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Abstract

Exploring new excitation modes and the role of the nuclear clustering has been of
great interest. An interesting speculation was made in the recent photoabsorption
measurement of 6Li that implied the importance of the nuclear clustering. To
understand the excitation mechanism of 6Li, we perform a fully microscopic six-
body calculation on the electric-dipole (E1) transitions and discuss how 6Li is
excited by the E1 field as a function of the excitation energy. We show the
various cluster components in the six-body wave functions and discuss the role
of the nuclear clustering in the E1 excitations of 6Li.
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1 Introduction

Nuclear cluster structure often appears in the spectrum of light nuclei. The role of the nuclear
clustering in the electric-dipole (E1) transitions has been of great interest since they are closely
related to important astrophysical reactions. Recently, an interesting speculation on the E1
excitation mechanism was made in the measurement of the photoabsorption cross section
of 6Li that implied the coexistence of the typical and cluster E1 excitation modes [1]. To
understand this excitation mechanism, we performed a fully microscopic six-body calculation
with the correlated Gaussian method, in which the formation and distortion of the nuclear
clusters are naturally taken into account as was demonstrated for 6He [2]. Basically, this
contribution aims at reviewing the discussions and findings given in Ref. [3] accompanying
with some unpublished results. We calculate the E1 transition strengths and their transition
densities and discuss how 6Li is excited by the E1 field as a function of the excitation energy.
We find the out-of-phase transitions due to the valence proton and neutron around the alpha
cluster dominate in the low-lying energy regions below the alpha breaking threshold indicating
“soft” Goldhaber-Teller (GT [4]) excitation, which is very unique in 6Li, whereas the typical
GT mode appears in the higher-lying energy regions. We discuss the role of the nuclear
clustering in the E1 excitations of 6Li by showing the various cluster components in the
six-body wave function.

In Sec. 2, we describe the setup of the microscopic six-body calculation. How we construct
the six-nucleon wave functions are briefly explained. Section 3 presents calculated results and
discusses the structure of the E1 excitations of 6Li through the E1 transition strengths in
Sec. 3.1 and its transition densities in Sec. 3.2. In Sec. 3.3, the isoscalar dipole transitions are
discussed as complementary information of the ordinary E1 excitation. Conclusion is made
in Sec. 4.

2 Microscopic six-body calculation for 6Li

2.1 Hamiltonian

The Hamiltonian for a six-nucleon system is set by the kinetic energy and two-body nuclear
and Coulomb potential terms in the center-of-mass (cm) frame. For the sake of simplicity,
we employ the Minnesota (MN) nucleon-nucleon potential [5] which offers a fair description
of the binding energies and radii of s-shell nuclei, 2H (d), 3H (t), 3He (h), and 4He (α) [6, 7]
without a three-body force. The MN potential includes the one parameter u responsible for
the strength of odd-parity partial waves. Roughly speaking, the u parameter controls the
interaction of the valence nucleons from the α core on the p-shell orbital. Since the original
strength (u = 1) does not give the correct low-lying threshold and rms radius of 6Li, the other
two parameter sets are examined that are chosen to reproduce the three-body threshold of
α+ p+ n (u = 0.93) and the rms radius of 6Li (u = 0.87), respectively.
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2.2 Correlated Gaussian expansion

To describe the six-nucleon ground and excited states, we expand the spatial part of the wave
function in terms of the correlated Gaussian function with the global vector representation [7,

8]: exp
(
−
∑5

j,k=1Ajkxj · xk
)
YLML

(
∑5

j=1 vjxj). The coordinate set (x1, . . . ,x5) excluding

the cm coordinate of the six-nucleon system, x6, is taken as the Jacobi coordinate. The
correlations among the particles are explicitly included through the off-diagonal parameter,
Ajk (j 6= k). The rotational motion of the system is described with the so-called global
vector in the argument of the solid spherical harmonic [8, 9]. This expression is convenient
that the functional form does not change under any linear transformation of the coordinate.
Various configurations such as single-particle, α+ p+ n and h+ t cluster configurations can
easily be implemented. The matrix elements of the Hamiltonian can be evaluated analytically.
See [6–8] for the detailed mathematical derivation and expressions. With these nice property,
the correlated Gaussian has been applied to studying the nuclear clustering [10–12]. See, also
review papers [13,14]. The six-nucleon spin and isospin functions as well as antisymmetrization
of the total basis function are fully taken into consideration. The isospin mixing due to the
Coulomb interaction is naturally described in this study.

