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Abstract

In the framework of the Faddeev equations in configuration space we perform
an analysis of quasi-bound state of the NNK̄ system within a particle model.
In our approach, the system NNK̄(sNN = 0) (NNK̄(sNN = 1)) is described as
a superposition of ppK− and pnK̄0 (nnK̄0 and pnK−) states, which is possible
due to a particle transition. The relation of the particle model to the theory
of a two-state quantum system is addressed and discussed taking into account
the possibilities of deep and shallow NNK̄(sNN = 0) quasi-bound states.
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1 Introduction

Over 50 years ago a study of three possible isospin configurations of the K̄NN system led
Nogami [1] to the assumption of the possible existence of the bound state in this system: in
a antikaon-nucleons system the presence of theK− meson attracts two unbound protons to
form a K−pp cluster. Calculations performed by Akaishi and Yamazaki [2] have predicted
the possible existence of discrete nuclear bound states of K̄ in few-body nuclear systems
and this prediction was confirmed by several subsequent publications (see [3] and references
herein).

The theoretical prediction of the kaonic nuclei stimulated the experimental search
of the deeply bound states of K̄ in few-body nuclear clusters though different nuclear
processes. Both experimental and theoretical advances have been made in the last two
decades for study kaonic nuclear K−pp state. The experimental and theoretical status of
the K−pp is summarized in Refs. [4–8].
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Based on the results of experimental search of the K−pp cluster, one can conclude
that the situation is still controversial and the existence of the K−pp bound state has
not yet been established [4]. However, the most recently, the J-PARC E15 collaboration
reported the observation of a distinct peak in the Λp invariant mass spectrum of 3He(K−,
Λp)n, well below mK + 2mp, i.e., the mass threshold of the K− meson to be bound to
two protons. The simplest fit to the observed peak gives a Breit–Wigner pole position at
47± 3(stat.)+3

−6(sys.) MeV having a width 115± 7(stat.)+10
−20(sys.) MeV, which the authors

claim as a new form of the nuclear bound system with strangeness − K−pp [9]. At the
same time, one can note the theoretical analysis of this experiment in Ref. [8], where
the two quasi-bound states were predicted. The deeply bound state has energy about
-100 MeV and second one has energy about -50 MeV.

The kaonic strange dibaryon K̄NN represents a three-body system and theoretically
has been treated in the framework of a few-body physics approaches: the variational
method including the framework of antisymmetrized molecular dynamics , method of
Faddeev equations in momentum and configuration representations, the Faddeev equa-
tions in the fixed center approximation and method of hyperspherical harmonics in con-
figuration space and momentum representation (see reviews [5–8] and references herein).
Calculations for a binding energy and width of the kaonic three-body system are per-
formed using different potentials for the NN interaction, as well as different potentials for
the description of the kaon–nucleon interaction. The latter are the energy-independent
phenomenological K̄N potential and the energy-dependent chiral K̄N interaction. All
aforementioned approaches predict the existence of a bound state for the K−pp. The
K−pp cluster binding energy was theoretically estimated to be approximately 10-20 MeV
for energy-dependent chiral interactions and 40–90 MeV for energy-independent K̄N in-
teractions. The predicted values for the binding energy and the width are in considerable
disagreement: 9–95 MeV and 20–110 MeV, respectively. Interestingly enough, that the
theoretical models disagree about the possibility to observe kaonic quasi-bound states and
theoretical values of the binding energy and decay width have a large ambiguity depend-
ing on the K̄N interaction models and the calculation methods. There are systematic
discrepancies between the theoretical predictions and experimental observations. For the
theoretical status of K−pp refer to [5–7] and references therein.

In the present work we study the quasi-bound state of the system NNK̄ within the
method of Faddeev equations in configuration space. We are considering the system
NNK̄(sNN = 0) as a two-state quantum system ppK−/npK̄0 within a particle repre-
sentation. The latter allows us to analyze the quasi-bound state of the system NNK̄
within two-level approach by considering it as a superposition of K−pp/K̄0pn in the
framework of the potential model using NN potential and energy-independent effective
K̄N interactions.

