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Abstract

Non-equilibrium physics is a particularly fascinating field of current research.
Generically, driven systems are gradually heated up so that quantum effects die
out. In contrast, we show that a driven central spin model including controlled
dissipation in a highly excited state allows us to distill quantum coherent
states, indicated by a substantial reduction of entropy; the key resource is
the commensurability between the periodicity of the pump pulses and the
internal processes. The model is experimentally accessible in purified quantum
dots or molecules with unpaired electrons. The potential of preparing and
manipulating coherent states by designed driving potentials is pointed out.
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1 Introduction

Controlling a quantum mechanical system in a coherent way is one of the long-standing
goals in physics. Obviously, coherent control is a major ingredient for handling quan-
tum information. In parallel, non-equilibrium physics of quantum systems is continuing
to attract significant interest. A key issue in this field is to manipulate systems in time
such that their properties can be tuned and changed at will. Ideally, they display prop-
erties qualitatively different from what can be observed in equilibrium systems. These
current developments illustrate the interest in understanding the dynamics induced by
time-dependent Hamiltonians H(t).

The unitary time evolution operator U(t2, t1) induced by H(t) is formally given by

U(t2, t1) = T exp

(
−i
∫ t2

t1

H(t)dt

)
(1)

where T is the time ordering operator. While the explicit calculation of U(t2, t1) can be
extremely difficult it is obvious that the dynamics induced by a time-dependent Hamil-
tonian maps quantum states at t1 to quantum states at t2 bijectively and conserves the
mutual scalar products. Hence, if initially the system is in a mixed state with high entropy
S > 0 it stays in a mixed state for ever with exactly the same entropy. No coherence can
be generated in this way even for a complete and ideal control of H(t) in time. Hence,
one has to consider open systems.

The standard way to generate a single state is to bring the system of interest into
thermal contact with a cold system. Generically, this is an extremely slow process. The
targeted quantum states have to be ground states of some given system. Alternatively, op-
tical pumping in general and laser cooling in particular [1] are well established techniques
to lower the entropy of microscopic systems using resonant pumping and spontaneous de-
cay. Quite recently, engineered dissipation has been recognized as a means to generate
targeted entangled quantum states in small [2, 3] and extended systems [4, 5]. Experi-
mentally, entanglement has been shown for two quantum bits [6, 7] and for two trapped
mesoscopic cesium clouds [8].

In this article, we show that periodic driving can have a quantum system converge to
coherent quantum states if an intermediate, highly excited and decaying state is involved.
The key aspect is the commensurability of the periodic pump pulses to the internal pro-
cess. This distinguishes our proposal from established optical pumping protocols. The
completely disordered initial mixture can be made almost coherent. The final mixture
only has an entropy S ≈ kB ln 2 corresponding to a mixture of two states. An appeal-
ing asset is that once the driving is switched off the Lindbladian decay does not matter
anymore and the system is governed by Hamiltonian dynamics only.

The focus of the present work is to exemplarily demonstrate the substantial reduction
of entropy in a small spin system subject to periodic laser pulses. The choice of system is
motivated by experiments on the electronic spin in quantum dots interacting with nuclear
spins [9–16]. The model studied is also applicable to the electronic spin in molecular
radicals [17] or to molecular magnets, see Refs. [18–20]. In organic molecules the spin
bath is given by the nuclear spins of the hydrogen nuclei in organic ligands.

2 Model

The model comprises a central, electronic spin S = 1/2 which is coupled to nuclear spins

Hspin = HCS +HeZ +HnZ (2)
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where HeZ = hSx is the electronic Zeeman term with h = gµBB (~ is set to unity) and
the external magnetic field B in x-direction; HnZ = zh

∑N
i=1 I

x
i is the Zeeman term acting

on the nuclear spins taken to be I = 1/2. Due to the large nuclear mass, the factor z is
of the order of 10−3, but in principle other z-values can be studied as well. In the central
spin part HCS = ~S · ~A the Overhauser field ~A results from the hyperfine interactions Ji
between the nuclei and the central spin

~A =

N∑
i=1

Ji~Ii. (3)

We assume that the couplings Ji are distributed evenly within a certain interval. Besides
the spin system there is a single trion state |T〉 polarised in z-direction at the very high
energy ε (≈ 1 eV) so that the total Hamiltonian reads

H = Hspin + ε|T〉〈T|. (4)

The laser pulse is taken to be very short as in experiment where it is of the order of
picoseconds. Hence, we describe it as instantaneous unitary Upuls which takes the | ↑〉 of
the central spin to the trion state and vice versa

Upuls = c† + c+ | ↓〉〈↓ |. (5)

where c := | ↑〉〈T| and c† := |T〉〈↑ |. Such pulses are applied in long periodic trains lasting
seconds and minutes. The repetition time between two consecutive pulses is Trep of the
order of 10 ns.

The decay of the trion is described by the Lindblad equation for the density matrix ρ

∂tρ(t) = −i[H, ρ]− γ(c†cρ+ ρc†c− 2cρc†) (6)

where the prefactor γ > 0 of the dissipator term [21] defines the decay rate. The corre-
sponding process with c and c† swapped needs not be included because its decay rate is
smaller by exp(−βε), i.e., it vanishes for all physical purposes.

