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Abstract

We derive the low-energy theory of semi-quantized quantum Hall states, a
recently observed class of gapless bilayer fractional quantum Hall states. Our
theory shows these states to feature gapless quasiparticles of fractional charge
coupled to an emergent Chern-Simons gauge field. These gapless quasiparticles
can be understood as composites of electrons and Laughlin-like quasiparticles.
We show that semi-quantized quantum Hall states exhibit perfect interlayer
drag, host non-Fermi liquid physics, and serve as versatile parent states for
fully gapped topological phases hosting anyonic excitations.
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1 Introduction

In recent years, topology has widely been recognized as an important organizing principle
in nature. In its most simple form, topology allows to classify band structures of gapped,
non-interacting systems [?, ?]. The role of an order parameter is played by so-called
topological invariants: two systems can be smoothly deformed into one another if their
topological invariants have identical values. In contrast, topologically distinct phases are
separated by the closing and re-opening of a bulk gap.

This basic notion of topology has been extended in different ways. On the one hand,
it has been recognized that gapless systems may also be topological. A prime example are
Weyl semimetals, whose band structures have nodal points corresponding to quantized
monopoles of Berry flux [?]. As a result, Weyl semimetals exhibit many of the charac-
teristics of gapped topological phases, including topological edge states, and transport
governed by quantum anomalies. On the other hand, the notion of topology has also
been extended to strongly interacting systems. Of particular importance is the concept
of topological order [1, 2], realized for example in fractional quantum Hall effects. Topo-
logically ordered states have no analogue in non-interacting systems, exhibit long-range
entanglement, fractional anyonic quasiparticles, and a topological ground state degeneracy
on non-trivial manifolds.

While topological order requires a bulk gap, related phenomena have also been dis-
cussed in gapless systems such as the composite Fermi liquid in a half-filled Landau level,
gapless quantum spin liquids, quantum Hall states related to non-unitary or nonrational
conformal field theories, fractional Weyl semimetals, and others (see Refs. [3–53]). A recent
experiment has now identified a state that combines properties of a fractional quantum
Hall effect with a gapless character [54]. This “semi-quantized quantum Hall state” has
been measured in a bilayer quantum Hall system. Similar to a fractional quantum Hall
state, it features quantized fractional Hall and Hall drag resistances alongside vanishing
longitudinal resistances. In stark contrast to traditional bilayer quantum Hall states such
as Halperin states [2, 55, 56], however, the semi-quantized quantum Hall state persists
along a continuous line of filling factors. This compressible behaviour implies the absence
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Figure 1: A semi-quantized quantum Hall state in a quantum Hall bilayer. The top layer
is similar to a Laughlin state at filling factor 1©K��, featuring a bulk gap and gapless edge
states (indicated by red arrows). Gapless quasiparticles (QP) are composed of an electron
in the bottom layer glued to Laughlin-like quasi-holes in the top layer by strong interlayer
interactions. B is the magnetic field, `z the layer distance.

of a full bulk gap.
In this work, we derive and analyse the full low-energy theory of semi-quantized quan-

tum Hall states using the formalism of coupled-wire constructions [57]. Our microscopic
derivation of the topological field theory governing these states goes beyond the com-
posite fermion picture of Ref. [54], but agrees with it where we overlap. Focussing on
composite fermion filling factor one for simplicity, we find that semi-quantized quantum
Hall states are composed of a gapped Laughlin-like sector coupled to fractionally charged,
gapless quasiparticles via an emergent Chern-Simons gauge field, see Fig. 1. Our mi-
croscopic construction allows us to translate observables between the languages of the
effective low-energy field theory and the original electronic operators, which we use to
analyse the intriguing properties of semi-quantized quantum Hall states. Transport ex-
hibits perfect interlayer drag, and in general exhibits non-Fermi liquid behaviour and a
violated Wiedemann-Franz law. While being globally gapless, semi-quantized quantum
Hall states show a gapped electronic spectrum. Finally, fully gapped states deriving from
semi-quantized quantum Hall states inherit their topologically non-trivial character. As a
result, even a simple charge-density wave gapped daughter state hosts anyonic excitations.

The remainder of the paper is organized as follows. Sec. 2 provides a continuum version
of the flux attachment scheme we use to describe semi-quantized quantum Hall states. This
section serves to provide the reader with an intuition about the more exact mappings and
transformations we later on perform in a coupled-wire language. In Sec. 3, we introduce
a coupled-wire model for semi-quantized quantum Hall states, and transform the upper
layer to a composite boson picture. This calculation closely mirrors the discussion of
Refs. [58, 59] for single-layer systems. In Sec. 4, we develop the coupled-wire variant of
inter-layer flux attachment for our system. Sec. 5 implements this transformation in the
action, and derives the low-energy theory of semi-quantized quantum Hall states as the
strong-coupling phase of sine-Gordon terms. This section is the technical backbone of
our work. In Sec. 6, we study the properties of the gapless sector and show that the
gapless quasiparticles can be understood as composites of electrons in the bottom layer
and Laughlin quasi-holes in the top layer. In Sec. 7, we show that the action describing
the gapless sector can be “refermionized” in a Luttinger liquid sense, and discuss the
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properties of this action, identical to the one obtained in Sec. 2 by a different approach.
Sec. 8 discusses the electromagnetic response of semi-quantized quantum Hall states. Sec. 9
details new experimental fingerprints of semi-quantized quantum Hall states, including a
gapped electronic spectrum, non-Fermi liquid physics, and fully gapped daughter states
with anyonic quasiparticles. We finally conclude in Sec. 10.

2 Continuum theory

We begin with a heuristic continuum calculation outlining the flux attachment scheme that
we more formally develop in the subsequent sections. This scheme is an extension of the
composite fermion picture proposed in the study reporting the experimental observation of
semi-quantized quantum Hall states [54], in which both layers were viewed in a composite
fermion picture by attaching �K�� � 1� intra-layer fluxes to each electron in the top layer,
and K�� interlayer fluxes to all electrons, with the flux quantum being Φ0 � 2π©��e�, K��
being an odd integer, and K�� being any integer. Note that we call particles “bosons” or
“fermions” with regard to their braiding statistics amongst themselves. As discussed in
Ref. [54], the composite fermions in the top layer have the effective filing factors

ν�,eff �
ν�

1 � �K�� � 1� ν� � q�
q�
K�� ν�

, (1)

which for ν�,eff � 1 and q� � q� � e agrees with the filling factor constraint that we find in
our coupled wire approach, see Eq. (18) below. More generally, a semi-quantized quantum
Hall state corresponds to an integer quantum Hall state of the composite fermions in one
of the layers (the top layer in our model). The experimentally observed semi-quantized
quantum Hall states for example live at filing factor ν�,eff � 2. As argued in Ref. [54],
the Hall response of the composite fermions in the top layer is quantized if only the top
layer is driven, reflecting the fact that the composite fermions in that layer form a gapped
quantum Hall state. The constraint that the bottom layer does not carry a current leads
to a quantized Hall drag resistance [54].

We now go beyond these arguments put forward in Ref. [54], and heuristically de-
rive the full low-energy theory in a continuum flux attachment approach. It turns out
that a composite boson picture is more appropriate for that purpose than a composite
fermion picture. A quantum Hall state corresponds to a situation in which the effective
magnetic field seen by the composite bosons is zero [60]. In that case, the system may
form a superfluid coupled to the external electromagnetic field and a statistical gauge
field. The Higgs mechanism then “eats up” the gapless Goldstone mode and leads to
an incompressible state (here, the sector described by the composite bosons will become
incompressible) [61].

Our starting point are two isotropic and homogenous layers containing spin-polarized
electrons. While the electrons are considered to interact strongly between each other (both
within each layer, and between the layers), no tunnelling is allowed between the layers.
In an external magnetic field in z-direction, the second-quantized Hamiltonian modelling
this system reads [62]

H � =
σ��,�

E d
2
xψ

�
σ�x� ���i∂i � qσAi�2

2m
� qσA0 � µ�ψσ�x�

�

1

2
E d

2
x δρ̂��x�V �x � y�δρ̂��y� � E d

2
x δρ̂��x�yV �x � y�δρ̂��y�, (2)
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where the index � ��� labels electrons in top (bottom) layer, A is the electromagnetic
potential, µ is the chemical potential, qσ is charge of the electrons in layer σ, ψσ is an
electron annihilation operators that layer, the repulsive intra (inter) layer interaction is V
(yV ), and δρ̂σ � ρ̂σ�ρσ,0 is the electronic density in layer σ measured relative to a reference
density ρσ,0. The index i runs over the spatial coordinates i � 1, 2, and all vector fields
are written in a covariant form using the summation notation.

