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Abstract

The alpha-alpha bremsstrahlung is studied using the generalization of the Siegert theo-
rem. The corresponding amplitude is written in the gauge invariant form. Special atten-
tion is paid to taking into account the Coulomb interaction. Some correlation function
is found and its dependence on the strong alpha-alpha interaction is discussed.

1 Theoretical background

Our departure point in describing electromagnetic (EM) interactions with nuclei (in general,
bound systems of charged particles) is to rely upon the Fock-Weyl criterion and the general-
ization of the Siegert theorem (see [1] for details and [2, 3], where this approach is compared
to that by Friar and Fallieros [4,5]).

The properties of gauge invariance for a quantum-mechanical system that interacts with
an EM field can be formulated by considering the Schrodinger equation

ov
= =Hora {AL} O (1)
and the gradient displacement
Ax,t) —>AL(X, t)=A,(x,t)+3,G(x,t) 2

of the EM potential A“(x,t) = (A°(x, t),A(x, t)) at the space-time point x = (x,t) with an
arbitrary function G(x). The theory is gauge invariant if there exists a unitary transformation
¥ — ¥’ = UV after Fock such that Eq. (1) remains unchanged in its form viz.,

o’
at

U .
1 =Hupa {4}V > Hia {4} = UHpa {AH}UT+1§U‘. (3)

In the first order in charge e it gives the continuity equation (CE) for the current operator
JH(x) = (p(x),J(x)):

wdivJ(x) = [H,p(x)] = [P,J(0)] =[H, p(0)], 4)



SciPost Physics Proceedings Submission

where H is the nuclear part of H, .4 {Au} and we take into account the property of transla-
tional invariance

exp(—1P-a)J(x)exp(iP-a) =J(x+a), (5)
with arbitrary displacement a, P is the total momentum operator for the nucleus (bound sys-
tem).

According to refs. [2,3], the amplitude of the reaction A+ B — A’ + B’ + y for the photon
emission with energy E,, momentum k, and polarization &" = (€%, ¢)

T, = [22m)°E, | /2 (P, —k,; f |40, (0)| P;s ) 6)

can be expressed through electric E(k,) and magnetic H(k, ) field strengths

E(k,) = i [22m)°E, | /2 (E,e(k,) —k,80(k,)), H(k)=i[202n)0E, |k, x e(k,), (7)

and matrix elements D;¢(k,) and M;¢(k,) of the so-called generalized electric and magnetic
dipole moments of nucleus (bound system)

Tif = E(k,)D;s (k) + H(k, )M;f (k). (8

These formulae were derived without separation of the center-of-mass (CM) motion, and
thus they can be used in relativistic nuclear models (see, e.g., [6]).

2 Nonrelativistic consideration

We will confine ourselves to nonrelativistic approach in which the nuclear Hamiltonian

2
H = oo Hige = Koy + He ©
is divided into the kinetic energy operator K, of the center-of-mass (CM) motion, where M
is the total mass of nuclear system and the intrinsic Hamiltonian H;,; depends on internal
variables of interacting nucleons. For a nonrelativistic system the amplitude (8) is given by
(details in [3]):
Tig = (F | Tonel), Tine = ECkID(K,) + H(K, MUK ), (10)

1 1

D(ky)zEif(pi—xkAR[H,p(O)] |P,)dA, M(ky):—f(Pi—AkY’RxJ(O)IPi)ldA.
Y
0 0

In this context let us recall that the H eigenstates can be factorized as |P;;i) = |P;)|i)

|P; —k,; f) = [P;—k,)|f),where the bracket |) is used to represent a vector in the space of the
CM coordinate R so P|P) = P|P) and |) a vector in the internal space, so H;,,, [i(f)) = Ellgf) li(f)).
Further, with help of the relation [H,R] = —iP/M we find

1
1 k, - (2P, — A P, — Ak
(27‘5)3D(k),) - f dl{ [Dint (Aky) ’Hint]"'AY(TkY)Dint (Aky)'HTYPint (Ak),) };

EY
0

Pine(Ak,) = (21)* (P, — Ak, | p(0) [P}), Dy(Ak,) =—(27)° (P; — Ak, |Rp(0) [P;) = %vkypim(xky).
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For the one-body charge-density operator:

P =D 1 pa®), pa®) = p,(x—1,)my(a) + pr(x—1,)m,(a) (a1

we get the Fourier transforms for
1 8
the charge density pi,(k,) = f defiCh(q) exp (—iq(r; — R))lqzlky
0 i=1
1

8
the electric dipole moment D;,(k,) = ivqf d?LZ fiCh(q) exp (—iq(r; — R))quxky

0 i=1
the magnetic moment M;,,(k,) = M"rb(ky) + Mspm(k),) i Mlnt(kY)

int int

where fO’LV (q) is the nucleon form factor (FF).

3 Model calculations in a simple cluster picture

Now, we will consider the following reaction a + a — a+ a +y with the internal Hamiltonian

; e, (P1—Py)?
H, =H"+H"+-—2=" 1V, (12)
int 1 2 16m
where Py, P, - the total momentum operators, m - nucleon mass and Hy’ ”“ the exact "micro-

scopic" Hamiltonians
PZ

Hlnt — H
1,27 8m

1,2 =

Hip= Y, ;’ln + > VLK), (13)

i€ajy i<k i,k€a;

of the colliding alpha particles and the interaction V between them, V = Zieal,keaz V(i k).

