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Abstract

We report our recent studies of generalized parton distribution function-
s of ρ meson with the help of a light-front constituent quark model. The
electromagnetic form factors and structure functions of the system are dis-
cussed. Moreover, we also show our results for its gravitational form factors
(or energy-momentum tensor form factors) and other mechanical properties,
like mass distributions, pressures, shear forces, and D−term.
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1 Introduction

The study of generalized parton distribution functions (GPDs) is a key issue to un-
derstand the internal properties of a complex system [1–4]. Since the sum rules of GPDs
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relate to the form factors (FFs), and the GPDs in the forward limit connect to the par-
ton distribution functions (PDFs), GPDs can give a three-dimensional description of the
system. It is believed that the detailed information of GPDs can be obtained from deeply
virtual Compton scattering or from the vector meson electro-productions.

There are many theoretical studies of the GPDs of nucleon (spin-1/2) [5–8], of pion
(spin-0) GPDs [9, 10], and of some nuclei (like 3He [11], 4He [12], and deuteron [13]). It
should be mentioned that the experimental measurements for the Compton form factors
of the nuclei [14–16]) have already been carried out in Jefferson Lab..

For spin-1 particles, like the ρ meson and deuteron, there are also some discussions for
their FFs, structure functions, transverse momentum distributions, PDFs, and GPDs in
the literature [17–21]. It is addressed that the spin-1 particle, different from spin-1/2 and
spin-0 ones, has three polarizations and therefore has a tensor structure function b1, which
relates to the parton distribution function of the longitudinally polarized target. There
was an experimental measurement for the b1 of the deuteron at HERMES [22], however,
the available data cannot be simply understood by the deuteron structure functions con-
structed from the convolution approach by considering the deuteron being a weakly bound
state of a proton and neutron [23]. It is expected that future Jefferson Lab. experiments
would provide a more precise measurement of the deuteron tensor structure function.

We know that the vector meson ρ is a spin-1 particle. It is believed as a two-body
bound state with a quark and antiquark pair and its wave function is expected to be
S−wave dominant. Since it is easier to deal with the electromagnetic (EM) interaction to
the quark than that to the nucleon, we focus our attention on the study of its GPDs.

2 Generalized parton distribution functions of a spin-1 par-
ticle

According to the general analyses of Ref. [13], there are nine parton helicity conserving
GPDs for a spin-1 particle. In the quark sector, there are five unpolarized GPDsHq

i (x, ξ, t)
(i = 1, 2, · · · 5 and the superscript q standing for the quark contribution with flavor q), and
four polarized GPDs H̃q

i (x, ξ, t) (i = 1, 2, · · · 4). Those GPDs are defined by the matrix
elements of

Vλ′λ =
1

2

∫
dκ

2π
eixκ(P ·n) < p′, λ′ | ψ̄

(
− κn

2

)
/nψ

(κn
2
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> (1)

= −(ϵ
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1 +
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Figure 1: GPDs of the ρ meson. (a) Direct Feynman diagram contributed to the GPDs
by the stuck quark (q) in the valence region, and (b) the stuck u quark in the non-valence
region.

for unpolarized case, and
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1
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=
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ϵ
′∗β(p′, λ′)Ṽ

(i)
βα ϵ

α(p, λ)H̃i(x, ξ, t),

for polarized case. In the above two equations, ψ stands for the quark field, M is the
mass of the system, ϵ′(p′, λ′) (or ϵ(p, λ)) is the polarization vector of the final (or initial)
particle with the momentum and polarization of (p′, λ′) (or (p, λ)), respectively. In eqs
(1-2), n is a light-like 4-vector with n2 = 0, P = (p′ + p)/2, t = ∆2 = (p′ − p)2. In addi-

tion, ξ = − ∆·n
2P·n = − ∆+

2P+ , which is called skewness parameter describing the longitudinal
momentum asymmetry. Figure 1 shows the GPDs of the ρ meson with the valence and
non-valence contributions, respectively.

2.1 Form factors

We know that the sum rules of GPDs give the form factors of the system as∫ 1

−1
dxHq

i (x, ξ, t) = Gq
i (t) (i = 1, 2, 3),

∫ 1

−1
dxHq

i (x, ξ, t) = 0 (i = 4, 5); (3)∫ 1

−1
dxH̃q

i (x, ξ, t) = G̃q
i (t) (i = 1, 2),

∫ 1

−1
dxH̃q

i (x, ξ, t) = 0 (i = 3, 4),

where G1,2,3(t) are the known three form factors of the spin-1 particle which relate to the
EM vector current

Iµλ′λ = ϵ
′∗βϵα

[
− 2

(
G1(t)gβα −G3(t)

∆β∆α

2M2

)
Pµ −G2(t)

(
gµα∆β − gµβ∆α

)]
. (4)
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The three FFs give the charge GC(t), magnetic GM (t), and quadrupole form factors GQ(t).
G̃1,2(t) in eq. (3) are the two axial vector form factors defined by the electro-weak (EW)
matrix element of

Ĩµλ′λ = < p′λ′|ψ̄(0)γµγ5ψ(0)|p, λ > (5)

= −2iϵµαβγϵ
′∗αϵβP γG̃1(t) + 4iϵµαβγ∆

αP β ϵ
γ(ϵ

′∗ · P ) + ϵγ(ϵ
′ · P )

M2
G̃2(t).