At first, we apply a flux attachment transformation that maps the top layer electrons
to composite hardcore bosons by attaching an odd number K�� of intra-layer fluxes in the
top layer, and an integer number K�� of interlayer fluxes to both layers. The transformed
Hamiltonian reads

H � E d
2
x φ̂

��x� ���i∂i � q�Ai � â�i �ρ̂�, ρ̂���2

2m
� q�A0 � µ� φ̂�x��

� E d
2
x ψ̂

��x� ���i∂i � q�Ai � â�i �ρ̂�, ρ̂���2

2m
� q�A0 � µ� ψ̂�x� �Hint, (3)

where φ̂ denotes the composite boson annihilation operator in the top layer, while ψ̂ is the
composite fermion annihilation operator in the bottom layer. The functionals â

σ
i �ρ̂�, ρ̂��

satisfy

ε
ij
∂ia

�

j �ρ̂�, ρ̂�� � �2πK��ρ̂� � 2πK��ρ̂�, (4a)

ε
ij
∂ia

�

j �ρ̂�, ρ̂�� � �2πK��ρ̂�. (4b)

We then go to a functional integral picture, and promote â
σ
i to gauge fields by introducing

Lagrangian multiplier fields a
σ
0 enforcing the constraints in Eqs. (4). The gauge-invariant

extension of the resulting theory reads

S � SCB � SCF � SCS � Shc � Sint, (5a)

SCB � E d
�2�1�

x φ̄�i∂0 � q�A0 � a
�

0 �
��i∂i � q�Ai � a�i �2

2m
� µ�φ, (5b)

SCF � E d
�2�1�

x ψ̄ �i∂0 � q�A0 � a
�

0 �
��i∂i � q�Ai � a�i �2

2m
� µ�ψ, (5c)

SCS � �
1

4πK��
E d

�2�1�
xε
µνλ

a
�

µ∂νa
�

λ �
K��

4πK2
��

E d
�2�1�

xε
µνλ

a
�

µ∂νa
�

λ (5d)

�

1

4πK��
E d

�2�1�
xε
µνλ

a
�

µ∂νa
�

λ, (5e)

Shc � �E d
�2�1�

x �λ1 �φ̄φ�2
� λ2 ψ̄ψ φ̄φ� , (5f)

where Shc describes the bosonic hard-core interaction, and Sint contains the interactions
V and yV . Note that for clarity we have dropped the gauge fixing term, we used Landau
gauge in our calculations.

Next, we perform an exact transformation for the composite bosons following Ref. [63],

φ�x� � Õ
ρ��x�eiϕ�x�φv�x� and φ̄�x� � Õ

ρ��x�e�iϕ�x�φ�
v�x�, (6)

where the smooth part of the phase is denoted by ϕ, while φv�x� will describe vortex
configurations of the phase (with φ

�
v�x�φv�x� � 1). This transformation yields an efficient

description of the low-energy physics if the amplitude
Ó
ρ� and the phases are physically

relevant quantities, i.e. when the composite bosons in the top layer form a Bose condensate.
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In the usual treatment of quantum Hall states, one can infer the filling factors at which
such a Bose condensate is stable from a mean-field analysis. In our case, this analysis is
complicated by the fact that the composite bosons are still coupled to gapless fermionic
degrees of freedom in the bottom layer. Motivated by the experimental observation that
semi-quantized quantum Hall state feature an incompressible sub-sector, however, we from
now on assume that we are in a situation where the composite bosons condense, and
substitute Eq. (6) into Eq. (5). In this approximation, we heuristically assume that the
vortices are point like. Neglecting spatial derivatives of ρ� based on the assumption that
the composite bosons are condensed, the bosonic sector of the theory is described by an
action D d2�1

x �Lφ � Lφ,int� with

Lφ � Lφ,int � ρ���∂0ϕ � iφ
�
v∂0φv � q�A0 � a

�

0� � ρ� �∂iϕ � iφ�
v∂iφv � q�Ai � a

�

i �2

2m

�

1

2
δρ�V δρ� � δρ�yV δρ� � µρ� � λ1ρ

2
� � λ2ρ

�
ρ
�
. (7)

We then perform the Hubbard-Stratonovich transformation [63]

�ρ�
�∂iϕ � iφ�

v∂iφv � q�Ai � a
�

i �2

2m
� �

m

2ρ0
�

J
i
Ji � J

i�∂iϕ � iφ�
v∂iφv � q�Ai � a

�

i � (8)

where Ji is a bosonic Hubbard-Stratonovich field. Integrating out the field ϕ shows that the
Hubbard-Stratonovich field satisfies the continuity equation ∂µJ

µ
� 0, where we defined

J
0
� ρ� . We can satisfy this constraint by introducing yet another gauge field α that

relates to J as J
µ
� ε

µνλ
∂ναλ©2π. We plug this definition into the action, and neglect

terms that contain more than one derivative of α. This yields

Lφ � Lφ,int � �αµj
µ
qp �

1

2π
ε
µνλ

αµ∂ν��q�Aλ � α�λ� � δρ�yV δρ� � µρ� � λ2ρ
�
ρ
�
, (9)

where we defined the 3-current j
µ
qp �

1
2πi
ε
µνλ

∂ν�φ�
v∂λφv�, which physically corresponds to

the current of quasiparticles in the gapped sector [63]. The emergent statistical gauge field

a
�

µ enters the total action only linearly. When we integrate it out, we obtain the constraint

ε
µνλ

∂ναλ � �
1

K��
ε
µνλ

∂νa
�

µ. (10)

Next, we also integrate over the field a
�

µ. By virtue of the constraint in Eq. (10), this leads
to S � D dxL with

L � �αµj
µ
qp �

q�
2π
ε
µνλ

Aµ∂ναλ �
K��
4π

ε
µνλ

αµ∂ναλ

� ψ̄ �i∂0 � q�A0 �K�� α0 �
��i∂i � q�Ai �K�� αi�2

2m
� µ�ψ

� Lints, (11)

where Lints comprises all remaining interaction terms. Upon shifting the emergent gauge
field as βµ � αµ �Aµ �q�©K���, we obtain the action

L � � βµj
µ
qp �

K��
4π

ε
µνλ

βµ∂νβλ �
q�
K��

j
µ
qpAµ �

q
2
�

4πK��
ε
µνλ

Aµ∂νAλ

� ψ̄ �i∂0 � q
�

�A0 �K�� β0 �
��i∂i � q��Ai �K�� βi�2

2m
� µ�ψ � Lints. (12)
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where q
�

� � q� � q�K��©K��. Eq. (12) is the full low-energy theory describing semi-
quantized quantum Hall states: a topological field theory of a gapless sector containing
fractionally charged quasiparticles coupled to an emergent Chern-Simons gauge field. The
coupling to the emergent gauge field implies that the fractionally charged quasiparticles
form an anyonic liquid. In the following sections, we re-derive Eq. (12) more formally
using a coupled-wire construction, before then analyzing its properties.

3 Microscopic coupled-wire model and composite boson pic-
ture in the top layer

Our coupled-wire model starts by deforming the bilayer of two-dimensional electrons mea-
sured in the experiment [54] into a bilayer of quantum wires, see Fig. 2. This transforma-
tion leaves topological properties of Hall effects invariant [57]. Neighbouring wires within
a layer, spaced by `y, are weakly tunnel-coupled, but there is no tunnelling between the
layers. Each wire hosts a single electronic band. Using Landau gauge, the dispersion of
the j-th wire in layer σ ��, � is

Ejσ�kx� � �kx � bj�2©2m. (13)

with b � eB`y. Here, m is the effective mass, e $ 0 denotes the electron charge, and B % 0

is the magnetic field
1
. At low energies, only the right-moving and left-moving modes close

j � j � 1 �

j � j � 1 �

`y

`z

x

y

z

B

j � 1 �

j � 1 �

Figure 2: The coupled-wire bilayer model. Each wire is labelled by a wire number j and
a layer index σ ��, �, the distance between adjacent wires within a layer is `y.

to the Fermi level are important. The electronic operators can then be decomposed as

ψjσ � e
ikF,RjσψRjσ � e

ikF,LjσψLjσ, (14)

where ψrjσ annihilates a right (r � R) or left (r � L) mover. Considering identical filling

of all wires within a layer, the Fermi momenta can be written as kF,rjσ � b j � r̂ k
0
Fσ with

R̂ � �1 and L̂ � �1. The electronic density per layer is ρσ � k
0
Fσ©π`y, which translates to

filling factors νσ � 2k
0
Fσ©b. The non-interacting low-energy physics can thus be modelled

by the Hamiltonian

H0 � �ivF E dx=
σ,j

�ψ�

Rjσ∂xψRjσ � ψ
�

Ljσ∂xψLjσ�, (15)

1
We use units such that �h � 1 and c � 1.
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where vF denotes the Fermi velocity. Following Ref. [64], we bosonize the chiral modes as
ψrjσ � �Urjσ©Ó2πα� expr�iΦrjσx. Here, α

�1
is a large momentum cut-off, while Urjσ is

a Klein factor that can safely be ignored in the remainder [65, 66]. The bosonized fields
obey �Φrjσ�x�,Φr¬j ¬σ�x¬�� � δrr¬δjj ¬δσσ¬ iπr̂ sgn�x � x¬�, (16)

and relate to density fluctuations as ρrjσ � �ρrjσ� � �
r̂

2π
∂xΦrjσ. The chiral fields can

alternatively be represented as Φrjσ � r̂φjσ � θjσ. After bosonization, the non-interacting
Hamiltonian becomes

H0 �
vF
2π
E dx=

j,σ

��∂xφjσ�2
� �∂xθjσ�2�. (17)

Electron-electron interaction modify this Hamiltonian in two ways: scatterings that do
not transfer particles between chiral channels (forward scatterings) change vF to effective
velocities. Other interactions (backscatterings) open gaps.