3 Mathematical Properties of Time Evolution

The key observation is that the dynamics from just before the nth pulse at t = nTrep− to
just before the n + 1st pulse at t = (n + 1)Trep− is a linear mapping M : ρ(nTrep−) →
ρ((n+ 1)Trep−) which does not depend on n. Since it is acting on operators one may call
it a superoperator. Its matrix form is derived explicitly in Appendix A. If no dissipation
took place (γ = 0) the mapping M would be unitary. But in presence of the dissipative
trion decay it is a general matrix with the following properties:

1. The matrix M has an eigenvalue 1 which may be degenerate. If the dynamics of the
system takes place in n separate subspaces without transitions between them the
degeneracy is at least n.

2. All eigenoperators to eigenvalues different from 1 are traceless.

3. At least one eigenoperator to eigenvalue 1 has a finite trace.

4. The absolute values of all eigenvalues of M are not larger than 1.

5. If there is a non-real eigenvalue λ with eigenoperator C, the complex conjugate λ∗

is also an eigenvalue with eigenoperator C†.
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6. The eigenoperators to eigenvalues 1 can be scaled to be hermitian.

While the above properties can be shown rigorously, see Appendix B, for any Lindblad
evolution, the following ones are observed numerically in the analysis of the particular
model (6) under study here:

(a) The matrix M is diagonalizable; it does not require a Jordan normal form.

(b) For pairwise different couplings i 6= j ⇒ Ji 6= Jj the eigenvalue 1 is non-degenerate.

(c) The eigenoperators to eigenvalue 1 can be scaled to be hermitian and non-negative.
In the generic, non-degenerate case we denote the properly scaled eigenoperator V0
with Tr(V0) = 1.

(d) No eigenvalue 6= 1, but with absolute value 1, occurs, i.e., all eigenvalues different
from 1 are smaller than 1 in absolute value.

(e) Complex eigenvalues and complex eigenoperators do occur.

The above properties allow us to understand what happens in experiment upon appli-
cation of long trains of pulses corresponding to 1010 and more applications of M . Then it
is safe to conclude that all contributions from eigenoperators to eigenvalues smaller than
1 have died out completely. Only the (generically) single eigenoperator V0 to eigenvalue 1
is left such that

lim
n→∞

ρ(nTrep−) = V0. (7)

The quasi-stationary state after long trains of pulses is given by V0
1. This observation

simplifies the calculation of the long-time limit greatly compared to previous quantum
mechanical studies [12,13,16,22]. One has to compute the eigenoperator of M to the eigen-
value 1. Below this is performed by diagonalization of M which is a reliable approach, but
restricted to small systems N / 6. We stress that no complete diagonalization is required
to know V0 because only the eigenoperator to the eigenvalue 1 is needed. Hence we are
optimistic that further computational improvements are possible. If, however, the speed
of convergence is of interest more information on the spectrum and the eigenoperators of
M is needed, see also Sect. 5.

4 Results on Entropy

It is known that in pulsed quantum dots nuclear frequency focusing occurs (NFF) [9,10,23]
which can be explained by a significant change in the distribution of the Overhauser
field [11–13, 15, 16, 22] which is Gaussian initially. This distribution develops a comb
structure with equidistant spikes. The difference ∆Ax between consecutive spikes is such
that it corresponds to a full additional revolution of the central spin Trep∆Ax = 2π. A
comb-like probability distribution is more structured and contains more information than
the initial featureless Gaussian. For instance, the entropy reduction of the Overhauser
field distributions computed in Ref. [16], Fig. 12, relative to the initial Gaussians is ∆S =
−0.202kB at B = 0.93T and ∆S = −0.018kB at B = 3.71T. Hence, NFF decreases the
entropy, but only slightly for large spin baths. This observation inspires us to ask to which
extent continued pulsing can reduce entropy and which characteristics the final state has.

1We use the term ‘quasi-stationary’ state because it is stationary only if we detect it stroboscopically
at the time instants t = nTrep−.
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Inspired by the laser experiments on quantum dots [9,10,23] we choose an (arbitrary)
energy unit JQ and thus ~/JQ as time unit which can be assumed to be of the order of
1ns. The repetition time Trep is set to 4π~/JQ which is on the one hand close to the
experimental values where Trep = 13.2ns and on the other hand makes it easy to recognize
resonances, see below. The trion decay rate is set to 2γ = 2.5JQ to reflect a trion life
time of ≈ 0.4ps. The bath size is restricted to N ∈ {1, 2, . . . , 6}, but still allows us to
draw fundamental conclusions and to describe electronic spins coupled to hydrogen nuclear
spins in small molecules [17–20]. The individual couplings Ji are chosen to be distributed
according to

Ji = Jmax(
√

5− 2)
(√

5 + 2(i− 1)/(N − 1)
)
, (8)

which is a uniform distribution between Jmin and Jmax with
√

5 inserted to avoid accidental
commensurabilities. Results for a frequently used exponential parameterization [24]