2 Particle representation for NNK̄(sNN = 0) system: ppK−

and npK̄0 channels

In the present work we restrict the model space to the s-wave approach. The Coulomb
interaction is not taken into account and the mass differences for the K̄0 and K− mesons
(5.1 MeV [10]), and neutron and proton (1.3 MeV [11]) are ignored. This input corresponds
to the one used within isospin formalism consideration. In this scenario isospin singlet
NK̄ potential is the same for K−p and K̄0n interactions. Therefore, for NNK̄(sNN =
0) system, the singlet isospin configurations (K−p)p and (K̄0n)p have to be equivalent.
However, the pK− and nK̄0 systems are different when the presence of the Coulomb force

2



SciPost Physics Submission

in pK− system and mass differences are taken into account. In Fig. 1 are presented
the results for calculation for the mass differences for the systems n + K̄0 and p + K−,
using Akaishi and Yamasuki (AY) potential [12], when the Coulomb repulsion between the
proton and K− is ignored. These systems are separated by the difference of the masses
with the gap of about 5 MeV, as is shown in Fig. 1. This value is small with respect to
the total mass of each system, however, it is significant in the energy scale relatively to
the binding energy 30 MeV of the NK̄.

The symmetry of the isospin picture, which one wants to describe in the terms for
ppK− and npK̄0 channels, is violated in the npK̄0 system. The system ppK− is described
using two potentials (pp and pK−), while for the description of the system npK̄0 we are
using three different potentials: np, pK̄0 and nK̄0. The latter two are related to the
interaction of K̄0 with the proton and neutron, respectively. Following Ref. [13] we are
considering the system NNK̄(sNN = 0) using the ”particle representation” instead of the
isospin formalism.

Figure 1: The mass differences for the systems n+ K̄0 and p+K−. The binding
energies of the ground states for the n+ K̄0 and p+K− are calculated with the
AY effective isospin singlet NK̄ potential [12]. The Coulomb force is not included
in calculations for p+K− system.

In the present work, we consider the particle picture for the NNK̄ systems and propose
to describe it as a two-level system ppK−/npK̄0 by mixing ppK− and npK̄0 configurations.
The two-level, also known as two-state system, is a quantum system that can exist in
any quantum superposition of two independent and physically distinguishable quantum
states [14]. We assume that in the systems ppK− and npK̄0, the nK̄0 and pK− interactions
are equivalent to singlet isospin NK̄ interaction, and the nK− and pK̄0 interactions are
the same and equal to the triplet NK̄ isospin interaction.

In the particle representation, the wave function Ψ of the coupled ppK−/npK̄0 system
is a column vector. Let’s decompose the wave functions of the systems ppK− and npK̄0

into the usual Faddeev components [15] ψppK− = U1+W1+Y1 and ψnpK̄0 = U2+W2+Y2,
respectively. The wave function Ψ of the coupled ppK−/npK̄0 system is presented as a
superposition of the wave functions of each system as:

Ψ = Aψ, ψ =

(
ψ1

ψ2

)
=

(
ψppK−

ψpnK̄0

)
=

(
U1

U2

)
+

(
W1

W2

)
+

(
Y1
Y2

)
, (1)

A =

(
α −β
β α

)
, α = sin θ, β = cos θ. (2)

Here the parameter θ defines the coupling strength and A is an unitary matrix: AAT = I.
The Schrödinger equation for the ppK− and npK̄0 systems can be written in the

following matrix form:

(H0 + Vpp, np + VpK−, pK̄0 + VpK−, nK̄0 − E)ψ = 0. (3)
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In Eq. (3) H0 is the kinetic energy operator of three particles and the interactions are
defined as

