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Abstract

The alpha-alpha bremsstrahlung is studied using the generalization of the Siegert theo-
rem. The corresponding amplitude is written in the gauge invariant form. Special atten-
tion is paid to taking into account the Coulomb interaction. Some correlation function
is found and its dependence on the strong alpha-alpha interaction is discussed.

1 Theoretical background

Our departure point in describing electromagnetic (EM) interactions with nuclei (in general,
bound systems of charged particles) is to rely upon the Fock-Weyl criterion and the general-
ization of the Siegert theorem (see [1] for details and [2,3], where this approach is compared
to that by Friar and Fallieros [4,5]).

The properties of gauge invariance for a quantum-mechanical system that interacts with
an EM field can be formulated by considering the Schrödinger equation

ı
∂Ψ

∂ t
= Htotal

�

Aµ
	

Ψ (1)

and the gradient displacement

Aµ(x, t)→ A′µ(x, t) = Aµ(x, t) + ∂µG(x, t) (2)

of the EM potential Aµ(x, t) = (A0(x, t),A(x, t)) at the space-time point x = (x, t) with an
arbitrary function G(x). The theory is gauge invariant if there exists a unitary transformation
Ψ→ Ψ′ = UΨ after Fock such that Eq. (1) remains unchanged in its form viz.,

ı
∂Ψ′

∂ t
= Htotal

¦

A′µ
©

Ψ′ → Htotal

¦

A′µ
©

= UHtotal

�

Aµ
	

U† + ı
∂ U
∂ t

U†. (3)

In the first order in charge e it gives the continuity equation (CE) for the current operator
Jµ(x) = (ρ(x), J(x)):

ıdiv J(x) = [H,ρ(x)]→ [P, J(0)] = [H,ρ(0)] , (4)
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where H is the nuclear part of Htotal

�

Aµ
	

and we take into account the property of transla-
tional invariance

exp(−ıP · a)J(x)exp(ıP · a) = J(x+ a) , (5)

with arbitrary displacement a, P is the total momentum operator for the nucleus (bound sys-
tem).

According to refs. [2,3], the amplitude of the reaction A+ B→ A′ + B′ + γ for the photon
emission with energy Eγ , momentum kγ and polarization εµ = (ε0,ε)

Ti f =
�

2(2π)3Eγ
�−1/2 


Pi − kγ; f
�

�εµ Ĵµ(0)
�

�Pi; i
�

(6)

can be expressed through electric E(kγ) and magnetic H(kγ) field strengths

E(kγ) = i
�

2(2π)3Eγ
�−1/2 �

Eγε(kγ)− kγε0(kγ)
�

, H(kγ) = i
�

2(2π)3Eγ
�−1/2

kγ × ε(kγ), (7)

and matrix elements Di f (kγ) and Mi f (kγ) of the so-called generalized electric and magnetic
dipole moments of nucleus (bound system)

Ti f = E(kγ)Di f (kγ) +H(kγ)Mi f (kγ). (8)

These formulae were derived without separation of the center-of-mass (CM) motion, and
thus they can be used in relativistic nuclear models (see, e.g., [6]).

2 Nonrelativistic consideration

We will confine ourselves to nonrelativistic approach in which the nuclear Hamiltonian

H =
P2

2M
+Hint ≡ KC M +Hint (9)

is divided into the kinetic energy operator KC M of the center-of-mass (CM) motion, where M
is the total mass of nuclear system and the intrinsic Hamiltonian Hint depends on internal
variables of interacting nucleons. For a nonrelativistic system the amplitude (8) is given by
(details in [3]):

Ti f = 〈 f |Tint |i〉, Tint = E(kγ)D(kγ) +H(kγ)M(kγ), (10)

D(kγ) =
1
Eγ

1
∫

0

�

Pi −λkγ
�

�R[H,ρ(0)] |Pi) dλ, M(kγ) = −

1
∫

0

�

Pi −λkγ
�

�R× J(0) |Pi)λdλ.

