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Abstract1

These notes are based on a series of three lectures given at the Les Houches2

summer school on ’Integrability in Atomic and Condensed Matter Physics’3

in August 2018. They provide an introduction into the unusual transport4

properties of integrable models in the linear response regime focussing, in5

particular, on the spin-1/2 XXZ spin chain.6
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1 Outline21

In these lecture notes I will discuss transport in one-dimensional quantum systems at finite22

temperatures in the linear response regime. After a general introduction, a particular focus23

will be on the unusual transport properties of integrable systems. Note that these notes are24

not meant to be an exhaustive review of the research field. They are based on the content25

of three lectures given at the Les Houches summer school on ’Integrability in Atomic26

and Condensed Matter Physics’ in August 2018 and are therefore necessarily limited in27

scope. I also note that these lectures on transport build on material which was presented28
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at the summer school in earlier lectures. Foundations of the coordinate, algebraic, and29

thermodynamic Bethe ansatz, in particular, are assumed to be known already.30

In order to be concrete, I will mostly concentrate on a particular integrable lattice31

model, the XXZ spin chain32

H =
∑
`

[
J
(
Sx` S

x
`+1 + Sy` S

y
`+1 + ∆Sz`S

z
`+1

)
− hSz`

]
. (1.1)

Here J is the exchange constant, ∆ the exchange anisotropy, and h an external magnetic33

field. Sα are spin-1/2 operators fulfilling the commutation relations [Sα, Sβ] = iεαβγS
γ .34

In the following, we will often parametrize the anisotropy as ∆ = cos(γ). It is also often35

useful to think about this model as a chain of interacting spinless fermions36

H =
∑
`

{
J

[
−1

2
(c†`c`+1 + h.c.) + ∆

(
n` −

1

2

)(
n`+1 −

1

2

)]
− h

(
n` −

1

2

)}
(1.2)

with n` = c†`c` where c` is a fermionic annihilation operator at site `. This alternative37

representation is obtained by using the Jordan-Wigner transformation38

Sz` → n` −
1

2
, S+

` → (−1)`c†`e
iπφ` , S−` → (−1)`c`e

−iπφ` (1.3)

with the ladder operators S±` = Sx` ± iSy` and the Jordan-Wigner string φ` =
∑`−1

j=1 nj .39

Note that the Jordan-Wigner string does not show up explicitly in the Hamiltonian (1.2)40

because the hopping is limited to nearest-neighbour sites in the lattice.41

In general, transport is a non-equilibrium problem: Spin transport, for example, re-42

quires a magnetic field gradient while heat transport is driven by a temperature gradient.43

In the following I will, however, exclusively analyze the linear response regime using Kubo44

formulas. In this regime, transport coefficients can be obtained from dynamical correla-45

tion functions calculated at equilibrium. The plan for the three lectures is then as follows:46

In the first lecture, I will briefly recapitulate how currents and transport coefficients can47

be defined. Furthermore, I will derive the Mazur inequality and explain why integrabil-48

ity can lead to ballistic transport even at finite temperatures. In the second lecture, the49

Kubo formulas for the conductivities will be discussed. I will show, in particular, how50

the Drude weight and the diffusion constant can be obtained from real-time equilibrium51

current-current correlation functions. Explicit results for the thermal Drude weight of the52

XXZ chain will be derived. To obtain a broader physical understanding of the interplay of53

ballistic and diffusive transport channels, I will describe the XXZ chain at low energies us-54

ing bosonization in the third lecture. Finally, I will use the field theoretical description to55

calculate the spin conductivity, obtain a concrete formula for the spin diffusion constant,56

and discuss the general picture which emerges from these calculations.57

2 Transport coefficients and linear response58

One way to derive the spin and thermal current operators for the XXZ chain is based on59

a discrete version of the continuity equation where the time derivative is calculated using60

the equation of motion. For the total spin current J s =
∑

` j
s
` we have, in particular,61

∂tS
z
` = −i[Sz` , H] = −(js` − js`−1) (2.1)

leading to a current density62

js` = J(Sx` S
y
`+1 − S

y
` S

x
`+1) =

iJ

2
(S+
` S
−
l+1 − S

−
` S

+
l+1) . (2.2)
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Using the Jordan-Wigner transformation (1.3) we see that in terms of spinless fermions63

this corresponds to a particle current, i.e., the difference between particles moving to the64

left and to the right.65

Similarly, we can derive the thermal current operator J th =
∑

` j
th
` by the continuity66

equation67

∂th`,`+1 = −i[h`,`+1, H] = −(jth
` − jth

`−1) (2.3)

where H = H0−h
∑

` S
z
` =

∑
` h`,`+1 =

∑
`(h

0
`,`+1−hSz` ). The thermal current thus splits68

into two parts, J th = JE − hJs, where Js is the spin current (2.2) and JE the energy69

current obtained from the continuity equation (2.3) for the case of zero magnetic field. In70

other words, at finite magnetic fields there is a contribution to the thermal current due71

to particle transport. Calculating the commutator in (2.3) for h = 0, leads to an energy72

current density jE` acting on three neighbouring sites which can be written in compact73

form as74

jE` = J2
∑
`

S` · (S′`−1 × S′`+1), S′` = (Sx` , S
y
` ,∆S

z
` ) . (2.4)

Alternatively, the spin current can also be derived by putting a flux Φ through an75