As was suggested experimentally, semi-quantized quantum Hall states form by a par-
tial gap closing in Halperin bilayer states [54]. A Halperin bilayer state forms if composite
fermions in both the top and the bottom layer form fully gapped quantum Hall states. In
the language of coupled-wire constructions [56], these bilayer composite fermion quantum
Hall states correspond to the strong-coupling phase of two families of correlated inter-wire
backscatterings (one per layer). These backscatterings can only be relevant in the renor-
malization group (RG) sense if they conserve momentum. Each family of backscatterings
thus imposes one condition on the fillings, which in turn completely determines the filling
factors �ν0

� , ν
0
�� of a given Halperin bilayer state. If the filling factors are detuned from�ν0

� , ν
0
��, the system can enter a semi-quantized quantum Hall states for combinations of

filling factors at which one, but not both families of backscatterings preserve momentum.
In the remainder, we consider the correlated inter-wire backscatterings in the top layer

to preserve momentum. As illustrated in Fig. 3, this process corresponds to an electron
tunnelling between wires j and j�1 in the top layer, while simultaneous backscatterings in
wires j and j�1 of both layers ensure momentum conservation. More precisely, momentum
is conserved if [56]

K�� ν� �K�� ν� � 1, (18)

where K�� � 1 � 2m� and K�� � n1 � n2. In a bosonized language, these backscatterings
correspond to the sine-Gordon Hamiltonian

Hg� �=
j

E dx gj�1©2 � cos� xΦRj� � xΦLj�1�	, (19)

where we have introduced the fields

xΦRjσ � �1 �mσ�ΦRjσ �mσΦLjσ � n1�ΦRjσ̄ � ΦLjσ̄�, (20a)

xΦLkσ � �1 �mσ�ΦLjσ �mσΦRjσ � n2�ΦRjσ̄ � ΦLjσ̄�, (20b)

with �̄ �� and vice versa. The values of m�, n1 and n2 are set by the backscatterings,
whereas m� is a free parameter that drops out at the end of the calculation. These fields
obey � xΦrjσ�x�, xΦr¬j ¬σ¬�x¬�� � δrr¬δjj ¬Kσσ¬ iπr̂ sgn�x � x¬�, (21)
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j � 1 �

j �

j � 1 �

j �

m�

m�

n21

n1

gj�1©2,�

Figure 3: Correlated inter-wire backscattering stabilizing a semi-quantized quantum Hall
state. Arrows indicate tunnelling between and backscattering within wires. The numbers
of scattered electrons is indicated besides each arrow.

where the K-matrix reads

K � �K�� K��
K�� K��


 � �1 � 2m� n1 � n2

n1 � n2 1 � 2m�


. (22)

Note that the K-matrix satisfies K
T
� K.

We now switch to a more convenient covariant notation
2
, and keep track of small

deviations A of the electromagnetic potentials A from A1 � �eBy and A0 � A2 � 0 in the
gauge A1 � 0. Writing the unit of charge in layer σ as qσ, with physical values q� � q� � e,
yields the action

S �=
j,σ

E d
1�1

x� 1
π �∂0θjσ � qσA0,j��∂xφjσ� � uσ

2π
�∂xφjσ�2

�

vσ
2π

�∂xθjσ�2

� gj�1©2� cos � xΦRjσ � xΦLj�1σ � q�`yA2,j�1©2�� (23)

where `yA2,j�1©2 � Dj�j�1 dy
¬A2, while uσ and vσ denote effective Luttinger liquid veloc-

ities (both are of the order of vF ).

3.1 Composite boson picture for the �-degrees of freedom

To derive the low-energy theory in the strong-coupling phase of Hg�, we now perform a
sequence of exact transformations. We begin by transforming the top layer to a composite
boson picture. To that end, we first rewrite the action in a “diagonal basis” by defining
operators that commute between the gapped and gapless sectors. The “diagonal basis” is
given by the fields xΦrj��x� and Θrj��x� defined as

Θrj� � K
�1
��
xΦrj� �K

�1
��
xΦrj� . (24)

By construction, these fields obey

�Θrj��x�,Θr¬k¬��x¬�� � δrr¬δkk¬ K�1
�� iπr̂ sgn�x � x¬� and � xΦrj��x�,Θr¬j ¬��x¬�� � 0. (25)

2
We choose the metric such that time is t � x

0
� x0, while the spatial coordinates are x � x

1
� �x1,

and y � x
2
� �x2.
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Operators containing only the fields Θrj� do thus not affect the �-sector. Next, we perform
a second transformation of the fields by defining

rφj��x� � xΦRj��x� � xΦLj��x�
2

, (26a)

rθj��x� � � xΦRj��x� � xΦLj��x�
2

, (26b)

rφj��x� � ΘRj��x� �ΘLj��x�
2

, (26c)

rθj��x� � �ΘRj��x� �ΘLj��x�
2

. (26d)

Upon choosing the forward scattering terms in Sfs appropriately, the action then takes the
form

S � =
σ��,�

S2,σ � Sfs � SSG � rS2,σ � SSG, (27a)

rS2,� � E d
1�1

x=
j

� 1

πK��
�∂t rθj� � q�A0,j��∂x rφj�� � ru�

2π
�∂x rφj��2

�

rv�
2π

�∂x rθj��2�, (27b)

SSG � E d
1�1

x=
j

��g�,j�1©2� cos� xΦRj� � xΦLj�1� � q�`yAy,j�1©2	. (27c)

Next, we define composite boson fields in the �-layer. Following Refs. [58,59], this is done
by introducing

φ
CB
j �x� � 1

K��

xΦRj��x� � xΦLj��x�
2

�
1

K��
rφj��x�, (28a)

θ
CB
j �x� � � xΦRj��x� � xΦLj��x�

2
�=
j ¬jj

sgn�j ¬ � j� xΦRj ¬��x� � xΦLj ¬��x�
2

, (28b)

� rθj� �K��=
j ¬jj

sgn�j ¬ � j�φCB
j ¬ . (28c)

The action can now be written as

S � S2,CB � rS2,� � SSG, (29a)

S2,CB � E d
1�1

x=
j

� 1
π �∂tθCB

k � q�A0,j��∂xφCB
k �

�

uCB

2π
�∂xφCB

k �2
�

vCB

2π
�∂xθCB

k � ak�2�, (29b)

rS2,� � E d
1�1

x=
j

� 1

πK�1
��

�∂t rθj� �K�1
�� q

�

�A0,j��∂x rφj��
�

ru�
2π

�∂x rφj��2
�

rv�
2π

�∂x rθj��2�, (29c)

SSG � E d
1�1

x=
j

��g�,j�1©2� cos�θCB
k�1 � θ

CB
k � q�`yAy,j�1©2	. (29d)

where we have introduced the abbreviation

aj � =
j ¬jj

sgn�j ¬ � j� ∂x rφj ¬��x� � K��=
j ¬jj

sgn�j ¬ � j� ∂xφCB
j ¬ �x� , (30)

as well as uCB � K
2
�� ru�, vCB � rv�.

