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Abstract

We review the progress achieved within the last five years in the simulations of lattice
QCD, as well as in the analysis for selected quantities probing nucleon structure. In
particular, we discuss results on the nucleon electromagnetic form factors, o-terms, the
momentum fraction carried b quark in the nucleon and the helicity and transversity. All
quantities are obtained using simulations generated with quark masses fixed to their
physical values. In addition, we review the on-going effort to extract parton distribution
functions (PDFs) directly from lattice QCD using the quasi-PDFs approach.

1 Introduction

Understanding the structure of the nucleon in terms of its fundamental constituents, the quarks
and gluons, is an overarching objective of current and future experiments at major facilities
world-wide, such as Jefferson lab, PSI, RHIC, LHC, DESY, and the planned Electron Ion Collider
(EIC). Arich experimental program is underway to unravel the valence quark distribution func-
tions at Jefferson lab with the 12-GeV upgrade. The signature of sea quarks is being studied
at Fermilab with a polarized beam and target as well as at RHIC shedding light on the orbital
angular momentum and spin of light sea quarks. Generalized Parton Distributions (GPDs) in-
vestigated through the analysis of hard exclusive processes at HERA, COMPASS and CLAS12,
allow one to construct the three-dimensional spatial map. This program will be greatly rein-
forced by the future experiments at Jefferson Lab for valence quarks, while for the gluons and
sea quarks at the Electron-Ion Collider providing a complete three-dimensional mapping of
the nucleon [1].

Lattice QCD, has seen remarkable progress in recent years producing simulations at the
physical values of the quark masses. This allows to obtain nucleon observables and properties
without the need for a chiral extrapolation, thus eliminating a major source of an uncontrolled
systematic error. In addition, theoretical progress has enabled exploratory studies of the parton
distribution functions themselves directly from lattice QCD [2]. This is to be compared to
the traditional approach of calculating their lower moments. In this presentation, we review
results on a number of nucleon quantities that related to the aforementioned experiments.
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2 The lattice QCD formalism

Gauge invariant quantities are computed by evaluating the path integral

(0)= % f pulo(pwlu) [ perorun e, M

f=uds,c

over gauge configurations U, after integrating over the fermionic degrees of freedom. A Wick
rotation into imaginary time is already performed. S[U] is the exact gauge action of QCD
and D[U] is the exact fermionic determinant that occurs after integrating over the fermions
and generates sea quark loops. D™ is the quark propagator arising from the fermions in the
operator. In order to evaluate the path integral of Eq. (1), one defines the theory on a discrete
4-dimensional Euclidean lattice and considers a finite volume V. The functional integral over
the gauge degrees of freedom is then amenable to a numerical simulation. The input required
is the same as for QCD, namely the quark masses and the coupling constant. The latter is
directly related to the lattice spacing a through the f-function. Therefore, one needs four
physical quantities to fix the light, strange and charm quark masses and an additional one for
the lattice spacing.

There are several ways to put the fermions on a discrete lattice that leads to different ways
of representing D, each one having its own advantages and disadvantages. The main ones are:
i) Wilson-type fermions that include the clover and twisted mass formulations, ii) staggered
fermions, iii) domain wall fermions, and iv) overlap fermions, with associated collaborations.
In the continuum limit these different formulations should all agreed.

A lattice QCD computation is comprised of three main steps [3]:

e Generation of the gauge configurations {U}. This proceeds via a Monte-Carlo sampling
that includes all the effects of gluonic self interactions and the interactions of gluons
and sea quarks. The ensembles are parameterized by the value of the strong coupling or
lattice spacing and the masses of the sea quarks. Within each ensemble the configura-
tions are generated via a Markov process, sequentially. This first step requires access to
leadership computers and larger resources. These gauge ensembles can then be used to
evaluate any quantity (. Several ensembles with different lattice spacings and volumes
at fix quark masses are required in order to take the continuum and infinite volume
limits.

e The second step is the computation of D™, which is the quark propagator. The quark
propagators are contracted into correlation functions according to the operator O. Since
the size of the fermionic metric D is large, this step also requires leadership computers
and large resources to perform the large number of inversions, which however can be
done independently on each gauge configuration.

e The third step involves the analysis of the resulting correlation functions to extract the
expectation value of . This analysis can be done on smaller systems.