XXZ ring in the fermionic formulation (1.2). The flux then couples via the Peierls substi-76

tution c†`c`+1 → c†`c`+1e−iA`,`+1 . Here A`,`+1 is the vector potential along the bond with77 ∑
`A`,`+1 = Φ. The current operator is then given by js` = − ∂H

∂A`,`+1

∣∣
A→0

. Furthermore,78

the diamagnetic term can be obtained as ∂2H
∂A2

∣∣
A→0

= Hkin where Hkin is the hopping part79

of the Hamiltonian (1.2).80

The transport coefficients relate the currents to the gradients in temperature and81

magnetic field82 (
J th

J s
)

=

(
κth Cth

s

Csth σs

)(
−∇T
∇h

)
(2.5)

with κth being the thermal conductivity and σs the spin conductivity. The coefficients Cth
s83

and Csth describe the creation of a thermal current due to a magnetic field gradient and84

of a spin current due to a thermal gradient, respectively. The latter is the spin Seebeck85

effect which has been studied in much detail for ferromagnets in the field of spintronics.86

From the Onsager relation [1] it follows that Cth
s = TCsth.87

The, in general, complex and frequency dependent transport coefficients are decom-88

posed as, for example,89

σ′s(k = 0, ω) = 2πDsδ(ω) + σreg
s (ω) (2.6)

where σ′s(k, ω) denotes the real part of the spin conductivity at momentum k and frequency90

ω. Ds is the spin Drude weight, and σreg
s (ω) the regular part of the conductivity. We can91

write down a similar decomposition for the thermal conductivity κth(ω). A non-zero Drude92

weight signals ballistic transport, i.e. a diverging dc conductivity. Physically, this means93

that the current does not completely relax. In a lattice system without impurities, we94

expect this to happen at zero temperature where scattering processes such as spin-spin95

or spin-phonon are frozen out. At finite temperatures, on the other hand, we expect that96

in a generic clean system the dc conductivity becomes finite. Scattering processes are97

expected to lead to a temperature-dependent broadening of the delta peak. This can only98

be avoided if a part of the current is fully protected from relaxing by some conservation99

law.100

This is the point where integrability comes into play. What makes integrable models101

special, is that they have an infinite set of local conserved charges Qj . Here we mean local102

in the strict sense that103

Qj =
∑
`

qj` (2.7)
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where qj is a local charge density acting on j neighbouring sites. For the XXZ chain, in104

particular, we can derive these charges by defining a family of commuting transfer matrices105

[T (θ), T (θ′)] = 0 with spectral parameter θ. The local conserved charges are then obtained106

by107

Qj+1 =
dj

dθj
lnT (θ)

∣∣
θ=1

, j ≥ 1 . (2.8)

We refer to reference [2] for details. For now it is just important to note that Q2 ∝ H108

and Q3 ∝ J E . Thus the energy current is itself a conserved quantity implying an infinite109

energy conductivity at any temperature. Energy transport in the XXZ chain is purely110

ballistic.111

Spin transport, on the other hand, is a much more complicated phenomenon. For zero112

magnetic field, the spin inversion operation C−1σz`C = −σz` , C−1σ±` C = σ∓` is a symmetry113

of the Hamiltonian. It is also easy to see that C−1J EC = J E . For h = 0 one can,114

furthermore, show that the transfer matrix T (θ) in the usual spin s = 1/2 representation115

of auxiliary space is itself even under spin inversion for all spectral parameters θ 6= 0,∞,116

i.e. C−1T (θ)C = T (θ). Therefore all the local conserved charges Qj defined in Eq. (2.8)117

are even under spin inversion. The spin current operator, on the other hand, is odd,118

C−1J sC = −J s. It follows that for zero magnetic field 〈J sQj〉 ≡ 0, ∀j where 〈· · · 〉119

denotes the thermal average. Therefore the charges Qj do not protect the spin current J s120

from decaying. This leads to the interesting question whether or not spin transport in the121

XXZ chain at zero magnetic field is ballistic or diffusive. We will see in the following that122

the answer depends on the anisotropy ∆. For ∆ = cos(π/m) and m integer, in particular,123

we will see the two transport channels coexist. Note that the arguments above do not124

apply to the case h 6= 0 where spin inversion C is no longer a symmetry of the Hamiltonian125

(1.1). In the latter case it is straightforward to show that a part of the spin current is126

protected by the conservation laws (2.8) and cannot decay [3].127

2.1 Mazur inequality128

To understand more precisely the connection between the Drude weight and the conserved129

charges of the considered system, we follow the approach of Mazur [4] and Suzuki [5]. We130

do so starting with a finite system. This raises some subtle questions with regard to the131

order of taking the limits of system size and time to infinity. We will get back to this point132

at the end of this section.133

Let us start by considering the time average of a current-current correlation in spectral134

representation135

lim
Λ→∞

1

Λ

∫ Λ

0
dt 〈J (t)J (0)〉 =

∑
n,m

e−βEn

Z
〈n|J |m〉〈m|J |n〉 lim

Λ→∞

1

Λ

∫ Λ

0
dt eit(En−Em)

=

En=Em∑
n,m

e−βEn

Z
|〈n|J |m〉|2 , (2.9)

where Z = tr {e−βH} is the partition function. Here we have used that taking the limit136

yields137

lim
Λ→∞

eiΛ(En−Em) − 1

iΛ(En − Em)
=

{
0, En 6= Em
1, En = Em

. (2.10)

