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Abstract

Virial expansion is widely used in cold atoms to analyze high temperature strongly corre-
lated many-body systems. As the n-th order virial expansion coefficient can be accurately
obtained by exactly solving up to n-body problems, the virial expansion offers a few-body
approach to study strongly correlated many-body problems. In particular, the virial ex-
pansion has successfully been applied to unitary Fermi gas. We review recent progress
of the virial expansion studies in the unitary Fermi gas, in particular the fourth order
virial coefficient.
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1 Introduction

Ultracold atoms have become nice platforms for studying various strongly correlated quan-
tum phenomena thanks to their high controllability. In particular, the s-wave scattering length
between the atoms can be controlled by the Feshbach resonance [1,2], so that systems with di-
vergingly large scattering length have been realized. Such systems are called unitary systems,
and they have two important features: scale invariance and universality [3]. As a consequence,
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various few and many-body phenomena observed in cold atoms can be utilized as quantum
simulators to understand similar phenomena found in other physical systems, such as nuclear
and condensed matter systems [4,5].

A prime example is the Efimov state [6–10]. As is shown by Efimov in 1970 [6], three-body
systems interacting with divergingly large s-wave scattering lengths show a series of weakly
bound three-body states which can be related to each other by a discrete scale transformation.
The Efimov states and their discrete scale invariance have been recently been observed in cold
atom experiments in the unitary gases [11–15]. The Efimov states have also been studied
in various nuclear systems, such as halo states of neutron rich nuclei [16], Hoyle state of
12C [17–19], and triton [6, 8]. With recent studies on the Efimov states [20–22], it is now
conjectured that the Efimov states and their characteristic length scale in various different
atomic and nuclear systems may behave universally, and there have been active experimental
and theoretical studies to scrutinize under what conditions the Efimov states can show such
universality [23–33].

Another example of the universal quantum systems is the unitary Fermi gas [34–36]. The
knowledge of the equation of state of the unitary Fermi gas is believed to be relevant for un-
derstanding neutron stars as s-wave scatteirng length between the neutrons is very large. By
measuring the equation of state of the unitary Fermi gas in cold atom experiments, various
universal physical quantities have been accurately determined, such as the Bertsch parame-
ter [34–36] and Tan’s contact [37–41].

While these are few-body and many-body examples of universal phenomena, there is a way
to bridge few-body and many-body phenomena. The virial expansion, sometimes also referred
to as the cluster expansion, is a standard method in quantum statistical mechanics [42,43]. A
key idea of the virial expansion is that the quantum correlations between the particles generally
becomes weaker as the temperature gets higher for a quantum many-body system. Therefore,
we can take into account quantum correlations order by order in a systematic manner at high-
temperature. Because the n-th order expansion coefficients of the virial expansion can be
calculated from n-body solutions, the virial expansion provides a few-body perspective to study
strongly correlated quantum many-body systems.

In this paper, we review how the virial expansion has been applied to the unitary Fermi
gas. In particular, we compare the virial expansion coefficients of the equation of state of the
unitary Fermi gas. While the virial expansion coefficients calculated from few-body solutions
agree excellently up to the third order with those obtained from cold atom experiments, there
is a discrepancy between them for the fourth order. We argue that the discrepancies are due
to a non-monotonic behaviour of the equation of state of the unitary Fermi gas.

The paper is organized as follows: in the next section, we review the theoretical aspects
of the virial expansion of the equation of state of the unitary Fermi gas. In Sec. 2, we review
theoretical background of the virial expansion. In Sec. 3, we discuss the virial expansion
coefficients of the unitary Fermi gas, comparing experimental and theoretical values. We argue
that the origin of the discrepancies between them can be attributed to the non-monotonic
behaviour of the equation of state. We conclude in Sec. 4.

2 Virial expansion

In the virial expansinon, the thermodynamic potential Ω of the many-body sysetm is expanded
as [42,43]

Ω

V
= −

nskB T
λ3

�

b1eβµ + b2e2βµ + b3e3βµ + ...
�

(1)
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where kB is the Boltzman constant, µ and T = β−1 are the chemical potential and tempera-
ture, and λ=

p

2πħh/mkB T is the thermal de Brogie length. ns is the number of components:
ns = 1 for a spinless single component system, and ns = 2 for a unitary Fermi gas which com-
prises of two spin states. The n-th order coefficients bn are called n-th order virial expansion
coefficients, and they characterize the thermodynamic properties of the system. For example,
pressure P, density n, and entropy S of the system can be expressed using bn as

P =
nskB T
λ3

�

b1eβµ + b2e2βµ + b3e3βµ + ...
�

(2)

n =
ns

λ3

�

b1z + 2b2z2 + 3b3z3 + ...
�

(3)

S
V
=

5nskB

2λ3

�

b1z + b2z2 + b3z3 + ...
�

−
nsµ

Tλ3

�

b1z + 2b2z2 + 3b3z3 + ...
�

+
nskB T
λ3

�

∂ b1

∂ T
z +

∂ b2

∂ T
z2 +

∂ b3

∂ T
z3 + ...

