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Abstract

These notes are based on a series of three lectures given at the Les Houches
summer school on ’Integrability in Atomic and Condensed Matter Physics’
in August 2018. They provide an introduction into the unusual transport
properties of integrable models in the linear response regime focussing, in
particular, on the spin-1/2 XXZ spin chain.
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1 Outline

In these lecture notes I will discuss transport in one-dimensional quantum systems at finite
temperatures in the linear response regime. After a general introduction, a particular focus
will be on the unusual transport properties of integrable systems. Note that these notes are
not meant to be an exhaustive review of the research field. They are based on the content
of three lectures given at the Les Houches summer school on ’Integrability in Atomic and
Condensed Matter Physics’ in August 2018 and are therefore necessarily limited in scope.
These lectures on transport build on material which was presented at the summer school
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in earlier lectures. Foundations of the coordinate, algebraic, and thermodynamic Bethe
ansatz, in particular, are assumed to be known already. Furthermore, I also note that
a different approach to transport—generalized hydrodynamics—has been discussed in a
separate series of lectures and will not be covered here.

In order to be concrete, I will mostly concentrate on a particular integrable lattice
model, the XXZ spin chain

H =
∑
`

[
J
(
Sx` S

x
`+1 + Sy` S

y
`+1 + ∆Sz`S

z
`+1

)
− hSz`

]
. (1.1)

Here J is the exchange constant, ∆ the exchange anisotropy, and h an external magnetic
field. Sα are spin-1/2 operators fulfilling the commutation relations [Sα, Sβ] = iεαβγS

γ .
In the following, we will often parametrize the anisotropy as ∆ = cos γ. It is also often
useful to think about this model as a chain of interacting spinless fermions

H =
∑
`

{
J

[
−1

2
(c†`c`+1 + h.c.) + ∆

(
n` −

1

2

)(
n`+1 −

1

2

)]
− h

(
n` −

1

2

)}
(1.2)

with n` = c†`c` where c` is a fermionic annihilation operator at site `. This alternative
representation is obtained by using the Jordan-Wigner transformation

Sz` → n` −
1

2
, S+

` → (−1)`c†`e
iπφ` , S−` → (−1)`c`e

−iπφ` (1.3)

with the ladder operators S±` = Sx` ± iSy` and the Jordan-Wigner string φ` =
∑`−1

j=1 nj .
Note that the Jordan-Wigner string does not show up explicitly in the Hamiltonian (1.2)
because the hopping is limited to nearest-neighbour sites in the lattice.

In general, transport is a non-equilibrium problem: Spin transport, for example, re-
quires a magnetic field gradient while heat transport is driven by a temperature gradient.
In the following I will, however, exclusively analyze the linear response regime using Kubo
formulas. In this regime, transport coefficients can be obtained from dynamical correla-
tion functions calculated at equilibrium. The plan for the three lectures is then as follows:
In the first lecture, I will briefly recapitulate how currents and transport coefficients can
be defined. Furthermore, I will derive the Mazur inequality and explain why integrabil-
ity can lead to ballistic transport even at finite temperatures. In the second lecture, the
Kubo formulas for the conductivities will be discussed. I will show, in particular, how
the Drude weight and the diffusion constant can be obtained from real-time equilibrium
current-current correlation functions. Explicit results for the thermal Drude weight of the
XXZ chain will be derived. To obtain a broader physical understanding of the interplay
of ballistic and diffusive transport channels, I will describe the XXZ chain at low energies
using bosonization in the third lecture. Finally, I will use the field theoretical description
to calculate the spin conductivity, obtain a concrete formula for the spin diffusion con-
stant, and discuss the general picture emerging from these calculations as well as their
limitations.

2 Transport coefficients and linear response

One way to derive the spin and thermal current operators for the XXZ chain is based on
a discrete version of the continuity equation where the time derivative is calculated using
the equation of motion. For the total spin current J s =

∑
` j
s
` we have, in particular,

∂tS
z
` = −i[Sz` , H] = −(js` − js`−1) (2.1)
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leading to a current density

js` = J(Sx` S
y
`+1 − S

y
` S

x
`+1) =

iJ

2
(S+
` S
−
l+1 − S

−
` S

+
l+1) . (2.2)

Using the Jordan-Wigner transformation (1.3) we see that in terms of spinless fermions
this corresponds to a particle current, i.e., the difference between particles moving to the
left and to the right.

Similarly, we can derive the thermal current operator J th =
∑

` j
th
` by the continuity

equation
∂th`,`+1 = −i[h`,`+1, H] = −(jth

` − jth
`−1) (2.3)

where H = H0−h
∑

` S
z
` =

∑
` h`,`+1 =

∑
`(h

0
`,`+1−hSz` ). The thermal current thus splits

into two parts, J th = JE − hJs, where Js is the spin current (2.2) and JE the energy
current obtained from the continuity equation (2.3) for the case of zero magnetic field. In
other words, at finite magnetic fields there is a contribution to the thermal current due
to particle transport. Calculating the commutator in (2.3) for h = 0, leads to an energy
current density jE` acting on three neighbouring sites which can be written in compact
form as

jE` = J2
∑
`

S` · (S′`−1 × S′`+1), S′` = (Sx` , S
y
` ,∆S

z
` ) . (2.4)

Alternatively, the spin current can also be derived by putting a flux Φ through an
XXZ ring in the fermionic formulation (1.2). The flux then couples via the Peierls substi-

tution c†`c`+1 → c†`c`+1e−iA`,`+1 . Here A`,`+1 is the vector potential along the bond with∑
`A`,`+1 = Φ. The current operator is then given by js` = − ∂H

∂A`,`+1

∣∣
A→0

. Furthermore,

the diamagnetic term can be obtained as ∂2H
∂A2

∣∣
A→0

= Hkin where Hkin is the hopping part
of the Hamiltonian (1.2).

