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Abstract

We study the 9Be ground-state energy with non-local αn and αα potentials
derived from Cluster Effective Field Theory. The short-distance dependence
of the interaction is regulated with a momentum cutoff. The potential param-
eters are fitted to reproduce scattering length and effective range. We imple-
ment such potential models in a Non-Symmetrized Hyperspherical Harmonics
(NSHH) code in momentum space. In addition we calculate ground-state en-
ergies of various alpha nuclei. Work is in progress in view of the calculation
of the photodisintegration of 9Be with the Lorentz Integral Transform (LIT)
method.

Introduction

The idea of alpha clustering has a long history back to 1930s [1]. By observing alpha decay
from nuclei, physicists speculated that they are made up of alpha particles. Nowadays
there are many experimental evidences for the alpha clustering in nuclei. We mention for
example, the 8Be decay in two alpha particles, the observation of 12C Hoyle state as well
as the observation of other systems [1] predicted by the Ikeda diagram. Furthermore some
of the recent experimental studies strongly support the alpha cluster structure in 56Ni [2]
and in the ground state of 40Ca [3].

In this context our purpose is to describe these cluster nuclei and some reactions of
astrophysical interest, specializing in very low energies, where clusters of nucleons behave
coherently. In this work we focus on the Borromean system provided by the nucleus of
9Be which shows a separation of scales at low energy. For E < 20 MeV the dynamics de-
scribing the cluster configuration is insensitive to the internal dynamics of the α particles.
Therefore, in order to describe this system, we can use a three-body approach with inter-
actions among nucleon and alpha particles. The cluster approach is not new for the study
of 9Be. The same technique of clustering was employed by Efros et al. in [4], where this
nucleus is described as an ααn system and a calculation of the ground state has been made
using phenomenological local potentials. Within the same three-body approach, another
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calculation by Casal et al. [5] was performed, where also a phenomenological three-body
force was introduced.
In this work instead non-local potentials derived from Cluster effective field theory [6, 7],
with a more solid theoretical background, are used. The final goal of this project will be
to employ these potentials in the calculation of the photodisintegration of 9Be by the LIT
method [8]. This reaction is particularly interesting since the inverse reaction represents
an alternative to the triple alpha process in the formation of 12C in supernovae events.
This paper will be organized as follows. In Section 2 we will introduce the Cluster effective
field theory and the potentials used, in Sec. 3 we will present our results and in Sec. 4 the
conclusions.

Cluster Effective Field Theory

In nuclear physics in general nucleons are used as effective degree of freedom, however this
is not the only possible choice. In particular, many nuclei present the peculiar property
for which the probability distribution of the valence neutrons extends well beyond that of
the core and they are called halo nuclei. Others have some parts of the system which can
be seen as separated subsystems. In this work we study the Borromean system provided
by the nucleus of 9Be. The energy needed in order to separate the system into the three
effective degrees of freedom is ∼ 1.572 MeV, while the proton separation energy of 4He
is Sp(

4He) ∼ 19.813 MeV. Comparing these two energies values, one can already see a
separation of scales, needed for an Effective Field Theory approach [6, 7]. The two types
of subsystems of 9Be are the αα pair and the αn one. The αα interaction is dominated
by the 1S0 resonant state, while the αn system has a resonance in the 2P 3

2
partial wave

at low energies.
Another feature required for an effective theory approach is the power counting. For the
nα case, from a physical interpretation one would expect that the two scales are given
by Mlo =

√
2µαnQαdecay(5He) ≈ 30 MeV, Mhi =

√
2µαnSp(4He) ≈ 140 MeV. The chosen

power counting should also reproduce the known resonance of the system at low energy
∼ Mlo, therefore we need to keep the scattering length term and the effective range one
to be of the same order at Mlo to guarantee a resonance pole in the T-matrix. We adopt
the following power counting [7]:

1

a1
∼M2

loMhi , r1 ∼Mhi , (1)

a1 being the scattering length and r1 the effective range. Hence, using experimental values
for a1 and r1, we get Mlo ≈ 50 MeV and Mhi ≈ 170 MeV.
In the αα case we have three different scales of interest Mlo =

√
2µααQαdecay(8Be) ≈ 20

MeV, Mhi =
√

2µααSp(4He) ≈ 260 MeV and the Coulomb one kC = 4αµαα. In a similar
way to the previous case, but with the following power counting

a0 ∼
M2
hi

M3
lo

, r0 ∼
1

3kC
∼ 1

Mhi
, (2)

and using again the experimental values, we obtain Mlo ≈ 20 MeV and Mhi ≈ 170 MeV.
Therefore, we perform an EFT expansion up to NLO with a precision given in the αn

case by O
(
Mlo,αn

Mhi,αn

)
∼ 0.3, while in the αα one has O

(
Mlo,αα

Mhi,αα

)
∼ 0.1. Moreover in order

to evaluate the range of validity of our EFT, we should also consider the breakdown scale
of ααn system. Since we consider a three-body problem we have to take the strictest
constraint Mhi = min{Mhi,αn,Mhi,αα}.
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The Potential