� (4)

At high temperature T →∞, the chemical potential becomes large and negative µ→ −∞,
so that the fugacity z = eβµ becomes very small. Therefore, the above virial expansion works
well at high temperature. On the other hand, when the temperature becomes small and the
system becomes quantum degenerate, the virial expansion breaks down. Indeed, this can be
understood by noting that eβµ ≈ nλ3 at high temperature (see the first term of Eq. (3)). The
system becomes quantum degenerate when nλ3 ∼ 1, which suggests eβµ ∼ 1. Therefore, the
virial expansion is valid if and only if the system is well away from quantum degeneracy.

The n-th order virial expansion coefficient can be calculated from up to n-body solutions.
To see this, we represent the thermodynamic potential by the canonical partition function:

Ω

V
=−

kB T
V

log
�

1+ Z1eβµ + Z2e2βµ + Z3e2βµ + ...
�

= −
nskB T
λ3

�

eβµ +
Z2 −

1
2 Z2

1

Z1
e2βµ +

Z3 − Z1Z2 +
1
3 Z3

1

Z1
e2βµ + ...

� (5)

where Zn is the canonical partition function of the n-body system. In the second line of Eq. (5),
we have used Z1 = nsV/λ

3 for a uniform system. Comparing Eq. (1) and Eq. (5), we can see
that N -th order virial coefficients can be calculated from Z1, Z2, ... ,ZN . As the canonical parti-
tion function of the n-body system Zn can be calculated by taking the canonical partition sum
of all the energy levels of the n-body system, this means that the n-th order virial coefficients
an be accurately obtained if we know all the energy levels of the 1-body, 2-body,...., and n-body
systems. Although it is practically impossible to obtain all the n-body energy eigenvalues for
arbitrary n, it is still possible to accurately solve few-body problems for n= 1,2, 3,4 and obtain
bn up to fourth order. One-body problem is trivially solved and we find b1 = 1 (compare the
first term of Eq. (1) and Eq. (5) ).

Even after accurately solving few-body problems and obtaining all the energy eigenvalues,
we still need to take the canonical partition sum of them. They include not only the bound
states, but also highly degenerate continuum states. This sum can be performed analytically
for n= 2: the second virial coefficient is found to be related with the scattering phase shift by
Beth and Uhlenbeck [44]

1
p

2
(b2 − b(0)2 ) =

∑

i

e−E i
B/kB T +

1
π

∑

`

(2`+ 1)

∫ ∞

0

dk
dδ`
dk

e−
λ2k2

2π (6)
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where b(0)2 = −1/4
p

2 is the virial coefficient for the non-interacting system, δ` is the `-th
wave scattering phase shift, E i

B is the energy of the bound state. The first and second terms are
bound-state and continuum state contributions, respectively. Using δ`>0 = 0, k cotδ0 = −1/a,
and that there is no bound state for the untiary Fermi gas, one finds b2 = 3/4

p
2. This is found

to be consistent with the unitary Fermi gas experiment [34–36].
On the other hand, for a system with more than two particles, it is not easy to take the

canonical partition sum of such highly degenerate energy levels analytically. We therefore
often consider a finite size n-body system under confinement: after calculating bn for such
a trapped system, we take the infinite system limit to obtain bn in a homogeneous system.
We typically consider a system in an isotropic harmonic trap because the unitary Fermi gas in
an isotropic harmonic trapped system possesses good symmetry feature. In particular, hyper-
radial and hyper-angular equations become separable for a unitary Fermi gas since the system
is scale invariant. This facilitates solving few-body problem in this system both numerically
and analytically. Using analytical solutions of the unitary three-body system in the harmonic
trap [45], Liu, Hu, and Drummond have accurately obtained b3 of the unitary Fermi gas to be
b3 = −0.29095295 [46] after extrapolating it to a homogeneous system. This is consistent with
what is experimentally obtained in the unitary Fermi gas experiment b3 = −0.29(2) [34,36].
Other theory groups have independently calculated b3 and obtained essentially the same value:
Castin and Endo [47] used a contour integral in the complex plane to take the canonical par-
tition sum of the energy levels and obtained b3 = −0.2909529965421. Rakshit, Daily, and
Blume [48] used numerical few-body solutions of the harmonically trapped system, and ob-
tained b3 = −0.2909529965797 after extrapolating it to a homogeneous system. We note that
some others used field theoretic methods to directly calculate b3 without using the trapped sys-
tem: Kaplan and Sun obtained b3 = −0.2931 [49] and Leyronas obtained b3 = −0.2909 [50]

3 Fourth order virial expansion coefficient in the unitary Fermi gas

From the equation of state of the unitary Fermi gas experiment in cold atoms, the fourth order
virial expansion coefficient has also been observed [34,36]. By using b1, b2, b3 values obtained
theoretically as above, they have fitted b4 to their observed equation of state at high temper-
ature. Two experimental groups have found b4 = 0.065(10) [34] and b4 = 0.065(15) [36],
respectively. At the time, there was one work which theoretically calculated the fourth order
virial coefficient b4 [48]. However, its value b4 = −0.047(4) was in contradiction with what
was found in the experiments.