Vpp, pn =

(
vpp 0
0 vpn

)
, VpK−, pK̄0 =

(
vpK− 0
0 vpK̄0

)
, VpK−, nK̄0 =

(
vpK− 0
0 vnK̄0

)
,

where the vpp and vnp are spin singlet components of theNN potential. The vpK− and vnK̄0

are isospin singlet, while vpK̄0 isospin triplet components of theNK̄ potential, respectively.
Let us apply the unitary transformation A to (3) taking into account that AAT = I

and the first three terms in Eq. (3) are invariants relative to the A transformation due
to the simplification: mp = mn, mK− = mK̄0 , vpp = vpn, vpK− = vnK̄0 . As a result we
obtain the following equation for the wave function Ψ of the coupled ppK−/npK̄0:

((H0 + Vpp,np + VpK−,nK̄0)I +A(VpK−,pK̄0)AT − E)Ψ = 0 (4)

The potential VpK−, pK̄0 generates the matrix A(VpK−,pK̄0)AT :

V =

(
V11 V12
V21 V22

)
, (5)

where V11 = α2vpK− + β2vpK̄0 , V12 = V21 = αβ(vpK− − vpK̄0), V22 = β2vpK− + α2vpK̄0 .
One should note that non-diagonal elements V12 and V21 of the matrix (5) make the
channel coupling. The coefficients α and β can be chosen to present a coupling between
the channels.

Now the Schrödinger equation (4) for the coupled ppK−/npK̄0 system can be writ-
ten for the corresponding Faddeev components. These components satisfy the following
differential Faddeev equations (DFE):

(HU
0 + vspp − E)U1 = −vpp(W1 + Y1),

(HW
0 + vpK− − E)W1 = −vpK−(U1 + Y1),

(HY
0 + V11 − E)Y1 + v12Y2 = −V11(U1 +W1)− V12(U2 +W2),

(HU
0 + vspn − E)U2 = −vpn(W2 + Y2),

(HW
0 + vnK̄0 − E)W2 = −vnK̄0(U2 + Y2),

(HY
0 + V22 − E)Y2 + V21Y1 = −V22(U2 +W2)− V21(U1 +W1).

(6)

If α = 1, β = 0 the system of equations (6) decouples and the first three equations describe
the kaonic cluster ppK−, while last three equations describe the kaonic cluster pnK̄0. In
the case of a weak channel coupling one can assume that α ≈ 1 and β ≈ 0. Thus, describing
NNK̄ (sNN = 0) system we consider two separate states ppK− and pnK̄0. For the first
one, the s-wave approach based on the DFE leads to the following equations [16]:

(HU
0 + vpp − E)U = −vpp(W + Y),

(HW
0 + vpK− − E)W = −vpK−(U + Y),

(HY
0 + vpK− − E)Y = −vpK−(U +W),

(7)

where vpK− corresponds to the isospin singlet potential of the NK̄ interaction. The s-wave
approach for the npK̄0 system leads to the following DFE:

(HU
0 + vnp − E)U = −vnp(W + Y),

(HW
0 + vnK̄0 − E)W = −vnK̄0(U + Y),

(HY
0 + vpK̄0 − E)Y = −vpK̄0(U +W).

(8)

In Eq. (8) vpK̄0 and vnK̄0 is chosen as isospin singlet and triplet components of the NK̄
potential, respectively.
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A particular interest presents the case when α = β = 1√
2
, which means strong coupling

between the channels, and therefore we have v+ ≡ V11 = V22 =
vpK−+vpK̄0

2 and v− ≡ V12 =

V21 =
vpK−−vpK̄0

2 and the system (6) becomes:

(HU
0 + vspp − E)U1 = −vpp(W1 + Y1) ,

(HW
0 + vpK− − E)W1 = −vpK−(U1 + Y1) ,

(HY
0 + v+ − E)Y1 + v−Y2 = −v+(U1 +W1)− v−(U2 +W2) ,

(HU
0 + vspn − E)U2 = −vpn(W2 + Y2) ,

(HW
0 + vnK̄0 − E)W2 = −vnK̄0(U2 + Y2) ,

(HY
0 + v+ − E)Y2 + v−Y1 = −v+(U2 +W2)− v−(U1 +W1) .