Without loss of generality, we can assume that we have a complete set of Hermitian138

conserved charges Qk, [H,Qk] = 0, which are orthogonal 〈QkQl〉 = 〈Q2
k〉δkl. We can then139
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split the current operator into a part which is diagonal in the energy eigenbasis and a part140

which is off-diagonal. The diagonal part can then be expanded in Qk:141

J =
∑
k

akQk + J ′, with 〈n|J ′|m〉 = 0 if En = Em

⇒ 〈QlJ 〉 =
∑
k

ak 〈QlQk〉︸ ︷︷ ︸
〈Q2

l 〉δk,l

+ 〈QlJ ′〉︸ ︷︷ ︸
=0

⇒ al =
〈QlJ 〉
〈Q2

l 〉
(2.11)

Keeping in mind that 〈n|J ′|m〉 = 0 if En = Em, we can therefore write the time average142

as143

(2.9) =

En=Em∑
n,m

e−βEn

Z

∑
k,l

〈JQk〉〈JQl〉
〈Q2

k〉〈Q2
l 〉
〈n|Qk|m〉〈m|Ql|n〉 (2.12)

The Qk are diagonal and therefore144

En=Em∑
n,m

e−βEn

Z
〈n|Qk|m〉〈m|Ql|n〉 =

∑
n,m

e−βEn

Z
〈n|Qk|m〉〈m|Ql|n〉 (2.13)

=
∑
n

e−βEn

Z
〈n|QkQl|n〉 = 〈QkQl〉 = δkl〈Q2

k〉 .

This leads us to the final result145

lim
Λ→∞

1

Λ

∫ Λ

0
dt 〈J (t)J (0)〉 =

∑
k

〈JQk〉2

〈Q2
k〉

. (2.14)

If we find any conserved charge with 〈JQk〉 6= 0 then (2.14) provides a lower bound for the146

time-averaged current-current correlation function in a finite system because the r.h.s. of147

Eq. (2.14) is strictly positive. The relation is then called the Mazur inequality and the148

obtained bound the Mazur bound.149

In the thermodynamic limit, N →∞, we expect the current-current correlation func-150

tion to equilibrate. If this is the case, then the time average becomes dominated by the151

constant equilibrium value, thus152

lim
t→∞

lim
N→∞

1

2NT
〈J (t)J (0)〉 = lim

N→∞

1

2NT

∑
k

〈JQk〉2

〈Q2
k〉

. (2.15)

In writing Eq. (2.15) we take for granted that the Mazur equality remains valid in the153

thermodynamic limit, i.e., that we can take the limit N →∞ first before taking t→∞ as154

is required in thermodynamics. Physically this is fairly obvious since the current density-155

density correlator 〈j`(t)j0(0)〉 is only non-zero (up to exponentially small tails) within the156

light cone set by the Lieb-Robinson bounds. I.e., for any time t it is sufficient to consider157

a finite system of size N � vLRt where vLR is the Lieb-Robinson velocity. This point is158

discussed in more detail in Ref. [6]. We will see later that Eq. (2.15) is proportional to159

the Drude weight D(T ).160

If J is a local operator—this is the case for the XXZ chain considered here—then161

〈JQk〉2 ∼ N2. Therefore only those conserved charges contribute to the Mazur bound in162

the thermodynamic limit for which163

〈Q2
k〉 ∼ N . (2.16)

Operators who fulfill the strict locality condition, Eq. (2.7), also fulfill the condition (2.16).164

Additional conserved charges, however, can exist which are not of the form (2.7) but do165
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fulfill Eq. (2.16). These charges are sometimes called quasi-local and play an important166

role in understanding the spin transport properties of the XXZ chain. In addition to167

conserved charges which are local in the sense of Eq. (2.16), every quantum mechanical168

system also has an infinite number of non-local conserved charges. An example are the169

projectors Pn = |n〉〈n| onto the extended eigenstates |n〉 of the system. Such charges,170

however, do not affect the transport properties of the system.171

2.2 Kubo formula172

Next, we want to discuss how to calculate the spin conductivity σs(ω) in linear response173

and how to relate Eq. (2.15) to the Drude weight. The Kubo formula is obtained straight-174

forwardly in linear response theory and is given by175

σs(ω) =
i

ω

[
〈Hkin〉
N

− i

N

∫ ∞
0

dt eiωt〈[J s(t),J s(0)]〉
]
. (2.17)

The first term is the diamagnetic contribution while the second term is the retarded176

current-current correlation function. For a derivation see, for example, the textbook by177

Mahan [1]. Using again a spectral representation, we can perform the integral over time178

and obtain179

σs(ω) =
i

ωN

[
〈Hkin〉+

∑
n,m

(pn − pm)|〈n|J s|m〉|2

ω − (Em − En) + iδ

]
(2.18)

with pn = exp(−βEn)/Z and β = 1/T . We now use the relation180

1

ω

1

ω + E
=

1

E

(
1

ω
− 1

ω + E

)
(2.19)

to split Eq. (2.18) into two parts181

σs(ω) =
i

ωN

[
〈Hkin〉+

∑
n,m

(pn − pm)

En − Em
|〈n|J s|m〉|2

]
− i

N

∑
n,m

(pn − pm)

En − Em
|〈n|J s|m〉|2

ω − (Em − En)
.