Ji = Jmax exp(−α(i− 1)/(N − 1)) (9)

with α ∈ {0.5, 1} and for a Gaussian parametrization motivated by the electronic wave
function in quantum dots [25]

Ji = Jmax exp(−α[(i− 1)/(N − 1)]2). (10)

are given in the next section and in Appendix D.
Figure 1 displays a generic dependence on the external magnetic field h = gµBBx

of the entropy of the limiting density matrix V0 obtained after infinite number of pulses.
Two nested resonances of the Larmor precessions are discernible: the central electronic spin
resonates for hTrep = 2πn (n ∈ Z) while the nuclear bath spin resonates for zhTrep = 2πn′.
These conditions, however, apply only without pulsing or interactions. The driven system
displays important shifts. The nuclear resonance appears to be shifted by z∆h ≈ ±Jmax/2,
see right panel of Fig. 1(a). The explanation is that the dynamics of the central spin
S = 1/2 creates an additional magnetic field acting on each nuclear spin of the order
of Ji/2 which is estimated by Jmax/2. Further support of this explanation is given in
Appendix C.

The electronic resonance is shifted by

∆h = ±Amax (11)

where Amax is the maximum Overhauser field given by Amax := (1/2)
∑N

i=1 Ji for maxi-
mally polarized bath spins. This is shown in the right panel of Fig. 1(b). The commensu-
rability of these resonances is crucial for the advocated mechanism.

For the minimum entropy, it is essential not to look at the bare resonances, but to take
the two above mentioned shifts into account. We posed the question to which extent the
initial entropy of complete disorder Sinit = kB(N + 1) ln 2 (in the figures and henceforth
kB is set to unity) can be reduced by commensurate periodic pumping. The results in Fig.
1 clearly show that remarkably low values of entropy can be reached. The residual value
of S ≈ 0.5kB in the minima of the right panel of Fig. 1(b) corresponds to a contribution
of less than two states (S = ln 2kB ≈ 0.7kB) while initially 16 states were mixed for N = 3
so that the initial entropy is Sinit = 4 ln 2kB ≈ 2.77kB. This represents a remarkable
distillation of coherence.

Hence, we focus on the minima and in particular on the left minimum. We address
the question whether the distillation of coherence still works for larger systems. Unfortu-
nately, the numerical analysis cannot be extended easily due to the dramatically increasing
dimension D = 22(N+1) because we are dealing with the Hilbert space of density matrices
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Figure 1: (a) Residual entropy of the limiting density matrix V0 obtained after infinite
number of pulses vs. the applied magnetic field for Jmax = 0.02JQ and z = 1/1000; 1 Tesla
corresponds roughly to 50JQ. Resonances of the electronic spin occur every ∆h = 0.5Jmax;
resonances of the nuclear spins occur every ∆h = 500Jmax. The blue dashed line depicts
an offset of ∆h = ±Jmax/(2z) from the nuclear resonance. (b) Zooms into intervals of the
magnetic field where the lowest entropies are reached. The blue dashed lines depict an
offset of ∆h = ±Amax from the electronic resonance.

of the spin bath and the central spin. Yet a trend can be deduced from results up to
N = 6 displayed in Fig. 2(a). The entropy reduction per N + 1 spins is −0.58kB for
N = 3, −0.57kB for N = 4, −0.55kB for N = 5, and −0.52kB for N = 6. The reduction is
substantial, but slowly decreases with system size. Presently, we cannot know the behav-
ior for N → ∞. The finite value ≈ −0.2kB found in the semiclassical simulation [15, 16]
indicates that the effect persists for large baths. In Appendix D, results for the couplings
defined in (9) or in (10) are given which corroborate our finding. The couplings may be
rather close to each other, but not equal. It appears favorable that the spread of couplings
is not too large.

Which state is reached in the minimum of the residual entropy? The decisive clue
is provided by the lower panel Fig. 2(b) displaying the polarization of the spin bath.
It is normalized such that its saturation value is unity. Clearly, the minimum of the
residual entropy coincides with the maximum of the polarization. The latter is close to its
saturation value though not quite with a minute decrease for increasing N . This tells us
that the limiting density matrix V0 essentially corresponds to the polarized spin bath. The
central electronic spin is also almost perfectly polarized (not shown), but in z-direction.
These observations clarify the state which can be retrieved by long trains of pulses.
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Figure 2: (a) Residual entropy of the limiting density matrix V0 for various bath sizes; other
parameters as in Fig. 1. The dashed lines indicate the shifts of the electronic resonance by
−Amax. (b) Corresponding normalized polarization of the spin bath in the external field
direction, i.e. the x-direction.

Additionally, Fig. 2(b) explains the shift of the electronic resonance. The polarized
spin bath renormalizes the external magnetic field by (almost) ±Amax. To the left of the
resonance, it enhances the external field (+Amax) while the external field is effectively
reduced (−Amax) to the right of the resonance. Note that an analogous direct explanation
for the shift of the nuclear resonance in the right panel of Fig. 1 is not valid. The computed
polarization of the central spin points in z-direction and thus does not shift the external
field.