At low energies, one can describe the short-range interaction between two particles with
a potential in momentum space of the form,

V (ppp,ppp′) =

1∑
i,j=0

p2iλijp
′2j , (3)

where p and p′ are the two-body relative momenta and we have introduced the matrix

λ =

(
λ0 0
0 λ1

)
. (4)

One can, in general, expand a potential in partial-wave components by defining

Vl(p, p
′) =

1

2

∫ 1

−1
〈ppp|V |ppp′〉Pl(p̂pp · p̂pp′)d(p̂pp · p̂pp′), (5)

V (ppp,ppp′) = 〈ppp|V |ppp′〉 =
∞∑
l=0

(2l + 1)Vl(p, p
′)Pl(p̂pp · p̂pp′), (6)

where Pl is the l-th Legendre polynomial.
In particular, for a potential dominated by a specific partial wave l one has

V (ppp,ppp′) = plp′lg(p)g(p′)
1∑

i,j=0

p2iλijp
′2j(2l + 1)Pl(p̂pp · p̂pp′) , (7)

where the λ matrix is defined as in (4).
The potential V (ppp,ppp′) is modified by introducing the function g(p), which regulates the
short-distance dependence of the interaction, such that g(p = 0) = 1 and g(p → ∞) = 0.
The two indices i and j, in principle, could be larger than 1, but we are limiting them in
order to get a phase shift expansion up to the effective range order. This leads for the
on-shell T-matrix to the following relation

k2l+1

T onl (E)
= − µ

2π

(
1

αl
+

1

2
re,lk

2 − ik2l+1

)
+O(k3) (8)

with the scattering length αl and the effective range re,l.
The partial wave expansion shown here is important in the study of 9Be and 12C

nuclei since, as already mentioned, the two interactions have a dominant wave according
to the used power counting. Thus one needs to find in both cases explicit expressions
for the coefficients λ0 and λ1 in terms of the scattering length and effective range, with
a dependence on the cutoff Λ necessary to take care of the ultraviolet divergences. The
coefficients for the potential were found by expanding the Lippmann-Schwinger equation
in partial waves in a similar manner to (6):

T (ppp,ppp′) =

∞∑
l=0

(2l + 1)Tl(p, p
′)Pl(p̂pp · p̂pp′) (9)

where

Tl(p, p
′) = plp′lg(p)g(p′)

1∑
i,j=0

p2iτij(E)p′2j . (10)
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What differs between our two cases is how the Lippmann-Schwinger equation is generated.
In the αn case the Lippmann-Schwinger equation takes the form

T (ppp,ppp′) = V (ppp,ppp′) +

∫
dqqq

(2π)3
V (ppp,qqq)

1

E − q2

2µαn
+ iε

T (qqq,ppp′) , (11)

where E = k2/(2µαn). In the αα case, instead, one has to consider also the presence of
the long range Coulomb interaction. Then the T-matrix can be separated as follows

T (ppp,ppp′) = TC(ppp,ppp′) + TSC(ppp,ppp′), (12)

where the TC(ppp,ppp′) is the pure Coulomb one. The latter satisfies the following equation

TSC(ppp,ppp′) = 〈ψ(−)
ppp |VS |ψ(+)

ppp 〉 − 2µαα

∫
dppp′′

(2π)3
〈ψ(−)
ppp′ |VSG

+
C |ψ

(−)
ppp′′ 〉

TSC(ppp,ppp′′)

p2 − k2 + iε
, (13)

where G
(±)
C is the Coulomb Green’s function and |ψ(±)

ppp 〉 =
[
1 +G

(±)
C VC

]
|ppp〉.

In a next step the partial wave decomposition as in (7) has been used in order to
solve the Lippmann-Schwinger equation. The resulting expressions are expanded in k2/Λ2

and evaluated for the relevant partial waves. After the addition of the necessary cutoff,

g(k) = e−(
k
Λ
)2m , m ∈ Z, one finds in both cases quadratic equations, leading to two sets

of solutions for λ0 and λ1, one with a positive and one with a negative λ0. In the αn case
we choose the set of more natural size. In the αα case, instead, both sets of parameters
are of a rather natural size and therefore we study them both.

In Fig. 1 we show the cutoff dependence for the αn phase shift. For cutoffs between
200 and 300 MeV one finds a good agreement with experimental data. In the inset of
the figure one sees that the total cross section correctly reproduces the 2P3/2 resonance at
ER = Qαdecay(5He) = 0.798 MeV with a width of 0.648 MeV [9].