(2.20)
The term in the square brackets is the charge or Meissner stiffness Γs. It can be obtained182

from the free energy f(Φ) of an XXZ ring with a flux Φ through the ring by Γs = ∂2f
∂Φ2

∣∣
Φ=0

.183

The charge stiffness is proportional to the superfluid density ns(T ) which is zero in the184

thermodynamic limit for a strictly one-dimensional system.185

We now take the real part of the last term in Eq. (2.20) using the relation186

1

ω − E
= P

1

ω − E
− iπδ(ω − E) (2.21)

to obtain187

σ′s(ω) = − π
N

∑
n,m

pn − pm
En − Em

|〈n|J 2|m〉|2δ(ω − (Em − En)) (2.22)

=
βπ

N

∑
En=Em

pn|〈n|J 2|m〉|2δ(ω) +
π

N

∑
En 6=Em

pn − pm
Em − En

|〈n|J 2|m〉|2δ(ω − (Em − En)) .

Comparing with Eq. (2.6) we see that the first term in the second line is proportional to188

the Drude weight while the second term describes the regular part.189

6



SciPost Physics Lecture Notes Submission

Using a spectral representation it is also straightforward to show that Eq. (2.22) can190

be rewritten as a time-dependent current-current correlation function191

σ′s(ω) =
1− e−βω

2ωN

∫ ∞
−∞

eiωt〈J s(t)J s(0)〉 . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-192

integrable models it connects the current-current fluctuations to the dissipative part of193

the conductivity.194

For an integrable system, we can split the correlation function into a ballistic part195

which persists at infinite times and a regular part which decays in time196

C(t) = lim
N→∞

〈J s(t)J s(0)〉/N = lim
t→∞

lim
N→∞

〈J s(t)J s(0)〉/N︸ ︷︷ ︸
(J sJ s)∞

+Creg
s (t) . (2.24)

Here Creg
s (t) is a function which vanishes for t→∞ and gives a non-singular contribution197

to the conductivity σ′s(ω). Plugging (2.24) into (2.23) yields198

σ′s(ω) =
1− e−βω

2ω

∫ ∞
−∞

dt eiωt [(J sJ s)∞ + Creg
s (t)]

= 2π
(JJ )∞

2T
δ(ω) +

1− e−βω

2ω
Creg
s (ω) . (2.25)

Comparing with the definition of the Drude weight and the regular part of the conductivity199

(2.6) we find the important relation200

Ds =
(J sJ s)∞

2T
= lim

t→∞
lim
N→∞

1

2NT
〈J s(t)J s(0)〉 . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and201

that this quantity is directly related to the part of the current which does not decay.202

Furthermore,203

σreg
s (ω → 0) = β

∫ ∞
0

dtCreg
s (t) = χs(β)Ds (2.27)

where we have used the Einstein relation in the second step to introduce the diffusion204

constant Ds and the static spin susceptibility χs. In addition to the Drude weight which205

is related via Eq. (2.26) to the part of the current which is protected by local conservation206

laws and does not decay in time, there is thus, in general, also a diffusive part given by207

the decaying part of the current with diffusion constant208

Ds =
β

χ(β)

∫ ∞
0

dt [C(t)− 2TDs] . (2.28)

We can now combine (2.26) with the Mazur formula (2.15) to obtain a bound or the exact209

Drude weight by considering overlaps of the conserved charges with the current operator.210

The advantage of this approach is that it maps a dynamic onto a static problem. This211

approach has been used in Refs. [2, 7–9].212

Similar results can also be obtained for the thermal conductivity. A subtle point is the213

proper definition of the currents and forces which cause these currents to flow, see Ref. [1].214

One possible choice is J s = M11

T ∇h and J E = M22∇
(

1
T

)
. Comparing with (2.5) we see215

that there is an additional factor of 1/T in the definition of the thermal conductivity κth.216

For the thermal Drude weight at zero field one finds, in particular,217

Dth = lim
t→∞

lim
N→∞

1

2NT 2
lim
t→∞
〈J E(t)J E(0)〉 = lim

N→∞

〈(J E)2〉
2NT 2

(2.29)

where we have used in the last step that [J E , H] = 0 for the XXZ chain.218
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3 Thermal Drude weight219

The thermal Drude weight is particularly easy to calculate because it is given by the static220

expectation value of a conserved charge, see (2.29). In the following we briefly sketch221

how to obtain Dth using the standard thermodynamic Bethe ansatz (TBA) formalism for222

anisotropies ∆ = cos(γ) with γ = π/m. We note that the first derivation of the thermal223

Drude weight was carried out by Klümper and Sakai [10] using the quantum transfer224

matrix formalism. The latter approach has the advantage that the string hypothesis is225

not needed and results for arbitrary ∆ are obtained.226

We consider only the case h = 0. First, we define a generalized partition function and227

generalized free energy228

Z = tr exp(−βH + λJE), f(β, λ) = − T
N

lnZ . (3.1)

In TBA we can write this free energy density as229

f(β, λ) = − T

2π

m∑
`=1

∫
dθ ε`(θ)σ` ln[1 + η−1

` (θ)]. (3.2)

Here ε` are the bare eigenenergies. The variables σ` = sign(g`) are the signs of auxiliary230

rational numbers associated to string solutions as defined in [11]. For the case of anisotropy231

γ = π/m the g` have a particularly simple relation to string length n`232

g` = m− n`, n` = ` for ` = 1, . . . ,m− 1 and gm = −1, nm = 1. (3.3)

The functions η` = ρh` /ρ` are defined by the ratio of hole density ρh` and particle density233