In this context let us recall that the H eigenstates can be factorized as |Pi; i〉= |Pi)|i〉
|Pi −kγ; f 〉= |Pi −kγ)| f 〉,where the bracket |) is used to represent a vector in the space of the
CM coordinate R so P̂|P) = P|P) and |〉 a vector in the internal space, so Hint |i( f )〉= E int

i( f ) |i( f )〉.
Further, with help of the relation [H,R] = −iP/M we find

(2π)3D(kγ) =
1
Eγ

1
∫

0

dλ
��

Dint

�

λkγ
�

, Hint

�

+λ
kγ ·

�

2Pi −λkγ
�

2M
Dint

�

λkγ
�

+i
Pi −λkγ

M
ρint

�

λkγ
�	

,

ρint(λkγ) = (2π)
3
�

Pi −λkγ
�

�ρ(0) |Pi) , Dint(λkγ) = −(2π)3
�

Pi −λkγ
�

�Rρ(0) |Pi) =
i
λ
∇kγρint(λkγ).
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For the one-body charge-density operator:

ρ[1](x) =
∑

α

ρα(x), ρα(x) = ρp(x− rα)πp(α) +ρn(x− rα)πn(α) (11)

we get the Fourier transforms for

the charge density ρint(kγ) =

∫ 1

0

dλ
8
∑

i=1

f ch
i (q)exp (−iq(ri −R))|q=λkγ

the electric dipole moment Dint(kγ) = i∇q

∫ 1

0

dλ
8
∑

i=1

f ch
i (q)exp (−iq(ri −R))|q=λkγ

the magnetic moment Mint(kγ) =Mor b
int (kγ) +Mspin

int (kγ) +M[2]int(kγ) ,

where f N
α (q) is the nucleon form factor (FF).

3 Model calculations in a simple cluster picture

Now, we will consider the following reaction α+α→ α+α+γ with the internal Hamiltonian

Hint = H int
1 +H int

2 +
(P1 − P2)2

16m
+ V, (12)

where P1,P2 - the total momentum operators, m - nucleon mass and H int
1,2 the exact "micro-

scopic" Hamiltonians

H int
1,2 ≡ H1,2 −

P2
1,2

8m
, H1,2 =

∑

i∈α1,2

p2
i

2m
+

∑

i<k i,k∈α1,2

V (i, k), (13)

of the colliding alpha particles and the interaction V between them, V =
∑

i∈α1,k∈α2
V (i, k).

An essential simplification of subsequent calculations is achieved via 1) replacing the exact
interaction V in Hint by an effective one Ve f f (α1,α2) which depends on the cluster-cluster
relative coordinate r= R1−R2, where R1,2 the corresponding CM coordinates and 2) assuming
that the Hint eigenvectors are approximated schematically to

|i〉= Φα1
Φα2
χ(+), | f 〉= Φα′1Φα′2χ

(−)

with the "distorted" waves χ(±)k that describe the cluster-cluster scattering
�

k2

2µα
+ Ve f f (α1,α2)

�

|χ(±)k 〉 ≡ Hrel |χ
(±)
k 〉= Erel |χ

(±)
k 〉. (14)

Moreover, we will deal with the 4He g.s.: Φα1
= Φα2

= Φα′1 = Φα′2 = Φα.
Here we will confine ourselves only to the first term in Eq.(8). Doing so we have in the

Coulomb gauge

Ti f = −
1

Æ

2(2π)9Eγ
ε(kγ) ·m(kγ), (15)

with

m(kγ) = Eγ

∫ 1

0

�

∇q +
Pi

2mαEγ

�

FCH(q)
�

I(k′,k;q) + I(k′,k;−q)
�

dλ, (16)

where FCH(q) is the charge FF of the alpha particle [7]and I(k′,k;q) is the overlap integral

I(k′,k;q) = 〈χ(−)
k′
|e−i 1

2 qr|χ(+)k 〉=
∫

drχ(−)∗
k′
(r)e−i 1

2 qrχ
(+)
k (r) (17)

with the stretched photon momentum q= λkγ.
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4 The initial and final state interactions included

In many cases typical of the nuclear physics the distorted waves in Eq.(14) should be evalu-
ated nonperturbatively. Therefore, we prefer to go on addressing the so-called two-potential
problem ( see, e.g., [8]). First, we separate out the point-like Coulomb interaction

V = VC + (V − VC)≡ VC + VCS , VC = 4e2/r, (18)

that allow us to use the following decomposition of the total resolvent

G(z) = (z −H)−1, G(z) = GC(z) + GC(z)VCSG(z) (19)

with the Coulomb resolvent GC(z) = (z −HC)−1, HC = H0 + VC . Such a decomposition gives

|χ(±)k 〉= ±i lim
ε→0+

εG(Ek ± iε)|k〉 → |χ(±)k 〉= |ψ
(±)
C k〉+ GC(Ek ± i0)VCS|χ

(±)
k 〉, (20)

with the Coulomb scattering wave function |ψ(±)C k〉. Further, for the repulsive Coulomb poten-
tial we employ