10
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3.2 Vortex duality transformation

Our next step is to perform the vortex duality transformation in the �-sector by defining
[58,59]

φ
VCB
j�1©2�x� � θ

CB
j�1�x� � θCB

j �x�
2

, (31)

θ
VCB
j�1©2�x� �=

j ¬

sgn�j ¬ � j � 1©2�φCB
j ¬ �x�. (32)

We furthermore introduce

xαj � � 1

K��
=
j ¬

sgn�j ¬ � j � 1©2� ∂xφVCB
j ¬�1©2, (33)

which implies xαj � 1
K��

∂xθ
CB
j �x� and xαj�1�x� � xαj�x� � 2

K��

∂xφ
VCB
j�1©2�x�. After a bit of

algebra, and introducing

S xαj�1©2 �
xαj�1 � xαj

2
and ∆θ

VCB
j � θ

VCB
j�1©2 � θ

VCB
j�1©2, (34)

the vortex duality implies the replacement S2,CB � S2,VCB with

S2,VCB �E d
1�1

x=
j

� 1
π �∂tθVCB

j�1©2� �∂xφVCB
j�1©2� � 1

πq�
∆A0,j�1©2

2
�∂xθVCB

j�1©2�
�

vCB

2π
�∂xφVCB

j�1©2�x��2
�

vCB

2π
�∂xφVCB

j�1©2�x��2
�

uCB �K
2
��vCB

8π
�∂x∆θ

VCB
j �2

�

vCBK
2
��

2π
�∂xθVCB

j�1©2 � S xαj�1©2�2 �. (35)

4 Inter-layer flux attachment and local form of quasiparticle
hopping

So far, the bottom layer is still described by the fields Θrj� introduced in Eq. (24). Because
these fields commute with the fields in the �-sector, one might be tempted to define
quasiparticle operators in the gapless �-sector as

χrj�
?
� expriΘrj�x. (36)

Hopping between neighbouring wires would then be represented by the operator

Tr,r¬,j,� � χ
�

rj�1� χr¬j�, (37)

which has a very non-local form. By that, we mean that they cannot be represented by
a product of a small number of original electronic operators within a restricted region of
space, since for example

ΘRj� �ΘLj�1� � K
�1
�� � xΦRj� � xΦLj�1�� �K�1

�� � xΦRj� � xΦLj�1��
11
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contains the non-integer numbers K
�1
σσ¬ . This is unsatisfactory for two reasons: first, the

free parameter m� entering K
�1
σσ¬ seems to be relevant to this discussion. Second, we would

like hopping of quasiparticles to be represented by a local operator in the above sense in
order for it to be generated at a reasonable order in perturbation theory in the electronic
tunnelling in the bottom layer and electron-electron interactions. In addition, we are still
missing the interlayer flux attachment. As we show now, the latter resolves the former
issues. We find that the correct transformation that attaches interlayer fluxes to both
layers, preserves the fact that operators in the two sectors commute with one another, and
provides a local expression for quasiparticle hopping is given by

xφVCB
j�1©2�x��φVCB

j�1©2�x�, (38a)

xθVCB
j�1©2�x� � θVCB

j�1©2�x� � K��
K��

=
j ¬

sgn�j ¬ � j � 1©2� rφj ¬��x�
� θ

VCB
j�1©2�x� � K

�1
��

K�1
��

=
j ¬

sgn�j ¬ � j � 1©2� rφj ¬��x�, (38b)

xφj��x�� rφj��x�, (38c)

xθj��x�� 1

K�1
��

�rθj��x� �K�1
�� =

j ¬

sgn�j ¬ � j � 1©2�φVCB
j ¬�1©2�x�

�K
�1
��K�� =

j ¬jj

sgn�j ¬ � j� rφj ¬��x��, (38d)

where we used K
�1
�� ©K�1

�� � �K��©K��. These fields obey the canonical commutators

� xφVCB
j�1©2�x�, xθVCB

j ¬�1©2�x¬�� � δjj ¬ iπ2 sgn�x¬ � x� (39a)

� xφj��x�, xθj ¬��x¬�� � δjj ¬ iπ2 sgn�x¬ � x�, (39b)

while all other commutators vanish.

4.1 Backscattering within wires, and tunnelling between wires

We now illustrate that the transformations in Eq. (38) indeed lead to local expressions for
quasiparticle tunnelling. We define quasiparticles in the gapless �-sector as being created
by exponentials of the chiral fields yΘ¬

rj� � r xφj� � xθj�. While the creation of an individual
quasiparticle is highly non-local in terms of the original fermions, all string factors cancel
for backscattering and hopping between neighbouring wires, and the remaining terms can
be written as integer combination of the original electronic fields.

4.1.1 Backscattering of quasiparticles within a wire

Backscattering of quasiparticles within wire j is implemented by exp tyΘ¬

Rj� � yΘ¬

Lj�z. To
see that this operator takes a local form in the above sense, we use Eqs. (38d), (38c),
(26c), (24) and 20 to obtain

yΘ¬

Rj� � yΘ¬

Lj� � ΦRj� � ΦLj�. (40)

Backscattering of quasiparticles in the gapless �-sector is thus the same as backscattering
of the original electrons.

12



SciPost Physics Submission

4.1.2 Tunnelling of quasiparticles between neighbouring wires

Tunnelling of quasiparticles between wires j and j � 1 is in general implemented by
exp tyΘ¬

rj�1� � yΘ¬

r¬j�z. As for the backscattering, we can rewrite this operator using the defi-

nitions of the various fields. We also recall that K
�1
K � 1 implies K

�1
�� K���K

�1
�� K�� � 1.

With some algebra, we obtain

yΘ¬

rj�1� � yΘ¬

r¬j� � r̂ xφk�1� � xθk�1� � r̂
¬ xφj� � xθj�

� Φrj�1� � Φr¬j� � n2 �ΦRj� � ΦLj�� � n1�ΦRj�1� � ΦLj�1��. (41)

We thus find that the quasiparticles defined by exponentials of the new chiral fields yΘ¬

rj�

are tunnelled by local operators involving the hopping of an electron in the �-layer and the
backscattering of electrons in the �-layer. Since it is known that tunnelling of Laughlin-like
quasiparticles in the top layer is implemented by backscatterings of the original electrons
there [66], this fits a picture of the gapless quasiparticles as composites of electrons in the
bottom layer and Laughlin-like quasiparticles in the top layer.

5 Low-energy effective theory

To find the low-energy action of semi-quantized quantum Hall states, we plug to the fields
introduced in Eqs. (38a) through (38d) into the action. In doing so, it is convenient to
introduce a short-hand notation for the string factor appearing in the definition of θ̃j�.
We thus define

αj�x� � � 1

K��
=
j ¬

sgn�j ¬ � j � 1©2� ∂xφVCB
j ¬�1©2�x� � K��

K��
=
j ¬jj

sgn�j ¬ � j� ∂x rφj ¬��x�. (42)

Note that αj�x� commutes with itself at different positions. Defining ∆ xφj�1©2��x� �

xφj�1��x� � xφj��x� and ∆xθVCB
j �x� � ∆xθVCB

j�1©2�x� � ∆xθVCB
j�1©2�x�, we find that the action

transforms as

S � xS ¬

2,VCB � xS ¬

2,� � xSSG, (43)

xS ¬

2,� � E d
1�1

x=
j

� 1
π �∂t xθj� � q��A0,j��∂x xφj�� � ru�

2π
�∂x xφj��2

�

xv�
2π

�∂x xθj��x� �K�� αj�2�, (44)

xSSG � E d
1�1

x=
j

��g�,j�1©2� cos�2 xφVCB
j�1©2�x� � q�`yAy,j�1©2	, (45)

where we introduced xv� � rv� �K�1
�� �2

, and have

13
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xS ¬

2,VCB � E d
1�1

x=
j

� 1
π �∂t xθVCB

j�1©2� �∂x xφVCB
j�1©2� � 1

πq�
∆A0,j�1©2

2
�∂x xθVCB

j�1©2�
�

1
πq�A0,j

K��
K��

∂x xφj� � uCB �K
2
��vCB

8π
�∂x∆xθVCB

j �x� � 2
K��
K��

∂x xφj��x�
2

�

vCBK
2
��

2π

���∂x xθVCB
j�1©2�x� � Sαj�1©2�x� � K��

K��
∂x

∆ xφ�j�1©2�x�
2

��
2

�

vCB

2π
�∂x xφVCB

j�1©2�x��2�. (46)

Due to the definition of αj , the action is now highly non-local. We can remedy this fact by
the introduction of an emergent gauge field αj,µ, for which we initially choose the gauge

αj,2 � 0, (47)

and enforce that

αj,1
!
� �

1

K��
=
j ¬

sgn�j ¬ � j � 1©2� ∂x xφVCB
j ¬�1©2 �

K��
K��

=
j ¬jj

sgn�j ¬ � j� ∂x xφj ¬��x�. (48)