The transport coefficients relate the currents to the gradients in temperature and
magnetic field (

J th

J s
)

=

(
κth Cth

s

Csth σs

)(
−∇T
∇h

)
(2.5)

with κth being the thermal conductivity and σs the spin conductivity. The coefficients Cth
s

and Csth describe the creation of a thermal current due to a magnetic field gradient and
of a spin current due to a thermal gradient, respectively. The latter is the spin Seebeck
effect which has been studied in much detail for ferromagnets in the field of spintronics.
From the Onsager relation [1] it follows that Cth

s = TCsth.
The, in general, complex and frequency dependent transport coefficients are decom-

posed as, for example,

σ′s(k = 0, ω) = 2πDsδ(ω) + σreg
s (ω) (2.6)

where σ′s(k, ω) denotes the real part of the spin conductivity at momentum k and frequency
ω. Ds is the spin Drude weight, and σreg

s (ω) the regular part of the conductivity. We can
write down a similar decomposition for the thermal conductivity κth(ω). A non-zero Drude
weight signals ballistic transport, i.e. a diverging dc conductivity. Physically, this means
that the current does not completely relax. In a lattice system without impurities, we
expect this to happen at zero temperature where scattering processes such as spin-spin
or spin-phonon are frozen out. At finite temperatures, on the other hand, we expect that
in a generic clean system the dc conductivity becomes finite. Scattering processes are
expected to lead to a temperature-dependent broadening of the delta peak. This can only
be avoided if a part of the current is fully protected from relaxing by some conservation
law.
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This is the point where integrability comes into play. What makes integrable models
special, is that they have an infinite set of local conserved charges Qj . Here we mean local
in the strict sense that

Qj =
∑
`

qj` (2.7)

where qj is a local charge density acting on j neighbouring sites. For the XXZ chain, in
particular, we can derive these charges by defining a family of commuting transfer matrices
[T (θ), T (θ′)] = 0 with spectral parameter θ. The local conserved charges are then obtained
by

Qj+1 =
dj

dθj
lnT (θ)

∣∣
θ=1

, j ≥ 1 . (2.8)

We refer to reference [2] for details. For now it is just important to note that Q2 ∝ H
and Q3 ∝ J E . Thus the energy current is itself a conserved quantity implying an infinite
energy conductivity at any temperature. Energy transport in the XXZ chain is purely
ballistic.

Spin transport, on the other hand, is a much more complicated phenomenon. For zero
magnetic field, the spin inversion operation C−1σz`C = −σz` , C−1σ±` C = σ∓` is a symmetry
of the Hamiltonian. It is also easy to see that C−1J EC = J E . For h = 0 one can,
furthermore, show that the transfer matrix T (θ) in the usual spin s = 1/2 representation
of auxiliary space is itself even under spin inversion for all spectral parameters θ 6= 0,∞,
i.e. C−1T (θ)C = T (θ). Therefore all the local conserved charges Qj defined in Eq. (2.8)
are even under spin inversion. The spin current operator, on the other hand, is odd,
C−1J sC = −J s. It follows that for zero magnetic field 〈J sQj〉 ≡ 0, ∀j where 〈· · · 〉 denotes
the thermal average. Therefore the charges Qj do not protect the spin current J s from
decaying. This leads to the interesting question whether or not spin transport in the XXZ
chain at zero magnetic field is ballistic or diffusive. We will see in the following that the
answer depends on the anisotropy ∆. For ∆ = cos(π/m) and m integer, in particular, the
two transport channels coexist. While we concentrate on these specific anisotropies in the
following, we note that the results can be generalized to all commensurate anisotropies γ =
nπ/m with n,m coprime. On the other hand, it has been argued that ballistic transport
possibly coexists with superdiffusion at incommensurate anisotropies while transport is
entirely superdiffusive at the isotropic point, ∆ = 1 [34]. Also note that the arguments
above do not apply to the case h 6= 0 where spin inversion C is no longer a symmetry of
the Hamiltonian (1.1). In the latter case it is straightforward to show that a part of the
spin current is protected by the conservation laws (2.8) and cannot decay [3].

2.1 Mazur inequality

To understand more precisely the connection between the Drude weight and the conserved
charges of the considered system, we follow the approach of Mazur [4] and Suzuki [5]. We
do so starting with a finite system. This raises some subtle questions with regard to the
order of taking the limits of system size and time to infinity. We will get back to this point
at the end of this section.

Let us start by considering the time average of a current-current correlation in spectral
representation

lim
Λ→∞

1

Λ

∫ Λ

0
dt 〈J (t)J (0)〉 =

∑
n,m

e−βEn

Z
〈n|J |m〉〈m|J |n〉 lim

Λ→∞

1

Λ

∫ Λ

0
dt eit(En−Em)

=

En=Em∑
n,m

e−βEn

Z
|〈n|J |m〉|2 , (2.9)
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where Z = tr {e−βH} is the partition function. Here we have used that taking the limit
yields

lim
Λ→∞

eiΛ(En−Em) − 1

iΛ(En − Em)
=

{
0, En 6= Em
1, En = Em

. (2.10)

Without loss of generality, we can assume that we have a complete set of Hermitian
conserved charges Qk, [H,Qk] = 0, which are orthogonal 〈QkQl〉 = 〈Q2

k〉δkl. We can then
split the current operator into a part which is diagonal in the energy eigenbasis and a part
which is off-diagonal. The diagonal part can then be expanded in Qk:

J =
∑
k

akQk + J ′, with 〈n|J ′|m〉 = 0 if En = Em

⇒ 〈QlJ 〉 =
∑
k

ak 〈QlQk〉︸ ︷︷ ︸
〈Q2

l 〉δk,l

+ 〈QlJ ′〉︸ ︷︷ ︸
=0

⇒ al =
〈QlJ 〉
〈Q2

l 〉
(2.11)

Keeping in mind that 〈n|J ′|m〉 = 0 if En = Em, we can therefore write the time average
as

(2.9) =

En=Em∑
n,m

e−βEn

Z

∑
k,l

〈JQk〉〈JQl〉
〈Q2

k〉〈Q2
l 〉
〈n|Qk|m〉〈m|Ql|n〉 (2.12)

The Qk are diagonal and therefore

En=Em∑
n,m

e−βEn

Z
〈n|Qk|m〉〈m|Ql|n〉 =

∑
n,m

e−βEn

Z
〈n|Qk|m〉〈m|Ql|n〉 (2.13)

=
∑
n

e−βEn

Z
〈n|QkQl|n〉 = 〈QkQl〉 = δkl〈Q2

k〉 .

This leads us to the final result

lim
Λ→∞

1

Λ

∫ Λ

0
dt 〈J (t)J (0)〉 =

∑
k

〈JQk〉2

〈Q2
k〉

. (2.14)

If we find any conserved charge with 〈JQk〉 6= 0 then (2.14) provides a lower bound for the
time-averaged current-current correlation function in a finite system because the r.h.s. of
Eq. (2.14) is strictly positive. The relation is then called the Mazur inequality and the
obtained bound the Mazur bound.

In the thermodynamic limit, N →∞, we expect the current-current correlation func-
tion to equilibrate. If this is the case, then the time average becomes dominated by the
constant equilibrium value, thus

lim
t→∞

lim
N→∞

1

2NT
〈J (t)J (0)〉 = lim

N→∞

1

2NT

∑
k

〈JQk〉2

〈Q2
k〉

. (2.15)

In writing Eq. (2.15) we take for granted that the Mazur equality remains valid in the
thermodynamic limit, i.e., that we can take the limit N →∞ first before taking t→∞ as
is required in thermodynamics. Physically this is fairly obvious since the current density-
density correlator 〈j`(t)j0(0)〉 is only non-zero (up to exponentially small tails) within the
light cone set by the Lieb-Robinson bounds. I.e., for any time t it is sufficient to consider
a finite system of size N � vLRt where vLR is the Lieb-Robinson velocity. This point is
discussed in more detail in Ref. [6]. We will see later that Eq. (2.15) is proportional to
the Drude weight D(T ).
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If J is a local operator—this is the case for the XXZ chain considered here—then
〈JQk〉2 ∼ N2. Therefore only those conserved charges contribute to the Mazur bound in
the thermodynamic limit for which

〈Q2
k〉 ∼ N . (2.16)

Operators who fulfill the strict locality condition, Eq. (2.7), also fulfill the condition (2.16).
Additional conserved charges, however, can exist which are not of the form (2.7) but do
fulfill Eq. (2.16). These charges are sometimes called quasi-local and play an important
role in understanding the spin transport properties of the XXZ chain. In addition to
conserved charges which are local in the sense of Eq. (2.16), every quantum mechanical
system also has an infinite number of non-local conserved charges. An example are the
projectors Pn = |n〉〈n| onto the extended eigenstates |n〉 of the system. Such charges,
however, do not affect the transport properties of the system.

2.2 Kubo formula

Next, we want to discuss how to calculate the spin conductivity σs(ω) in linear response
and how to relate Eq. (2.15) to the Drude weight. The Kubo formula is obtained straight-
forwardly in linear response theory and is given by

σs(ω) =
i

ω

[
〈Hkin〉
N

− i

N

∫ ∞
0

dt eiωt〈[J s(t),J s(0)]〉
]
. (2.17)

The first term is the diamagnetic contribution while the second term is the retarded
current-current correlation function. For a derivation see, for example, the textbook by
Mahan [1]. Using again a spectral representation, we can perform the integral over time
and obtain

σs(ω) =
i

ωN

[
〈Hkin〉+

∑
n,m

(pn − pm)|〈n|J s|m〉|2

ω − (Em − En) + iδ

]
(2.18)

with pn = exp(−βEn)/Z and β = 1/T . We now use the relation

1

ω

1

ω + E
=

1

E

(
1

ω
− 1

ω + E

)
(2.19)

to split Eq. (2.18) into two parts

σs(ω) =
i

ωN

[
〈Hkin〉+

∑
n,m

(pn − pm)

En − Em
|〈n|J s|m〉|2

]
− i

N

∑
n,m

(pn − pm)

En − Em
|〈n|J s|m〉|2

ω − (Em − En)
.

(2.20)
The term in the square brackets is the charge or Meissner stiffness Γs. It can be obtained

from the free energy f(Φ) of an XXZ ring with a flux Φ through the ring by Γs = ∂2f
∂Φ2

∣∣
Φ=0

.
The charge stiffness is proportional to the superfluid density ns(T ) which is zero in the
thermodynamic limit for a strictly one-dimensional system.