The work-flow of a typical lattice QCD computation for baryon structure is shown schemati-
cally in Fig. 1. The three-point correlation functions are divided into connected when a probe
couples to a valence quark and to disconnected when it couples to a sea quark or a gluon.

As already mentioned, lattice QCD simulations are being performed with quark masses
fixed to their physical values. This was achieved by developing multi-grid algorithms that
make inversions at physical light quark mass faster. As can be seen in Fig. 2, the cost for
inversions remain constant with decreasing the value of the quark mass, making simulations
and their analysis possible.
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Figure 1: A typical work-flow for a lattice QCD hadron structure computation. The
diagrams shown in the lower left box correspond to the connected and disconnected
three-point correlators needed for baryon structure studies.
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Figure 2: Left: Time to solution for the computation of D™! using the conjugate
gradient (red points) and the 3-level Adaptive Aggregation-based Domain Decompo-
sition Multigrid (DD-aAMG) for twisted mass fermion [4,5]. Right: A summary of
zero-temperature simulations by various collaborations that include Clover, Twisted

Mass, Staggered and Domain Wall fermions.

Although lattice QCD provides an exact formalism for solving QCD, one needs a careful
study of systematic errors. In the past, not having simulations at physical values of the light
quark mass, necessitated a chiral extrapolation. For the pion sector such an extrapolation
using NLO SU(2) chiral perturbation theory works well for pion masses m, < 250 MeV [6].
In the nucleon sector chiral extrapolation is more problematic and previously introduced an
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uncontrolled systematic error [7]. With simulations with physical pion mass this systematic
error has been eliminated. Therefore, in what follows we will focus on results obtained using
near physical pion mass, since we will focus on baryons. Other systematic effects that need to
be investigated are:

e Discretisation effects: Since the computation is done at finite lattice spacing a one needs
to take the continuum limit. This requires simulations at least three values of a at fixed
quark masses and volume.

¢ Finite volume effects: A numerical evaluation is necessarily done using a finite volume.
At least three volumes would be required at fixed quark masses and a to take the infinite
volume limit.

e Renormalization: Matrix elements computed on the lattice must be properly renormal-
ized in order to compare with what is measured in the laboratory. In state-of-the-art
computations renormalization is carried out non-perturbatively. However, for gluonic
quantities and where there is mixing non-perturbative renormalization is still difficult
and it is an on-going process.

e Ground state identification: Extracting the ground state from a tower of higher excited
states needs large Euclidean time resulting in large gauge noise and difficult identifica-
tion of ground state properties. Furthermore, for a class of quantities, such as for the
direct computation of PDFs, one needs to boost the hadron to large momentum. This
introduces large statistical errors requiring very large statistics and development of noise
reduction techniques.

3 Low-lying baryon spectrum

The simplest quantities to calculate in lattice QCD are hadrons masses. For this class of ob-
servables the aforementioned systematics have been taken into account. Hadron masses are
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Figure 3: Left: The effective mass of low-lying baryons. Right: the mass of the
low-lying octet and decuplet baryons from various collaborations extrapolated to the
continuum limit. The horizontal bands are the experimental values. Open symbols
indicate the input used to fix the lattice spacing (nucleon) and strange quark mass
Q).