GC(Ek ± i0) =

∫ |ψ(±)C p〉dp〈ψ(±)C p|

Ek ± i0− Ep
→ χ(+)k (r) =ψ

(+)
C k(r) +

∫

dq
ψ
(+)
C q(r)〈ψ

(+)
C q|VS|χ

(+)
k 〉

Ek + i0− Eq
(21)

which leads to
|χ(±)k 〉= |ψ

(±)
C k〉+ GC(Ek ± i0)VCS|χ

(±)
k 〉 . (22)

In its turn, overlap integral (17) splits into two parts (cf. decomposition Eq. (1) in [9])

I(k′,k;q) = 〈χ(−)
k′
|e−i 1

2 qr|χ(+)
k′
〉= IC + ICS , ICS ≡ I − IC , (23)

with the Nordsieck-type integral related to purely Coulomb contribution

IC(k
′,k;q) = 〈ψ(−)c k′ |e

−i 1
2 qr̂|ψ(+)c k 〉 (24)

and mixed Coulomb-strong interaction integral

ICS(k
′,k;q) = 〈χ(−)c k′ |VCSGC(Ek + i0)e−i 1

2 qr̂|χ(+)c k 〉+ 〈χ
(−)
c k′ |e

−i 1
2 qr̂GC(Ek + i0)VCS|χ

(+)
c k 〉+

〈χ(−)c k′ |VCSGC(Ek + i0)e−i 1
2 qr̂GC(Ek + i0)VCS|χ

(+)
c k 〉.

(25)

Analytical expression for the integral IC can be found in [10] (see Eq. (10) therein). Calcula-
tions of the three dimenslional integral ICS are reduced to the summation of its partial wave
expansions with radial integrals

ICS(l
′, l, L) =

∫ ∞

0

dr jL

�

1
2

qr
�

�

gl ′ l wk′ l ′(r)wk l(r) +wk′ l ′(r)wk l(r)− Fl ′(k
′r)Fl(kr)

�

(26)

with wk l(r) = (kr)ψk,l(r) and quantities gl ′ l =
1
4(sl ′ − 1)(sl − 1) + 1

2(sl ′ − 1) + 1
2(sl − 1)

being expressed in terms of the S-matrix elements in the angular momentum representation
sl = e2iδl (k), where δl(k) are phase shifts for given values of the collision energy and angular
momentum l.

The convergence of the ICS partial expansion provided owing to that quantities gl ′ l vanish
at large l and l ′, since |sl − 1| → 0 and wave function wkl(r) coincides with the Coulomb
function Fl(kr) at large l. At intermediate energies (E ∼ 10MeV ) one can confine ourselves
to l ′max = lmax = 6. In order to evaluate radial integrals (26) it is convenient to employ the
the contour integration method [11] (see also its comparison to other ones in [12]).
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5 Results and discussion

One of motivations in studying the α+α→ α+α+γ bremsstrahlung is to get a supplementary
information on a strong part of the alpha-alpha interaction. In the context, we will consider
some correlation function dσ ≡ d5σ/dEγdΩ1idΩ1 f , in which one of the outgoing alphas is
detected in coincidence with the emitted photon

dσ =
(2π)10E2

γM2
α

k1i
Æ

(k1i cos (θ1i − θ1 f )− Eγ cosθ1 f )2 − 4MαEγ

�

k(+)21 f |Ti f (k
(+)
1 f )|

2 + k(−)21 f |Ti f (k
(−)
1 f )|

2
�

,

(27)
where k1i =

p

2MαEi momentum of the initial α-particle, Eγ energy of the emitted photon,
Mα the α-particle mass. One of the outgoing alphas has the momentum fixed by the total
momentum conservation k2 f = k1i −k1 f −kγ. The other one with momentum k1 f is detected
in coincidence with the emitted photon and its kinematically permissible values are given by
k(±)1 f . All momenta have a coplanar disposal, where the photon with its momentum is directed

along the Z-axis and the rest momenta lie in the XZ-plane, viz., k̂1 = (θ1i , 0), ˆk1 f = (θ1 f ,π). As

Figure 1: Bremsstrahlung cross section for different values of incident energies Ei
and for photon energy Eγ = 1 MeV: calculated for potential by Buck et al. [13] (solid
curve) and potential by Ali Bodmer [14] (dotted). The pure Coulomb contribution
is shown by the dashed curves.

seen in Fig.1, when increasing the incident energy the cross-section becomes more sensitive to
the choice the model α−α interaction. By relying upon this observation it would be desirable
to measure such cross sections at medium α−α collision energies feasible with many available
accelerators. It would allow to make up a scarce information on the interaction between alpha
particles at short distances.
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