We now take the real part of the last term in Eq. (2.20) using the relation

1

ω − E
= P

1

ω − E
− iπδ(ω − E) (2.21)

to obtain

σ′s(ω) = − π
N

∑
n,m

pn − pm
En − Em

|〈n|J 2|m〉|2δ(ω − (Em − En)) (2.22)

=
βπ

N

∑
En=Em

pn|〈n|J 2|m〉|2δ(ω) +
π

N

∑
En 6=Em

pn − pm
Em − En

|〈n|J 2|m〉|2δ(ω − (Em − En)) .
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Comparing with Eq. (2.6) we see that the first term in the second line is proportional to
the Drude weight while the second term describes the regular part.

Using a spectral representation it is also straightforward to show that Eq. (2.22) can
be rewritten as a time-dependent current-current correlation function

σ′s(ω) =
1− e−βω

2ωN

∫ ∞
−∞

eiωt〈J s(t)J s(0)〉 . (2.23)

This relation is known as the fluctuation-dissipation theorem because for generic, non-
integrable models it connects the current-current fluctuations to the dissipative part of
the conductivity.

For an integrable system, we can further split the correlation function into a ballistic
part which persists at infinite times and a regular part which decays in time

C(t) = lim
N→∞

〈J s(t)J s(0)〉/N = lim
t→∞

lim
N→∞

〈J s(t)J s(0)〉/N︸ ︷︷ ︸
(J sJ s)∞

+Creg
s (t) . (2.24)

Here Creg
s (t) is a function which vanishes for t→∞ and gives a non-singular contribution

to the conductivity σ′s(ω). Plugging (2.24) into (2.23) yields

σ′s(ω) =
1− e−βω

2ω

∫ ∞
−∞

dt eiωt [(J sJ s)∞ + Creg
s (t)]

= 2π
(JJ )∞

2T
δ(ω) +

1− e−βω

2ω
Creg
s (ω) . (2.25)

Comparing with the definition of the Drude weight and the regular part of the conductivity
(2.6) we find the important relation

Ds =
(J sJ s)∞

2T
= lim

t→∞
lim
N→∞

1

2NT
〈J s(t)J s(0)〉 . (2.26)

I.e., we have now shown that the expression in (2.15) is indeed the Drude weight and
that this quantity is directly related to the part of the current which does not decay.
Furthermore,

σreg
s (ω → 0) = β

∫ ∞
0

dtCreg
s (t) = χs(β)Ds (2.27)

where we have used the Einstein relation in the second step to introduce the diffusion
constant Ds and the static spin susceptibility χs. In addition to the Drude weight which
is related via Eq. (2.26) to the part of the current which is protected by local conservation
laws and does not decay in time, there is thus a diffusive part given by the decaying part
of the current with diffusion constant

Ds =
β

χ(β)

∫ ∞
0

dt [C(t)− 2TDs] . (2.28)

We note that we have assumed here that the integral in Eq. (2.28) is convergent. If
this is not the case, then the additional channel is superdiffusive. As indicated earlier,
this possibly happens at incommensurate anisotropies but will not be discussed here any
further. We can now combine (2.26) with the Mazur formula (2.15) to obtain a bound
or the exact Drude weight by considering overlaps of the conserved charges with the
current operator. The advantage of this approach is that it maps a dynamic onto a static
problem. This approach has been used in Refs. [2,7–9]. It provides a strict lower bound—
possibly even exhaustive—for rational γ/π and thus proof that ballistic transport for these
anisotropies indeed persists at finite temperatures.
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Similar results can also be obtained for the thermal conductivity. A subtle point is the
proper definition of the currents and forces which cause these currents to flow, see Ref. [1].

One possible choice is J s = M11

T ∇h and J E = M22∇
(

1
T

)
. Comparing with (2.5) we see

that there is an additional factor of 1/T in the definition of the thermal conductivity κth.
For the thermal Drude weight at zero field one finds, in particular,

Dth = lim
t→∞

lim
N→∞

1

2NT 2
lim
t→∞
〈J E(t)J E(0)〉 = lim

N→∞

〈(J E)2〉
2NT 2

(2.29)

where we have used in the last step that [J E , H] = 0 for the XXZ chain.

3 Thermal Drude weight

The thermal Drude weight is particularly easy to calculate because it is given by the static
expectation value of a conserved charge, see (2.29). In the following we briefly sketch
how to obtain Dth using the standard thermodynamic Bethe ansatz (TBA) formalism for
anisotropies ∆ = cos γ with γ = π/m. We note that the first derivation of the thermal
Drude weight was carried out by Klümper and Sakai [10] using the quantum transfer
matrix formalism. The latter approach has the advantage that the string hypothesis is
not needed and results for arbitrary ∆ are obtained.

We consider only the case h = 0. First, we define a generalized partition function and
generalized free energy

Z = tr exp(−βH + λJE), f(β, λ) = − T
N

lnZ . (3.1)

In TBA we can write this free energy density as

f(β, λ) = − T

2π

m∑
`=1

∫
dθ ε`(θ)σ` ln[1 + η−1

` (θ)]. (3.2)

Here ε` are the bare eigenenergies. The variables σ` = sign(g`) are the signs of auxiliary
rational numbers associated to string solutions as defined in [11]. For the case of anisotropy
γ = π/m the g` have a particularly simple relation to string length n`

g` = m− n`, n` = ` for ` = 1, . . . ,m− 1 and gm = −1, nm = 1. (3.3)

The functions η` = ρh` /ρ` are defined by the ratio of hole density ρh` and particle density
ρ` of the `-th particle (string) and fulfill the coupled TBA equations

ln η`(θ) = βε` + λjE` +
∑
κ

∫
dµK`κ(θ − µ)σκ ln(1 + η−1

κ (µ)),

≡ βε` + λjE` +
[
K ∗ σ ln(1 + η−1)