To solve this puzzle, several groups have independently calculated b4 of the unitary Fermi
gas. We compare their results in Table 1. Ngampruetikorn, Parish, and Levinsen [51] used
a field theoretic method for a homogeneous system and approximately obtained b4 ≈ 0.03.
Endo and Castin [52] applied the contour integral method to take the canonical partition
sum in a homogeneous system and obtained b4 = 0.031(1). While their contour integral
method uses exact few-body solutions and has a rather small error bar, we note that it is
based on a conjecture that b4 can be obtained from a similar contour integral formula as b3
supplemented with a counter term they introduce to cancel the dimer-dimer like contribution
in the four-body equation kernel [47, 52]. Yan and Blume [51] use the Path Integral Monte
Carlo method to obtain b4 in a harmonic trap, and obtain b4 = 0.047(18) after extrapolating
it to a homogeneous system by taking ω → 0. Therefore, all the theoretical results [?, 51,
53] obtained after 2013 seem to suggest b4 = 0.03. This value is more consistent with the
experimental results b4 = 0.065 than that in Ref. [48], but in a slight disagreement.

The origin of this disagreement can be attributed to a peculiar non-monotonic behaviour of
the equation of state of the unitary Fermi gas. In Refs [52,53], it is found that the fourth virial
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Table 1: Comparison of b4 obtained in experiments (first and second rows) and the-
ories (third to sixth rows).

Method b4 Reference

Cold atom experiment by ENS 0.065(15) [34]
Cold atom experiment by MIT 0.065(10) [36]
Numerical 4-body solution in a harmonic trap + extrapolation ω→ 0 -0.047(4) [48]
Feynman diagram (homogeneous system) ≈0.03 [51]
Contour integral method (homogeneous system) 0.031(1) [52]
Path Integral Monte Carlo in a harmonic trap + extrapolation ω→ 0 0.047(18) [53]

expansion coefficient of the harmonicaly trapped system B4(βħhω) shows a non-monotonic be-
haviour as a function of βħhω: B4(βħhω) is monotonically increasing (decreasing) for βħhω¦ 1.5
(βħhω ® 1.5). This nonmonotonicity can cause a problem when extrapolating B4(βħhω) to a
homogeneous system b4 by taking ω → 0 limit. Indeed, in Ref. [48], B4(βħhω) has been
accurately calculated for βħhω ¦ 1.5, and it is extrapolated to ω → 0 limit without notic-
ing this non-monotonic behaviour. This is why b4 = −0.047(4) obtained in Ref. [48] is very
different from the other results. In Refs [52, 53], B4(βħhω) has been accurately calculated
for wider range of βħhω, including βħhω ® 1.5 region. Their results for B4(βħhω) is in ex-
cellent agreement with that obtained in Ref. [48] for βħhω ¦ 1.5. With the B4(βħhω) results
in βħhω ® 1.5 region, Ref [53] have more accurate extrapolation to ω → 0 limit taking the
nonmonotonicity into account, and obtained b4 = 0.047(18). Ref [52] has a much smaller
error bar b4 = 0.031(1) firstly because the limit ω → 0 is taken analytically and doe snot
suffer from the extrapolation error, and secondly because the canonical partition sum of all
the energy levels is done by the contour integral method which does not suffer from an energy
cutoff. We also note that Ref. [51] calculated b4 for a homogeneous system without using the
harmonic trap, and therefore does not suffer from such an extrapolation subtlety.

The physical origin of the nonmonotonicity can be understood by noting that the fourth
virial coefficient comprises of two contributions

B4 = B↑↑↑↓ +
1
2

B↑↑↓↓, (7)

