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Abstract

The kaonic cluster ppK− is described by isospin-dependent NK̄ potentials with
significant difference between singlet and triplet components. The quasi-
bound state energy of the system is calculated based on the configuration
space Faddeev equations within isospin and averaged potential models. The
isospin averaging of NK̄ potentials is used to simplify the isospin model to
isospinless one. We show that three-body bound state energy E3 has a lower
bound within the isospin formalism due to relation |E3(VNN = 0)| < 2 |E2|, where
E2 is the binding energy of isospin singlet state of the NK̄ subsystem. The
averaged potential model demonstrates opposite relation between |E2| and
|E3(VNN = 0)|.

1 Introduction

The quasi-bound states in the kaonic cluster NNK̄(sNN = 0) are intensively debated
during the last years. The theoretical predictions for the binding energy are in significant
disagreement with the values derived from existing experimental data [1]. The properties
of the kaonic cluster are defined by NK̄ interaction, having significant difference for the
isospin singlet and triplet channels. The isospin singlet component of the NK̄ potential
generates a quasi-bound state corresponding to the Λ(1405) resonance below the pK−

threshold. The resonance has the double state nature due to the NK̄ quasi-bound state
and πΣ resonance [2]. There are two potential models for the NK̄ quasi-bound state
which are used for three-body calculations. The Akaishi-Yamazaki (AY) NK̄ potential
taking into account the πΣ coupling effectively has been proposed in Ref. [2]. The effec-
tive NK̄ interactions have a strong attraction in the singlet I = 0 channel and a weak
attraction in the triplet I = 1 channel. The binding energy of ppK− obtained within this
isospin model is |ENNK̄ |=48 MeV [2]. The two-body threshold is close to the bound state
energy of Λ(1405) as K−p bound pair (about 30 MeV). Similar results have been obtained
within more complicated models [3,4]. This value is much smaller than the experimentally
motivated value of about 100 MeV for the ppK− deeply bound state [5]. Alternatively,
the chiral model for the potential has been proposed (see [6]) for the NK̄ interaction.
The model reduces the isospin singlet component of NK̄ potential due to the strong cou-
pling NK̄ and πΣ channels. The value about 20 MeV for |ENNK̄ | was obtained with the
two-body threshold about 11 MeV. Discussion about the experimental background and
theoretical interpretations can be found in Ref. [1, 7].

In the present work, we show, that within isospin model for NNK̄(sNN = 0) based
on the phenomenological potentials, the value of binding energy about 100 MeV cannot
be reached due to a relations between E2 and E3(VNN = 0). Where, E2 is two-body
bound state energy and E3(VNN = 0) is the energy of bound three-body system, when the
interaction between the identical particles is omitted. The relation is a result of isospin
splitting of NK̄ potential and strong binding in the NK̄ singlet I = 0 channel.

1



SciPost Physics Submission

The relation between E2 and E3(VAA = 0) has been previously found for bosonic
isospinless AAB systems [9]. For the systems, the contribution of the mass polarization
term to the three-body energy leads to the relation |E3(VAA = 0)| > |2E2|.

The ”isospinless model” for the kaonic clusters based on the isospin averaged NK̄
potential have been proposed in Refs. [8, 9]. In Ref. [10], such averaging defined as ”V-
averaging” is related to isospin averaged NK̄ potential: V av

NK̄
= 3

4V
I=0
NK̄

+ 1
4V

I=1
NK̄

. Another
type of the averaging called in Ref. [10] as ”t-averaging” is applied for two-body t-matrix.
These two types averaging were proposed for simplification of isospin models describing
three and four -body kaonic clusters. The t-averaging was previously used in Refs. [11]
for NNK̄ calculations when sNN = 1 and sNN = 0. The NK̄ interaction amplitude was
presented by isospin decomposition of two-body isospin singlet and triplet amplitudes:
fNK̄ = 3

4f
I=0
NK̄

+ 1
4f

I=1
NK̄

. The decomposition is different for sNN = 0 and sNN = 1 spin states
of NNK̄ system. Based on this deference, the authors of Refs. [11] obtain approximate
evaluation for strength of the NK̄ interaction in the ppK− and dK− systems.

We apply the V-averaging to obtain an isospinless model for NNK̄(sNN = 0) system.
The goal is to compare the isospin and the isospinless model to show the effect of isospin
spliting of the NK̄ interaction. The result of such comparison is the different relations
between E2 and E3(VNN = 0) satisfying for both types of the NK̄ potential (AY and
sHW). Our study is based on the Faddeev equations in configuration space. The Faddeev
equations allow to separate components of the total wave function corresponding to the
different particle rearrangements.