extracted from two-point correlation functions in the large Euclidean time ¢,
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taking § = 0. The effective mass defined as the ratio meff(f), t,) = ln[G(ﬁ, t)/ G(0, t,+ a)],
yields the mass of the lowest lying hadron of the quantum numbers of J. We show in Fig. 3, the
effective mass of the low lying baryons extracted by various collaborations. The lattice QCD
results agreed with the experimental values providing a validation of the lattice QCD approach.
In Fig. 4, we show the masses of the spin-1/2 and 3/2 charmed baryons. The doubly charmed
=.. was predicted by lattice QCD to have larger mass than claimed by SELEX. LHCb at CERN
confirmed the lattice QCD prediction illustrating the predictive power of lattice QCD.
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Figure 4: Left: Masses of spin 1/2 baryons. The mass of =, was correctly predicted
by lattice QCD and confirmed by LHCb [8] and higher than the value by SELEX [9],
shown by the grey band. Right: Masses of spin-3/2 baryons [10]. The mass of A, is
used to fix the charm quark mass.

4 Nucleon structure

In order to calculate matrix elements one compute the following three-point function

Cgi;(r; ‘_j = O: ts, tins): Z Tr [ <FJN(ts: )_C)s)o'uv(tins: )?ins)jN(tO, 550))] ’
fins’fs
where you consider an operator O"*” probing the nucleon. The three-point function has con-
nected and disconnected diagrams shown diagrammatically in Fig. 5.
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Figure 5: A diagrammatic representation of the connected (left) and disconnected
(right) three-point functions. A state with the quantum numbers of the nucleon is
created at time zero (source) that propagates in Euclidean time and annihilated at
time t, (sink). The probe couples to a quark at time t;,.

As in the case of the effective mass and considering for simplicity § = 0, we construct a ratio
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which in the large Euclidean time becomes time independent (plateau), yielding the nucleon
matrix element M. However, the statistical errors grow exponentially with the time separation
and making the detection of excited states difficult. We thus include in the fit the first excited
state (two-state fit) or even a second state if the lattice QCD data are accurate enough. Another
approach is to sum the ratio to obtain

> RMIT;G =0, t, ting) — ¢ + Mg+ O(e A, 4)

By fitting the summed ratio linearly with ¢, one can extract M. This approach is referred to
as the summation method. We typically use a combination of these three approaches to check
for the suppression of excited states.

4.1 Moments of parton distribution functions

Generalized parton distribution functions are light-cone correlation functions written as

1 (dAa

. - . A2
Fr(x,&,¢%) =3 f S (P B (= 2k /2)Ge bt Ay (e 2) ), (5)

where g = p’—p is the momentum transfer, P = (p’+p)/2, k is a light-cone vector and P.k = 1.
Expansion of the light cone operator leads to a tower of local operators O**1#n and thus
to the computation of nucleon matrix elements of quark bilinears (N(p’,s’ )|(’)gl'"“ "IN(p,s)).
Depending on the G-structure we have three classes of Mellin moments:

i) Unpolarized: O™ = P (x)y i DM..iD Hadafy(x),the lowest two of which are gv
forn=0and (x), forn=1

i) Helicity: O™ = P(x)y i DHM..iD Hndycap(x), the lowest two of which are g5
forn=0and (x)5, and n =1

iii) Transversity: (9;““1'"“” = (x)oc™i DM . iD ““}%atp(x), the lowest two of which
are g1 for n =0 and (x)aq forn=1.

The first two Mellin moments can readily be computed within lattice QCD and there is a long
history of such computations. However, it is only recently that we have results directly at the
physical point i.e. using simulations with m, ~ 135+ 10 MeV.