(9)

One can use the unitary transformation B = 1√
2

(
1 1
−1 1

)
for Y1 and Y2 in the

following form: Y ′ = BY or Y = BTY ′, where Y = (Y1, Y2)
T and

A

(
v+ v−

v− v+

)
AT =

(
vpK− 0
0 vpK0

)
to simplify the set of Eqs. (9). The transformation leads to the following set of equations:

(HU
0 + vpp − E)U1 = −vpp(W1 +

1
2(Y1 − Y2)) ,

(HW
0 + vpK− − E)W1 = −vpK−(U1 +

1
2(Y1 − Y2)) ,

(HY
0 + vpK− − E)Y1 = −vpK−(U1 +W1 + U2 +W2) ,

(HU
0 + vpn − E)U2 = −vpn(W2 +

1
2(Y1 + Y2)) ,

(HW
0 + vnK̄0 − E)W2 = −vnK̄0(U2 +

1
2(Y1 + Y2)) ,

(HY
0 + vpK̄0 − E)Y2 = −vpK̄0(U2 − U1 +W2 −W1) .

(10)

The set of Eqs. (10) allows us to make comparison with Eqs. (7) - (8) which describe
the independent ppK− and npK̄0 systems. Taking into account that vpp = vpn and
vpK− = vnK̄0 , the set (10) can be rewritten as

(HU
0 + vpp − E)A1 = −vpp(B1 + Y1) ,

(HW
0 + vpK− − E)B1 = −vpK−(A1 + Y1) ,

(HY
0 + vpK− − E)Y1 = −vpK−(A1 +B1) ,

(HU
0 + vpn − E)A2 = −vpn(B2 + Y2) ,

(HW
0 + vnK̄0 − E)B2 = −vnK̄0(A2 + Y2) ,

(HY
0 + vpK̄0 − E)Y2 = −vpK̄0(A2 +B2) ,

(11)

where A1 = U1 + U2, A2 = U2 − U1, B1 = W1 +W2, B2 = W2 −W1. As a result, one
can see that the set of Eqs. (11) is separated into two independent sets. The first one
describes the ppK− system, while the second one corresponds to the npK̄0 system. Thus,
the coupling between ppK− and npK̄0 is eliminated under the assumption α = β.

One can obtain approximation for the set (10) taking Y2 = 0 with the condition that
the pK̄0 potential is weak and U1 ≈ U2 and W1 ≈ W2. The new set has the following
form:

(HU
0 + vpp − E)A1 = −vpp(B1 + Y1) ,

(HW
0 + vpK− − E)B1 = −vpK−(A1 + Y1) ,

(HY
0 + vpK− − E)Y1 = −vpK−(A1 +B1) ,

(HU
0 + vpn − E)A2 = −vpnB2 ,

(HW
0 + vnK̄0 − E)B2 = −vnK̄0A2 .

(12)

The analysis of (12) shows that again we have two independent sets. The first one describes
the ppK− system while the second one corresponds to the npK̄0 system when the weak
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pK̄0 interaction is neglected. We will see below that the assumed conditions are satisfied in
ppK−/npK̄0 calculations. One can conclude that the parameters of the pK0 interaction
cannot be fixed by the study of ppK−/npK̄0 system due to small contribution of the
corresponding Y2 component. Note that the elimination U2 − U1 and W2 − W1 is not
possible for the nnK̄0/npK− coupled system. In this case, the difference between nn and
np spin triplet potentials violates the symmetry of the equations.

3 Numerical Results

The ground state energy of ”ppK−” cluster is calculated with effective AY potentials [12]
for the K̄N interaction. We used the modified MT I-III potential [17] for the NN nuclear
interaction.

Firstly, let us pay attention to numerical analysis of Eq. (6) where we have single
undefined constant α (or β). If α = 1, β = 0 the system of equations (6) decouples
and the first three equations describe the kaonic cluster ppK−, while last three equations
describe the kaonic cluster pnK0. In opposite case we have coupling between the ppK−

and ppK− states. If the coupling, defined by the potentials V12 and V21, is ignored, the
systems transit as one to another when the coupling constant α increases from 0 to 1.
This situation is presented in Fig. 2 where we show the binding energies of the ppK−

and npK̄0 states obtained by using Eq. (6) without V12 and V21. Important is that the
”ppK−” cluster can be described as having two levels with the same energy for the α = 1√

2
.