5 Results on Convergence

In order to assess the speed of convergence of the initially disordered density matrix
ρ0 = 1/Z to the limiting density matrix V0 we proceed as follows. Let us assume that the

matrices vi are the eigen matrices ofM and that they are normalized ||vi||2 := Tr(v†i vi) = 1.
Since the mapping M is not unitary, orthogonality of the eigenmatrices cannot be assumed.
Note that the standard normalization generically implies that there is some factor between
V0 with Tr(V0) = 1 and v0. The initial density matrix ρ0 can be expanded in the {vi}

ρ0 =

D−1∑
j=0

αjvj . (12)
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After n pulses, the density matrix ρn is given by

ρn =
D−1∑
j=0

αjλ
n
j vj (13)

where λj are the corresponding eigenvalues of M and λ0 = 1 by construction. We aim at
ρ0 being close to V0 within pthresh, i.e.,

||ρn − V0|| ≤ pthresh||V0|| (14)

should hold for an appropriate n. A generic value of the threshold pthresh is 1%. To this
end, the minimum n which fulfills (14) has to be estimated.
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Figure 3: Number of pulses for a convergence within 1% (pthresh = 0.0) are plotted for
various bath sizes; couplings given by (8), other parameters as in Fig. 1. The corresponding
residual entropies and magnetizations are depicted in Fig. 2. The vertical dashed lines
indicate the estimates (11) for the entropy minima as before.

Such an estimate can be obtained by determining

nj := 1 + trunc

[
ln(|pthreshα0/αj |)

ln(|λj |)

]
(15)

for j ∈ {1, 2, 3, . . . , D−1}. The estimate of the required number of pulses is the maximum
of these number, i.e.,

npuls := max
1≤j<D

nj . (16)

We checked exemplarily that the number determined in this way implies that the conver-
gence condition (14) is fulfilled. This is not mathematically rigorous because it could be
that there are very many slowly decreasing contributions which add up to a significant
deviation from V0. But generically, this is not the case.

In Fig. 3 the results are shown for various bath sizes and the parameters for which
the data of the previous figures was computed. Since the entropy minima are located at
the positions of the vertical dashed lines to good accuracy one can read off the required
number of pulses at the intersections of the solid and the dashed lines. Clearly, about
2 · 1012 pulses are necessary to approach the limiting, relatively pure density matrices V0.
Interestingly, the number of required pulses does not depend much on the bath size, at
least for the accessible bath sizes. This is a positive message in view of the scaling towards
larger baths in experimental setups.
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Figure 4: Number of pulses for a convergence within 1% (pthresh = 0.01) for N = 5,
Jmax = 0.02JQ, and z = 10−3 for the exponential parametrization in (9) (legend “expo”)
and the Gaussian parametrization in (10) (legend “gaus”). The corresponding residual
entropies and magnetizations are depicted in Figs. 8 and 9, respectively. The vertical
dashed lines indicate the estimates for the entropy minima which are shifted from the
resonances without interactions according to (11).

Figure 4 depicts the required minimum number of pulses for the two alternative
parametrizations of the couplings (9) and (10). Again, the range is about 3 · 1012. Still,
there are relevant differences. The value npuls is higher for α = 1 (≈ 4 · 1012) than for
α = 1/2 (/ 2 · 1012). This indicates that the mechanism of distilling quantum states by
commensurability with periodic external pulses works best if the couplings are similar, i.e.,
if their spread is small. The same qualitative result was obtained for the residual entropy,
see Appendix D. Note that this argument also explains why the Gaussian parametrized
couplings (10) require slightly less pulses than the exponential parametrized couplings
(9). One could have thought that the cumulated couplings Ji ≈ Jmax in the Gaussian
case require longer pulsing in order to achieve a given degree of distillation because math-
ematically equal couplings Ji = Ji′ imply degeneracies preventing distillation, see the
mathematical properties discussed in Sect. 3. But this is obviously not the case.

The total numbers of pulses is rather high. As many as 2 · 1012 pulses for a repetition
time Trep ≈ 10ns imply about six hours of pulsing. This can be achieved in the lab, but the
risk that so far neglected decoherence mechanisms spoil the process is real. If, however, the
pulses can be applied more frequently, for instance with Trep = 1ns, the required duration
shrinks to about 30 minutes. The question arises why so many pulses are required. While
a comprehensive study of this aspect is beyond the scope of the present article, first clue
can be given.

It suggests itself that the slow dynamics in the bath is responsible for the large number
of pulses required for convergence. This idea is corroborated by the results displayed in
Fig. 5 where a larger maximum coupling and, importantly, a larger z factor is assumed.
Recall that the z-factor is the ratio of the Larmor frequency of the bath spins to the Larmor
frequency of the central spin. If it is increased, here by a factor of 100, the bath spins
precess much quicker. Indeed, the range of the required number of pulses is much lower
with 2 · 107 which is five orders of magnitude less than for the previous parameters. The
former six hours then become fractions of seconds. Of course, the conventional g-factors
of nuclear and electronic spins do not allow for z = 0.1. But the central spin model as
such, built by a central spin and a bath of spins supplemented by a damped excitation
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Figure 5: Residual entropies (panel a) and number of pulses (panel b) for a convergence
within 1% (pthresh = 0.0) for N = 3, Jmax = 0.1JQ, and z = 0.1 for the equidistant
parametrization in (8) (legend “equidist”), the exponential parametrization in (9) (legend
“expo”) and the Gaussian parametrization in (10) (legend “gaus”). The vertical dashed
lines indicate the estimates for the entropy minima which are shifted from the resonances
without interactions according to (11).

can also be realized in a different physical system.