In order to benchmark our lattice QCD formalism and analysis, we examine the case of the
isovector axial charge of the nucleon gz‘_d, which is very accurately measured from neutron
P decay. This is the first Mellin moment of the helicity PDE For the unpolarized, since the
electromagnetic current is conversed g“j_d = 1 by symmetry. In contrast, the transversity
isovector charge g#‘d is poorly known and it is an example where lattice QCD can provide
valuable input. In Fig. 6, we show the analysis for determining the nucleon matrix element
that yields gz_d. As can be seen, the ground state matrix element M, determined by the
asymptotic plateau value (one-state fit), the two- and three- state fits and the summation
method, agrees with the experimental value. This is an example of an analysis carried out
using one ensemble of twisted mass fermions with the light, strange and charm quark masses
fixed to their physical values [11]. This so-called ¢cB211.072.64 ensemble has a = 0.08 fm,
m, = 139 MeV, spatial length L /a = 64 and Lm,, = 3.6. The action is O(a)-improved so finite
lattice spacing effects are expected to be small. This was indeed shown by previous studies
using twisted mass ensembles simulated with heavier than physical pion mass.
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Figure 6: Left: The ratio of Eq. (3) as a function of the time separation t; and the
time of the inversion t;,;. Center: the values extracted from fitting the data of the left
panel to a constant assuming ground state dominance. The blue band is the result of
a two-state fit. Right: The values of M extracted from a two-state fit as a function of
the lower value of t; used in the fit, ti"w (filled blue squares) and from three-state fits
(light blue down triangles). The filled green triangles are the values of M extracted
using the summation method of Eq. (4). The open blue square is the selected value
for M with the associated error shown with the grey band across the three panels.
The darker band shows the PDG value of gx_d =1.273(2).
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Figure 7: A comparison of recent lattice QCD and phenomenological results on g/‘;_d
(left) and g%‘d (right). The error band is the one associate with the analysis of the
twisted mass ensemble cB211.072.64. Open symbols are from phenomenological
analysis of experimental data.

A similar analysis is done to extract the isovector tensor charge g#‘d. We find a value of
g%_d = 0.926(32) in the MS scheme at u = 2 GeV] providing a more precise value as compared
to 0.53 £ 0.25 extracted by analyzing experimental data [12].

In Fig. 7 we show results for gx_d and g%d_ using the ¢B211.072.64 ensemble in com-
parison with two additional ensembles of twisted mass fermions with dynamical light quarks,
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lattice spacing a = 0.094 fm and Lm, = 3 and Lm, = 4, as well as from other collabora-
tions that analyzed ensembles simulated with approximately physical values of the pion mass.
As can be seen, there is very good agreement among all lattice computations, which points
to small finite a and volume effects, since the continuum and infinite volume limits are not
performed.

GPDs can be decomposed Lorentz invariant functions known as generalized form factors
(GFFs). For the unpolarized PDF the decomposition is

q{uqv}

m

; ~{ua v}
10 P
2 Tu” +Cy0(Q?%)

(N, 5OY IN(p, ) = iy (p',5') Az0(Q2)r 71 +B20(Q%) Jun(e.s),
= (6)
where O5” = ¢y!#i D ") and Ay(Q?), B2o(Q%) and Cp,(Q?) are the three GFFs. Q% = —q?
is the momentum transfer squared in Euclidean space. The second Mellin moment is given
by Ay0(0), which gives the momentum fraction carried by a quark (x),, while the total spin
carried by a quark is given by J;, = %[AZO(O) + B5p(0)]. In Fig. 8 we compare lattice QCD
results for the isovector (x),_4 with results from phenomenological analyses. As can be seen,
although individual results are precise, the spread among them is comparable to the accuracy
achieved within lattice QCD. In the same figure we show results for the helicity and transver-
sity moments. For the helicity lattice QCD results are in agreement with phenomenological
determinations while for the transversity moment lattice QCD provide a valuable prediction.
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Figure 8: A comparison of recent lattice QCD and phenomenological results on the
momentum fraction (x),_4 (left), on the helicity moment (x)A,_aq (upper right)
and the transversity (x)s,_sq (lower right). The error band is the one associate with
the analysis of the twisted mass ensemble cB211.072.64.

