

In order to get the wave function of the moving deuteron, it is necessary to apply the

Lorenz transformations for the kinematical variables and Wigner rotations for the spin states.

This procedure has been expounded in ref. [11]. The proton-neutron relative momenta for

the initial ~p0 and final ~p′0 deuterons are expressed as:

~p0 = ~p+ ~Pd

�

1+
En+ E∗

Ep + En + E∗

�

, ~p′0 = ~p+ ~Pd

�

1−
En+ E∗

Ep + En + E∗

�

. (6)

Here En =
p

m2
N + ~p

2 − ~Pd
2 and E∗ =
Æ

(Ep + En)
2 − ~Pd

2/2 are the struck neutron energy in

the moving deuteron frame and rest deuteron frame, respectively. Note, that |~p0| = |~p′0|.
The next term in the dp-elastic scattering amplitude Eq.(3) is the single scattering one.

JSS = 2< 1(23)|[1− P12]t3|1(23)> (7)

The corresponding diagram is presented in Fig.(1b). Following the standard procedure

we get the expression for the single scattering amplitude:

JSS =

∫

d~q ′ < −~PdM
′
d |Ω

†
d
|~q ′m′′,−~Pd −~q ′m′3 > (8)

< ~p ′m′,−~Pd −~q ′|
3

2
t1
12 +

1

2
t0
12|~pm, ~Pd −~q ′m′2 ><~q

′m′′, ~Pd −~q ′m′2|Ωd |~PdMd > .

The relative momenta of two nucleons for the initial and final deuterons are

~p0 = ~q
′− ~Pd

E2 + E∗

E2 + E3 + 2E∗
~p′0 = ~q

′ + ~Pd

E2 + E′∗

E2 + E′3 + 2E′∗
, (9)

where the nucleons energies E2, E3, E′3 in the reference frame are defined by the standard

manner (Fig.1b)

E2 =
Æ

m2
N +~q

′2 , E3 =
Æ

m2
N + (

~Pd −~q ′)2 , E′3 =
Æ

m2
N + (

~Pd +~q
′)2 (10)

and these energies in the center-of-mass of the two nucleons forming the initial and final

deuterons are equal, correspondingly, to

E∗ =
1

2

Æ

(E2 + E3)
2 − ~P2

d
, E′∗ =

1

2

Æ

(E2 + E′3)
2− ~P2

d
. (11)

The nucleon-nucleon scattering is described by the t-matrix tT
i j . We use the parameteriza-

tion of this matrix offered by Love and Franey [17]. This is the on-shell NN t-matrix defined

in the center-of-mass:

< c∗′µ′1µ
′
2|tc.m.|c∗µ1µ2 >=< c

∗′µ′1µ
′
2|A+ B(σ1N̂ ∗)(σ2N̂ ∗) + (12)

C(σ1+σ2) · N̂ ∗ + D(σ1q̂∗)(σ2q̂∗) + F(σ1Q̂∗)(σ2Q̂∗)|c∗µ1µ2 > .

The orthonormal basis {q̂∗, Q̂∗, N̂ ∗} is a combination of the nucleon relative momenta in the

initial c∗ and final c′∗ states:

q̂∗ =
c
∗−c∗′

|c∗−c∗′| , Q̂∗ =
c
∗ +c∗′

|c∗ +c∗′| , N̂ ∗ =
c
∗ ×c∗′

|c∗ ×c∗′| . (13)

The amplitudes A, B, C , D, F are the functions of the center-of-mass energy and scattering

angle. The radial parts of these amplitudes are taken as a sum of Yukawa terms. A new
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fit of the model parameters [18] was done in accordance with the phase-shift-analysis data

SP07 [19].

Since the matrix elements are expressed via the effective N N -interaction operators sand-

wiched between the initial and final plane-wave states, this construction can be extended to

the off-shell case allowing the initial and final states to get the current values of c and c′.

Obviously, this extrapolation does not change the general spin structure.

The double scattering contribution (Fig.1c) is defined by a deuteron wave function and

two nucleon-nucleon t-matrixes. Also we have here three-nucleon propagator:

JDS =

∫

d ~p2d ~p′3 < −~PdM
′
d |Ω

†
d
| − ~Pd − ~p′3 m′2,~p′3 m′3 > (14)

< ~p′ m′,−~Pd − ~p′3 m′2,~p′3 m′3|
t1
3(N N)

(E′)t1
2(N N)

(E) + [t1
3(N N)

(E′) + t0
3(N N)

(E′)][t1
2(N N)

(E) + t0
2(N N)

(E)]/4

Ed + Ep − E1− E2 − E′
3
+ iǫ

|~p m,~p2 m2, ~Pd − ~p2 m3 >< ~p2 m2, ~Pd − ~p2 m3|Ωd |~PdMd > .

