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Abstract

The recent ANKE@COSY data on the differential cross section of reaction pd → pdππ
demonstrate a peak at invariant mass of the final dππ system 2.38 GeV , that corresponds
to the isocalar J P = 3+ dibaryon D03, and also enhancement in the distribution over the
invariant mass of two final pions. The two-resonance model involving the t-channel σ-
meson exchange between the proton and deuteron in the subprocess pd → pD03 and the
sequential decays D03 → D12 + π and D12 → d + π was applied to describe the shapes
of these distributions with the lowest orbital angular momenta in the corresponding
vertices. A possible role of higher orbital momenta in those vertices is studied here.
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Introduction

At present as one of the most realistic candidate to dibaryon resonance is considered the reso-
nance DI J = D03 observed by the WASA@COSY [1] in the total cross section of the reaction of
two-pion production pn→ dπ0π0, here I is the isospin and J is the total angular momentum
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of this resonance. The mass of this resonance 2.380 GeV is close to the ∆∆-threshold, but
its width Γ = 70 MeV is twice lower as compared to the width of the free ∆-isobar that is an
indication to its unusual structure. Another interesting feathure of this reaction is a resonance
behavior of its differential cross section as a function of the invariant mass of the final two-
pion system Mππ known as the ABC-effect [2]. Possible mechanisms proposed yet in the early
1970s for interpreting the ABC effect in the two-pion production are the t-channel excitation
of the noninteracting ∆∆ or NN ∗(1450) systems and their subsequent decay into the pion
channel ( see Ref. [3] and references therein). These mechanisms made it possible to describe
to some extent the old inclusive data, however, fail to explain new exclusive data obtained in
4π geometry with very high statistics [1]

After discovery of the dibaryon resonance D03 in the reaction pn→ dπ0π0, naturally the
question whether dibaryons could be produced in collisions of other particles arose. Recently a
very similar resonance structure was observed in the differential cross section of the two-pion
production reaction pd → pdππ in experiments performed by the collaboration ANKE@COSY
at beam energies 0.8 − 2.0 GeV with high transferred momentum to the deuteron at small
scattering angles of the final proton and deuteron [4]. At proton beam energies at 1.1 GeV and
1.4 GeV the resonance peaks were observed in the distribution over the invariant mass Mdππ
of the final dππ system at Mdππ ≈ 2.38 GeV [4] that is the mass of the isoscalar two-baryon
resonance DI J = D03, while the kinematic conditions differ considerably from that in [1].
Furthermore, the ABC-like effect was observed in [4] in the distriution over the invariant mass
of the two pions Mππ. An attempt to explain the observed behavior of this reaction within the
modified two-resonance model [5] of the reaction pn→ dπ0π0 was undertaken in Refs. [6]
and [7] and the shape of the distribution over the Mdππ was explained qualitatively. However
some questions appeared cocerning the origin of the ABC-like structure in the Mππ distribution
in the data [4]. Only the lowest orbital momenta in the resonance vertices were considered
in [6,7]. Here we are focused on the role of possible higher orbital momenta in those vertices.

The model

Different mechanisms of the ABC effect in the reaction pn → dπ0π0 were discussed in [8].
One possible mechanism of this reaction suggested in paper [5] involves sequential excitation
and decay of two intermediate dibaryon resonances, D03 (2380) and D12 (2150). We modify
this model by including the t-channel σ-meson exchange between the proton and deuteron
which leads to excitation of deuteron to the D03 dibaryon, σ + d → D03, and after that the
dibaryon decays sequentially as D03 → D12 + π → d + π + π. This mechanim is depicted in
Fig. 1 where the second diagram takes into account identity of two π0- mesons. Since not
all required partial widths are known, we discuss mainly the shapes of the distributions over
the invariant masses of the final dππ and ππ systems. The total amplitude of the reaction
pd → pdππ corresponding to the sum of two Feynmann diagrams in Fig. 1 has the following
form

T
µ′pµ

′
d

µpµd
(pd → pdππ) = T

µ′p
µp
(p → p′σ)

1
pσ2 −mσ2 + imσΓσ

T
µ′d
µd
(σd → dππ), (1)

where pσ, mσ, Γσ are the 4-momentum, mass, and the total width of theσ-meson; µi (µ′i) is the
spin projection of the initial (final) particle i. The amplitude of the virtual process p→ pσ is

based on the phenomenological σNN interaction and its spin averaged form |T
µ′p
µp
(p→ p′σ)|2

is given in [10].
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Figure 1: Two resonance mechanism of the reaction pd → pdππ
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The matrix element for the amplitude of the decay D03→ dπ0π0 via two decays D03→ D12+π0

and D12→ d +π0 has the following form

T(D03→dππ) =
∑

µ2m1m2

FD03→D12π
(k1) · C

3µ3
2µ2 l1m1

kl1
1

p
4πYl1m1
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2

p
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1

P ′2D12
−M2

D12
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Γ 2
D12

. (3)