6 Conclusion

Previous work has established dynamic nuclear polarization (DNP), for a review see
Ref. [26]. But it must be stressed that the mechanism of this conventional DNP is fun-
damentally different from the one described here. Conventionally, the polarization of an
electron is transferred to the nuclear spins, i.e., the polarization of the electrons induces
polarization of the nuclei in the same direction. In contrast, in the setup studied here,
the electron is polarized in z-direction while the nuclear spins are eventually polarized
perpendicularly in x-direction. Hence, the mechanism is fundamentally different: it is
NFF stemming essentially from commensurability. This is also the distinguishing feature
compared to standard optical pumping. States in the initial mixture which do not allow
for a time evolution commensurate with the repetition time Trep of the pulses are gradually
suppressed. Eventually, only the particular state which allows for a dynamics commensu-
rate with Trep persists. This mechanism can be used also for completely different physical
systems, e.g., in ensembles of oscillators. The studied case of coupled spins extends the
experimental and theoretical observations of NFF for large spin baths [9–16] where many
values of the polarization of the Overhauser field can lead to commensurate dynamics.
Hence, only a partial reduction of entropy occurred.

The above established DNP by NFF comprises the potential for a novel experimental
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technique for state preparation: laser pulses instead of microwave pulses as in standard
NMR can be employed to prepare coherent states which can be used for further processing,
either to perform certain quantum protocols or for analysis of the systems under study.
The combination of optical and radio frequency pulsing appears promising because it
enlarges the possibilities of experimental manipulations. Another interesting perspective
is to employ the concept of state distillation by commensurability to physical systems other
than localized spins, for instance to spin waves in quantum magnets. A first experimental
observations of commensurability effects for spin waves in ferromagnets are already carried
out [27].

In summary, we showed that dissipative dynamics of a highly excited state is suffi-
cient to modify the dynamics of energetically low-lying spin degrees of freedom away from
unitarity. The resulting dynamic map acts like a contraction converging towards a single
density matrix upon iterated application. The crucial additional ingredient is commensu-
rability which enables a substantial entropy reduction, almost to a single pure state. This
has been explicitly shown for an exemplary small central spin model including electronic
and nuclear Zeeman effect. This model served as proof-of-principle model to establish the
mechanism of distillation by commensurability.

Such a model describes the electronic spin in quantum dots with diluted nuclear spin
bath or the spin of unpaired electrons in molecules, hyperfine coupled to nuclear hydrogen
spins. We stress that the mechanism of commensurability can also be put to use in
other systems with periodic internal processes. The fascinating potential to create and to
manipulate coherent quantum states by such approaches deserves further investigation.
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A Derivation of the Linear Mapping

The goal is to solve the time evolution of ρ(t) from just before a pulse until just before
the next pulse. Since the pulse leads to a unitary time evolution which is linear

ρ(nTrep−)→ ρ(nTrep+) = Upulsρ(nTrep−)U †puls (17)

with Upuls from (5) and the subsequent Lindblad dynamics defined by the linear differential
equation (6) is linear as well the total propagation in time is given by a linear mapping
M : ρ(nTrep−) → ρ((n + 1)Trep−). This mapping is derived here by an extension of the
approach used in Ref. [16].

The total density matrix acts on the Hilbert space given by the direct product of the
Hilbert space of the central spin comprising three states (| ↑〉, | ↓〉, |T〉) and the Hilbert
space of the spin bath. We focus on ρTT := 〈T|ρ|T〉 which is a 2N × 2N dimensional
density matrix for the spin bath alone because the central degree of freedom is traced out.
By ρS we denote the d × d dimensional density matrix of the spin bath and the central
spin, i.e., d = 2N+1 since no trion is present: ρS|T〉 = 0. The number of entries in the

11



SciPost Physics Submission

density matrix is D = d2, i.e., the mapping we are looking for can be represented by a
D ×D matrix.

The time interval Trep between two consecutive pulses is sufficiently long so that all
excited trions have decayed before the next pulse arrives. In numbers, this means 2γTrep �
1 and implies that ρ(nTrep−) = ρS(nTrep−) and hence inserting the unitary of the pulse
(5) yields

ρ(nTrep+) = UpulsρS(nTrep−)U †puls (18a)

ρTT(nTrep+) = 〈↑ |ρS(nTrep−)| ↑〉 (18b)

ρS(nTrep+) = | ↓〉〈↓ |ρS(nTrep−)| ↓〉〈↓ | = S−S+ρS(nTrep−)S−S+ (18c)

where we used the standard ladder operators S± of the central spin to express the pro-
jection | ↓〉〈↓ |. The equations (18) set the initial values for the subsequent Lindbladian
dynamics which we derive next. For completeness, we point out that there are also non-
diagonal contributions of the type 〈T|ρ| ↑〉, but they do not matter for M .