The argument of the N N -matrix is defined as the three-nucleon on-shell energy excluding the

energy of the nucleon which does not participate in the interaction:

E = Ed + Ep − E2, E′ = Ed + Ep − E′3. (15)

The structure of the delta amplitude (Fig.1d) looks like the double-scattering one. But here

we have N N → ∆N matrixes instead the nucleon-nucleon matrixes and N N∆-propagator

instead three-nucleon one.

J∆ = 2

∫

d ~p2d ~p′3dE∆d ~p∆δ(E∆−
q

µ2 + ~p2
∆)δ(~p+

~Pd − ~p2 − ~p3 − ~p∆)1 <
1

2
τ′

1

2
m′ ~p′|

23 < 00; ~−Pd1M′
d
|Ω†

d
[1− P12]|t3(N∆)(E

′)
1

E − E2 − E′
3
− E∆+ iΓ(E∆/2)

|Ψ~p∆(E∆)>1

|
1

2
τ2

1

2
m2~p2;

1

2
τ3

1

2
m3~p3 >23 23 <

1

2
τ2

1

2
m2~p2;

1

2
τ3

1

2
m3~p3| (16)

1 < Ψ~p∆(E∆)||t2(N∆)(E)[1− P13]Ωd | ~Pd1Md ; 00>23 |
1

2
τ

1

2
m~p >1

Here a full set of the particles quantum numbers was included into the amplitude defi-

nition. Isospin and spin quantum numbers are marked by τ and m or M , respectively. The

indexes near the bracket correspond to the particles numbers.

The distribution function of the delta energy

|Ψ~p∆(E∆)>< Ψ~p∆(E∆)|= ρ(E∆) (17)

is defined through the delta width Γ(µ):

ρ(µ) =
1

2π

Γ(µ)

(E∆(µ)− E∆(m∆))
2 +Γ2(µ)/4

, (18)

where µ2 = E2
∆ − ~p2

∆ is the squared four-momentum of the delta. The delta width is energy

dependent. We use, here, the standart parameterization of Γ(µ) taking into account the ∆

off-shell corrections:

Γ(µ) = Γ0

p3(µ2, m2
π)

p3(m2
∆, m2

π)
·

p2(m2
∆, m2

π) + γ
2

p2(µ2, m2
π) + γ

2
. (19)
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Figure 2: The angular dependence of the differential

cross section at the deuteron energy Td = 880 MeV.

The data are from ◦ - [20] at Td = 850 MeV •- [21] at

Td = 940 MeV
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Figure 3: The angular dependence of the differential

cross section at the deuteron energy at Td = 1000

MeV. The data are from ◦- [20] at Td = 940 MeV,

•- [22] at Td = 1169 MeV.
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Figure 4: The angular dependence of the differential

cross section at the deuteron energy at Td = 1200

MeV. The data are from ◦ - [20] at Td = 1169 MeV,

• - [23] at Td = 1200 MeV.
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Figure 5: The angular dependence of the differential

cross section at the deuteron energy Td = 1300 MeV.

The data are from ◦ - [20] at Td = 1169 MeV, • - [23]

at Td = 1200 MeV.

where p(x2, m2
π) is the momentum in the πN -centere-of-mass:

p(x2, m2
π) =
Æ

(x2+m2
N −m2

π)
2/4x2−m2

N . (20)

In our calculation we use the following value:

Γ0 = 0.120 GeV, γ= 0.200 GeV, m∆ = 1.232 (21)

In the Born approximation the N N → N∆ t-matrix can be replaced with the corresponding

potential:

< ~p,
1

2
m,

1

2
τ|t(N∆)(E)|Ψ~p∆(E∆)>≈< ~p,

1

2
m,

1

2
τ|V(N∆)(E)|Ψ~p∆(E∆)> (22)

The potential for the N N → N∆ transition is based on the π− and ρ− exchanges:

V
(π)
βα

= −
fπ f ∗π
m2
π

F2
π(t)

q2

m2
π − t

(~σ · q̂)(~S · q̂)(~τ · ~T ) (23)

V
(ρ)

βα
= −

fρ f ∗ρ

m2
ρ

F2
ρ(t)

q2

m2
ρ − t
{(~σ~S)− (~σ · q̂)(~S · q̂)}(~τ · ~T )

Here, t is the four transfer momentum and ~q is the corresponding three transfer momen-

tum. The operators ~σ(~τ) are 1

2
- spin (isospin) operators defined by Pauli matrixes while ~S(~T )

operators correspond to 1

2
→ 3

2
spin (isospin) transition. mπ and mρ are a pion and ρ- meson
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Figure 6: The energy dependence of the differential cross section at the scattering angle θ ∗ = 180◦. The data are

from [24].

masses. The coupling constant fπ is related with the N Nπ vertex and f ∗π corresponds to the

N∆π one. It concerns also ρ− coupling constants.

fπ = 1.008 f ∗π = 2.156 (24)

fρ = 7.8 f ∗ρ = 1.85 fρ

The hadronic form factor was chosen in a pole form:

Fx (t) =
�

(Λ2
x −m2

x )/(Λ
2
x − t)
�n

(25)

In our calculation we use Λπ = 0.8 GeV, Λρ = 1.8 GeV. The exponent n is equal to 1 for

π-meson and 2 for ρ-meson.