ρ` of the `-th particle (string) and fulfill the coupled TBA equations234

ln η`(θ) = βε` + λjE` +
∑
κ

∫
dµK`κ(θ − µ)σκ ln(1 + η−1

κ (µ)),

≡ βε` + λjE` +
[
K ∗ σ ln(1 + η−1)

]
`

(3.4)

with an integration kernel K, and ’∗’ denoting a convolution and sum over Bethe strings.235

Here jE` = ∂θε` = ∂2
θp` = p′′` where p(θ) is the momentum. To express the results in a236

more compact form, it is useful to define the following dressed quantities237

ε̃` = ε` − [K ∗ σϑε̃]` , j̃E` = jE` −
[
K ∗ σϑj̃E

]
`

(3.5)

where we have defined the Fermi factor ϑ` = 1/(1 + η`) = ρ`/(ρ` + ρh` ). It is also useful to238

realize the following simple relation of the dressed quantities to the logarithmic derivatives239

of the η-functions240

∂β log η`(θ) = ε̃`(θ), ∂λ log η`(θ) = j̃E` (θ) . (3.6)

It is now straightforward to obtain the expectation value needed to calculate the ther-241

mal Drude weight242

〈(JE)2〉/N = − 1

T
∂2
λf(β, λ)|λ=0 =

1

2π

∑
`

∫
dθ ε`σ`∂

2
λ ln(1 + η−1

` )

=
1

2π

∑
`

∫
dθ σ`ϑ`(1− ϑ`)ε̃`(j̃E` )2 =

∑
`

∫
dθ ρ`(1− ϑ`)(j̃E` )2 . (3.7)

Here we have used several identities which are described in Refs. [12, 13].243
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Figure 1: Dth(T ) for different anisotropies. The inset compares the full result to the
low-temperature asymptotics (dashed lines), see Eq. (3.8).

In Fig. 1 we show results for the thermal Drude weight Dth = 〈
(
J E
)2〉/2NT 2 for244

anisotropies ∆ = cos(π/m) as a function of temperature. At low temperatures one finds245

that both the thermal Drude weight Dth(T ) and the specific heat C(T ) scale linearly with246

temperature247

Dth =
πv

6
T, C =

π

3v
T,

Dth

C
=
v2

2
, (3.8)

where v = Jπ sin γ/2γ is the velocity of the elementary excitations.248

We can now ask if unusual heat transport properties can be observed in experiments249

on spin-1/2 chain compounds in which integrability will be broken by lattice vibrations,250

impurities, and interchain couplings. Before discussing this point further, two important251

comments are in order. If one measures the thermal conductivity at finite magnetic field,252

then the thermal current consists of energy and spin current contributions: J th = J E −253

hJ s. Experimental measurements of the heat conductivity are often done in a setup where254

the spin current vanishes, J s = 0. In this case the heat conductivity is redefined255

K = κth −
1

T

(
Cth
s

)2
σs

(3.9)

where the second term is called the magnetothermal correction [14]. Eq. (3.9) is based on256

the assumption that the relaxation times for energy and spin transport are the same which257

might not necessarily be true for a real material. Leaving such issues aside, one might258

expect that in a system which is close to an integrable one, heat currents are decaying259

slowly and mean free paths are long. This is indeed what seems to have been seen in260

a number of experiments [15–17]. For the copper-oxide spin chain compounds Sr2CuO3261

and SrCuO2, for example, it has been observed that the heat conductivity along the chain262
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direction is about an order of magnitude larger than in the perpendicular directions. A263

natural explanation appears to be that there is heat transport due to phonons in all direc-264

tions while only in the chain direction there is an additional contribution due to magnetic265

excitations which decays only very slowly. Obtaining a detailed understanding of the heat266

transport as measured experimentally is, however, a complex and still somewhat open267

issue. It requires an identification of the dominant relaxation processes and a formalism268

to incorporate such scattering mechanisms in the calculation of the thermal conductivity.269

4 The Spin Conductivity270

In this last part, I want to discuss the spin conductivity of the XXZ chain at zero magnetic271

field. As already discussed, in this case none of the conserved charges (2.8) derived from272

the regular transfer matrix has any overlap with the spin current because of the spin-flip273

symmetry C. The Mazur inequality (2.15) therefore apparently does not provide a non-274

zero bound. This raises the question whether or not spin transport in the integrable XXZ275

chain has a ballistic component. Various different approaches have been used so far to276

try to directly compute the Drude weight: (1) Starting from the spectral representation277

of the Kubo formula (2.18) and comparing this with the change of the eigenenergies En of278

the Hamiltonian (1.1) when threading a static magnetic flux Φ through an XXZ ring one279

finds280

D =
1

2NZ

∑
n

e−En/T ∂
2En(Φ)

∂Φ2

∣∣∣∣
Φ=0

(4.1)

with Z being the partition function. This is a generalization of the Kohn formula [18]281

to finite temperatures [19]. For zero temperature, in particular, the Drude weight can282

be obtained simply from the ground state energy of the system with an added flux [20]283

leading to284

D(T = 0) =
π sin γ

8γ(π − γ)
. (4.2)