Here PD03
, MD03

and ΓD03
(PD12

, MD12
and ΓD12

) are the 4-momentum, mass and total width of
the dibaryons D03 (D12), respectively, PD12

is 4-momentum of dibaryon D12, which appeared as
a result of the emission of a pion with an impulse k1 (first pion): PD12

= PD03
−k1, and P ′D12

ap-
peared as a result of the emission of a pion with an impulse k2 (second pion): P ′D12

= PD03
−k2;

q is the 3-momentum of the initial deuteron in the cms of the D03, k1 (k2) is the 3-momentum
of the pion π1 (π2) in the cms of D03, and λλλ1 (λλλ2) is the 3-momentum of the pion π2 (π1)
in the cms of the D12. We use in Eq. (3) the standard notations for the Clebsch-Gordan co-
efficients C J M

j1m1 j2m2
and spherical functions Ylm(k̂) = kl Ylm(k̂); l1 is the orbital momenta of

relative motion of dibaryon D12 and the first pion in the vertex D03 → πD12, l2 is the orbital
momenta of relative motion of final deuteron and the second pion in the vertex D12 → dπ
and L is the orbital momentum of the relative motion of the initial deuteron and the σ-meson
in the vertex d + σ → D03. From the parity and angular momentum conservation one can
find the following allowed values for the orbital momenta: L = 2,4; l1 = 1, 3,5; l2 = 1,3.
Since we do not know decays parameters for higher orbital momenta, we consider below the
differential cross section and the partial width of the decay ΓD03→dππ for each allowed set of
orbital momenta separately.

The vertex functions FR→ab(q) in Eqs. (2)- (3) are related to the corresponding partial
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Figure 2: The mechanism of the decay D03→ π0NN

widths of the decay of the resonance R to the system a+ b, ΓR→ab, as [9]:

FR→ab(qab) = Mab

√

√

√

√

8πΓ (l)R→ab(qab)

q2l+1
ab

, (4)

where Mab is the mass of the a + b system, l is the orbital momentum of the relative motion
of the particles a and b, and qab is their relative 3-momentum determined as
qab = [(s − (ma − mb)2)(s − (ma + mb)2)/4s]1/2, where s ≡ M2

ab. We use the following
parametrization of the energy dependence of the partial widths [9]:

Γ
(l)
R→ab(qab) = Γ

(l)
R→ab

�

qab

q0

�2l+1
�

q2
0 +λ

2
ab

q2
ab +λab

�l+1

, (5)

here Γ (l)R→ab ≡ Γ
(l)
R→ab(q0), q0 is the relative momentum qab of the particles a and b at the

resonance point defined as Mab(q0) = MR, where MR is the nominal mass of the resonance.
According to Eqs. (4), (5), the vertex function
FD03→dσ(q) is written as

FD03→dσ(q) = Mdσ(q)

√

√

√8πΓ (L)D03→dσ(q)

q2L+1
, (6)

where the factor Γ (L)D03→dσ(q) is defined as

Γ
(L)
D03→dσ(q) = Γ

(L)
D03→dσ

� q
q0

�2L+1�q2
0 +λ

2
dσ

q2 +λdσ

�L+1
; (7)

Here q is relative 3-momentum of deuteron and σ-meson in cms of D03, q0 is 3- momentum at
the resonance point MD03

= 2.38 GeV and q0 = 0.362 Gev/c, λdσ = 0.18 GeV is the parameter
which given in [5].
The vertex function and the partial width of the decay D03 → D12π at l1 (= 1,3, 5) are the
following

FD03→D12π
(k1) = MD12π

(k1)

√

√

√

√

8πΓ (l1)D03→D12π
(k1)

k2l1+1
1

,

Γ
(l1)
D03→D12π

(k1) = Γ
(l1)
D03→D12π

� k1

k10

�2l1+1�k2
10 +λ

2
D12π

k2
1 +λD12π

�l1+1
, (8)
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where k1 is the relative 3-momentum of the dibaryon D12 and the pion in the cms frame of
the D03, k10 is the 3-momentum at the resonance point MD03

= 2.38 GeV, the parameters
k10 = 0.177 GeV/c,

and λπD12
= 0.12 GeV are taken from [5].