It should be stressed that the form factors are only t-dependent and therefore, the sum
rules of eq. (3) are ξ-independent although the GPDs ofH and H̃ are explicit ξ-dependent.
This is due to the analytic properties of GPDs.

Furthermore, we know that the energy-momentum tensor (EMT) Tµν of the system
relates to the gravitational form factors (GFFs) as [24,25]

< p′, λ′|T̂µν(0)|p, λ > = (P · n)P ν
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∫
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}
+ ...,

where A0,1(t), D0,1(t), J(t), and E(t) are the six energy-momentum conserved GFFs of
the spin-1 system, and · · · denotes the other contributions from the energy-momentum
non-conserved form factors. GFFs can be extracted from the moments of GPDs [24, 25].
Therefore, we can get the energy-momentum tensor as well as the mechanical properties
of the system, like the mass distributions, shear forces, pressures, and the D−term.

For example, the mass radius is defined as

< |r2| >Grav.=
1

M2

∫
d3rr2T 00(r⃗) = −6

dA0(t)

dt

∣∣
t→0

. (7)

Then, the pressures and shear forces pi(r) and si(r) (i = 1, 2) are∫
d3∆

2E(2π)3
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where Y ij
2 = rirj

r2
− 1

3δ
ij and the quadrupole operator Q̂ij

λ′λ =< p, λ′|Q̂ij |p, λ > with

Q̂ij = 1
2

(
ŜiŜj + ŜjŜi − 2

3S(S + 1)δij
)
. The appearances of p2 and s2 etc., in the above

equation, are due to the fact that the spin-1 system has quadrupole form factor. In
unpolarized case, i.e. under the average over the polarizations, Q̂ij

λ′λ = 0 and therefore
only p0 and s0 survive. Finally, the D−term of the system is

D = −2
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which stands for the fundamental property of the system. The negative value represents
a stable system.

2.2 Parton distribution functions

In the forward limit, namely ξ → 0, the parton distribution functions relate to GPDs

H1(x, 0, 0) =
q1(x) + q−1(x) + q0(x)

3
= q(x) → F1(x) (10)

H5(x, 0, 0) = q0(x)− q1(x) + q−1(x)

2
→ b1(x)

H̃1(x, 0, 0) = q1↑(x)− q1↓(x) = ∆q(x) → g1(x),

where qλ = qλ↑ + qλ↓ stands for the parton distribution with the polarization parallel (↑)
and anti-parallel (↓) to the motion of the spin-1 particle with polarization of λ. b1(x) is
the tensor structure function, which is unique for the spin-1 particle.

3 Numerical calculations

3.1 Light-front quark model

To describe the ρ meson in the quark degrees of freedom, we follow Ref. [26] to write
an effective Lagrangian for the meson-quark-quark coupling as

Lqqρ = −im
fρ
q̄Γµτ⃗ q · ρ⃗µ = −im

fρ

[
ūΓµuρ0µ +

√
2ūΓµdρ+µ +

√
2d̄Γµuρ−µ + d̄Γµdρ0µ

]
, (11)

where fρ is its decay constant, m is the constituent quark mass. The phenomenological
vertex Γµ reads

Γµ =

[
γµ −

(2k − P − ∆
2 )

µ

M0 + 2m

]
Λ
(
k − 1

2
P, p

)
, (12)

where the kinematic invariant masse M0 is

M2
0 =

κ2⊥ +m2

1− x′
+
κ2⊥ +m2

x′
, (13)

with κ⊥ = (k−P )⊥− x′

2 ∆⊥ and the LF momentum fractions x′ = −k+s /p+ = (1−x)/(1−
|ξ|). The phenomenological quark momentum distribution inside the ρ meson is selected
to be

Λ
(
k − 1

2
P, p

)
=

c

[(k − 1
2P )

2 −M2
R + iϵ][(k − 1

2∆)2 −M2
R + iϵ]

, (14)

where MR is the regulator mass and k stands for the momentum of the active quark. This
distribution represents the wave function of a bound state.

Then, we calculate the matrix elements of eqs. (1-2) and extract the GPDs of the
system. In our phenomenological approach, we have three model-parameters, the quark
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Figure 2: ρ meson form factors. (a) EM form factors, charge Gc (solid black curve),
magnetic GM (dashed red curve), and quadrupole GQ (dotted-dashed blue curve) form
factors, and (b) EW axial form factor G̃u

1(t) contributed by the u quark.

mass, regulator mass MR, and the constant c in eq. (14). The last one can be determined
by the normalization of the ρ+ meson charge, and the former two parameters are optimally
selected as m = 0.403 GeV and MR = 1.61 GeV, respectively. After extracting GPDs,
we can get the EM and EW form factors from the sum rules, the structure functions in
the forward limit (ξ → 0), the gravitational form factors, the energy-momentum tensor as
well as other mechanical properties like the pressures, shear forces, and mass distributions.