where B↑↑↑↓ and B↑↑↓↓ are the fourth virial coefficients of a 3 spin-up+ 1 spin-down system, and
a 2 spin-up+ 2 spin-down system, respectively (we note that 3 spin-up+ 1 spin-down system is
equivalent to 1 spin-up+ 3 spin-down system). B↑↑↑↓ is positive and monotonically decreasing,
while B↑↑↓↓ is negative and monotonically increasing [52,53]. This difference can be attributed
to stronger Pauli exclusion effect in a 3 spin-up + 1 spin-down system compared with a 2 spin-
up+ 2 spin-down system. As B4 is a sum of monotonically increasing and decreasing terms, the
resulting B4 shows the nomonotonicity: the effect of B↑↑↓↓ is larger for βħhω¦ 1.5 because the
2 spin-up + 2 spin-down system has smaller energy than the 3 spin-up + 1 spin-down system
and therefore has a larger contribution in the strong trap limit βħhω→∞. Conversely, in the
βħhω � 1 regime, the Pauli exclusion effect plays less significant role, and crudely speaking
we can regard B↑↑↑↓ ∼ B↑↑↓↓. Since B↑↑↑↓ has a twice contribution, originating from 3 spin-up
+ 1 spin-down and 3 spin-down + 1 spin-up systems), compared with B↑↑↓↓, B↑↑↑↓ plays more
dominant role in the βħhω� 1 regime.

The nonmonotonicity also explains the discrepancy between the experimental values b4 = 0.065 [34,
36] and theoretical values b4 = 0.03 [51–53]. In Ref. [54], the equation of state of the homo-
geneous unitary Fermi gas has been accurately calculated by the diagrammatic Monte Carlo
calculation. The authors have found that the equation of state as a function of eβµ shows a
non-monotonic behaviour at eβµ ∼ 1, in a similar manner as that explained above to a har-
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monically trapped system. They have found that their equation of state at eβµ ∼ 1 is consistent
with the other theory value b4 = 0.03, while it is also consistent with the experimental equa-
tion of state for eβµ ¦ 1. It turns out that the experimental values b4 = 0.065 reported in
Refs [34, 36] are plagued by the nonmonotonicity: by extrapolating the equation of state to
eβµ→ 0 limit in order to obtain b4 with the experimental data mostly in eβµ ¦ 1 region, they
seem to have overestimated b4. Therefore, it seems that b4 = 0.03 is currently the most plau-
sible value. Furthermore, from the behaviour of the equation of state at eβµ ® 1, it is likely
that the fifth and sixth order virial coefficients should be b5 > 0 and b6 < 0, although further
studies are required to accurately determine the values of b5 and b6.

The nonmonotonicity in the homogeneous system as a function of eβµ is closely related
with that in the harmonically trapped system as a function of βħhω. This can be understood
by assuming that the effect of the strongly correlated many-body medium can be, crudely
speaking, regarded as providing an effective trapping potential to particles embedded in the
medium. As the energy scale of the unitary Fermi gas is given universally by TF , the Fermi
temperature, we can regard this effective trapping potential to be ħhω ∼ kB TF . In this way,
we can find that the crossover point of the nonmonotonicity for the homogeneous system
eβµ ≈ nλ3 ≈ (TF/T )3/2 ∼ 1 agrees with that in the harmonically trapped system βħhω∼ TF/T ∼ 1.

4 Conclusion

In this paper, we review the virial expansion of the equation of state of the unitary Fermi.
The unitary Fermi gas has been realized in cold atom experiments, and its universal equa-
tion of state has been observed. Its high temperature behaviour is characterized by the virial
expansion coefficients bn. As bn can be accurately calculated from exact few-body solutions,
the virial expansion offers a few-body perspective to study strongly correlated many-body sys-
tems. We review how bn for n≤ 4 has been theoretically obtained in the unitary Fermi gas, and
compared with those observed experimentally. While the theoretical [46–50] and experimen-
tal [34, 36] values agree excellently for n ≤ 3, there is a discrepancy for b4. The discrepancy
originates from the non-monotonic behaviour of the equation of state, which has plagued the
extrapolation procedure to extract b4 from the experimental data. We therefore conclude that
the theoretically reported value b4 = 0.031(1) [51–53] seems to be the most plausible value,
rather than the experimental one b4 = 0.065(15) [34,36].

In addition to the equation of state, various other physical quantities have been successfully
calcualted with the virial expansion and compared well with those obtained from cold atom
experiments: Tan’s contact [50,55], dynamical structure factor and spectral function [43,56].

The virial expansion is also useful in studying universal thermodynamic behaviour of other
strongly correlated systems. In particular, it is a powerful tool in investigating many-body
systems in the presence of Efimov trimers. Such systems have attracted a lot of interests since
the realization of the so-called unitary Bose gas system [57–60], in which the Efimov trimers
can play relevant role in the stonrgly correlated many-body system [61]. The virial expansion
enables accurately incorporating the trimer degree of freedom into teh many-body theory.
The third virial expansion coefficient has been accurately calculated for the unitary Bose gas
taking into account the Efimov trimers [62]. The third virial coefficients in the presence of
Efimov effects have also been accurately calculated for a mass imbalanced two-component
Fermi system [63] and for a mass imbalanced two-component Bose system [64]. We exepct
that other universal clusters, such as universal trimers found by Kartavtsev and Malykh [65–68]
and the tetramers [69,70], can be incorporated into the many-body calculation with the virial
expansion.
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