]
`

(3.4)

with an integration kernel K, and ’∗’ denoting a convolution and sum over Bethe strings.
Here jE` = ∂θε` = ∂2

θp` = p′′` where p(θ) is the momentum. To express the results in a
more compact form, it is useful to define the following dressed quantities

ε̃` = ε` − [K ∗ σϑε̃]` , j̃E` = jE` −
[
K ∗ σϑj̃E

]
`

(3.5)

where we have defined the Fermi factor ϑ` = 1/(1 + η`) = ρ`/(ρ` + ρh` ). It is also useful to
realize the following simple relation of the dressed quantities to the logarithmic derivatives
of the η-functions

∂β log η`(θ) = ε̃`(θ), ∂λ log η`(θ) = j̃E` (θ) . (3.6)
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Figure 1: Dth(T ) for different anisotropies. The inset compares the full result to the
low-temperature asymptotics (dashed lines), see Eq. (3.8).

It is now straightforward to obtain the expectation value needed to calculate the ther-
mal Drude weight

〈(JE)2〉/N = − 1

T
∂2
λf(β, λ)|λ=0 =

1

2π

∑
`

∫
dθ ε`σ`∂

2
λ ln(1 + η−1

` )

=
1

2π

∑
`

∫
dθ σ`ϑ`(1− ϑ`)ε̃`(j̃E` )2 =

∑
`

∫
dθ ρ`(1− ϑ`)(j̃E` )2 . (3.7)

Here we have used several identities which are described in Refs. [12, 13].

In Fig. 1 we show results for the thermal Drude weight Dth = 〈
(
J E
)2〉/2NT 2 for

anisotropies ∆ = cos(π/m) as a function of temperature. At low temperatures one finds
that both the thermal Drude weight Dth(T ) and the specific heat C(T ) scale linearly with
temperature

Dth =
πv

6
T, C =

π

3v
T,

Dth

C
=
v2

2
, (3.8)

where v = Jπ sin γ/2γ is the velocity of the elementary excitations.
We can now ask if unusual heat transport properties can be observed in experiments

on spin-1/2 chain compounds in which integrability will be broken by lattice vibrations,
impurities, and interchain couplings. Before discussing this point further, two important
comments are in order. If one measures the thermal conductivity at finite magnetic field,
then the thermal current consists of energy and spin current contributions: J th = J E −
hJ s. Experimental measurements of the heat conductivity are often done in a setup where
the spin current vanishes, J s = 0. In this case the heat conductivity is redefined

K = κth −
1

T

(
Cth
s

)2
σs

(3.9)

9
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where the second term is called the magnetothermal correction [14,15]. Eq. (3.9) is based
on the assumption that the relaxation times for energy and spin transport are the same
which might not necessarily be true for a real material. Leaving such issues aside, one
might expect that in a system which is close to an integrable one, heat currents are de-
caying slowly and mean free paths are long. This is indeed what seems to have been seen
in a number of experiments [16–19]. For the copper-oxide spin chain compounds Sr2CuO3

and SrCuO2, for example, it has been observed that the heat conductivity along the chain
direction is about an order of magnitude larger than in the perpendicular directions. A
natural explanation appears to be that there is heat transport due to phonons in all direc-
tions while only in the chain direction there is an additional contribution due to magnetic
excitations which decays only very slowly. Obtaining a detailed understanding of the heat
transport as measured experimentally is, however, a complex and still somewhat open
issue. It requires an identification of the dominant relaxation processes and a formalism
to incorporate such scattering mechanisms in the calculation of the thermal conductivity.

4 The Spin Conductivity

In this last part, I want to discuss the spin conductivity of the XXZ chain at zero magnetic
field. As already discussed, in this case none of the conserved charges (2.8) derived from
the regular transfer matrix has any overlap with the spin current because of the spin-flip
symmetry C. The Mazur inequality (2.15) therefore apparently does not provide a non-
zero bound. This raises the question whether or not spin transport in the integrable XXZ
chain has a ballistic component. Various different approaches have been used so far to
try to directly compute the Drude weight: (1) Starting from the spectral representation
of the Kubo formula (2.18) and comparing this with the change of the eigenenergies En of
the Hamiltonian (1.1) when threading a static magnetic flux Φ through an XXZ ring one
finds

D =
1

2NZ

∑
n

e−En/T ∂
2En(Φ)

∂Φ2

∣∣∣∣
Φ=0

(4.1)

with Z being the partition function. This is a generalization of the Kohn formula [20]
to finite temperatures [21]. For zero temperature, in particular, the Drude weight can
be obtained simply from the ground state energy of the system with an added flux [22]
leading to

D(T = 0) =
π sin γ

8γ(π − γ)
. (4.2)

For finite temperatures, the formula (4.1) has been used in Ref. [23] to calculate D(T )
for anisotropies γ = π/m on the basis of the thermodynamic Bethe ansatz (TBA). The
high- and low-temperature limits have then been analyzed in Ref. [24]. (2) A completely
different approach is based on constructing a set of quasi-local charges—different from the
ones in Eq. (2.8)—that have finite overlap with the current operator and to evaluate the
r.h.s. of Eq. (2.15), see for example Refs. [2, 7–9]. A major difficulty in this approach is
the evaluation of the correlators at finite temperatures. So far, only the high-temperature
limit has been analyzed analytically [8] resulting in

lim
T→∞

16TD = J2 sin2(πn/m)

sin2(π/m)

(
1− m

2π
sin(2π/m)

)
. (4.3)