For finite temperatures, the formula (4.1) has been used in Ref. [21] to calculate D(T )285

for anisotropies γ = π/m on the basis of the thermodynamic Bethe ansatz (TBA). The286

high- and low-temperature limits have then been analyzed in Ref. [22]. (2) A completely287

different approach is based on constructing a set of quasi-local charges—different from the288

ones in Eq. (2.8)—that have finite overlap with the current operator and to evaluate the289

r.h.s. of Eq. (2.15), see for example Refs. [2, 7–9]. A major difficulty in this approach is290

the evaluation of the correlators at finite temperatures. So far, only the high-temperature291

limit has been analyzed analytically [8] resulting in292

lim
T→∞

16TD = J2 sin2(πn/m)

sin2(π/m)

(
1− m

2π
sin(2π/m)

)
. (4.3)

Here the equal sign is only correct if the set of conserved charges used is complete which293

is a point which is difficult to prove. It has, however, been shown that the above re-294

sult agrees with the high-temperature limit of the TBA result obtained using the Kohn295

formula [13] which might give us some confidence that (4.3) is not just a lower bound296

but indeed exhaustive. Note that the Drude weight in the high-temperature limit has a297

fractal character according to Eq. (4.3), while D(T = 0) depends smoothly on anisotropy,298

see Eq. (4.2). This is opposite to our usual expectations that thermal fluctuations lead299

to a smoothening of the expectation values of observables as function of some parameter300

of the model. (3) A third approach has recently been proposed based on a generalized301

10



SciPost Physics Lecture Notes Submission

hydrodynamics (GHD) formulation where the continuity equations302

∂t〈Qn〉+ ∂x〈Jn〉 = 0 (4.4)

lead to the so-called Bethe-Boltzmann equations [23–26]303

∂tρξ,`(θ) + ∂x (vξ,`(θ)ρξ,`(θ)) = 0 . (4.5)

Here the current Jn is being related to the velocity vξ,` and density ρξ,` of quasi-particle304

excitations. ξ = x/t describes a set of rays along which a local equilibration is assumed to305

occur. The advantage of this formulation is that also dynamics far from equilibrium can306

be investigated. (4) Very recently, a first principle calculation of the Drude weight starting307

directly from the operator expression of the spin current has been presented [13]. Here308

the only assumption remaining is related to the existence of a complete set of conserved309

charges, similar to the assumption used in the derivation of the Mazur inequality.310

Since GHD has already been discussed at this Les Houches summer school, I will311

spend the last part of this lecture series on introducing an effective low-energy approach.312

In contrast to Bethe ansatz methods, this will allow to obtain a physical picture of the spin313

conductivity not only in integrable but also in generic spin-chain models. Furthermore,314

for the integrable XXZ chain we will be able to directly connect the ballistic and diffusive315

transport channels to each other.316

4.1 Bosonization317

Let me very briefly recapitulate the idea of bosonization. We start from the fermionic318

Hamiltonian (1.2) and take the continuum limit319

cj → Ψ(x) = eikF xΨR(x) + e−ikF xΨL(x), ΨR,L(x) =
1√
N

Λ∑
k=−Λ

ckR,Le±ikx (4.6)

where ΨR,L are the right and left movers obtained by linearizing the dispersion around320

the Fermi points and Λ is a momentum cutoff. The important point is that particle-hole321

excitations with momentum q now all have the same energy, e.g., ER(q) = v(k+q)−vk = vq322

is independent of k with v being the velocity. Collective excitations of particle-hole type323

can therefore be represented by a bosonic operator,
∑

k c
†
k+qck ∼ bq, and the interacting324

Hamiltonian (1.2), which is quartic in the fermionic operators, becomes a quadratic bosonic325

theory at low energies. The correction terms to the quadratic theory are all irrelevant in326

a renormalization group sense in the critical regime −1 < ∆ < 1. For the purpose of327

calculating the conductivity it is convenient to use bosonic fields which are related to the328

right and left movers by329

ΨR,L ∝
1√
2πα

e−i
√

2πϕR,L , ϕR,L =
1√
2

(θ̃ ∓ φ̃) , (4.7)

where α ∼ k−1
F is a short-distance cutoff and we have introduced canonically conjugated330

fields [φ̃(x), ∂x′ θ̃(x
′)] = iδ(x−x′). The interaction now merely leads to a rescaling of these331

fields, φ̃ =
√
K/2φ and θ̃ =

√
2/Kθ, leading to a Hamiltonian332

H =
v

2

∫
dx
[
(∂xφ)2 + (∂xθ)

2
]

+ λ

∫
dx cos(

√
8πKφ) . (4.8)

The first term describes the free theory while the second term with scaling dimension 2K333

represents irrelevant Umklapp scattering. The Luttinger parameter K and the velocity v334
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can be determined for the integrable XXZ chain by calculating static properties such as335

the specific heat and the susceptibility using the field theory (4.8) and the Bethe ansatz336

and comparing the results. This leads to337

v =
Jπ

2

√
1−∆2

arccos ∆
=
Jπ

2

sin γ

γ
, K =

π

π − arccos ∆
=

π

π − γ
. (4.9)