While for isovector quantities only the connected part of the three-point contributes, for
the isoscalar and thus for the determination of the individual flavor Mellin moments, we need
to evaluate the disconnected part depicted in Fig. 5. The disconnected part is technically more
difficult to compute and requiring large computational resources. It is only recently that we
are able to compute these diagrams, which are needed for studying sea quarks effects. This
has become possible using a combination of stochastic techniques, dilution and deflation of
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lower modes [13]. The intrinsic spin %AZ}q carried by a quark of flavor g is given by

1

A% (u?) = J dx [ Aq(x, u®) + Ag(x, p*)] = g} 7)

0

In Fig. 9 we show lattice QCD results on the intrinsic quark spin for the light and strange quarks.
The former have contributions form both connected and disconnected parts, while the strange
is purely disconnected. As can be seen, the disconnected contributions, although small, are
non-zero and need to be included to reach agreement with the experimental values. Beyond
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Figure 9: We show the intrinsic quark spin %AZ‘I for the u (upper), the d (center)
and s quarks (lower) as a function of the pion mass. Open symbols do not include
the disconnected contribution.

the single favor axial and tensor charges one can extract the scalar charge and the closely
related o-terms defined as o, = mq(Nllﬁqqu). The combination o,y = 1/2(c" + 09)
constitutes one of the fundamental low-energy parameters paying a significant role for phe-
nomenological studies of low energy scattering. The o-terms are important for direct dark
matter searches [14]. In Table 1 we summarize the nucleon charges for each quark flavor.
Because of the phenomenological importance of o-terms a number of groups have computed

u d s c
N 0.858(17) -0.428(17) -0.0450(71) -0.0098(34)
s 6.02(55) 4.67(44) 0.395(54)  0.075(17)
gr 0.716(28) -0.210(11) -0.00270(58) -0.00023(16)
o [MeV] 41.6(3.8)" 39.8(5.5) 107(22)

Table 1: Single flavor charges and o-terms from the ¢cB211.072.64 ensemble. () In
the case of u and d quarks we give o, of relevance to phenomenology.

them. In Fig. 10 we compare lattice QCD and phenomenological results on o5 and o,. The
smaller value predicted by lattice QCD is in agreement with the original analysis that yielded
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Oy ~ 45 MeV [15] but it is in tension with recent analyses that yield larger values, such as an
analysis based on the Roy-Steiner equations and experimental data on pionic atoms yielding
a value of 59.1(3.5) MeV [16] that was confirmed using a large-scale fit of pionic-atom level
shift and width data across the periodic table [17] as well as mN scattering lengths from the
low-energy data base [18]. Given the significant progress in the determination of oy both
using experimental data [19-21] and lattice QCD this persisting tension needs to be further
examined. Computing the N scattering lengths within lattice QCD will provide a crucial
cross-check. For the charm o, lattice QCD provides a valuable prediction.

2 ] Anetal, 2014
o] 1 Shanahan et al., 2012
- : : o— Lutz et al,, 2014
—e— 4 GLS, 1991 —O0— 1 Ren et al., 2014
—e—i Pavan, 2002 H>H MILC, Ng=2+1+1, 2009
——i 41 Alarconetal, 2012 / 1 QCDSF, Ng=2+1, 2011
HH Hoferichter et al., 2015
—0— 4 Shanahan et al., 2012 —O—+— 4 / =2+1. 2015
—O+— Alvarez et al., 2013 gﬁl\zl I:{ ;1’;%;1
oH 1 Renetal, 2014 ¢ o
o Lutz et al., 2014 |
| O XQCD, Ng=2+1, 2013
———i Bali et al., Ny=2, 2011 = o 1 RQCD, Ni=2, 2016
=/ {1 QCDSF, N=2+1, 2011 HElH ETMC, N¢=2, 2016
—_—— ETMC, Ng=2+1+1, 2014 ] 1 ETMC, Ng=2+1+1, 2019
—— 4 BMW, Ni=2+1, 2015
el +QCD. Ni=2+1. 2015 0.00 0.05 0.10 0.15
—— 4 RQCD, N¢=2, 2016 o5 [GeV]
HilH ETMC, N¢=2, 2016
I ) '-,*-‘ ) ) 1 ETMC N=2+1+1,2019 —_— Freeman and Toussaint, Ny=2+1, 2013
0.00 0.02 0.04 0.06 0.08 0.10 —— 1 XQCD, N=2+1, 2013
oy [GeV] —- ETMC, Ni=2, 2016
—h— 1 ETMC, Ng=2+1+1, 2019
0.00 0.05 0.10 0.15
o. [GeV]