Here the equal sign is only correct if the set of conserved charges used is complete which
is a point which is difficult to prove. It has, however, been shown that the above re-
sult agrees with the high-temperature limit of the TBA result obtained using the Kohn

10
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formula [13] which might give us some confidence that (4.3) is not just a lower bound
but indeed exhaustive. Note that the Drude weight in the high-temperature limit has a
fractal character according to Eq. (4.3), while D(T = 0) depends smoothly on anisotropy,
see Eq. (4.2). This is opposite to our usual expectations that thermal fluctuations lead
to a smoothening of the expectation values of observables as function of some parameter
of the model. (3) A third approach has recently been proposed based on a generalized
hydrodynamics (GHD) formulation where the continuity equations

∂t〈Qn〉+ ∂x〈Jn〉 = 0 (4.4)

lead to the so-called Bethe-Boltzmann equations [25–28]

∂tρξ,`(θ) + ∂x (vξ,`(θ)ρξ,`(θ)) = 0 . (4.5)

Here the current Jn is being related to the velocity vξ,` and density ρξ,` of quasi-particle
excitations. ξ = x/t describes a set of rays along which a local equilibration is assumed to
occur. The advantage of this formulation is that also dynamics far from equilibrium can
be investigated. (4) Very recently, a first principle calculation of the Drude weight starting
directly from the operator expression of the spin current has been presented [13]. Here
the only assumption remaining is related to the existence of a complete set of conserved
charges, similar to the assumption used in the derivation of the Mazur inequality.

Since GHD has already been discussed at this Les Houches summer school, I will
spend the last part of this lecture series on introducing an effective low-energy approach.
In contrast to Bethe ansatz methods, this will allow to obtain a physical picture of the spin
conductivity not only in integrable but also in generic spin-chain models. Furthermore,
for the integrable XXZ chain we will be able to directly connect the ballistic and diffusive
transport channels to each other.

4.1 Bosonization

Let me very briefly recapitulate the idea of bosonization. We start from the fermionic
Hamiltonian (1.2) and take the continuum limit

cj → Ψ(x) = eikF xΨR(x) + e−ikF xΨL(x), ΨR,L(x) =
1√
N

Λ∑
k=−Λ

ckR,Le±ikx (4.6)

where ΨR,L are the right and left movers obtained by linearizing the dispersion around
the Fermi points and Λ is a momentum cutoff. The important point is that particle-hole
excitations with momentum q now all have the same energy, e.g., ER(q) = v(k+q)−vk = vq
is independent of k with v being the velocity. Collective excitations of particle-hole type
can therefore be represented by a bosonic operator,

∑
k c
†
k+qck ∼ bq, and the interacting

Hamiltonian (1.2), which is quartic in the fermionic operators, becomes a quadratic bosonic
theory at low energies. The correction terms to the quadratic theory are all irrelevant in
a renormalization group sense in the critical regime −1 < ∆ < 1. For the purpose of
calculating the conductivity it is convenient to use bosonic fields which are related to the
right and left movers by

ΨR,L ∝
1√
2πα

e−i
√

2πϕR,L , ϕR,L =
1√
2

(θ̃ ∓ φ̃) , (4.7)

where α ∼ k−1
F is a short-distance cutoff and we have introduced canonically conjugated

fields [φ̃(x), ∂x′ θ̃(x
′)] = iδ(x−x′). The interaction now merely leads to a rescaling of these
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fields, φ̃ =
√
K/2φ and θ̃ =

√
2/Kθ, leading to a Hamiltonian

H =
v

2

∫
dx
[
(∂xφ)2 + (∂xθ)

2
]

+ λ

∫
dx cos(

√
8πKφ) . (4.8)

The first term describes the free theory while the second term with scaling dimension 2K
represents irrelevant Umklapp scattering. The Luttinger parameter K and the velocity v
can be determined for the integrable XXZ chain by calculating static properties such as
the specific heat and the susceptibility using the field theory (4.8) and the Bethe ansatz
and comparing the results. This leads to

v =
Jπ

2

√
1−∆2

arccos ∆
=
Jπ

2

sin γ

γ
, K =

π

π − arccos ∆
=

π

π − γ
. (4.9)

Note that in this notation K = 2 at the free Fermi point ∆ = 0, and K = 1 at the isotropic
point ∆ = 1.

The spin current density is given by js = J(Ψ†LΨL − Ψ†RΨR) in terms of the left and
right movers. Since the free bosonic Hamiltonian conserves the right and left particle
densities separately, the spin current will not relax. It is thus important to also take the
last term in Eq. (4.8) into account. It describes Umklapp scattering

∼ e−i2kF (2x+1)Ψ†R(x)ΨL(x)Ψ†R(x+ 1)ΨL(x+ 1) + h.c. (4.10)

where two left movers scatter to two right movers and vice versa. In general, this term
oscillates ∼ exp(i4kFx) but is non-oscillating at half-filling (zero magnetic field) where
kF = π/2. While this term is formally irrelevant for −1 < ∆ < 1 it can relax the current
and therefore has to be treated with care.