We enforce the constraint via a Lagrange multiplier that we absorb into xS ¬

2,VCB. After
some algebra, the action can be brought to the form

S � xS2,VCB � xS2,� � xSSG, (49a)

xS2,� � E d
1�1

x=
j

� 1
π �∂t xθj� � q�A0,j �K�� Sαj,0��∂x xφj��

�

ru�
2π

�∂x xφj��2
�

xv�
2π

�∂x xθj��x� �K�� αj,1�2�, (49b)

xSSG � E d
1�1

x=
j

��g�,j�1©2� cos�2 xφVCB
j�1©2�x� � q�`yAy,j�1©2	, (49c)

where

xS2,VCB � E d
1�1

x=
j

� 1
π �∂t xθVCB

j�1©2 � αj�1©2,0� �∂x xφVCB
j�1©2�

�

uCB �K
2
��vCB

8π
�∂x∆xθVCB

j � 2
K��
K��

∂x xφj�
2

�

vCBK
2
��

2π

���∂x xθVCB
j�1©2 � Sαj�1©2,1 �

K��
K��

∂x
∆ xφ�j�1©2

2
�

q�

2vCBK
2
��

∆A0,j�1©2

��
2

�

vCB

2π
�∂x xφVCB

j�1©2�2
�

1

2π
q�∆A0,j�1©2 Sαj�1©2,1 �

q�
4π

K��
K��

�∆2A0,j� ∂x xφj�
�

q
2
�

8πvCBK
2
��

�∆
2A0,j� A0,j �

1

2π
K�� �αj�1©2,0 � αj�1©2,0�αj,1�. (50a)

Here, we used that <j ∆Mj�1©2 ∆Nj�1©2 � �<j�∆2Mj�Nj denotes a a discrete version

of a second derivative along y (where we used ∆
2Mj � ∆Mj�1©2 �∆Mj�1©2 � Mj�1 �

Mj�1).
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5.1 Strong coupling phase of the sine-Gordon term

We are now interested in the strong coupling phase of the sine-Gordon term, for which
the fields xφVCB

j�1©2 are pinned in a mean field approximation. We begin by integrating out

the fields xθVCB
j�1©2 that are canonically conjugate to the pinned fields. To that end, we split

the action xS2,VCB into parts containing xθVCB
j�1©2, and the rest as

xS2,VCB � xS�1�
2,VCB �

xS�2�
2,VCB (51)

with

xS�1�
2,VCB � E d

1�1
x=

j

� 1
π �∂t xφVCB

j�1©2 �
uCB �K

2
��vCB

2

K��
K��

∂x∆ xφ�j�1©2� �∂x xθVCB
j�1©2�

�

uCB �K
2
��vCB

8π
�∂x∆xθVCB

j �2
�

uCB �K
2
��vCB

2π

K
2
��

K2
��

�∂x xφj��2

�

vCBK
2
��

2π
�∂x xθVCB

j�1©2 � Sαj�1©2,1 �
K��
2K��

∂x∆ xφ�j�1©2 �
q�

2vCBK
2
��

∆A0,j�1©2�
2�.
(52)

and

xS�2�
2,VCB � E d

1�1
x=

j

� 1
π αj�1©2,0 �∂x xφVCB

j�1©2�
�

vCB

2π
�∂x xφVCB

j�1©2�2
�

1

2π
q�∆A0,j�1©2 Sαj�1©2,1 �

q�
4π

K��
K��

�∆2A0,j� ∂x xφj�
�

q
2
�

8πvCBK
2
��

�∆
2A0,j� A0,j �

1

2π
K�� �αj�1©2,0 � αj�1©2,0�αj,1�. (53)

Next, we perform a discrete Fourier transformation along y. Using the definition Q
2
�

2 �1 � cos�qa��, the action xS�1�
2,VCB can be rewritten as

xS�1�
2,VCB � E d

1�1
x=

q

� 1

2π
�∂t xφVCB�q� � uCB �K

2
��vCB

2

K��
K��

∂x∆ xφ��q�� �∂x xθVCB��q��
�

1

2π
�∂t xφVCB��q� � uCB �K

2
��vCB

2

K��
K��

∂x∆ xφ���q�� �∂x xθVCB�q��
�

uCB �K
2
��vCB

8π
Q

2 �∂x xθVCB�q�� �∂x xθVCB��q��
�

uCB �K
2
��vCB

2π

K
2
��

K2
��

�∂x xφ��q�� �∂x xφ���q��
�

vCBK
2
��

2π
�∂x xθVCB�q� � Sα1�q� � K��

2K��
∂x∆ xφ��q� � q�

2vCBK
2
��

∆A0�q��
� �∂x xθVCB��q� � Sα1��q� � K��

2K��
∂x∆ xφ���q� � q�

2vCBK
2
��

∆A0��q��� (54)
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We are now in the position to integrate out the field xθVCB
. Here, the first approximation of

our theory comes into play: we keep terms that at most contain two derivatives. We thus
throw out all terms that contain, in total, three or more derivatives, including discrete
derivatives in the y-direction. Next, we further simplify things in the strong-coupling phase
of the sine-Gordon terms: there, we only keep terms involving the pinned field xφVCB

and
at most a first order of derivatives. As for the emergent gauge field, we focus on the
leading terms. Those are of the form “current � gauge field”. Since the current is a first
derivative of the fields xφVCB

and xφ�, this means that we only keep terms of the emergent
gauge field that are at most of first order in derivatives. We then Fourier transform back

to real space, and perform the same approximations for xS�2�
2,VCB. In addition, we drop a

constant term �∆
2A0,j� A0,j that does not couple to the fermionic fields anymore. In the

end, we can rewrite the action as

S � xS ¬

2,VCB � xS ¬

2,� � xSSG, (55a)

xS ¬

2,� � E d
1�1

x=
j

� 1
π �∂t xθj� � q�A0,j �K�� Sαj,0��∂x xφj��

�

ru�
2π

�∂x xφj��2
�

xv�
2π

�∂x xθj� �K�� αj,1�2
�

uCB �K
2
��vCB

2π

K
2
��

K2
��

�∂x xφ�j�2�, (55b)

xS ¬

SG � E d
1�1

x=
j

��g�,j�1©2� cos�2 xφVCB
j�1©2 � q�`yAy,j�1©2	, (55c)

xS ¬

2,VCB � E d
1�1

x=
j

�� 1
π �∂t xφVCB

j�1©2� Sαj�1©2,1 �
1
π αj�1©2,0 �∂x xφVCB

j�1©2�
�

1

2π
q�∆A0,j�1©2 Sαj�1©2,1 �

1

2π
K�� �αj�1©2,0 � αj�1©2,0�αj,1�. (55d)

In the strong-coupling phase of the sine-Gordon term, the field xφVCB
j�1©2�x� is pinned to

xφVCB
j�1©2�x� � q� `y

2
Ay,k�1©2. (56)

We thus perform the change of variables

xφVCB
j�1©2�x� � φ̄VCB

j�1©2�x� � q� `y
2

Ay,k�1©2 � φ̄
VCB
j�1©2�x� � q� `y

2
A2,k�1©2. (57)

In addition, we identify the quasiparticle density and quasiparticle current operators as

j
0
qp,j�1©2�x� � � 1

π`y
∂xφ̄

VCB
j�1©2 and j

1
qp,j�1©2�x� � 1

π`y
∂tφ̄

VCB
j�1©2. (58)
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This brings the action to the form

S � S̄2,VCB � S̄2,� � S̄SG, (59a)

S̄2,� � E d
1�1

x=
j

� 1
π �∂t xθj� � q�A0,j �K�� Sαj,0��∂x xφj��

�

ru�
2π

�∂x xφj��2
�

xv�
2π

�∂x xθj��x� �K�� αj,1�2
�

uCB �K
2
��vCB

2π

K
2
��

K2
��

�∂x xφ�j�2�, (59b)

S̄SG � E d
1�1

x=
j

��g�,j�1©2� cos�2 φ̄
VCB
j�1©2�x�	, (59c)

S̄2,VCB � E d
1�1

x=
j

��`yj1
qp,k�1©2 Sαj�1©2,1 �

q� `y
2π

Sαj�1©2,1 ∂tA2,k�1©2

�

q�a

2π
αj�1©2,0 ∂xA2,k�1©2 � `yj

0
qp,k�1©2 αj�1©2,0

�

1

2π
q� Sαj�1©2,1 ∆A0,j�1©2 �

1

2π
K�� αj,1 ∆αj,0� (59d)

We recognize that S̄2,VCB is a discretized version of

S̄cont.
2,VCB �E d

2�1
x��jµqp αµ �

q�
2π

ε
µνλ

αµ ∂νAλ �
1

4π
K�� ε

µνλ
αµ ∂ναλ� (60)

in the gauges A1 � 0 and α2 � 0. In total, we thus find that the gauge-invariant extension
of the low-energy action in the continuum limit along the y-direction reads

S � S̄2,� � S̄cont.
2,VCB � S̄SG, (61a)

S̄2,� � E d
1�1

x=
j

� 1
π �∂t xθj� � q�A0,j �K�� Sαj,0��∂x xφj��

�

ū�
2π

�∂x xφj��2
�

v̄�
2π

�∂x xθj��x� �K�� αj,1�2�, (61b)