In Figure 2 we show our results for the αα phase shift with a cutoff of 100 MeV in
comparison with experimental data and with another theoretical result, where a different
halo EFT expansion has been employed [10]. One sees that our EFT expansion leads
to a good description of the experimental data in the whole considered energy range,
whereas the results of [10] have a less correct energy dependence beyond 2.5 MeV. Here
it is worthwhile to mention that the phase shift results for both sets of solutions for the
parameters λ0 and λ1 are practically identical.

In addition, we would like to point out that for both αα and αn, a Wigner bound [11]
exists. It limits the cutoffs up to ΛMAX

αn = 340MeV and ΛMAX
αα = 230MeV.
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Figure 1: Phase shifts δ13(En)(l = 1, J = 3/2) with experimental data from
Morgan and Walter [12] and in the inset the cross-section σ13(En) obtained with
Λ = 300MeV.

Figure 2: αα scattering phase shift δ0 (l = 0, j = 0) with cutoff Λ = 100 MeV in
comparison with experimental data from Azfal et al. [13] and with another Halo
EFT calculation [10] in lowest order (LO) and Next-to-leading order (NLO). Also
shown the fit to the experimental data (ERE fit).

Results

In order to obtain the ground state of the studied nuclei, we diagonalize the Hamilto-
nian on a nonsymmetrized hyperspherical harmonics (NSHH) basis in momentum space.
The NSHH approach is based on the use of the hyperspherical harmonics basis without
previous symmetrization [14–16]. Since the potentials that are used in this work are
interactions born in momentum space, we chose to work with a NSHH basis in this space.
HH calculations have been already carried out in momentum space [17], however with a
symmetrized basis. Furthermore, in that work the momentum space HH basis was ob-
tained from a Fourier transform of the coordinate space HH basis. Following such an
approach there is an increase in complexity for the momentum space hyperradial part,
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since the Fourier transform of the Laguerre polynomial is a more complicated hypergeo-
metric function that requires an enormous amount of precision in the integrations as the
required number of polynomials necessary for convergence rises. In our work, instead, a
system of coordinates that is completely born in momentum space is used. It is generated
in analogy to its coordinate space counterpart, namely by taking Laguerre polynomials
for the hypermomentum part.

In Figure 3 we show the convergence of 9Be ground-state energy in function of the
HH quantum number K, where both cutoffs are set equal to 130 MeV. The first feature
that one notes is the rapid convergence. In fact, thanks to the softness of our Halo EFT
potentials, one reaches quite a good convergence already at K = 11. Furthermore, one sees
that the parameter set with a positive λ0 leads to about 0.5 MeV less binding. In Fig. 4
we show the cutoff dependence of the ground-state energy choosing Λαn = Λαα. Here
one needs to take into account that the 9Be binding energy is given by only 1.572 MeV,
since one has to correct for the binding energies of the two α-particles. The figure shows
that one obtains for some combinations of cutoff values and λi solutions the experimental
energy. Moreover, one notes that the 9Be ground-state energy exhibits a relatively strong
variation, between 0 and -5 MeV, due to the cutoff value. This dependence is probably
caused by the lack of a three-body force.

Now we turn to the discussion of the considered α-nuclei. Also for these nuclei we find
a rather rapid HH convergence of the various ground-state energies. In Fig. 5 we show as
example 16O.

In Fig. 6 we illustrate the cutoff dependence of the ground state energies for the α-
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Figure 6: Cutoff dependence of ground-state energies of various α-nuclei with HH
quantum number K equal to 12 (12C,16O) and 8 (20Ne, 24Mg). Blue curves: λ0
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nuclei. Again one has quite a large variation of energies. These results further support
the need for a three-body force in our Halo EFT approach. It is interesting to notice,
however, that, except for the case of 12C, one can find cutoff values that reproduce the
experimental energy.

Conclusions

In this work we present a study of the ground-state energies of 9Be and various α-nuclei
with non-local αn and αα interactions derived from Cluster Effective Field Theory [6,
7]. The potentials are regularized by a Gaussian cutoff which takes care of ultraviolet
divergences of the interaction. The potential parameters are fitted in order to reproduce
a correct on-shell T -matrix up to the effective range order. The calculation of the various
ground-state energies is carried out by diagonalizing the Hamiltonian on an NSHH basis
in momentum space. We obtain in general a rather strong cutoff dependence. However,
we are able to reproduce the experimental ground-state energies for selected cutoff values
for all of the studied nuclei, but for 12C. The strong cutoff dependence and the case of 12C
indicate the lack of three-body forces. Therefore, in future, we plan to extend our Halo
EFT approach by including such many-body forces.

Another possible future project is the study of 9Be photodisintegration. As it was
stated in the introduction, the photodisintegration of 9Be is an interesting reaction be-
cause it is the inverse process of α+α+n→9Be+γ, the first step in Carbon-12 production
through the ααn chain, which could be in the event of a supernova an important contri-
bution to carbon nucleosynthesis. In order to study this process we plan to calculate the
9Be photoabsorption cross section via the Lorentz integral transform approach [8].
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