In our calculation, we simultaneously consider the valence and non-valence contribu-
tions (see Fig. 1). In the non-forward limit, namely ξ ̸= 0 and |ξ| < 1/

√
1− 4M2/t, the

non-valence contribution is found to be sizeable, and we simply employe the prescription
of Ref. [27] for the non-valence contribution. Our numerical results for GPDs show that
we can reach the continuity from the valence to the non-valence regions, and moreover,
the sum rules of eq. (3) are numerically preserved at different ξ region.

3.2 Results of form factors

Our obtained ”3-dimensional” GPDs have been explicitly plotted in Refs. [28, 29] at
different skewness ξ, where the EM and EW form factors are also obtained according to
eq. (3). Our calculated magnetic moment is 2.06/2Mρ, which fairly agrees with other
model calculations [19, 20]. The estimated quadrupole moment is −0.323/M2

ρ which is
also consistent with other model calculations. In addition, our estimated charge radius is
about 0.72 fm. Fig. 2 displays our calculated EM form factors and EW form factors G̃1(t)
contributed by u quark. Since we also calculate GPDs in the non-forward limit ξ ̸= 0, by
considering the contribution of the non-valence region, we check the sum rules and find
that the sum of the contributions from the valence and non-valence regions at some values
of (ξ, t) is almost the same as the contribution from the valence region at the forward
limit (ξ = 0, t). Namely, our numerical results verify the sum rules of eq. (3).

3.3 Results of structure functions

In the forward limit (ξ = 0), we get the structure functions from our GPDs. Fig. 3
show the results for F u

1 (x) and bu1(x). Since we employ the constituent quark model for
the ρ meson, the calculated structure functions are resulted from the constituent quarks.
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Figure 3: ρ meson structure functions. (a) F u
1 , and (b) bu1(x) contributed by the u quark,

respectively.
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Figure 4: Some GFFs of the ρ meson. (a) A0(t) and A1(t) , and (b) J(t) and E(t).

Our numerical result in Fig. 3 (b) implies that the known Close-Kumano [30] sum rule
for the tensor structure function

∫
dxb1(x) = 0 is almost preserved.

3.4 Results of mechanical properties

From the moments of GPDs, we can get the gravitational form factors of the system.
Fig. 4 show four typical GFFs of A0(t), A1(t), J(t), and E(t), respectively. It should be
reiterated that in the non-forward limit (ξ ̸= 0), we also consider the non-valence contri-
bution, and find that the sum of the valence and non-valence contributions to the GFFs
are almost the same as the valence contribution in the forward limit (ξ = 0) at the same
t.

Other mechanical properties of the system, like the mass distributions, pressures, shear
forces, and D− term can be calculated as well from the obtained GFFs and the energy-
momentum tensor. Fig. 5 displays the results for the mass distributions, shear force, and
pressure of the ρ meson in our approach.

From eq. (7) we can get the mass radius. Our phenomenological approach gives

< |r2| >1/2
Grav.∼ 0.54 fm, which is smaller than the calculated charge radius. This feature is

consistent with the nucleon case [31,32]. The pressure p0(r) in Fig. 5(b) is similar to the
pressure obtained for the nucleon case as well [33]. Moreover, our calculated D = −0.21,
explicitly shows that the system is a stable one.
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Figure 5: ρ meson mechanical properties. (a) mass distributions ϵ0(r) and ϵ2(r), and (b)
share force s0(r) and pressure p0(r).

4 Summary

We summarize our recent studies for the properties of the ρmeson (a typical spin-1 par-
ticle). We, first of all, calculate the GPDs of the system. Both the contributions from the
valence and non-valence regions are explicitly considered in the non-forward limit (ξ ̸= 0).
Our calculated low-energy observables, such as the form factors, are in a good agreement
with other model and Lattice calculations. We also check the valence and non-valence
contributions for the form factors and the continuity from the valence to the non-valence
regions. Our numerical results display that the obtained form factors are ξ-independent.

Then, by employing the forward limit, we obtain the structure functions, like F1(x),
g1(x) and b1(x). The tensor structure function is unique for a spin-1 system. We find that
our calculated b1 almost satisfies the known Close-Kumano sum rule [30].

In particular, we calculate the moments of GPDs and extract the gravitational form
factors. For the spin-1 system, it has six energy-momentum conserved gravitational form
factors. The resulted GFFs give the energy-momentum tensor and the mechanical prop-
erties of the system, like mass distributions, shear forces, pressures, and the D-term. Our
model calculation shows that the mass radius is about 0.54 fm which is smaller than its
charge radius ∼ 0.72 fm. The D-term ∼ −0.21 represents that the considered ρ meson is
stable.

Finally, we know that the GPDs give a ”3-dimensional” description for the space-like
properties of the system. We can also calculate the time-like properties, like the gener-
alized distribution amplitudes (GDAs). In addition, we may further apply our approach
to the deuteron target, which can be regarded as a weakly bound state of a proton and
neutron.
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