S̄cont.
2,VCB � E d

2�1
x��jµqp αµ �

q�
2π

ε
µνλ

αµ ∂νAλ �
1

4π
K�� ε

µνλ
αµ ∂ναλ�, (61c)

S̄SG � E d
1�1

x=
j

��g�,j�1©2� cos�2 φ̄
VCB
j�1©2�x�	, (61d)

where

ū� � ru� � K
2
��

K2
��

�uCB �K
2
��vCB� and v̄� � xv�. (62)

6 The gapless sector: electrons glued to Laughlin quasi-
holes

In Eq. (61c), the charge of the gapless quasiparticles is somewhat obscured by the fact that
they couple both directly to the electromagnetic gauge field A with a charge q�, and to
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the emergent gauge field α, which in turn again couples to the electromagnetic gauge field.
The coupling between the emergent gauge field and the gapless quasiparticles therefore
mediates an additional channel by which the quasiparticles couples to the electromagnetic
field, which in turn modifies their electric. One way to determine the total electric charge
of the quasiparticles is thus to shift the gauge field as βµ � αµ �Aµ

q�
K��

. Plugging this

into the action, we obtain

S � S
2�1
� � E d

2�1
x j

µ �q�� Aµ �K�� βµ� � E d
2�1

x��jµqp βµ �
1

4π
K�� ε

µνλ
βµ ∂νβλ�

� E d
2�1

x�� q�
K��

j
µ
qp Aµ �

q
2
�

4π

1

K��
ε
µνλAµ ∂νAλ�, (63)

where q
�

� � q��
K��

K��

q� is the effective charge already introduced above. At the same time,

we see that quasiparticles in the gapped sector couple to the electromagnetic gauge field
with a charge q

�

� � q�©K��.
6.1 Charge operator

One of the benefits of our coupled-wire construction is that it provides us with microscopic
expressions for all quantities. We can for example find an alternative viewpoint for the
fractional effective charges q

�
by rewriting the charge density operator using the trans-

formed bosonized fields. In terms of the original electronic fields, the total charge density
is given by

ρ�x� � � 1

π`y
=
j,σ

qσ∂xφjσ�x� � � 1

2π`y
=
σ

qσ∂x�ΦRjσ�x� � ΦLjσ�x�

� �

1

π`y
=
j

� q�
K��

∂x� xΦRj��x� � xΦLj��x�
2



� �q� � K��

K��
q�
 ∂x�ΘRj��x� �ΘLj��x�

2


. (64)

Next, we use that ΘRj� �ΘLj� � yΘ¬

Rj� � yΘ¬

Lj� and shift the summation for the first term
to obtain

ρ�x� � � 1

2π`y
∂x

���
q�
K��

=
j

� xΦRj��x� � xΦLj�1��x�� � q�� =
j

�yΘ¬

Rj��x� � yΘ¬

Lj��x����
� �

1

2π`y
∂x

���
q�
K��

=
j

2 xφVCB
j�1©2�x� � q�� =

j

�yΘ¬

Rj��x� � yΘ¬

Lj��x���� . (65)

In the gapped sector, a quasiparticle is associated with a 2π-kink in one of the sine-Gordon
terms. Eq. (65) shows that such a kink carries a charge q

�

� � q�©K��. Furthermore, a

quasiparticle in the gapless sector is created by an operator � exp tyΘ¬

rj�z. Commuting
this operator with the charge density operator shows that such a quasiparticle carries a
charge q

�

� , in agreement with the above result.

6.2 Electron creation and annihilation operators

It is also interesting to re-express the electronic creation and annihilation operators in the
basis of the new fields. With some straightforward but tedious algebra, one finds
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Φrj� � r̂ φj� � θj� � r̂ xφ�j � xθ�j � n1 xθVCB
j�1©2 � n2 xθVCB

j�1©2 . (66)

Since an exponential of r̂ xφ�j � xθ�j creates a quasiparticle in the gapless sector, while an

exponential of xθVCB
j�1©2 creates a quasiparticle in the gapped sector, we find that creating an

electron is equivalent to creating a quasiparticle in the gapless sector and n1 � n2 � K��
quasiparticles in the gapped sector. Since an electron carries charge q�, and because
quasiparticles in the gapped sector have charge q�©K��, the quasiparticles in the gapless
sector must carry charge q

�

� � q� �K�� �
q�
K��

, in agreement with the earlier findings.

6.3 Sine-Gordon term as glue between electrons and fractional quasi-
particles

Our coupled-wire construction identifies the sine-Gordon term in Eq. (19) as the glue
between the electrons and Laughlin-like quasiparticles that compose the gapless quasipar-
ticles. Namely, the coupled-wire construction of Laughlin states in Ref. [65] shows that
the number density of Laughlin quasiparticles in a 1©K��-state is

ρ
1©K��

j�1©2 � �∂x � xΦn1�n2�0
Rj� � xΦn1�n2�0

Lj�1� � ©2π`y, (67)

where xΦn1�n2�0
rj� is defined by Eq. (20) with n1 � n2 � 0. Combined with the density of

electrons in the bottom layer, ρj� � <r ρrj�, we find that

�∂x
xΦRj� � xΦLj�1�

2π`y
� ρ

1©K��

j�1©2 � n1 ρj� � n2 ρj�1�. (68)

In its strong coupling phase, Hg� wants to pin xΦRjσ � xΦLj�1σ to a constant value. A
change of the bottom layer electron density ρj� � ρj� � 1 thus constitutes an excitation
out of the ground state of Hg� unless we adapt the Laughlin-like quasiparticle density in

the top layer as ρ
1©K��

j�1©2 � ρ
1©K��

j�1©2 � n1 and ρ
1©K��

j�1©2 � ρ
1©K��

j�1©2 � n2. Gapless excitations of
a semi-quantized quantum Hall state hence correspond to electrons in the bottom layer
glued to n1 � n2 � K�� Laughlin-like quasi-holes in the top layer.

7 Refermionization of the gapless sector and discussion of
the low-energy action

Since the fields xφj� and xθj� obey the canonical commutator for the bosonized field of
a fermionic theory, we can refermionize the gapless sector by introducing the composite

quasiparticle fields ψ
CQP
rj � expr�i�r̂ xφj�� xθj��x [67]. The universal topological low-energy

theory corresponds the continuum limit of our coupled-wire construction in y-direction,
in which differences of fields in adjacent wires are replaced by a y-derivative. Shifting the
gauge field by introducing βµ � αµ �Aµ

q�
K��

, we obtain the final form of the action as
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S � D d2�1
x �<r L

CQP
r � LCQP

int � LCS � LA� �<j D d1�1
xLg�,j�1©2 with

LCQP
r � ψ̄

CQP
r xEr ��i∂µ � q�� Aµ �K�� βµ� ψCQP

r (69a)

LCS � �j
µ
qp βµ �

1

4π
K�� ε

µνλ
βµ ∂νβλ, (69b)

LA � �
q�
K��

j
µ
qp Aµ �

q
2
�

4π

1

K��
ε
µνλAµ ∂νAλ. (69c)

This form of the action is equivalent to Eq. (12) obtained in a heuristic continuum the-

ory. The gapless �-sector is described by a non-universal Lagrangian <r L
CQP
r � LCQP

int

for the gapless composite quasiparticles ψ
CQP
r , in which the single-particle energy xEr and

the interactions described by LCQP
int depend on system-specific details. The gapless com-

posite quasiparticles are minimally coupled both to the electromagnetic potential with a
fractional charge

q
�

� � q� �
K��
K��

q�, (70)

and to the emergent gauge field β. The emergent gauge field is governed by a Chern-
Simons theory LCS. It physically derives from a Hall effect in the top layer, whose gapless
edge states carry the background Hall conductance encoded in LA. This Hall effect and
the charges of the gapped quasiparticles match a Laughlin state at a filling of 1©K��.
Finally, the sine-Gordon terms in their strong-coupling phase, contained in Lg�,j�1©2 ���g�,j�1©2� cos�2 xφVCB

j�1©2 � q� `2 A2,j�1©2	, encode the energy cost for quasiparticles in the

gapped sector.
In conclusion, we find that the gapless composite quasiparticles carry a fractional

charge, and should be viewed as forming a liquid of anyons rather than fermions since
they couple to the emergent gauge field.

