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Abstract

The speed of information propagation is finite in quantum systems with local
interactions. In many such systems, local operators spread ballistically in time
and can be characterized by a “butterfly velocity”, which can be measured via
out-of-time-ordered correlation functions. In general, the butterfly velocity
can depend asymmetrically on the direction of information propagation. In
this work, we construct a family of simple 2-local Hamiltonians for under-
standing the asymmetric hydrodynamics of operator spreading. Our models
live on a one dimensional lattice and exhibit asymmetric butterfly velocities
between the left and right spatial directions. This asymmetry is transparently
understood in a free (non-interacting) limit of our model Hamiltonians, where
the butterfly speed can be understood in terms of quasiparticle velocities.
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1 Introduction

Understanding the quantum dynamics of thermalization in isolated many-body systems
is a topic of central interest. While memory of a system’s initial conditions is always
preserved under unitary dynamics, this information can get “scrambled” and become
inaccessible to local measurements, thereby enabling local subsystems to reach thermal
equilibrium [1–4]. This scrambling can be quantified by studying the spatial spreading of
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initially local operators under Heisenberg time evolution. Under dynamics governed by
a local time-independent Hamiltonian H, an initially local operator near the origin, A0,
evolves into A0(t) = eiHtA0e

−iHt. As A0(t) spreads in space, it starts to overlap with
local operators Bx at spatially separated locations x. The effect of scrambling is thus
manifested in the non-commutation between A0(t) and Bx, which can be quantified via
an out-of-time-ordered correlator (OTOC): [5–52]

C(x, t) = <〈A†0(t)B
†
xA0(t)Bx〉

= 1− 1

2
〈[A0(t), Bx]†[A0(t), Bx]〉, (1)

where A0, Bx are local unitary operators, < represents the real part, and the expectation
value 〈〉 is with respect to the infinite temperature thermal ensemble.

The OTOC is expected to exhibit the following features in systems with scrambling
dynamics [6, 7, 11, 17, 19, 24, 53–67]: At early times, A0(t) approximately commutes with
Bx and the OTOC is nearly equal to one. At late times, A0(t) becomes highly non-local
and spreads across the entire system, and the OTOC decays to zero [11, 14, 21, 25]. At
intermediate times, the operator has most of its support within a region around the origin
defined by left and right operator “fronts” that propagate outwards, and generically also
broaden in time [58,59]. As the operator front approaches and passes x, the OTOC C(x, t)
decays from nearly one to zero. We will restrict ourselves to translationally invariant
systems where operators spreads ballistically with a butterfly speed vB, which is similar in
spirit to the Lieb-Robinson speed [68] characterizing the speed of information propagation.
In these cases, the operator fronts define a “light-cone” within which the OTOC is nearly
zero.

A set of recent papers illustrated that the butterfly velocity can depend on the direction
of information spreading [69,70]. In one dimension, the asymmetry between the different
directions can be quantified by the butterfly speeds vrB and vlB, where the superscript r
(l) represent propagation directions to the right (left). While local unitary circuits can be
‘chiral’ and exhibit maximally asymmetric information transport (corresponding to one
of vrB or vlB equal to zero), this chirality is ‘anomalous’ for time-independent Hamiltoni-
ans in one dimension [71]. Thus, the existence of asymmetric information spreading in
Hamiltonian models was an open question, recently addressed by Refs. [69, 70]. Ref. [70]
constructed models of asymmetric (but not fully chiral) unitary circuits, and obtained
Hamiltonians derived from such circuits that needed a minimum of three-spin interactions
and were numerically shown to have asymmetric butterfly speeds. On the other hand,
Ref. [69] showed how this asymmetry could be induced by anyonic particle statistics.

In this work, we present a complementary and physically transparent way for con-
structing a family of two-local Hamiltonians with asymmetric information propagation.
Our construction does not rely on particle statistics, nor is it inspired by unitary cir-
cuits. Instead, we start with non-interacting integrable spin 1/2 models where the but-
terfly speed is related to quasiparticle propagation velocities and can be analytically cal-
culated [66,67,72,73]. We show how the butterfly speed can be made asymmetric in such
models, before generalizing to non-integrable Hamiltonians by adding interactions. The
model and mechanism we present for obtaining asymmetric butterfly velocities is orthog-
onal to prior works on this topic, and provides a counterexample to the claim that one
needs exotic anyonic particle statistics for asymmetric transport [69] — instead showing
how this feature can be simply and generically obtained in solvable free fermionic models.
Indeed, providing ‘minimal models’ for physical phenomena are often helpful in distilling
necessary ingredients, and our work serves this purpose by furnishing much simpler classes
of models with asymmetric information spreading than prior examples in the literature.
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2 Integrable Hamiltonians

In this section, we construct time-independent integrable Hamiltonians for spin 1/2 degrees
of freedom living on an infinite one dimensional lattice. The Hamiltonians only have local
terms acting on 2 spins at a time. These models are exactly solvable, so the butterfly
velocities can be analytically calculated, and demonstrated to be asymmetric. This family
of Hamiltonians parameterized by λ takes the form:

Hλ = −J(1− λ)

2

∑
j

[
hyzσ

y
j σ

z
j+1 + hzyσ

z
jσ

y
j+1

]
−Jλ

2

∑
j

[
hzzσ

z
jσ

z
j+1 + hxσ

x
j

]
, (2)

where σxj , σ
y
j , σ

z
j are the Pauli spin 1/2 operators located at site j, J > 0, hzz, hx, hyz, hzy

are constants, and the parameter λ lies in the range [0, 1]. This model can be mapped to a
system of free fermions via a Jordan-Wigner representation. When λ = 1, the Hamiltonian
is the well known transverse Ising model with inversion symmetry about the center of the
chain. On the other hand, for λ < 1, the Hamiltonian does not have inversion symmetry
when hyz 6= hzy.