Inserting ρTT into the Lindblad equation (6) yields

∂tρTT(t) = −i[HnZ, ρTT(t)]− 2γρTT(t). (19)

No other parts contribute. The solution of (19) reads

ρTT(t) = e−2γte−iHnZtρTT(0+)eiHnZt. (20)

By the argument 0+ we denote that the initial density matrix for the Lindbladian dynamics
is the one just after the pulse.

For ρS, the Lindblad equation (6) implies

∂tρS(t) = −i[Hspin, ρS(t)] + 2γ| ↑〉ρTT(t)〈↑ |. (21)

Since we know the last term already from its solution in (20) we can treat it as given
inhomogeneity in the otherwise homogeneous differential equation. With the definition
US(t) := exp(−iHspint) we can write

∂t

(
U †S(t)ρS(t)US(t)

)
= 2γU †S(t)| ↑〉ρTT(t)〈↑ |US(t). (22)

Integration leads to the explicit solution

ρS(t) = US(t)ρS(0+)U †S(t) + 2γ

∫ t

0
U †S(t− t′)| ↑〉ρTT(t′)〈↑ |US(t− t′)dt′. (23)

If we insert (20) into the above equation we encounter the expression

| ↑〉 exp(−iHnZt) = exp(−iHnZt)| ↑〉 = exp(−izhIxtott) exp(izhSxt)| ↑〉. (24)

where Ixtot := Sx +
∑N

i=1 I
x
i is the total momentum in x-direction. It is a conserved

quantity commuting with Hspin so that a joint eigenbasis with eigenvalues mα and Eα
exists. We determine such a basis {|α〉} by diagonalization in the d-dimensional Hilbert
space (d = 2N+1) of central spin and spin bath and convert (23) in terms of the matrix
elements of the involved operators. For brevity, we write ραβ for the matrix elements of
ρS.

ραβ(t) = e−i(Eα−Eβ)t
{
ραβ(0+)

+ 2γ

∫ t

0
ei(Eα−Eβ−zh(mα−mβ))t

′〈α|eizhSxt′ | ↑〉ρTT(0+)〈↑ |eizhSxt′ |β〉dt′
}
. (25)

12
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Elementary quantum mechanics tells us that

eizhS
xt′ | ↑〉 =

1

2
eia(| ↑〉+ | ↓〉) +

1

2
e−ia(| ↑〉 − | ↓〉) (26)

with a := zht′/2 which we need for the last row of equation (25). Replacing ρTT(0+) by
〈↑ |ρS(nTrep−)| ↑〉 according to (18b) and inserting (26) we obtain

〈α|eizhSxt′ | ↑〉ρTT(0+)〈↑ |eizhSxt′ |β〉 = 〈α|eizhSxt′ | ↑〉〈↑ |ρS(0−)| ↑〉〈↑ |eizhSxt′ |β〉 (27a)

=
1

2

(
R(0) + eizht

′
R(1) + e−izht

′
R(−1)

)
αβ

(27b)

with the three d× d matrices

R(0) := S+S−ρS(0−)S+S− + S−ρS(0−)S+ (28a)

R(1) :=
1

2
(S+ + 1d)S

−ρS(0−)S+(S− − 1d) (28b)

R(−1) :=
1

2
(S+ − 1d)S

−ρS(0−)S+(S− + 1d). (28c)

In this derivation, we expressed ket-bra combinations by the spin ladder operators accord-
ing to

| ↑〉〈↑ | = S+S− | ↑〉〈↓ | = S+ | ↓〉〈↑ | = S−. (29)

The final step consists in inserting (27b) into (25) and integrating the exponential time
dependence straightforwardly from 0 to Trep. Since we assume that 2γTrep � 1 so that no
trions are present once the next pulse arrives the upper integration limit Trep can safely
and consistently be replaced by ∞. This makes the expressions

Gαβ(τ) :=
γ

2γ − i[Eα − Eβ + zh(mβ −mα + τ)]
(30)

appear where τ ∈ {−1, 0, 1}. Finally, we use (18c) and summarize

ραβ(t) = e−i(Eα−Eβ)t
{

(S−S+ρS(0−)S−S+)αβ +
1∑

τ=−1
Gαβ(τ)R

(τ)
αβ

}
. (31)

This provides the complete solution for the dynamics of d× d matrix ρS from just before
a pulse (t = 0−) till just before the next pulse for which we set t = Trep in (31).

In order to set up the linear mapping M as D ×D dimensional matrix with D = d2

we denote the matrix elements Mµ′µ where µ is a combined index for the index pair αβ
and µ′ for α′β′ with α, β, α′, β′ ∈ {1, 2 . . . , d}. For brevity, we introduce

Pαβ := [(S+ + 1d)S
−]αβ Qαβ := [(S+ − 1d)S

−]αβ. (32)

Then, (31) implies

Mµ′µ =
1

2
e−i(Eα′−Eβ′ )Trep

{
2(S−S+)α′α(S−S+)ββ′

+ 2Gα′β′(0)
[
(S+S−)α′α(S+S−)ββ′ + S−α′αS

+
ββ′

]
+
[
Gα′β′(1)Pα′αQ

∗
β′β +Gα′β′(−1)Qα′αP

∗
β′β

] }
. (33)

This concludes the explicit derivation of the matrix elements of M . Note that they are rel-
atively simple in the sense that no sums over matrix indices are required on the right hand
side of (33). This relative simplicity is achieved because we chose to work in the eigen-
basis of Hspin. Other choices of basis are possible, but render the explicit respresentation
significantly more complicated.