Switching on the coupling has to lead to ”repulsion of the levels” or anti-crossing of the
levels. Note that energy in this point is different from one obtained in the framework of
the isospin model. Thus the coupling constant has to be chosen as 1√

2
. It means that the

probability of the ppK− and npK̄0 states is equal in the ”ppK−” cluster.

Figure 2: The binding energies of the ppK− and npK̄0 states as solutions of
Eq. (6) when V12 = 0 and V21 = 0 for different values of the coupling param-
eter α. The difference of the masses of kaons has not been taken into account.
The energies are measured from three-body threshold. The energy of two-body
threshold is shown by the dotted line, while the solid line presents the energy of
quasi-bound state obtained within the isospin model.

The numerical results for the quasi-bound state energy |ENNK̄ | of the ”ppK−” cluster
are presented in Table 1. We compare the results of the isospin and particle models.
The result for isospin model is the same which was obtained early in Ref. [16], where
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Table 1: The quasi-bound state energy |ENNK̄ | of the ”ppK−” cluster calculated
within the isospin formalism and particle model with the AY K̄N and MT I-III
nucleon-nucleon potentials. |ENK̄ | is the binding energy of the pair NK̄ (pK− or
nK̄0). The energies of the separated ppK− and npK̄0 systems are presented. The
values of |ENNK̄(VNN = 0)| when the interaction between two nucleons is turned
off are shown. ϵ1 and ϵ2 are the lower and upper energies of the quasi-doublet
state ppK−/npK̄0, respectively. The energies are given in MeV. The masses of
the kaons (nucleons) are equal to the value for averaged mass.

Model System |ENK̄ | |ENNK̄ | |ENNK̄(VNN = 0)|
Isospin NNK̄(sNN = 0) 30.3 46.0 42.9
Particle ppK−/npK̄0 ϵ1 70.6 80.8

ϵ2 30.3 –
ppK− 70.6 80.8
npK̄0 30.8 –

the configuration space Faddeev equations were also used. It can be mentioned that the
nucleon-nucleon interaction is appeared as an attractive one. The values for |E3(VNN = 0)|
is smaller than the value of |ENNK̄ |. In other words, when the NN interaction is switched
off, then the binding energy decreases. For the particle model we have calculated the
energy in different cases. For the first one, we calculated energies taking into account the
coupling between the ppK− and npK̄0 states. We obtained two energies ϵ1 and ϵ2, which
are the lower and upper energies of the quasi-doublet state ppK−/npK̄0. For the second
one, we calculated energies of separated ppK− and npK̄0 states. In this case, we have also
two values for ppK− and npK̄0 systems, respectively.

The attraction/repulsion character of pp potential at different distances can be ex-
plained using results given in Table 1. The attraction/repulsion behavior of the pp po-
tential is appeared by comparison of the bound state energy to one when the interaction
between two nucleons is turned off (case VNN = 0). This effect is caused by strong at-
tractive singlet pK− potential which allows the identical particles to be close together.
The compact system has larger binding energy. Within isospin model, the energy is larger
than in the case when the NN potential is omitted. Thus, the NN potential is weakly
attractive. In the particle model, the NN potential is repulsive due to the more compact
spatial configuration.