The vertex function and the partial width of the decay D12→ dπ at l2 = 1,3 are the following

FD12→dπ2
(λ1) = Mdπ(λ1)

√

√

√

√

8πΓ (l2)D12→dπ(k2)

k2l2+1
2

,

Γ
(l2)
D12→dπ(λ1) = Γ

(l2)
D12→dπ

� λ1

λ10

�2l2+1�λ2
10 +λ

2
dπ

λ2
1 +λdπ

�l2+1
, (9)

where λ1 is relative 3-momentum of deuteron and pion in cms of D12, λ10 is 3-momentum at
the resonance point MD12

= 2.15 GeV and λ10 = 0.224 GeV/c, λdπ = 0.25 GeV [5].
The differential cross section of the reaction pd → pdππ within the considered model can

be writen as following

dσ = ((2π)7 · 64 · qpd · s)−1 · |T f i(pd → pdππ)|2k · q · p′ · dΩkdΩqd cosθ ′pdMD03
dMππ, (10)

and the partial width of the D03→ dπ0π0 decay takes the form

dΓ (D03→ dππ) =
1

(2π)5
1

4M2
D03

k · q · |T f i(D03→ dππ)|2dΩkdΩqdMππ. (11)

In Eq. (10) qpd is the relative 3-momentum between the initial proton and the deuteron and
p′ is the 3-momentum of the final proton in the center of mass of the reaction. In Eqs. (10)
and (11) k is the relative 3-momentum between two pions, and q is the relative 3-momentum
between the final deuteron and the center mass of the ππ system in the center mass of the of
the dibaryon D03.

Numerical results and discussion

The values MD03
= 2.380 GeV and ΓD03

= 70 MeV (MD12
= 2.15 GeV, ΓD12

= 0.11 GeV) are
used in our calculations for the masses and widths of the resonance D03 (D12), respectively,
and mσ = 0.5 GeV, Γσ = 0.55 GeV for the σ-meson. The values for the vertex parameters ap-
peared in Eqs. (7), (8) and (9) are given in the section 2. The partial widths Γ (l=1)

D12→dπ = 10 MeV

and Γ (l=1)
D12→pn = 10 MeV were found in Ref. [9] from the analysis if the reaction pp→ dπ+. The

partial width Γ (L=2)
D03→dσ = 8.5 MeV was found by us [7] from normalization of the calculated

differential cross section within this two-resonance model to the data [4]. To get this value
we assumed in Ref. [7] that the experimental value of the width Γ ex p

D03→dππ = 10 MeV [11] is
completely determined by the decays chain D03 → D12π → dππ and on this way we found
that the value ΓD03→D12π

has to be equal to ≈ 140 MeV. Here we used for the orbital angular
momentum l1 in the decay vertex D03→ D12π the value l1 = 1.

The following partial widths are unknown at present: Γ (l1)D03→D12π
at l1 = 1,3, 5 and Γ (l2=3)

D12→dπ.
In order to estimate them we use Eqs. (5),(7), (8), (9) with the same parameters q0 and λ as
for the minimal orbital angular momenta l1 = l2 = 1, L = 2, but substitute the higher orbital
momenta l1 = 3, 5, l2 = 3 and L = 4.

Using the mechanism of the decay D03 → πNN depicted in Fig. 2 and experimental con-
straints on the width ΓD03→π0NN < 6.3 MeV from [12] we found the corresponding constraints
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Figure 3: The distribution over the invariant mass of two final pions system Mππ at
different orbital angular momenta. a: L = 2, l1 = 1, l2 = 1, b: L = 4, l1 = 1, l2 = 1,
c: L = 2, l1 = 1, l2 = 3, d: L = 4, l1 = 1, l2 = 3. Here L,l1 and l2 are the orbital
momenta in the vertices d +σ→ D03, D03→ πD12 and D12→ dπ, respectively. The
results of the model calculations (full lines) are normalized to the data [4] (open
circles). In the calculations the scattering angle θ c.m.

d of the final deuteron belongs
to the full interval 0◦ < θ c.m.

d < 180◦.

Table 1: The partial width ΓD03→dππ at different values of the orbital angular mo-
menta l1 and l2 (see text for details)

l1 l2 ΓD03→dππ (MeV) ΓD03→dππ (MeV)
1 1 < 6.5 10
1 3 < 2.02 3.1
3 1 < 1.81 2.78
3 3 < 0.6 0.92
5 1 < 4.42 6.8
5 3 < 3.6 5.5

on the partial widths: Γ l=1
D03→D12π

< 95 MeV, Γ l=3
D03→D12π

< 82 MeV, Γ l=5
D03→D12π

< 65 MeV, here is l
the orbital angular momentum of the relative motion of the D12 and the π0.