13
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B Properties of the Time Evolution

Preliminaries Here we state several mathematical properties of the mapping M which
hold for any Lindblad dynamics over a given time interval which can be iterated arbitrarily
many times. We assume that the underlying Hilbert space is d dimensional so that M
acts on the D = d2 dimensional Hilbert space of d × d matrices, i.e., M can be seen as
D ×D matrix. We denote the standard scalar product in the space of operators by

(A|B) := Tr(A†B) (34)

where the trace refers to the d× d matrices A and B.
Since no state of the physical system vanishes in its temporal evolution M conserves

the trace of any density matrix

Tr(Mρ) = Tr(ρ). (35)

This implies that M conserves the trace of any operator C. This can be seen by writing
C = (C + C†)/2 + (C − C†)/2 = R + iG where R and G are hermitian operators. They
can be diagonalized and split into their positive and their negative part R = p1 − p2 and
G = p3 − p4. Hence, each pi is a density matrix up to some real, positive scaling and we
have

C = p1 − p2 + i(p3 − p4). (36)

Then we conclude

Tr(MC) = Tr(Mp1)− Tr(Mp2) + i(Tr(Mp3)− Tr(Mp4)) (37a)

= Tr(p1)− Tr(p2) + i(Tr(p3)− Tr(p4)) = Tr(C). (37b)

Property 1. The conservation of the trace for any C implies

Tr(C) = (1d|C) = (1d|MC) = (M †1d|C) (38)

where 1d is the d×d-dimensional identity matrix and M † is the D×D hermitian conjugate
of M . From (38) we conclude

M †1d = 1d (39)

which means that 1d is an eigenoperator of M † with eigenvalue 1. Since the characteristic
polynomial of M is the same as the one of M † up to complex conjugation we immediately
see that 1 is also an eigenvalue of M . If the dynamics of the system takes place in n
independent subspaces without transitions between them, the n different traces over these
subspaces are conserved separately Such a separation occurs in case conserved symmetries
split the Hilbert space, for instance the total spin is conserved in the dynamics given
by (6) if all couplings are equal. Then, the above argument implies the existence of n
different eigenoperators with eigenvalue 1. Hence the degeneracy is (at least) n which
proves property 1. in the main text.

Properties 2. and 3. As for property 2, we consider an eigenoperator C of M with
eigenvalue λ 6= 1 so that MC = λC. Then

Tr(C) = Tr(MC) = λTr(C) (40)

implies Tr(C) = 0, i.e., tracelessness as stated. Since all density matrices can be written as
linear combinations of eigenoperators there must be at least one eigenoperator with finite

14
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trace. In view of property 2., this needs to be an eigenoperator with eigenvalue 1 proving
property 3. The latter conclusion holds true if we assume that M cannot be diagonalized,
but only has a Jordan normal form. If dJ is the dimension of the largest Jordan block, the
density matrix MdJ−1ρ will be a linear combination of eigenoperators while still having
the trace 1.

Property 4. Next, we show that no eigenvalue λ can be larger than 1 in absolute value.
The idea of the derivation is that the iterated application of M to the eigenoperator
belonging to |λ| > 1 would make this term grow exponentially ∝ |λ|n beyond any bound
which cannot be true. The formal proof is a bit intricate.

First, we state that for any two density matrices ρ and ρ′ their scalar product is non-
negative 0 ≤ (ρ|ρ′) because it can be viewed as expectation value of one of them with
respect to the other and both are positive operators. In addition, the Cauchy-Schwarz
inequality implies

0 ≤ (ρ|ρ′) ≤
√

(ρ|ρ)(ρ′|ρ′) =
√

Tr(ρ2)Tr((ρ′)2) ≤ 1. (41)

Let C be the eigenoperator of M † belonging to λ; it may be represented as in (36) and
scaled such that the maximum of the traces of the pi is 1. Without loss of generality this
is the case for p1, i.e., Tr(p1) = 1. Otherwise, C is simply rescaled: by C → −C to switch
p2 to p1, by C → −iC to switch p3 to p1, or by C → iC to switch p4 to p1. On the one
hand, we have for any density matrix ρn

|(C|ρn)| ≤ |<(C|ρn)|+ |=(C|ρn)| ≤ 2 (42)

where the last inequality results form (41). On the other hand, we set ρn := Mnp1 and
obtain

2 ≥ |(C|ρn)| = |((M †)nC|p1)| = |λ∗|n|(C|p1)| = |λ|n
√

(<(C|p1))2 + (=(C|p1))2 (43a)

≥ |λ|n|<(C|p1)| = |λ|n(p1|p1) (43b)

where we used (p1|p2) = 0 in the last step; this holds because p1 and p2 result from the
same diagonalization, but refer to eigenspaces with eigenvalues of different sign. In essence
we derived

2 ≥ |λ|n(p1|p1) (44)

which clearly implies a contradiction for n→∞ because the right hand side increases to
infinity for |λ| > 1. Hence there cannot be eigenvalues with modulus larger than 1.