4.2 Results

We now want to evaluate the Kubo formula (2.17). We can couple the fermions to the
electromagnetic potential A by a Peierls substitution Π = ∂xθ → Π−

√
K/2πA. One then

finds

∂H

∂A

∣∣∣∣
A=0

=

∫
dx js(x) with js = −v

√
K

2π
Π = −

√
K

2π
∂tφ , (4.11)

∂2H

∂A2

∣∣∣∣
A=0

= 〈Hkin〉 =
vK

2π
L

using ∂xθ = v−1∂tφ. Here L = Na with a being the lattice constant. The second line is
the diamagnetic term. The Kubo formula then reads

σs(q, ω) =
i

ω

[
vK

2π
+ 〈J sJ s〉ret(q, ω)

]
. (4.12)

By partial integration and using the canonical commutation relations one finds

〈∂tφ∂tφ〉ret(q, ω) = −v + ω2〈φφ〉ret(q, ω) . (4.13)

Putting this into (4.12) we see that the diamagnetic term is cancelled and we are left with
the following simple Kubo formula for the spin conductivity within the bosonized theory

σs(q, ω) =
vK

2π
iω〈φφ〉ret(q, ω) . (4.14)
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The only quantity required to obtain the conductivity is thus the retarded correlation
function of the basic bosonic field. For the free bosonic model without the Umklapp term
(λ = 0 in Eq. (4.8)), we just find the standard free boson propagator

〈φφ〉ret(q, ω) =
v

ω2 − v2q2
(4.15)

leading to a Drude weight

Dδ(ω) =
1

2π
lim
ω→0

lim
q→0

σ′(q, ω) =
Kv

4π2
Re

(
i

ω + iε

)
=
Kv

4π
δ(ω) (4.16)

which does agree with the BA result (4.2). Note that at this level of approximation there
is no regular part of the conductivity and no temperature dependence of the Drude weight.
Taking into account band curvature terms will introduce a temperature dependence of the
Drude weight but only the Umklapp term can lead to a relaxation of the current. For
the conductivity this operator is dangerously irrelevant and will completely change the
transport properties of the theory. To see this it is sufficient to calculate the propagator
to second order in perturbation theory in the Umklapp scattering

〈φφ〉ret(q, ω) =
v

ω2 − v2q2 −Πret(q, ω)
(4.17)

where Πret(q, ω) is the self energy. This is a standard calculation and we just present the
result here

σ(q, ω) =
vK

2π

iω

ω2 − v2q2 + 2iΓω
. (4.18)

Here Γ ∼ λ2T 4K−3 is a relaxation rate which vanishes for T → 0. For the integrable XXZ
model, Γ can be determined exactly [29] and there are therefore no free parameters in
(4.18) in this case. Here we just want to understand the physics qualitatively. Considering,
in particular, the real part of the conductivity at q = 0 we find

σ′(ω) =
vK

2π

2Γ

ω2 + (2Γ )2
. (4.19)

The Drude weight broadens to a Lorentzian with width ∼ T 4K−3 at any finite temperature.
While this is in fact the expected behavior for a generic non-integrable model, we are now
missing the finite-temperature Drude weight which we know does exist in the integrable
XXZ chain because of the quasi-local charges which protect a part of the spin current from
decaying.

This should not come as a surprise: In the derivation of the low-energy effective theory,
the existence of an infinite set of (quasi-)local conserved charges Qn has not been taken
into account. The requirement [H,Qn] = 0 corresponds, in general, to a fine-tuning of the
bosonic Hamiltonian. As has been shown in Ref. [30] this can, for example, lead to the
absence of certain irrelevant terms which are kinematically allowed and therefore expected
to be present in a generic model. A full understanding of the structure of the low-energy
Hamiltonian for the integrable XXZ chain is, however, still lacking. Here we will instead
use a different approach. If there is a conserved charge with finite overlap with the current,
then we can separate this current into two parts

J s =
〈J sQ〉
〈Q2〉

Q︸ ︷︷ ︸
J s
‖

+J s⊥ . (4.20)
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Then J s⊥ will decay due to Umklapp scattering while J s‖ is protected. More formally, this

approach can be implemented using a memory matrix approach, see Ref. [31, 32]. The
conductivity then becomes

σ′s(ω) =
vK

2

y

1 + y︸ ︷︷ ︸
2πDs(T )

δ(ω) +
vK

π

Γ

ω2 + 4(1 + y)2Γ 2︸ ︷︷ ︸
σ′
reg(ω)

(4.21)

with
y

1 + y
=

〈J sQ〉2

〈(J s)2〉〈Q2〉
(4.22)

and 〈(J s)2〉/LT = vK/2π. Note that the Drude weight Ds obtained from Eqs. (4.21) and
(4.22) is consistent with the Mazur equation (2.15). Note, furthermore, that for y → ∞
and thus y/(1 + y) → 1 we recover the Drude weight Ds = vK/(4π) which therefore
corresponds to the case of a fully conserved current. For y finite, on the other hand,
Eq. (4.21) describes a coexistence of ballistic and diffusive transport. Finally, we can also
check that (4.21) fulfills the f-sum rule

∫
dω σ′s(ω) = vK/2.

Conversely, we can also use (4.21) to express y by the Drude weight Ds leading to

y =
4πDs(T )

vK − 4πDs(T )
, 1 + y =

vK

vK − 4πDs(T )
(4.23)

with Ds(0) = vK/(4π). The regular part of the conductivity at frequency zero then reads

σ′reg(ω = 0) =
vK

4π

1

(1 + y)2Γ
=

(vK − 4πD(T ))2

4πvKΓ
. (4.24)

For γ = π/m, the TBA calculations in Refs. [13,23] have shown that at low temperatures
the Drude weight behaves as Ds(T ) = Ds(0)−αT 2K−2 where α depends on the anisotropy
γ. Furthermore, the relaxation rate due to Umklapp scattering can be expressed as Γ =
Γ0T

4K−3 where Γ0 is a function of anisotropy and is known exactly, see Ref. [31,32]. The
regular part of the conductivity at low temperatures is therefore given by

σ′reg(ω = 0) =
4πα2

vKΓ0

1

T
. (4.25)