Note that in this notation K = 2 at the free Fermi point ∆ = 0, and K = 1 at the isotropic338

point ∆ = 1.339

The spin current density is given by js = J(Ψ†LΨL − Ψ†RΨR) in terms of the left and340

right movers. Since the free bosonic Hamiltonian conserves the right and left particle341

densities separately, the spin current will not relax. It is thus important to also take the342

last term in Eq. (4.8) into account. It describes Umklapp scattering343

∼ e−i2kF (2x+1)Ψ†R(x)ΨL(x)Ψ†R(x+ 1)ΨL(x+ 1) + h.c. (4.10)

where two left movers scatter to two right movers and vice versa. In general, this term344

oscillates ∼ exp(i4kFx) but is non-oscillating at half-filling (zero magnetic field) where345

kF = π/2. While this term is formally irrelevant for −1 < ∆ < 1 it can relax the current346

and therefore has to be treated with care.347

4.2 Results348

We now want to evaluate the Kubo formula (2.17). We can couple the fermions to the349

electromagnetic potential A by a Peierls substitution Π = ∂xθ → Π−
√
K/2πA. One then350

finds351

∂H

∂A

∣∣∣∣
A=0

=

∫
dx js(x) with js = −v

√
K

2π
Π = −

√
K

2π
∂tφ , (4.11)

∂2H

∂A2

∣∣∣∣
A=0

= 〈Hkin〉 =
vK

2π
L

using ∂xθ = v−1∂tφ. Here L = Na with a being the lattice constant. The second line is352

the diamagnetic term. The Kubo formula then reads353

σs(q, ω) =
i

ω

[
vK

2π
+ 〈J sJ s〉ret(q, ω)

]
. (4.12)

By partial integration and using the canonical commutation relations one finds354

〈∂tφ∂tφ〉ret(q, ω) = −v + ω2〈φφ〉ret(q, ω) . (4.13)

Putting this into (4.12) we see that the diamagnetic term is cancelled and we are left with355

the following simple Kubo formula for the spin conductivity within the bosonized theory356

σs(q, ω) =
vK

2π
iω〈φφ〉ret(q, ω) . (4.14)

The only quantity required to obtain the conductivity is thus the retarded correlation357

function of the basic bosonic field. For the free bosonic model without the Umklapp term358

(λ = 0 in Eq. (4.8)), we just find the standard free boson propagator359

〈φφ〉ret(q, ω) =
v

ω2 − v2q2
(4.15)
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leading to a Drude weight360

Dδ(ω) =
1

2π
lim
ω→0

lim
q→0

σ′(q, ω) =
Kv

4π2
Re

(
i

ω + iε

)
=
Kv

4π
δ(ω) (4.16)

which does agree with the BA result (4.2). Note that at this level of approximation there361

is no regular part of the conductivity and no temperature dependence of the Drude weight.362

Taking into account band curvature terms will introduce a temperature dependence of the363

Drude weight but only the Umklapp term can lead to a relaxation of the current. For364

the conductivity this operator is dangerously irrelevant and will completely change the365

transport properties of the theory. To see this it is sufficient to calculate the propagator366

to second order in perturbation theory in the Umklapp scattering367

〈φφ〉ret(q, ω) =
v

ω2 − v2q2 −Πret(q, ω)
(4.17)

where Πret(q, ω) is the self energy. This is a standard calculation and we just present the368

result here369

σ(q, ω) =
vK

2π

iω

ω2 − v2q2 + 2iΓω
. (4.18)

Here Γ ∼ λ2T 4K−3 is a relaxation rate which vanishes for T → 0. For the integrable XXZ370

model, Γ can be determined exactly [27] and there are therefore no free parameters in371

(4.18) in this case. Here we just want to understand the physics qualitatively. Considering,372

in particular, the real part of the conductivity at q = 0 we find373

σ′(ω) =
vK

2π

2Γ

ω2 + (2Γ )2
. (4.19)

The Drude weight broadens to a Lorentzian with width ∼ T 4K−3 at any finite temperature.374

While this is in fact the expected behavior for a generic non-integrable model, we are now375

missing the finite-temperature Drude weight which we know does exist in the integrable376

XXZ chain because of the quasi-local charges which protect a part of the spin current from377

decaying.378

This should not come as a surprise: In the derivation of the low-energy effective theory,379

the existence of an infinite set of (quasi-)local conserved charges Qn has not been taken380

into account. The requirement [H,Qn] = 0 corresponds, in general, to a fine-tuning of the381

bosonic Hamiltonian. As has been shown in Ref. [28] this can, for example, lead to the382

absence of certain irrelevant terms which are kinematically allowed and therefore expected383

to be present in a generic model. A full understanding of the structure of the low-energy384

Hamiltonian for the integrable XXZ chain is, however, still lacking. Here we will instead385

use a different approach. If there is a conserved charge with finite overlap with the current,386

then we can separate this current into two parts387

J s =
〈J sQ〉
〈Q2〉

Q︸ ︷︷ ︸
J s
‖

+J s⊥ . (4.20)

Then J s⊥ will decay due to Umklapp scattering while J s‖ is protected. More formally, this388

approach can be implemented using a memory matrix approach, see Ref. [29, 30]. The389

conductivity then becomes390

σ′s(ω) =
vK

2

y

1 + y︸ ︷︷ ︸
2πDs(T )

δ(ω) +
vK

π

Γ

ω2 + 4(1 + y)2Γ 2︸ ︷︷ ︸
σ′
reg(ω)

(4.21)
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with391

y

1 + y
=

〈J sQ〉2

〈(J s)2〉〈Q2〉
(4.22)

and 〈(J s)2〉/LT = vK/2π. Note that the Drude weight Ds obtained from Eqs. (4.21) and392

(4.22) is consistent with the Mazur equation (2.15). Note, furthermore, that for y → ∞393

and thus y/(1 + y) → 1 we recover the Drude weight Ds = vK/(4π) which therefore394

corresponds to the case of a fully conserved current. For y finite, on the other hand,395