The numerical results for the NNK̄(sNN = 1) system are presented in Table 2. This
system is unbound within the isospin consideration. Comparison of the results given in
Tables 1 and 2 shows that the difference of the binding energies of npK̄0(sNN = 0) and
npK−(sNN = 1) systems is about 7 MeV. This is the effect of the difference of the states
of nucleon pairs in these systems. It is known that the nucleon pair with the spin sNN = 1
(deuteron) corresponds to the bound state with energy of -2.23 MeV. This additional
bound pair in the npK−(sNN = 1) system leads to the increase of the three-body binding
energy by 7 MeV. In our calculations we use the MT-I-III nucleon-nucleon potential [17],
where the triplet/triplet isospin/spin component is zero. Therefore, the results for the
nnK̄0 and ppK−(VNN = 0) systems are the same. We can evaluate the mass polarization
effect [18] for nnK̄0 system as difference between |EnnK̄0 | and 2|ENK̄ |. The value is about
20 MeV and the relative contribution of the mass polarization to the binding energy is
about 25%. Notice, the last value depends mainly on the mass ratio of the particle in the
system. For the system, where the mass of non-identical particles is essentially larger than
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Table 2: The quasi-bound state energy |ENNK̄ | of the NNK̄(sNN = 1) system
calculated within the isospin formalism and particle two-level system model with
the AY K̄N and MT I-III nucleon-nucleon potentials. |ENK̄ is the binding energy
of the singlet state of NK̄ pair (pK− or nK̄0). The energies for the separated
nnK̄0 and npK− systems are presented. The values of |ENNK̄(VNN = 0)| when
the interaction between two nucleons is turned off are shown. ϵ1 and ϵ2 are the
energies of the quasi-doublet of nnK̄0/npK− state, respectively. The energies
are given in MeV.

Model System |ENK̄ | |ENNK̄ | |ENNK̄(VNN = 0)|
Isospin NNK̄(sNN = 1) 30.3 unbound –
Particle nnK̄0/npK− ϵ1 87.7 80.8

ϵ2 unbound –
nnK̄0 80.8 80.8
npK− 37.9 –

the mass of identical particles, the effect can be neglected and |E3| ≈ 2|E2|. The results
for the coupled nnK̄0/npK− system demonstrate so called ”repulsion of levels”, which we
defined as the extension of the energy gap between nnK̄0 and npK− levels due to the
channel coupling. The upper level of the system with the energy ϵ2 becomes unbound.
The lower level with the energy ϵ1 becomes deeper.

Finally, we present spectrum of ppK−/npK̄0 and nnK̄0/npK− bound and resonance
states in Fig. 3. The effect of coupling is shown as a ”repulsion of the levels”. On the left
hand side of Fig. 3, we present the results obtained for the separated systems ppK− and
npK̄0 (also for separated nnK̄0 and npK−). For comparison, the results for corresponding
coupled system are shown on the right hand side. If the repulsion of levels is take place,
the energy splitting for the quasi-doublets of coupled systems becomes larger that was for
separated systems. One can see, that this effect is only appeared for the case nnK̄0/npK−.
According to Eq. (12), the effect is not visibly for the ppK−/npK̄0 case.

Figure 3: Spectrum of ppK−/npK̄0 and nnK̄0/npK− bound (double lines)
and resonance (dashed line) states. The effect of the coupling is presented as a
”repulsion of levels” and is shown by connecting lines. The energies are measured
from the three-body threshold p+ p+K−. The spin of the nucleon pair is show.
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4 Conclusions

We proposed the two-level system treatment for NNK̄ kaonic systems based on particle
representation. The cluster NNK̄(sNN = 0) is presented as two-level system including
ppK− and pnK̄0 states. The same approach is applied for the NNK̄(sNN = 1) system
considered as nnK̄0/npK− coupled states. The coupled coefficients were chosen to be
α = β = 1√

2
for both NNK̄ kaonic systems. It means that the probabilities to find the

NNK̄(sNN = 0) system as ppK− or pnK̄0 are the same.
We found deeply bound state of the NNK̄(sNN = 0) cluster with the energy about

-72 MeV below p+ p+K− threshold using the phenomenological AY and MT potentials.
Also, there is weakly bound pnK− states with the energy -31 MeV. These states are
corresponded to the separated channels ppK− and npK̄0, respectively. The nnK̄0/npK−

system has deeply bound state with the energy above -87 MeV below n+p+K− threshold.
This state corresponds to the nnK̄0 channel.

Thus, the sequential particle model for NNK̄ kaonic cluster provides one deeply and
one shallow bound states.
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