2.2.1 Ground-state wave function
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Figure 1: Energy convergence of 6Li as a function of the number of bases.

To find an optimal choice of a huge number of the variational parameters, we employ the
stochastic variational method (SVM) [7,8]. We increase the number of basis selected compet-
itively from randomly generated candidates until a certain number of basis states are obtained.
Figure 1 displays the obtained energy curve with u = 1.00 as a function of the number of
bases. We see the energy of the six-nucleon system is rapidly converged with increasing the
number of the basis functions. We stop the calculation with 600 bases, which are very small
by noting that each basis function includes 6(6 − 1)/2 = 15 parameters as well as the spin
degrees of freedom. Then we switch the selection procedure for the refinement of the varia-
tional parameters in the already obtained basis functions until the energy is converged within
tens of keV. For the wave functions with other u parameters, we start with the optimal basis
functions with u = 1.00 and refine those basis functions by keeping the total number of basis
unchanged until the energy convergence is reached.
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2.2.2 Construction of excited states
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Figure 2: Electric-dipole transition strengths and their decomposition with respect
to the spectroscopic factors. The parameters u = 0.87, 0.93 and 1.00 in the MN
interaction are employed. Arrows indicate the theoretical threshold energies of α+d,
α + p+ n, and h+ t from left to right, respectively. The results with u = 0.93 and
the Full calculations are adopted from Ref. [3].

Here we overview how to construct the final-state wave functions excited by the E1 operator:

M(E1, µ) = e
√

4π
3

∑
i∈p Y1µ(ri − x6), where ri is the single-particle coordinate of the ith

proton. All the details are described in Ref. [3]. We expand the final-state wave function
in a large number of the correlated Gaussian basis functions. To incorporate the six-body
correlations efficiently, physically important configurations are selected: (I) Single-particle
excitation, (II) 4+1+1 cluster, and (III) 3+3 cluster configurations.

The configurations of type (I) is based on the idea that the E1 operator excites one
coordinate in the ground-state wave function. The resulting coherent states are important
to satisfy the E1 sumrule [2, 15, 16]. They are constructed by using the basis set of the
ground-state wave function of 6Li by multiplying an additional solid spherical harmonic with
the angular momentum 1. The configurations of types (II) and (III) explicitly describe the
cluster configurations of α+p+n and h+t, which correspond to the two lowest thresholds. The
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relative wave functions of the valence nucleons are expanded with several Gaussian functions
covering from short to far distances up to about 20 fm.

We include all the basis states for each subsystem independently. Therefore, the final-
state wave functions are not restricted to the subsystems being the ground state but the
excitations and distortion of 6Li, α, h, and t are included through the coupling of the pseudo
excited states of those nuclear systems. We diagonalize the Hamiltonian including all the
configurations of types (I)–(III) with 18490 basis functions and find ∼ 2 × 103 states below
the excitation energy of 100 MeV.

3 Results and discussions

3.1 Electric-dipole transition strengths

Table 1: Excitation energy Ex in MeV, B(E1) in e2fm2 and α + p + n and h + t
spectroscopic factors in 6Li with different u parameters. The results with u = 0.93
are adopted from Ref. [3].

u = 0.87 u = 0.93 u = 1.00
Ex B(E1) S2

αpn S2
ht Ex B(E1) S2

αpn S2
ht Ex B(E1) S2

αpn S2
ht

8.9 0.076 1.000 0.000 9.6 0.066 0.999 0.000 10.4 0.052 0.999 0.001
11.5 0.106 0.999 0.006 12.1 0.140 0.999 0.011 12.9 0.124 0.999 0.009
11.7 0.076 0.999 0.007 14.3 0.063 0.997 0.000 15.1 0.055 0.997 0.000
13.6 0.122 0.997 0.000 15.7 0.064 0.999 0.010 16.3 0.097 0.998 0.016

19.1 0.202 0.988 0.005 18.9 0.077 0.991 0.004 20.3 0.103 0.993 0.001
20.8 0.076 0.994 0.010 19.8 0.075 0.994 0.003 20.5 0.094 0.995 0.001
22.4 0.191 0.124 0.845 22.8 0.249 0.113 0.850 23.8 0.179 0.133 0.827
22.7 0.117 0.948 0.013 23.3 0.089 0.963 0.003 23.9 0.165 0.880 0.085