Eq. (4.21) describes a coexistence of ballistic and diffusive transport. Finally, we can also396

check that (4.21) fulfills the f-sum rule
∫
dω σ′s(ω) = vK/2.397

Conversely, we can also use (4.21) to express y by the Drude weight Ds leading to398

y =
4πDs(T )

vK − 4πDs(T )
, 1 + y =

vK

vK − 4πDs(T )
(4.23)

with Ds(0) = vK/(4π). The regular part of the conductivity at frequency zero then reads399

400

σ′reg(ω = 0) =
vK

4π

1

(1 + y)2Γ
=

(vK − 4πD(T ))2

4πvKΓ
. (4.24)

For γ = π/m, the TBA calculations in Refs. [13,21] have shown that at low temperatures401

the Drude weight behaves as Ds(T ) = Ds(0)−αT 2K−2 where α depends on the anisotropy402

γ. Furthermore, the relaxation rate due to Umklapp scattering can be expressed as Γ =403

Γ0T
4K−3 where Γ0 is a function of anisotropy and is known exactly, see Ref. [29,30]. The404

regular part of the conductivity at low temperatures is therefore given by405

σ′reg(ω = 0) =
4πα2

vKΓ0

1

T
. (4.25)

We can now use the Einstein relation to define the diffusion constant406

Ds ≡
σ′reg(ω = 0)

χs
=

8π2α2

K2Γ0

1

T
, (4.26)

where χs(T ) is the spin susceptibility and we have used the low-temperature result χs =407

K/2πv. The diffusion constant thus diverges as 1/T for T → 0. Note that this derivation408

uses the Bethe ansatz result for anisotropies ∆ = cos(π/m) and is thus only valid for409

these discrete anisotropies. Furthermore, the relaxation rate Γ = Γ0T
4K−3 has only been410

calculated to second order in Umklapp scattering so Eq. (4.26) is only expected to be an411

upper bound for the exact diffusion constant at low temperatures. A formula to calculate412

the exact diffusion constant at anisotropies ∆ = cos(πn/m) has recently been conjectured413

in Ref. [31] based on an extension of GHD. Numerically, these predictions can be tested by414

calculating the diffusion constant directly from the current-current correlation function,415

see Eq. (2.28). In such numerical calculations, the main problem is to reach sufficiently416

long times to obtain reliable results for the integral over the time-dependent current-417

current correlation function. This problem is particularly severe at low temperatures418

where the current-current correlation function decays very slowly towards its long-time419

value limt→∞〈J s(t)J s(0)〉 = 2NTDs(T ).420

Overall, we have obtained the following picture for the spin conductivity σ′s(ω) of the421

XXZ chain at h = 0 and small frequencies ω: At T = 0 there is only a Drude peak422

D = vK/(4π) and no regular part because Umklapp scattering is inactive. At T > 0, on423

the other hand, we have a coexistence of ballistic and diffusive transport. This coexistence424

manifests itself in a Drude peak on top of a narrow Lorentzian with width ∼ T 4K−3 and425

height 1/T . The weight of the Lorentzian is therefore ∼ T 4K−4 and vanishes for T → 0 if426

0 < ∆ = cos(π/m) < 1. This situation is shown pictorially in Fig. 2.427
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D(T)

σ’
reg

(ω)

height ~ 1/T

width ~ T
4K-3

Figure 2: At finite temperatures and anisotropies ∆ = cos(π/m) there is a coexistence of
ballistic and diffusive transport in the XXZ chain: The Drude peak sits on top of a narrow
Lorentzian with width ∼ T 4K−3.

5 Conclusion428

To summarize, I have introduced the basic framework to calculate transport in the linear429

response regime. For integrable models, transport can be unusual in the sense that the430

current itself or part of the current is protected by a conservation law leading to an431

infinite dc conductivity even at finite temperatures. It is important to stress that the432

ideal conductivity in this case is not related to superconductivity: the superfluid density433

is zero and there is no Meisner effect.434

For the integrable XXZ spin chain in the critical regime, concrete results for the thermal435

and the spin conductivity at anisotropies γ = π/m have been derived. These results can436

be easily generalized to γ = nπ/m with n,m coprime and integer. Note that while the437

TBA-type approaches used here rely on having finite string lengths and can therefore not438

be applied if γ/π is irrational, we can approximate any irrational number by a rational one439

to arbitrary precision. The result for the infinite temperature spin Drude weight (4.3),440

for example, does have a well-defined limit 16TDs = 2 sin2(γ)/3 for γ irrational. This441

suggests that the XXZ chain does show an infinite dc conductivity for all anisotropies442

−1 < ∆ < 1 and all temperatures.443

Left out of these lectures has been the gapped regime of the XXZ chain, |∆| > 1,444

and the isotropic antiferromagnet, ∆ = 1. For the thermal Drude weight nothing changes445

qualitatively because J E itself is conserved. The quasi-local charges which protect part of446

the spin current, on the other hand, become non-local for |∆| > 1 and the spin transport447

becomes diffusive [31, 32]. Right at the isotropic point, ∆ = 1, numerical calculations448

point to super-diffusive transport with a dynamical critical exponent z = 2/3 [33]. While449

a mostly coherent picture of spin transport in the XXZ chain has started to emerge in450

the last ten years based on a number of different analytical and numerical methods, these451

very recent results for the isotropic point show that this picture is not quite complete yet452

and that this topic deserves further study.453
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