Since two nucleon states in the N N → N∆ vertexes are antisymmetrized, two permutation

operators appear in Eq.(16). As consequence, the ∆- amplitude contains four terms: one

direct, two exchange, and one double-exchange ones. The permutation operator Pi j involves

the permutation of all quantum numbers. Here, it is permutation over momentum, spin, and

isospin indexes: Pi j = Pi j(p)Pi j(σ)Pi j(τ).

3 Results

We applied the method to describe angular dependences of the differential cross sections at

the backward scattering angles θ ∗ ≥ 140◦ at four deuteron energies of 880, 1000, 1200, and

7



SciPost Physics Proceedings Submission

(lab),GeVdT
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20
T

1.5−

1−

0.5−

0

0.5

1

2-t, GeV
1 2 3

0 *=180θ

ONE

ONE+SS

ONE+SS+DS

)π(∆ONE+SS+DS+

)ρ+π(∆ONE+SS+DS+

Figure 7: The energy dependence of the differential

cross section at the scattering angle θ ∗ = 180◦. The

data are taken from • - [25], Î - [26].
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Figure 8: The energy dependence of the polarisation

trnsfer at the scattering angle θ ∗ = 180◦. The data are

taken from [26].

1300 MeV. In Figs.2-5 the calculation results are presented for four cases. The dashed-dotted

curves correspond to the results obtained taking into account only ONE and single-scattering

contributions. The results obtained with the addition of the double-scattering term are rep-

resented by dashed curves. The solid curves correspond to the theory predictions taking into

account also ∆-isobar in the intermediate state with both π-meson (blue line) and π- and

ρ-mesons (red line).

It is well known that the data on the differential cross sections show some enhancement

at the backward angles. However the calculation results obtained without the ∆-isobar lie

below the data. Moreover the difference between the data and the results increases with

the energy growing. When we include the ∆-isobar into consideration we get rather good

agreement between the data and theory in the case when π- and ρ-mesons are taken into

account. When we include only π-meson in the ∆-isobar description we get overestimated

values for the differential cross sections.

It is interesting to look at a manifestation of the various mechanisms at the critical scatter-

ing angle of 180◦. An energy dependence of the differential cross section is presented in Fig.6.

The data demonstrate a shoulder at the energies between about 500 and 1400 MeV which is

not described by the calculations without ∆-isobar. The curves obtained taking into account

only ONE+SS and ONE+SS+DS rapidly descend and pass below the data. Inclusion ∆-isobar

into consideration allows us to describe the shoulder and significantly improve an agreement

between the data and theoretical predictions. As in the case of the angular distributions of

the differential cross sections, we get overestimated values when we include only π- meson

in the ∆-isobar definition.

Tensor analyzing power T20 is presented in Fig.6 as a function of the deuteron energy. The

result of the simplest reaction mechanism ONE is close to the data at low energies up to about

500 MeV. But then the data go up while ONE curve descends up to minimum equal to −
p

2

at the deuteron energy of about 1 GeV. The addition of the single- and double- scattering

terms allows to slightly rise the curves in the minimum but the data description remains

unsatisfactory. The results obtained with ∆-isobar are closer to the data except for the energy

range between 700 and 1100 MeV where the data show the rise.

The role of the∆-isobar is clearly manifested in the polarization transfer c, which is shown

in Fig. 8 versus the deuteron energy. The data show the precipitous fall at the deuteron energy

between 400 and 600 MeV and then go on a plateau. The results obtained with the inclusion

of ∆-isobar reproduce the shape of the data while the results of the calculations performed

without ∆-isobar are far from the data.
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4 Conclusion

We considered dp- backward elastic scattering taking into account four contributions: one-

nucleon-exchange, single-scattering, double-scattering, and ∆-excitation in an intermediate

state. We showed a role of each reaction mechanism in the description of the angular de-

pendence of the differential cross section. Inclusion of the ∆-isobar term into consideration

allowed to describe the enhancement of the differential cross section at θ ∗ ≥ 140◦ in the

energy range between 880 and 1300 MeV.

The reaction mechanisms were also studied at the scattering angle θ ∗ = 180◦. It was ob-

tained a quite good agreement between the experimental data and the theoretical predictions

for the energy dependence of the differential cross section. Some progress was achieved in

the description of the tensor analyzing power T20 and polarisation transfer κ.
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