An essential simplification of subsequent calculations is achieved via 1) replacing the exact
interaction V in Hy,, by an effective one V,¢(a;, a;) which depends on the cluster-cluster
relative coordinate r = R; —R,, where R , the corresponding CM coordinates and 2) assuming
that the H;,,, eigenvectors are approximated schematically to

i) = g, @y x P, If) = B oy

. . + . .
with the "distorted" waves XIE ) that describe the cluster-cluster scattering

k2
|:2‘u eff(al:aZ)i| |X ) rellx > rellx(i)>- (14)

a
Here we will confine ourselves only to the first term in Eq.(8). Doing so we have in the
Coulomb gauge

Moreover, we will deal with the *He g.s.: &, = Py, = Poy =Py = Dy

1
Ty = —\/Wﬁ(kﬂ -m(k,), (15)
with
1
m(k,) :Eyf |:V L om B B ]FCH(q)(I(k/ k;q) + (K, k; q))d)t (16)
0 Mo Ly

where F-;(q) is the charge FF of the alpha particle [7]and I(K’, k; q) is the overlap integral
=) —ii * —il
1K,k q) = (5 le™ 2%y ) = f dry 7 @e 29 P ) a7)

with the stretched photon momentum q = Ak, .
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4 The initial and final state interactions included

In many cases typical of the nuclear physics the distorted waves in Eq.(14) should be evalu-
ated nonperturbatively. Therefore, we prefer to go on addressing the so-called two-potential
problem ( see, e.g., [8]). First, we separate out the point-like Coulomb interaction

V=Ve+(V=V)=Vo+ Vs, Vo=4e%/r, (18)
that allow us to use the following decomposition of the total resolvent
G(z)=(z—H)™", G(2)=Gc(2)+Ge(2)VesG(2) (19)
with the Coulomb resolvent G.(z) = (z—H) ™!, Hc = Hy + V. Such a decomposition gives

) = #i lim eGEie)lk) = [.7) = W) + Ge(Ba £ i0)Veslz ), (20)

with the Coulomb scattering wave function Iw(cilz). Further, for the repulsive Coulomb poten-
tial we employ

. WEDdPWE e w(”(r)<w(“|vs|x<”>
Ge(BEx£i0)= | ———— = 2 W=y 0+ 21)
E +i0—E, k E;+1i0—E,
which leads to
+ +
07 = WER) + GelEi 10)Ves | 1,”) (22)

In its turn, overlap integral (17) splits into two parts (cf. decomposition Eq. (1) in [9])
I(K,k;q) = ()Cl((/_)|e_i%qr|ll(j)) =Ic+lIcs, Ics =1—1, (23)
with the Nordsieck-type integral related to purely Coulomb contribution

Io(K, ;@) = (ple 29|y (D) (24)

and mixed Coulomb-strong interaction integral

Ies(K,k;q) = (1 k/|vcsGC(Ek+10)e—lzqf|x(+)> (2 1e 39 G (Ey + i0)Ves| D)+

(25)
(1 Vs GoEx +10)e 2% G (Ej + i0)Ves| D).

Analytical expression for the integral I~ can be found in [10] (see Eq. (10) therein). Calcula-
tions of the three dimenslional integral I¢ are reduced to the summation of its partial wave
expansions with radial integrals

o0

/ (1 /
ICS(Z ,Z,L):J- dr]L(Eqr)[gl/lwk/l/(r)wkl(r)+Wk/l/(r)wkl(r)—Fl/(k r)Fl(kr)] (26)
0

with wy;(r) = (kr)yy(r) and quantities g, = %(sl/ —D(s;— 1)+ %(sl/ -1+ %(sl —1)
being expressed in terms of the S-matrix elements in the angular momentum representation
s; = €291 where §,(k) are phase shifts for given values of the collision energy and angular
momentum [.

The convergence of the I-¢ partial expansion provided owing to that quantities g;/; vanish
at large [ and l’, since |s; — 1| — 0 and wave function wy;(r) coincides with the Coulomb
function F;(kr) at large . At intermediate energies (E ~ 10MeV) one can confine ourselves
to I/ = ln. = 6. In order to evaluate radial integrals (26) it is convenient to employ the

max
the contour integration method [11] (see also its comparison to other ones in [12]).

4
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5 Results and discussion

One of motivations in studying the a+a — a+ a+y bremsstrahlung is to get a supplementary
information on a strong part of the alpha-alpha interaction. In the context, we will consider
some correlation function do = d°c’/ dE,d,;d€;¢, in which one of the outgoing alphas is
detected in coincidence with the emitted photon

o (2m)E2M;
ky;4/(ky; cos(6y; — 615) —E, cos 017 )2 — 4M,E,

(92T, (SR + K2 T, ()],

(27)
where ki; = 4/2M,E; momentum of the initial a-particle, E, energy of the emitted photon,
M, the a-particle mass. One of the outgoing alphas has the momentum fixed by the total
momentum conservation kyr = ky; —Kk; ¢ —k,.. The other one with momentum k; is detected
in coincidence with the emitted photon and its kinematically permissible values are given by

+ . s o
kg f)' All momenta have a coplanar disposal, where the photon with its momentum is directed

along the Z-axis and the rest momenta lie in the XZ-plane, viz., Rl =(6,;,0), k; 5 =615, 7). As

E, =20 MeV E, =40 MeV

do (nb/ MeV sr)

TR - Ve
0 5 10 15 20 25 30 35 40 45 50 55 5 10 15 20 25 30 35 40 45 50 55

0, (degrees)

Figure 1: Bremsstrahlung cross section for different values of incident energies E;
and for photon energy E,, = 1 MeV: calculated for potential by Buck et al. [13] (solid
curve) and potential by Ali Bodmer [14] (dotted). The pure Coulomb contribution
is shown by the dashed curves.

seen in Fig.1, when increasing the incident energy the cross-section becomes more sensitive to
the choice the model a — a interaction. By relying upon this observation it would be desirable
to measure such cross sections at medium a— «a collision energies feasible with many available
accelerators. It would allow to make up a scarce information on the interaction between alpha
particles at short distances.
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