Let us consider now the partial width ΓD03→dππ. We have two possibilities to calculate this
partial width. (i) One can take into account the upper limit ΓD03→π0NN < 6.3 MeV [12]. (ii)
One may assume that the experimental value Γ ex p

D03→dππ = 10 MeV [11] is completely deter-
mined by the decays chain D03 → D12π → dππ. The results of calculations of the ΓD03→dππ
for the first and the second approximation are given in the third and the fourth columns in the
Tab. 1, respectively.
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In Ref. [7]we didn’t consider the channel σ+d → D03 with the orbital angular momentum
L = 4. Here when calculating the corresponding partial width Γ (L=4)

D03→dσ in a similar way as for

the channel L = 2 we find the value Γ (L=4)
D03→dσ = 6.4 MeV.
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Figure 4: The same as in Fig. 3 but with the model calculations at the scatering angle
θ c.m.

d of final deuteron in the interval 0◦ < θ c.m.
d < 11◦ as in the experiment [4].

Considering the cross section of reaction pd → pdππ we should note that in our previous
work [7] we found that "ABC-type" shape is caused mainly by the collinear kinematics of the
experiment [4] and does not occur within the considered model for the case when scattering
angle of the final deuteron is in the full interval 0◦ < θ c.m.

d < 180◦. In Ref. [7] we performed
calculation only for the lowest orbital angular momenta. Here we study the role of other
possible orbital angular momenta L, l1, l2. We use in Eq. (5) the same partial width Γ l

R→ab(q0)
for the higher orbital angular momenta l as for their lowest values. The calculated differential
cross section as a function of the mass of two final pions is shown in Fig. 3. One can see from
this figure that at some orbital angular momenta the ABC effect is reproduced qualitatively
(Fig. 3 c and d). Other higher orbital angular momenta do not reproduce "ABC-type" shape
and we do not show the corresponding results.

From the results of calculations shown in Fig. 4, one can conclude that the contribution of
the decay width Γ l2=3

D12→dπ to the reaction pd → dππ is approximately equal to the contribution

of tyhe Γ l2=1
D12→dπ, therefore, interference effects, not taken into account here, will be important.

The differential cross section of the reaction pd → pdππ calculated at orbital angular
momenta L = 2, l1 = 5, l2 = 3 for the interval of the scattering angle of the deuteron
0◦ < θ c.m.

d < 11◦ is depicted in Fig. 5a as a function of the mass Mππ. The results of calcula-
tions are normalized to the experimental data. One can see that the model fails to reproduce
the ABC effect for these (and higher) orbital angular momenta. We should note, that the ab-
solute value of differential cross section decreases with increasing orbital angular momenta.
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Figure 5: The distribution over the invariant mass of two final pions Mππ at the
orbital angular momenta L = 2, l1 = 5 and l2 = 3. The scattering angle θ c.m.

d of
the final deuteron belongs to the experimental interval 0◦ < θ c.m.

d < 11◦ (a) and to
the full interval 0◦ < θ c.m.

d < 180◦ (b). The results of the model calculations are
normalized to the data [4].

We do not show distribution of the differential cross section on the Mdππ invariant mass be-
cause when changing the orbital angular momenta the shape of the differential cross section
practically is not changed, while its absolute value is slowly diminished.

Conclusion

The two-resonance model of the reaction pd → pdππ considered in Refs. [7] allows one to
describe shapes of the measured in [4] distributions over the invariant masses Mdππ and Mππ

if the lowest orbital angular momenta are used in the vertices σ+d → D03, D03→ D12+π and
D12→ d+π. The ABC-like effect observed in the experiment [4], which was performed at small
scattering angles of the deuteron θ c.m.

d = 0−11◦, dissappears in this reaction within the consid-
ered model if the full angular interval for the scattered deuteron is allowed, 0≤ θ c.m.

d ≤ 180◦.
In the present work the higher orbital angular momenta were included into consideration in
the vertices σ+ d → D03, D03 → D12 +π and D12 → d +π and it was found that for some of
them the ABC-like effect takes the place for the full interval of the deuteron scattering angle
θ c.m.

d = 0− 180◦. The interference effects were not taken into account since the absolute val-
ues and relative phases of transition amplitudes with different orbital angular momenta are
unknown.
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