We can now use the Einstein relation to define the diffusion constant

Ds ≡
σ′reg(ω = 0)

χs
=

8π2α2

K2Γ0

1

T
, (4.26)

where χs(T ) is the spin susceptibility and we have used the low-temperature result χs =
K/2πv. The diffusion constant thus diverges as 1/T for T → 0. Note that this derivation
uses the Bethe ansatz result for anisotropies ∆ = cos(π/m) and is thus only valid for
these discrete anisotropies. Furthermore, the relaxation rate Γ = Γ0T

4K−3 has only been
calculated to second order in Umklapp scattering so Eq. (4.26) is only expected to be an
upper bound for the exact diffusion constant at low temperatures. A formula to calculate
the exact diffusion constant at anisotropies ∆ = cos(πn/m) has recently been conjectured
in Ref. [33] based on an extension of GHD. Numerically, these predictions can be tested by
calculating the diffusion constant directly from the current-current correlation function,
see Eq. (2.28). In such numerical calculations, the main problem is to reach sufficiently
long times to obtain reliable results for the integral over the time-dependent current-
current correlation function. This problem is particularly severe at low temperatures
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ω

σ’
(ω

)

D(T)

σ’
reg

(ω)

height ~ 1/T

width ~ T
4K-3

Figure 2: At finite temperatures and anisotropies ∆ = cos(π/m) there is a coexistence of
ballistic and diffusive transport in the XXZ chain: The Drude peak sits on top of a narrow
Lorentzian with width ∼ T 4K−3.

where the current-current correlation function decays very slowly towards its long-time
value limt→∞〈J s(t)J s(0)〉 = 2NTDs(T ).

Overall, we have obtained the following picture for the spin conductivity σ′s(ω) of the
XXZ chain at h = 0, anisotropy ∆ = cos(π/m), and small frequencies ω: At T = 0 there
is only a Drude peak D = vK/(4π) and no regular part because Umklapp scattering is
inactive. At T > 0, on the other hand, we have a coexistence of ballistic and diffusive
transport. This coexistence manifests itself in a Drude peak on top of a narrow Lorentzian
with width ∼ T 4K−3 and height 1/T . The weight of the Lorentzian is therefore ∼ T 4K−4

and vanishes for T → 0 if 0 < ∆ = cos(π/m) < 1. This situation is shown pictorially in
Fig. 2.

5 Conclusion

To summarize, I have introduced the basic framework to calculate transport in the linear
response regime. For integrable models, transport can be unusual in the sense that the
current itself or part of the current is protected by a conservation law leading to an
infinite dc conductivity even at finite temperatures. It is important to stress that the
ideal conductivity in this case is not related to superconductivity: the superfluid density
is zero and there is no Meisner effect.

For the integrable XXZ spin chain in the critical regime, concrete results for the thermal
and the spin conductivity at anisotropies γ = π/m have been derived. These results can
be easily generalized to γ = nπ/m with n,m coprime and integer. Note that while the
TBA-type approaches used here rely on having finite string lengths and can therefore not
be applied if γ/π is irrational, we can approximate any irrational number by a rational one
to arbitrary precision. The result for the infinite temperature spin Drude weight (4.3),
for example, does have a well-defined limit 16TDs = 2 sin2(γ)/3 for γ irrational. This
suggests that the XXZ chain does show an infinite dc conductivity for all anisotropies
−1 < ∆ < 1 and all temperatures.
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Left out of these lectures has been the gapped regime of the XXZ chain, |∆| > 1,
and the isotropic antiferromagnet, ∆ = 1. For the thermal Drude weight nothing changes
qualitatively because J E itself is conserved. The quasi-local charges which protect part of
the spin current, on the other hand, become non-local for |∆| > 1 and the spin transport
becomes diffusive [33, 34]. Right at the isotropic point, ∆ = 1, numerical calculations
point to super-diffusive transport with a dynamical critical exponent z = 2/3 [35]. While
a mostly coherent picture of spin transport in the XXZ chain has started to emerge in
the last ten years based on a number of different analytical and numerical methods, these
very recent results for the isotropic point show that this picture is not quite complete yet
and that this topic deserves further study.
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Addendum

My lecture notes above do follow closely the actual lectures given at the Les Houches
summer school. As outlined in the introduction, they are not an all encompassing review
of transport in integrable quantum systems but are rather meant to convey the basic
concepts and to apply those concepts to a specific integrable model, the XXZ chain, for
particular sets of the microscopic parameters. In this addendum, I want to provide a few
additional pointers to topics and methods which were not or not extensively covered in
these notes.

Apart from analytical calculations based on Bethe ansatz and low-energy effective field
theories, numerical methods have also played an important role in uncovering the transport
properties of quantum chains at or close to integrable points. These include, in particular,
exact numerical diagonalizations [21, 36], time-dependent density-matrix renormalization
group calculations [32,37,38], and quantum typicality based schemes [39].

The regime of anisotropy ∆ > 1 is only very briefly discussed in the notes. Here I want
to take the opportunity to point the reader to additional literature where this regime is
discussed in much more detail [37, 40,41].
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[13] A. Urichuk, Y. Oez, A. Klümper and J. Sirker, The spin drude weight of the xxz chain
and generalized hydrodynamics, SciPost Phys. 6, 005 (2019).

[14] K. Louis and C. Gros, Diverging magnetothermal response in the one-dimensional
Heisenberg chain, Phys. Rev. B 67, 224410 (2003).

[15] C. Psaroudaki and X. Zotos, Spin and magnetothermal transport in the s = 1/2 xxz
chain, J. Stat. Mech. p. 063103 (2016).
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