Figure 10: A comparison of recent lattice QCD and phenomenological results on
the nucleon o 5 -term fraction (left), on the strange o.-term (upper right) and the
charm o,-term (lower right). The error band is the one associate with the analysis of
the twisted mass ensemble ¢cB211.072.64. Grey circles are phenomenological studies
using as input lattice data.

4.2 Electromagnetic form factors

The nucleon electromagnetic form factors are fundamental quantities characterizing the struc-
ture of the nucleon that have been extensively studied both theoretically and experimentally. A
recent major experimental development is the measurement of the proton charge radius with
electron scattering experiments at Jefferson lab [22] that confirms the smaller value measured
by the Lamb shift in muonic hydrogen at PSI [23], the point to the resolution of the so-called
proton radius puzzle. Computing such fundamental properties as the proton radius directly
from QCD constitutes a milestone of nuclear physics and of lattice QCD.

The nucleon matrix element of the electromagnetic current is parameterized in terms of
the Dirac (F;) and Pauli (F,) form factors as

mZ

N
En(B")En(P)

/ / iO- qu
ay(p’,s )[mﬂ(qz) + 2“—Fz(q2)} uy(p,s). (8)
my

(N(P",sNjuIN(p,s)) =

N(p,s) is the nucleon state with initial (final) momentum p (p) and spin s (s), uy is the nu-
cleon spinor, Ex(p) (Ex(P’)) the initial (final) energy and my the nucleon mass. The electric
and magnetic Sachs form factors Gz(q?) and G,;(g?) are alternative Lorentz invariant quanti-
ties that can be expressed in terms of F;(q?) and F,(q?) via the relations,
2
Gol) =Fi(q)+ ;5 Foa”),  Gula®)=Fi(g) +Falq"). ©
N
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In Fig. 11 we show results on the electric and magnetic form factors for the neutron [ 13] using
the twisted mass ensemble cB211.072.64. The disconnected contributions are included. As
can be seen, lattice QCD provides more precise results on the neutron electric form factor than
experiment, while for the magnetic we observe a nice agreement for Q> > 0.2 GeV2. Why
there are small discrepancies at smaller Q? is under investigation.

0.10¢f ® N=2+1+1 | -0.2} ' ' 9
0.08l X Experiment | -0.4} ia,&!}** 1
-0.6f »® 1
& 0.06] | < o8l »®
=4 ;*L = rle
' 0.04} % # g+ {+ = + } 1 %5 1.0 .{2‘9
Ll 1@ | 121 @ |
002 J@ 1.4} Ot ® N=2+1+1
0.00¥ 1 —1.6—/ X ¥ Experiment |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Q? [GeV?] Q2 [GeV?]

Figure 11: Neutron electric (left) and magnetic (right) form factors as a function
of Q2. Filled circles show the lattice QCD results obtained using the cB211.072.64
ensemble [13] and black crosses are experimental results (see Ref. [13] for the the
detailed bibliography on the experimental results). The fits to lattice QCD results use
the Galster-like form for the electric form factor and a dipole form for the magnetic.

The role of the strange quarks in the proton can be probed through the strange electro-
magnetic form factors. Parity violating electron-proton elastic scattering events probing the
interference of photons and Z-bosons exchanges enable the measurement of the strange form
factors and weak charge of the proton. An accurate determination of the neutral-weak vector
form factor in combination with the electromagnetic form factors are needed in order to put
constraints on new physics beyond the standard model (SM). In Fig. 12 we show results on the
strange electromagnetic form factors [24]. As can be seen, the strange magnetic form factor
is negative yielding a magnetic moment of —0.01 to -0.02. This provides the most accurate
determination of these quantities.