Property 5. The matrix M can be represented with respect to a basis of the Krylov
space spanned by the operators

ρn := Mnρ0 (45)

where ρ0 is an arbitrary initial density matrix which should contain contributions from
all eigenspaces of M . For instance, a Gram-Schmidt algorithm applied to the Krylov
basis generates an orthonormal basis ρ̃n. Due to the fact, that all the operators ρn from
(45) are hermitian density matrices ρ̃n = ρ̃†n, we know that all overlaps (ρm|ρn) are real
and hence the constructed orthonormal basis ρ̃n consists of hermitian operators. Also, all
matrix elements (ρm|Mρn) = (ρm|ρn+1) are real so that the resulting representation M̃ is
a matrix with real coefficients whence

M̃c = λc (46a)
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implies
M̃c∗ = λ∗c∗ (46b)

by complex conjugation. Here c is a vector of complex numbers cn which define the
corresponding eigenoperators by

C =
D∑
n=1

cnρ̃n. (47)

Thus, c and c∗ define C and C†, respectively.

Property 6. In view of the real representation M̃ of M with respect to an orthonormal
basis of hermitian operators derived in the previous paragraph the determination of the
eigenoperators with eigenvalue 1 requires the computation of the kernel of M̃−1D. This is
a linear algebra problem in RD with real solutions which correspond to hermitian operators
by means of (47). This shows the stated property 6..
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Figure 6: (a) Residual entropy as function of the applied magnetic field for N = 3, Jmax =
0.02, and z = 1/1000 to show the position at h = 2π/(zTrep) and the shift, dashed line at
≈ 500JQJmax/(2z) of the nuclear magnetic resonance. (b) Same as (a) for z = 1/500. (c)
Same as (a) for z = 1/250.

C Shift of the Nuclear Resonance

In the main text, the shift of the nuclear resonance due to the coupling of the nuclear
spins to the central, electronic spin was shown in the right panel of Fig. 1(a). The effect
can be estimated by

z∆h ≈ ±Jmax/2. (48)
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Figure 7: Residual entropy as function of the applied magnetic field for N = 3, z = 1/1000
and various values of Jmax. The shifts indicated by the dashed lines correspond to the
estimate (48).

This relation is highly plausible, but it cannot be derived analytically because no indication
for a polarization of the central, electronic spin in x-direction was found. Yet, the numerical
data corroborates the validity of (48).

In Fig. 6, we show that the nuclear resonance without shift occurs for

zhTrep = 2πn′ (49)

where n′ ∈ Z. But it is obvious that an additional shift occurs which is indeed captured
by (48).

In order to support (48) further, we also study various values of Jmax in Fig. 7. The
estimate (48) captures the main trend of the data, but it is not completely quantitative
because the position of the dashed lines relative to the minimum of the envelope of the res-
onances varies slightly for different values of Jmax. Hence, a more quantitative explanation
is still called for.

D Entropy Reduction for Other Distributions of Couplings

In the main text, we analyzed a uniform distribution of couplings, see Eq. (8). In order to
underline that our results are generic and not linked to a special distribution, we provide
additional results for two distributions which are often considered in literature, namely an
exponential parameterization as defined in (9) and a Gaussian parametrization as defined
in (10).

The key difference between both parametrizations (9) and (10) is that due to the
quadratic argument in (10) the large couplings in this parametrization are very close to
each other, in particular for increasing N . Hence, one can study whether this feature is
favorable of unfavorable for entropy reduction.

Additionally, the difference between α = 0.5 and α = 1 consists in a different spread
of the couplings. For α = 1, one has Jmin/Jmax = 1/e in both parametrizations while one
has Jmin/Jmax = 1/

√
e for α = 0.5, i.e., the spread is smaller.

Figure 8 displays the results for the exponential parametrization (9) while Fig. 9 depicts
the results for the Gaussian parametrization (10). Comparing both figures shows that the
precise distribution of the couplings does not matter much. Exponential and Gaussian
parametrization lead to very similar results. They also strongly ressemble the results
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Figure 8: Residual entropy as function of the applied magnetic field for various bath sizes
N for the exponentially distributed couplings given by (9); panel (a) for α = 1 and panel
(b) for α = 0.5 and hence smaller ratio Jmin/Jmax.
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Figure 9: Residual entropy as function of the applied magnetic field for various bath sizes
N for the Gaussian distributed couplings given by (10); panel (a) for α = 1 and panel (b)
for α = 0.5 and hence smaller ratio Jmin/Jmax.

shown in Fig. 2a in the main text for a uniform distribution of couplings. This is quite
remarkable since the Gaussian parametrization leads to couplings which are very close to
each other and to the maximum coupling. This effect does not appear to influence the
achievable entropy reduction.

The ratio Jmin/Jmax between the smallest to the largest coupling appears to have an
impact. If it is closer to unity, here for α = 0.5, the reduction of entropy works even better
than for smaller ratios.
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