30.6 0.285 0.035 0.691 30.6 0.236 0.264 0.533 31.2 0.240 0.162 0.618
32.5 0.172 0.918 0.005 30.6 0.095 0.780 0.158 33.5 0.070 0.712 0.002
35.7 0.050 0.594 0.002 33.0 0.148 0.962 0.005 37.1 0.088 0.045 0.001
36.6 0.119 0.351 0.002 34.6 0.132 0.195 0.019 37.2 0.077 0.052 0.003

Figure 2 plots the E1 transition strengths or reduced transition probability [B(E1)], and their
decomposition with respect to the spectroscopic factors of α + p + n (S2

αpn) and h + t (S2
ht)

obtained with the full model space that includes the configurations of types (I)–(III) with
different values of the u parameter as a function of the excitation energy, Ex. Large B(E1)
values in the low(Ex . 16 MeV)-, intermediate(Ex ∼ 16–30 MeV)-, and high(Ex & 30 MeV)-
energy regions are found. There is little quantitative difference among these three different u
values up to Ex ∼ 40 MeV.

As we see in the E1 transitions to the states with S2
αpn > 0.80, most of the low-lying states

below 20 MeV have a large α + p+ n cluster component. The E1 strengths with S2
ht > 0.50

show three large E1 strengths after the h + t threshold 15.8 MeV [17], opens. These robust
structures do not depend on the u parameter. The first two can be the observed levels at
Ex = 17.98 and 26.59 MeV, having relatively small h+ t decay widths, 3.0 and 8.7 MeV for
the first and second peaks, respectively [17]. The other complementary strengths are plotted
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in the lowest three panels of Fig. 2. Since all the particle thresholds are open beyond 30 MeV,
many small strengths are distributed due to the coupling of various configurations

For quantitative discussions, Table 1 summarizes Ex, B(E1), S2
αpn, and S2

ht of the states
that give four largest B(E1) values in the low-, intermediate-, and high-energy regions with
u = 0.87, 0.93, and 1.00. We note that in the low energy regions (Ex .16 MeV) below the
h+ t threshold, all the states have large S2

αpn values being ∼ 1, whereas their S2
ht values are

∼ 0.
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Figure 3: Transition densities for proton and neutron with u = 0.87 at (a) 13.6,
(b) 22.4, (c) 19.1, (d) 30.6, (e) 32.5, and (f) 36.6 MeV. Vertical thin lines indicate
theoretical nuclear radii, 4He and 6Li, respectively.

3.2 Dipole transition densities

To discuss the structure of the E1 excitations, here we calculate the transition densities:
ρtrp/n(r) =

∑
i∈p/n 〈Jf‖Y1(ri − x6)δ(|ri − x6| − r) ‖J0〉, where J0 and Jf are the angular mo-

mentum of the ground and final states, respectively. Note that the E1 transition matrix can

be obtained with 〈Jf‖M(E1) ‖J0〉 = e
√

4π
3

∫∞
0 dr ρtrp (r), which express the spatial distribu-

tion of the E1 transitions. In the following, we discuss the transition densities for 6Li of the
selected transitions that show some characteristic behaviors.
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3.2.1 Soft Goldhaber-Teller excitations

Figure 3 displays ρtrp and ρtrn to the states that have the prominent B(E1) values. We discuss
the results with u = 0.87, which were not presented in Ref. [3], though they are qualitatively
the same as those obtained with u = 0.93. The transition densities such at (a) Ex = 13.6, (c)
19.1, and (e) 32.5 MeV can be categorized into the same group. All the transition densities
show the in-phase transition around the 4He radius and the out-of-phase transitions beyond
the nuclear surface. More oscillations in the outside region appear with increasing the exci-
tation energy. We interpreted this unique transition as “soft” Goldhaber-Teller(GT)-dipole
mode, that is, the oscillation of the valence proton and neutron around the core (α) [3], which
is a variant of the classical picture of the giant dipole resonance (GDR) [4]. In Table 1, we see
all these states a large S2

αpn value & 0.9. It should be noted that this mode is different from
the so-called soft-dipole mode as Ref. [2] showing the oscillation of the valence two neutrons
against the core [2].

3.2.2 Cluster and Goldhaber-Teller excitations

At (b) Ex = 22.4, (d) 30.6, and (f) 36.6 MeV, all the transition densities exhibit out-of-phase
transitions in all regions, showing the typical GT mode.

Let us first discuss the states at (b) Ex = 22.4 and (d) 30.6 MeV. In this energy region,
the h+t threshold already opens. Considering the fact that the S2

ht values are large & 0.7 (see
Table 1), this behavior can be interpreted as the E1 excitation of the relative wave function
between the h and t clusters. Actually, the peak positions are located at ∼2 fm, which is
about the sum of the peak positions of the densities of h and t [3].