0.008

0.006 -

0.004 -

0.002

GH(QY)

0.000

-0.002 -

00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08
Q?*[GeVvY] Q*[GeV?]

Figure 12: Strange electric (left) and magnetic (right) form factors as a function of

Q?. The different coloured band show systematics due to using different fit range
and the plateau versus the summation determination [24].
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4.3 Direct evaluation of PDFs

A calculation of PDFs from first principles is a valuable addition to the global fitting analyses
and of crucial importance for the deeper understanding of the inner structure of hadrons. The
non-perturbative nature of PDFs makes lattice QCD an ideal ab initio formulation to determine
them. A novel method to extract parton distribution functions from lattice QCD was proposed
recently by Ji [2]. It is based on considering matrix elements probing purely spatial correla-
tions, making them accessible within the Euclidean formulation of lattice QCD. It is based on
the Large Momentum Effective Theory (LaMET) that enables the matching of lattice results to
the infinity momentum frame (IFM). Quasi-PDFs and IFM PDFs have the same infrared physics
and thus the matching can be done in perturbation theory i.e. UV regularization is necessarily
taken first, before the infinite momentum limit. Quasi-PDFs are defined as

+Zmax .
q(x,P3) = J L2 intis (N|y(0,2)GW(z,0)y(0,0) IN), (10)

4

Zmax

where |N) represents a nucleon, which is boosted in the z-direction with momentum P=(P,, 0, 0, P5).
On the lattice, quasi-PDFs are thus computed using matrix elements of non-local operators con-
taining a straight Wilson line of finite length z, that varies from 0 to some maximum value,
Z

max-*
6 ‘ 6 ; ]
— — —P;=107/L u—d — — —P=107/L I Au— Ad
CJ15 NNPDF1.1pol [
al ABMP16 140 DSSV08 i\
NNPDF3.1 JAM17 I
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k
ﬁ /4 N
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Figure 13: Unpolarized PDF (upper left), helicity PDF (upper right) and transversity
PDF (lower) (blue curve). The global fits of Refs. [29-31] (unpolarized) , Refs. [32—
34] (helicity) , Refs. [35] (transversity) are shown for qualitative comparison.

Quasi-PDFs are matched to the physical PDFs through the factorization

q(x,u)=£: %c(apﬂg)q(

12

g

X mjzv A
—,‘U,,Pg) +0

2
N T QCD
27 2

P3 P3

)

(11)
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where q(x, u) is the light-cone PDF at an energy scale u and C is the matching kernel, which
can be computed perturbatively and has so far been evaluated to one-loop level.

A first attempt to compute directly PDFs was done by LP3 [25] and ETMC [26]. In Fig. 13
we show the most recent results computed by ETMC using an ensemble simulated at the phys-
ical pion mass [27,28]. The errors shown are statistical only, and significant effort is needed
to properly quantify systematic uncertainties present in the various steps of the analysis. Nev-
ertheless, already lattice QCD results can describe the general features and provide a more
accurate determination of the transversity PDE

5 Conclusion

Precision nucleon structure from lattice QCD is now possible due to two major developments:
i) simulations using dynamical light, strange and charm quarks with their masses fixed to
the physical value are available thanks to algorithmic advances and larger computers, and
ii) computation of both connected and disconnected contributions to sufficient accuracy is
feasible due to advanced techniques and access to GPUs. This progress will continue with the
advent of exascale computers expected in the next couple of years.

A number of collaborations are computing key quantities such as the first and second
Mellin moments reproducing the nucleon axial charge and providing a prediction for the tensor
charge and second transversity moment. This enables cross-checks among the different formu-
lations. We expect more precision results to emerge as systematic errors are investigated and
taken into account. We also expect that more demanding quantities to become amenable to
a lattice QCD computation. A recent example is the direct computation of parton distribution
functions within lattice QCD. The results produced already are very promising and a number
of complementary approaches are being advanced with good prospects for improvements.
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