8 Electromagnetic Response

Experimentally, semi-quantized quantum Hall states are most easily deteced by their
electro-magnetic responses, in particular the Hall and Hall drag responses. To calcu-
late the latter, we need to keep track of charges and electric fields in both layer separately.
Since the electromagnetic fields couple to the quasiparticles via the charges qσ, we can
simply replace qσ Aµ � qσ Aµ,σ to resolve the fields in each layer. The background Hall
current in the gapped �-sector follows from

j
µ
�,Hall � �

δ

δAµ,�
E d

2�1
x�� 1

4π

q
2
�

K��
ε
µνλAµ,� ∂νAλ�� � 1

2π

q
2
�

K��
ε
µνλ

∂νAλ,�. (71)

The gapless sector is described by composite fermions that couple to the combination
of fields q

�

� Aµ � q�Aµ,� �
K��

K��

q�Aµ,�. We can thus split the current of the composite

quasiparticles into its contributions in the two layers as
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j
µ
CQP,� � �

δ

δAµ,�
E d

2�1
x �. . . � Ψ̄ E� � i∂µ � q�� Aµ �K�� βµ�Ψ�

Í ÎÌ Ï
�SCQP�A

� �
δSCF�A
δ�q��Aµ�

d�q��Aµ�
dAµ,�

�
δSCF�A
δ�q��Aµ� q� (72)

and, similarly,

j
µ
CQP,� �

δSCQP�A

δ�q��Aµ�
K��
K��

q�. (73)

Defining j
µ
CQP,0 � �q�

δSCF�A
δ�q��Aµ�

, we have j
µ
CQP,� � j

µ
CF,0 and j

µ
CF,� � �

q�
q�

K��

K��

j
µ
CF,0.

8.1 Current responses if one layer is driven and the other layer is dis-
connected: perfect drag

We now focus on the electric response of a semi-quantized quantum Hall state in an
experiment in which both layers can be independently driven and measured, similar to
the setups reported in Refs. [54,68]. The total current flowing in the top layer is composed
of the background Hall response of the gapped sector, plus a contribution of the gapless
composite quasiparticles. The current in the bottom layer, on the other hand, is carried
only by the gapless composite quasiparticles.

Since the composite quasiparticles in the gapless �-sector couple to the electromagnetic
potential via the combination of fields q�Aµ,� �

K��

K��

q�Aµ,�, the m-th component of the

current of the composite quasiparticles (with m � x, y, not µ � 1, 2) will linearly respond
to electric fields as

j
m
CQP,0 � σ

mn
CQP �En,� � q�

q�

K��
K��

En,�
 , (74)

where En,σ is the n-th component of the electric field in layer σ (with n � x, y), and where
the Einstein sum convention is understood. The conductivity σ

mn
CQP is a non-universal

function that depends on the scattering mechanisms in the gapless layer. Combining our
above results, we find

j�,m �
1

2π

q
2
�

K��
�δmyEx,� � δmxEy,�� � σmnCQP

q�
q�

K��
K��

�En,� � q�
q�

K��
K��

En,�
 , (75a)

j�,m � σ
mn
CQP �En,� � q�

q�

K��
K��

En,�
 . (75b)

Driving the top layer. At first, we analyze a situation in which the top layer is driven,
while the bottom layer is disconnected. In the steady state, there hence cannot be any
current flowing in the bottom layer. From j�,m � 0, we find that for σ

mn
CQP j 0, this implies

En,� �
q�
q�

K��
K��

En,�. (76)

We interpret this result as follows: if an electric field En,� is applied to the top layer, the
part of the gapless composite quasiparticles in the gapless �-sector that lives in the top
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layer, i.e. the Laughlin quasiparticles glued to the electrons in the bottom layer, is initially
accelerated by this field. Since these Laughlin quasiparticles are glued to the electrons in
the �-layer, the latter will also start to move. As a result, an initial current will flow in
the bottom layer. This layer is, however, electrically disconnected by assumption. The
current in the bottom layer thus eventually hits the edge, and leads to a charge build-up.
The corresponding electric field in the bottom layer opposes the current flow there. The
steady state is reached if the net field felt by the composite quasiparticles (composed of
the electric field in the bottom layer felt by the electrons there, and the field in the top
layer felt by the Laughlin quasiparticles there) vanishes. In this situation, the current in
the top layer is then given by

j�,m �
1

2π

q
2
�

K��
�δmyEx,� � δmxEy,�� , (77)

and thus a pure Hall current. For E � Ex êx, we thus find that the Hall resistance in the
top layer and the Hall drag resistance in the bottom layer, resulting from driving the top
layer with a disconnected bottom layer are

R
�,drive
H �

Ex,�

j
y
�

�
h

q2
�

K�� and R
�,drag
H �

Ex,�

j
y
�

�
h

q� q�
K��, (78)

This response is in line with the argument put forward in Ref. [54].

Driving the bottom layer. If the bottom layer is driven, a current

j�,m � σ
mn
CQP �En,� � q�

q�

K��
K��

En,�
 (79)

will flow there (as mentioned above, the current has some non-universal value reflecting the
microscopic scattering mechanisms in the gapless sub-sector). If the top layer is electrically
disconnected, we must have j�,m � 0. This condition requires an induced Hall voltage in
the top layer. Namely, the absence of a current in the top layer implies that

1

2π

q
2
�

K��
�δmyEx,� � δmxEy,�� � q�

q�

K��
K��

j�,m. (80)

Let us for concreteness analyze the case that the current in the bottom layer flows in
y-direction according to

j
y
� � σ

ym
CQP �Em,� � q�

q�

K��
K��

Em,�
 , (81)

This implies that 1
2π

q
2
�

K��

Ex,� �
q�
q�

K��

K��

j�,y. We can thus again define a Hall drag resistance,

now for the top layer, which equals

R
�,drag
H �

Ex,�

j
y
�

�
h

q� q�
K��. (82)

This response is also in agreement with the arguments presented in Ref. [54]: a current in
the bottom layer necessarily is a current of the gapless composite quasiparticles (at least
in the linear response regime). Because the quasiparticles are composed of electrons in the
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bottom layer and Laughlin quasiparticles in the top layer, this current of quasiparticles
implies a current in the top layer as well. However, the top layer is electrically discon-
nected, such that it cannot carry a net current. The bulk current due to the quasiparticle
flow must hence be compensated by a Hall current flowing at the edges of the top layer. In
simple pictures, when the composite quasiparticle hits the edge, it splits up: the electron
in the bottom layer hops out of the sample and leads to a net current flow. The Laughlin
quasiparticles in the top layer enter the gapless edge channel, and along the edge flow back
to the other side of the sample. This leads to a population imbalance of the edge chan-
nels on the two sides, which in turn translates to an electrochemical potential difference
transverse to the edge channels, and thus a Hall voltage in the top layer.

8.2 Discriminating semi-quantized quantum Hall states from Halperin
bilayer states

Halperin bilayer states also feature quantized Hall and Hall drag resistances. In contrast
to semi-quantized quantum Hall states, however, both layer of a Halperin bilayer state are
fully gapped. Therefore, the longitudinal resistance of both layers always vanishes, and the
Hall resistance of both layer is fully quantized. In contrast, semi-quantized quantum Hall
states have one layer with a non-universal longitudinal resistance and non-quantized Hall
resistance (in our example the bottom layer). A transport experiment can thus distinguish
between semi-quantized quantum Hall states and Halperin bilayer states by measuring the
longitudinal and Hall resistances of each layer separately, as was done in Ref. [54].

9 Beyond Hall drag measurements: spectral probes, non-
Fermi liquid physics, and fully gapped daughter states

We finally discuss additional experimental properties of semi-quantized quantum Hall
states that should be addressed by future experiments.

9.1 Gapped electronic spectrum

Since the gapless quasiparticles are composite objects, electronic spectral probes such
as tunnelling spectroscopy exhibit a full gap. The size of the gap is set by the glueing
energy scale Hg� that needs to be overcome when extracting an electron from the sample.
Formally, the above exact transformations show that the original electronic operator can be
written as exponentials of Φrj� � �r xφ�j � xθ�j � � n1 xθVCB

j�1©2 � n2 xθVCB
j�1©2, where an exponential

of xθVCB
j�1©2 indeed creates a gapped quasiparticle.

9.2 Fully gapped daughter states with anyonic excitations

Fully gapped states deriving from semi-quantized quantum Hall states also show tantaliz-
ing properties. Consider for example a charge-density wave (CDW) gapping the composite
quasiparticles. The non-trivial character of semi-quantized quantum Hall states is handed
down to quasiparticles above the CDW gap in two ways: they carry a fractional charge
q
�

� , and exhibit anyonic braiding. Namely, the coupling to the emergent gauge field results

in a phase ϕ�� � 2π
K

2
��

K��

for a braid of two CDW-quasiparticles, while a braid between a

CDW-quasiparticle and a quasiparticle in the �-sector yields a phase ϕ�� � �2π
K��

K��

, in

agreement with the physical picture of electrons glued to Laughlin-like quasiholes (see the
Appendix for further details of a CDW state).
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The gapless composite quasiparticles in general feel a net magnetic field composed of
the external field and the emergent gauge field. In addition to the constraint K�� ν� �
K�� ν� � 1 established in Eq. 18, the filling factors also respect K�� ν� �K�� ν� � 1, then
the system can in principle form a fully gapped (K��,K��,K��)-Halperin bilayer state.
This happens (for q� � q� � e) at filling factors

ν� �
K�� �K��

K��K�� �K
2
��

and ν� �
K�� �K��

K��K�� �K
2
��

. (83)

In the present formulation, these states are 1©K��-Laughlin states for the composite quasi-
particles.