We also see the state with the state with (f) Ex = 36.6 MeV also show the out-of-phase
transition in all regions but the E1 excitation structure is found being different from those of
(b) and (d). The peak positions are located somewhat outside from these of (b) and (d), and
the S2

αpn and S2
ht are small as listed in Table 1. This is nothing but the typical GT mode, in

which the protons and neutrons oscillate against each other [4].

3.3 Discussion: Isoscalar dipole transitions
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Figure 4: Isoscalar dipole transition strengths with u = 0.87, 0.93, and 1.00. The
results with u = 0.93 are adopted from the data given in Ref. [3].
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To discuss more details on the transition densities, here we discuss the isoscalar dipole excita-
tion whose operator is defined by M(IS1, µ) =

∑
i(ri − x6)

2Y1µ(ri − x6) [18]. By definition,
the IS1 transition matrix can be obtained with

∫∞
0 dr r2

(
ρtrp + ρtrn

)
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Figure 6: Same as Fig. 5 but with u = 0.87 at the same Ex of Fig. 3.

Figure 4 displays the IS1 transition strengths with different values of the u parameter as a
function of the excitation energies. Some prominent strengths appear between the α+ d and
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α+p+n thresholds and the S2
αd values of those states are ∼ 1. They come from the transition

to the α+d continuum states, which cannot be excited by the ordinary isovector E1 operator.
Note that the isospin mixing components due to the Coulomb interaction are included in the
wave functions but they are small. Figure 5 draws the transition densities multiplied by r2

that show the most prominent B(IS1) value at Ex = 3.3 MeV with u = 0.93. The transition
densities of proton and neutron coincide each other, showing the in-phase transition in all
regions.

Let us see Fig. 3 from a different view point. Figure 6 plots the transition densities
of proton and neutron multiplied by r2 and their sum of the states given in Fig. 3. We
remind that the IS1 transition matrix is obtained by the sum of the proton and neutron
transition densities. When the transition densities exhibit the out-of-phase transitions, they
are canceled, resulting in a small IS1 transition matrix. In general, the in-phase transition
enhances the IS1 transition matrix. In the case of the soft GT-dipole mode, since the in-phase
transition occurs in the short distances, the contributions from these regions become small
due to the additional r2 factor through the IS1 operator. Since almost all the IS1 strengths
are exhausted in the low-energy regions below ∼ 5 MeV, only small strengths are found in
the higher energy regions. To understand the excitation mechanism of 6Li, one can observe
this strong suppression of the IS1 transition strengths using such as (α, α′) measurement as
a complementary evidence of the existence of the soft-GT-dipole mode.

4 Conclusion

We performed fully microscopic six-body calculations to understand the electric-dipole (E1)
excitation mechanism. The six-body wave functions were constructed in terms of the corre-
lated Gaussian (CG) functions. The ground state wave function was obtained precisely with
the aid of the stochastic variational method. The final state wave functions were also ex-
pressed by a number of the CG functions. The asympototic wave functions between clusters
as well as the distortion of the clusters were taken into account.

We calculate the E1 transition strengths and their transition densities. With the analysis
of the cluster components of the wave functions, we see that the nuclear clustering emerges in
the E1 excitation depending on the positions of the threshold energies. We find very unique
excitation mode, “soft” Goldhaber-Teller(GT) excitation, which is recognized as the out-of-
phase oscillation between valence nucleons around the α cluster in 6Li, dominates below the
α breaking threshold energy. Series of the vibrational excitation mode are also found in the
high-lying energy regions.

Beyond the h + t threshold, the E1 transitions with the h + t cluster mode appear.
The transition densities show the out-of-phase transition in all regions. With increasing
the excitation energy after all decay channels open beyond ∼ 30 MeV, the typical GT mode
appears with largely distorted configurations neither α+ p+ n nor h+ t.

Isoscalar dipole (IS1) excitations are examined as it gives a different view of the E1
excitation mechanism. The out-of-phase transitions in the soft GT dipole mode cause the
strong suppression of the IS1 transition strengths. A measurement of the α inelastic scattering
cross sections at around α+ p+ n may reveal the absence of the isoscalar component at this
energy regions, which will be a complementary evidence of the existence of the soft GT dipole
mode. Also, exploring the appearance of the soft GT mode in heavier nuclei is interesting,
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e.g., 18F as 16O + p+ n.
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