2 Formalism

2.1 Faddeev equation for AAB system
The kaonic cluster ppK− are represented by the three-body AAB system with two identical
particles. The total wave function of the AAB system is decomposed into the sum of
the Faddeev components U and W corresponding to the (AA)B and A(AB) types of
rearrangements: Ψ = U+W ±PW , where P is the permutation operator for two identical
particles. In the expression for Ψ, the sign ”+” corresponds to two identical bosons,
while the sign ”−” corresponds to two identical fermions, respectively. Each component
is expressed by corresponding Jacobi coordinates. For a three-body system with two
identical particles the set of the Faddeev equations is presented by two equations for the
components U and W :

(H0 + VAA − E)U = −VAA(W ± PW ),
(H0 + VAB − E)W = −VAB(U ± PW ),

(1)

where again the signs ”+” and ”−” correspond to two identical bosons and fermions,
respectively and H0 is the kinetic energy operator presented in the Jacobi coordinates for
corresponding rearrangement. The wave function of the system AAB is symmetrized with
respect to two identical bosons, while it is antisymmetrized with respect to two identical
fermions.

In the presented work, we consider the s-wave approach for the AAB systems. For
bosonic system, we have the Faddeev equations (1) in the form with the sign ”+”. When
VAA = 0, one obtains a single equation: (H0 + VAB −E)W = −VABPW. Here, we assume
that the VAB potential generates a deep bound state with energy E2. The term of right
hand side of the equation is the exchange term. This term adds negative energy to the
two-body energy E2 defined by left hand side of the equation and the three-body energy
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becomes less than E2: E = E3 < E2 (the mass polarization effect). The two factors
play important role here: the nature of the AB potential and mass ratio mB/mA (due
to the permutation operator P , acting on the Jakobi coordinates). Examples of the mass
polarization effect evaluated for diffrenet systems one can find in Ref. [9].

2.2 Isospin formalism for kaonic system
The NNK̄ system is a system with two identical particles described by Eq. (1). The
separation of spin-isospin variables leads to the following form of the Faddeev equations:

(H0 + VNN − E)U = −VNND(1 + p)W,
(H0 + VNK̄ − E)W = −VNK̄(DTU +GpW),

(2)

where W is a column matrix with the isospin singlet and triplet coordinate dependent
parts of the Faddeev component W . The component U is presented by isopin triplet part
of U corresponding to the spin singlet state of NN pair. The matrixes have the following
form:

D = (−
√
3

2
,−1

2
), G =

(
1
2

√
3
2√

3
2 −1

2

)
, W =

(
Ws

Wt

)
, U = U t. (3)

The superscripts s and t in (3) denote the singlet and triplet isospin parts of the compo-
nents U and W. In Eq. (2), VNN = vtNN is isopsin triplet NN potential in the singlet
spin state and VNK̄ = diag{vs

NK̄
, vt

NK̄
}, and the exchange operator p acts on the particles’

coordinates only.
For calculations, we use the s-wave Akaishi-Yamazaki [2] and the simulating Hyodo-

Weise (sHW) effective potentials [12] of NK̄ interactions, which include the coupled-
channel dynamics into a single channel NK̄ interaction. Below, we show that the relation

|E3(VNN = 0)| < 2|E2| (4)
takes place for the kaonic cluster ppK−. Here, it is assumed that the interaction between
two identical particles is omitted, VNN = 0 and the |E3(VNN = 0)| is binding energy of the
three-body system. The relation (4) can be explained by strong attraction of the isospin
singlet NK̄ potential having a deep bound state with the binding energy E2.

2.3 Reduction to isospinless model: averaged potential
In this section, we define the effective potential obtained by averaging of the initial poten-
tial over isospin variables. This averaging produces the ”isospinless” (or ”bosonic”) model
for the kaonic clusters.

The isospin averaged potential V av
K̄N

is defined as:

V av
K̄N =

3

4
vsNK̄ +

1

4
vtNK̄ . (5)

Here, we use the isospin singlet and triplet components vs
NK̄

and vt
NK̄

of the AY NK̄ po-
tential. This potential has a moderate attraction in comparison with the strong attraction
in the I = 0 channel. The two-body threshold is changed to lower one and is not related
to the pK− bound state as Λ(1405).

Eq. (2) is reduced to the scalar form by an algebraic transformation. Taking into
account that W̃ = DW, V av

NK̄
= DVNK̄DT and DDT = 1, DVNK̄GDT = V av

NK̄
one obtains

(HU
0 + VNN − E)U = −VNN (1 + p)W̃,

(HW
0 + V av

NK̄
− E)W̃ = −V av

NK̄
(U + pW̃).

(6)
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Thus, the isospin averaging of NK̄ potential is defined as V av
NK̄

= DVNK̄DT .
One can evaluate the mass polarization in the three-body system described by Eq. (6)

using the definition: ∆ = 2Eav
2 − Eav

3 (VNN = 0). Here, Eav
2 is NK̄ two-body binding

energy obtained with the averaged potential and Eav
3 (VNN = 0) is the three-body binding

energy calculated by Eq. (6) when the NN interaction is omitted. The value of ∆ is
positive [9].