9.3 Non-Fermi liquid physics

The action in Eq. (69) is closely related to the composite Fermi liquid theory proposed by
Halperin, Lee and Read (HLR) [7]. In this context, interactions between gapless composite
quasiparticles mediated by an emergent gauge field as in LCS were studied in detail. It
was shown that the combination of the Chern-Simons gauge-field mediated interaction and
additional density-density interactions of short range can lead to non-Fermi liquid physics.
This will for example be heralded by a non-Fermi liquid scaling of the resistivity with tem-
perature [7, 69, 70]. We expect the same to hold for semi-quantized quantum Hall states.
In the absence of quasiparticles in the gapped �-sector, the action of a semi-quantized
quantum Hall state is of the same form as the HLR-action, modulo a modified prefactor of
the Chern-Simons term and the modified charge q

�
of the gapless quasiparticles (the effec-

tive magnetic field for the gapless composite quasiparticles vanishes at ν� �
1
K��

�
K��

K2
��

and

ν� � 1©K�� if q� � q� � e). This means that semi-quantized quantum Hall states can also
show non-Fermi liquid physics. The modified prefactor of the Chern-Simons term further-
more implies that the gapless composite quasiparticles should be interpreted as a liquid of
anyons, rather than fermions, which further strengthens their non-Fermi liquid behaviour.
To probe non-Fermi liquid physics in semi-quantized quantum Hall states, future exper-
iments should address the scaling of the resistivity with temperature. Future theoretical
work should in addition extend the analyses of Refs. [7,69,70] by including quasiparticles
in the �-sector: if those are pinned to impurity sites, LCS states that these quasiparticles
generate non-trivial gauge-field disorder landscapes, which could provide a testbed for the
ongoing characterization of many-body localization physics in two dimensions.

9.4 A note on thermal transport and the Wiedemann-Franz law

Besides electric transport, semi-quantized quantum Hall states also carry thermal cur-
rents. The available low-energy excitations that carry these thermal currents are the
gapless composite quasiparticles of fractional charge q

�

� , and the fractional quantum Hall
edge state. Due to the fractional nature of both of these, the Wiedemann-Franz law will
in general be violated. How exactly the Wiedemann-Franz law is violated, however, de-
pends on the measurement setup, e.g. which of the layers are connected electrically and/or
thermally. In addition, the perfect interlayer drag in electric transport heavily relies on
the fact that electrons cannot tunnel between layers, i.e. that there is no charge transfer
between layers. While such a situation can experimentally be realized for charge transfer,
heat is much more prone be transferred, or at least leak, across the intermediate layers in
an experimental bilayer quantum Hall heterostructure. A detailed study of thermal and
thermoelectric transport needs to take all of these effects into account, and is left for the
future.
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10 Summary and conclusions

In this work, we derived the low-energy theory of semi-quantized quantum Hall states in bi-
layer quantum Hall systems. We showed that both a heuristic continuum flux attachment
picture and a more microscopic coupled-wire approach yield the same universal low-energy
theory. This theory describes semi-quantized quantum Hall states by two sectors, a fully
gapped one and a gapless one. The fully gapped sector protects topological-order like
properties, such as the emergence of fractionally charged quasiparticles. Excitations in
the gapless sector correspond to electrons in one layer glued to Laughlin-like quasiparti-
cles in the other, and thus carry a net fractional charge. Because these composite gapless
quasiparticles also couple to the emergent Chern-Simons gauge field deriving from the
gapped sector, they can be thought of as forming an anyonic liquid. We analysed ex-
perimental signatures of semi-quantized quantum Hall and identified specific signatures
in electric transport. We find Hall and Hall drag signals consistent with recent experi-
ments [54]. Semi-quantized quantum Hall states are also promising platforms for novel
non-Fermi liquid physics, and serve as versatile parent states for fully gapped phases with
anyonic properties.
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Appendix: Braiding of quasiparticles in a gapped charge-
density wave state

The gapless sector can be gapped by various mechanisms, one of which is the formation
of a charge-density wave. In terms of the chiral quasiparticles Ψrj � exp t�iyΘ¬

rj�z, a
charge-density wave state is stabilized by interwire backscattering of quasiparticles, i.e. by

Ψ
�

Rj ΨLj � h.c. � exp ti �yΘ¬

Rj� � yΘ¬

Lj��z � h.c., giving rise to the sine-Gordon terms

gj,CDW cos�yΘ¬

Rj� � yΘ¬

Lj�	 � gj,CDW cos�ΦRj� � ΦLj�	. (84)

If these sine-Gordon terms flow to strong coupling, the system becomes fully gapped
(note that the argument of these sine-Gordon terms commute with themselves at different
positions, and with the arguments of the sine-Gordon terms g�,j�1©2). The full gap provides
an inverse time-scale that protects braiding. Coupled-wire constructions describe braiding
via strings of operators that hop quasiparticles around closed loops [66].

Braiding of quasiparticles in gk�1©2� sine-Gordon terms. Quasiparticles in the
gk�1©2� sine-Gordon terms can be moved from link k � 1©2 to link k � 1©2 by application
of an exponential of

ΘRj� �ΘLj� � K
�1
�� � xΦRj� � xΦLj�� �K�1

�� � xΦRj� � xΦLj�� � ΦRj� � ΦLj�. (85)

It can be checked by calculating the commutator with the argument of the sine-Gordon
term changes xΦRj�� xΦLj�1� by �2π and xΦRk�1�� xΦLj� by �2π, while leaving the �-sector

untouched. Using the definitions of the different fields as well as K��K
�1
�� �K��K

�1
�� � 1,

one can rewrite this operator as
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ΘRj� �ΘLj� �
1

K��
� xΦRj� � xΦLj�� � K��

K��
�ΦRj� � ΦLj�� . (86)

If we now look at a closed braiding path, the total phase we pick up is related to

A
j

�ΘRj� �ΘLj�� �A
j

1

K��
� xΦRj� � xΦLj�� �A

j

��K��
K��


 �ΦRj� � ΦLj��
�A

j

1

K��
� xΦRj� � xΦLj�1�� �A

j

��K��
K��


 �ΦRj� � ΦLj�� , (87)

where @ is discrete analog of line integral and means summation on closed loops. A
quasiparticle corresponds to a 2π-kink in the argument of one of the sine-Gordon terms.
This tells us that braiding a quasiparticle in the �-sector around another one of these
quasiparticles yields a phase

ϕ�� �
1

K��
2π, (88)

while braiding an �-quasiparticle around a �-quasiparticle yields a phase of

ϕ�� � �
K��
K��

2π. (89)

These braiding phases are consistent with the picture of the quasiparticles in the initially
gapless �-sector as being composed of electrons in the bottom layer and Laughlin-like
quasiparticles in the bottom layer, while the emergent gauge theory discussed in the main
text shows that quasiparticles �-sector are similar to Laughlin quasiparticles.

Braiding of quasiparticles in gk,CDW sine-Gordon terms. Our discussion of Sec. 4.1
shows that quasiparticles in the �-sector are moved around by exponentials of

yΘ¬

rj�1� � yΘ¬

r¬j� � ΦRj�1� � Φr¬k� � x4 �ΦRj� � ΦLj�� � x3�ΦRj�1� � ΦLj�1��. (90)

One can check that this operator indeed moves a quasiparticle in the �-sector from wire j
to wire j�1 while leaving the �-sector untouched. The phase picked up by a quasiparticle
in the �-sector is given by

A
j

�Φrj�1� � Φr¬j� � x4 �ΦRj� � ΦLj�� � x3 �ΦRj�1� � ΦLj�1�� �
�A

j

�Φrj� � Φr¬k� �K�� �ΦRj� � ΦLj�� � �A
j

�Φrj� � Φr¬k� �K�� �ΘRj� �ΘLj�� �
�A

j

� r̂ � r̂¬
2

�

K
2
��

K��
� �ΦRj� � ΦLj�� �A

j

��K��
K��


 � xΦRj� � xΦLj�1�� . (91)

This tells us that braiding a quasiparticle in the �-sector around another one of these
quasiparticles yields a phase

ϕ�� � � r̂ � r̂¬
2

�

K
2
��

K��
� 2π �

K
2
��

K��
2π mod�2π�. (92)
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while braiding an �-quasiparticle around a �-quasiparticle yields a phase of

ϕ�� � �
K��
K��

2π. (93)
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