3 Numerical results

The results of the calculations for the NNK̄ ground state energy are presented in Table 1.
For the both potentials AY and sHW, the relation 2E2−E3(VNN = 0) < 0 is satisfied. The
three-body binding energy |E3| is larger the value |E3(VNN = 0)| due to the contribution
of weak attractive VNN potential. Obtained results are comparable with the results of
calculations performed within different approaches. For example, calculated values |E3|
reported in Ref. [4] are 47–54 MeV for the phenomenological K̄N potentials and do not
exited the values larger 60 MeV.

Table 1: Ground state energies E3 of the NNK̄ system with the AY and sHW
potentials for the NK̄ interactions and the MT I-III potential [13] for the NN
interaction. The results for the case VNN = 0 are given in parenthesis. The
difference δ of the two-body 2E2 and three-body E3 energies, δ = 2E2 − E3, is
presented. The energies are given in MeV.

Potentials E2 E3 δ

MT I-III, AY -30.30 -46.0 (-42.9) -14.6 (-17.6)
MT I-III, sHW -11.16 -21.0 (-17.1) -1.3 (-5.2)

We illustrate the existence of the lower bounds for the ground state energy of the
NNK̄ system in Fig. 1 and 2 using the AY, sHW and averaged (av) potentials for NK̄
interaction. The energies E2, 2E2 and E3 are shown as functions of the scaling factor α
which controls the strength of interaction between non-identical particles: VNK̄ → αVNK̄ .
The case, when the AA potential acting between identical particles is neglected, VNN = 0,
is presented in Fig. 1. One can see that the relation (4) is well satisfied for both models
with the AY and sHW potentials. The isospinless model with averaged (av) potential
demonstrates opposite relation. When 0.9< α <1.1, the mass polarization term depends
weakly on strength of the NK̄ potential and 2Eav

2 −Eav
3 (VNN = 0) ≈ const. The situation

is slightly altered when the AA interaction is included in the calculations as is shown in
Fig. 2. The attractive NN interaction affects the E3 curve which becomes lower than one
is in Fig. 1. The relation (4) is well satisfied for the large values of the two-body ground
state energy, |E2| > 10 MeV. In the sector of weak AB potential, the opposite relation
|E3(VNN = 0)| > 2|E2| is satisfied.

Note here that for the model with the averaged (av) potential, the Eav
3 becomes to

closer to 2Eav
2 in the sector of large strength of NK̄ potential. It can be explained by

the core effect of the NN potential which only appears for the isospinless model. The
repulsion of the core plays a role when three-body system is very compact. It is will seen
for the strong AY interaction in Fig. 2a). The energy Eav

3 of the averaged potential model
is larger always to calculated in the isospin model. This could be expected due to higher
position of two-body threshold Eav

2 of the averaged potential model.
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Figure 1: NNK̄(VNN = 0) system: the energies E2 (dashed line), 2E2 (dot-
dashed line) and E3 (solid line) are shown as functions of the scaling factor α,
VNK̄ → αVNK̄ , a) for AY andAY averaged (av) NK̄ potentials, b) for sHW and
sHW averaged (av) NK̄ potentials. The NN potential acting between nucleons
is neglected, VNN = 0.

Figure 2: NNK̄ system: the energies E2 (dashed line), 2E2 (dot-dashed line)
and E3 (solid line) are shown as functions of the scaling factor α, VNK̄ → αVNK̄ ,
a) for AY and AY averaged (av) K̄N potentials, b) for sHW and sHW averaged
(av) K̄N potentials.

4 Conclusions

The kaonic cluster NNK̄(sNN = 0) was described within isospin formalism using the
Faddeev equations in coordinate space. We have obtained upper bound for the binding
energy of quasi-bound state, |E3|, which can be reached by using this phenomenological
isospin-dependent potentials. The relation |E3(VNN = 0)| < |2E2| takes a place for the
kaonic system. In particular, the calculation gives |E3(VNN = 0)| ≈43 MeV for AY NK̄
potential. The |E3| has to be slightly larger (|E3|=46 MeV) than |E3(VNN = 0)|, due
to the weak attractive contribution of the NN potential. The value of E3 is smaller
than |2E2| ∼60 MeV (the bound) and is significantly smaller than the ”experimentally
motivated value” about 100 MeV.

We have compared the isospin and averaged models to show the effect of the averaging
(or termination of isospin splitting). The energies calculated for the averagedNK̄ potential
model satisfy the opposite relation: |Eav

3 (VNN = 0)| > 2 |Eav
2 |. The averaged potential
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reduces the two-body threshold |E2| to a smaller value and three-body binding energy
|Eav

3 | is significantly smaller comparing to one calculated within the isospin model.
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