In order to detect the ballistic light cone and asymmetric butterfly velocities, we con-
sider the OTOCs

Cµν(j, t) = <〈σµ0 (t)σνj σ
µ
0 (t)σνj 〉β=0, (3)

where µ, ν ∈ {x, y, z} and β = 0 represents the infinite temperature thermal state. We note
that the mapping to free fermions allows Pauli operators to be written in terms of Majorana
fermion operators which, in turn, allows an exact calculation of the OTOC (Appendix
A). These OTOCs are shown in FIG. (1). For the case of λ = 0, the Hamiltonian H0

is a combination of two decoupled Majorana chains with symmetric butterfly velocities
(Appendix A), and we observe that the right and left butterfly velocities are equal to each
other despite the lack of inversion symmetry (left panel). For λ = 1, the Hamiltonian
H1 is the well-known Ising model and butterfly velocities are symmetric, as shown in the
middle panel of FIG. (1). By contrast, for the general case λ ∈ (0, 1), the Hamiltonian
does not have inversion symmetry and the OTOCs show asymmetric butterfly velocities
(right panel).

The asymmetry in butterfly speeds for 0 < λ < 1 can be directly understood using
the quasiparticle description of the free model. It is known that the butterfly speed in an
integrable model is the maximum quasiparticle group velocity [66,67,73], and the operator
fronts generically broaden either diffusively or sub-diffusively depending on whether the
integrable system is interacting or not [73].

The quasi-particle dispersion for the Hamiltonian in Eq. (2) is ελ,1(2)(q) = J
[
(1 −

λ)(hyz−hzy) sin q+ (−)
(
(1−λ)2(hyz +hzy)

2 sin2 q+λ2(h2zz +h2x−2hzzhx cos q)
)1/2]

. The

butterfly speed to the right (left) is the magnitude of the maximal (minimal) quasi-particle
group velocity [66,67,73]

vrB,λ = max
q

dελ,1(2)(q)

dq
, vlB,λ = −min

q

dελ,1(2)(q)

dq
. (4)

These are plotted in FIG. (2), where asymmetric butterfly velocities are clearly observed
when λ is ∈ (0, 1). For the special cases of λ = 0 and λ = 1, the right and left butterfly
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Figure 1: OTOCs Cxz(j, t) (upper panel) and Cxx(j, t) (lower panel) in the Hamiltonian
Hλ [Eq. (2)] with parameters hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, and λ = 0 in
the left panel, λ = 1 in the middle panel, and λ = 0.5 in the right panel. The asymmetric
light-cone is clear in the right panel.

speeds are the same

vrB,0 = vlB,0 = 2J max(|hyz|, |hzy|), (5)

vrB,1 = vlB,1 = J min(|hzz|, |hx|). (6)

The above results are consistent with the butterfly velocities demonstrated via the out-of-
time-ordered correlations shown in FIG. (1). For the case of λ = 0, the Hamiltonian H0

is a combination of two decoupled Majorana chains with symmetric butterfly velocities
2J |hyz| and 2J |hzy|, so the butterfly velocities for H0 is 2J max(|hyz|, |hzy|). For λ = 1,
the butterfly velocities depend on the minimal of |hx| and |hzz|.

3 Non-integrable Hamiltonians

In this section, we construct non-integrable Hamiltonian by adding longitudinal fields
to the free Hamiltonian Hλ [64, 65]. The asymmetric butterfly velocities are estimated
from a variety of measures including out-of-time-ordered correlations, right/left weight of
time-evolved operators, and operator entanglement.

The interacting Hamiltonian on a one dimensional lattice with open boundary condi-
tions is

H =
−J(1− λ)

2

L−1∑
j=1

[
hyzσ

y
j σ

z
j+1 + hzyσ

z
jσ

y
j+1

]

+
−Jλ

2

[
hzz

L−1∑
j=1

σzjσ
z
j+1 +

L∑
j=1

hxσ
x
j

]
− J

2

[ L∑
j=1

hzσ
z
j

]
, (7)

where L is the system size, and hz is a longitudinal field strength. We select the particular
parameters λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, although
none of our results are fine tuned to this choice.
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Figure 2: Quasi-particle dispersion relations ελ,1(q) (left panel) and asymmetric butterfly
speeds (right panel) for the Hamiltonian Hλ [Eq. (2)]. The parameters used are hyz =
0.5, hzy = −0.25, hzz = 1.0, hx = −1.05. In the left panel, the star ? denotes the place
where the dispersion relation has maximal or minimal slope, and the solid lines represent
the slope. In the right panel, asymmetric butterfly speeds are directly determined from
the quasi-particle dispersion relations [Eq. (4)].

The longitudinal field breaks integrability and is expected to thermalize the sys-
tem. For non-integrable Hamiltonians with thermalizing dynamics, the level statistics
is consistent with the distribution of level spacings in random matrix ensembles [74].
Let E0 < · · · < En < En+1 < · · · be the sequence of ordered energy eigenvalues and
sn = (En+1−En) be the level spacings. One defines the ratio of consecutive level spacings
rn = sn/sn−1, and the distribution of rn can be described by the Wigner-like surmises for
non-integrable systems [75,76]

pW (r) =
1

ZW

(r + r2)W

(1 + r + r2)1+3W/2
, (8)

where W = 1, Z1 = 8/27 for Gaussian Orthogonal Ensemble (GOE), and W = 2, Z2 =
4π/(81

√
3) for Gaussian Unitary Ensemble (GUE), while they are Poissonian for inte-

grable systems. As shown in FIG. (3), the ratio distribution provides evidence supporting
the non-integrability of the Hamiltonian. When λ = 0.5, the Hamiltonian is complex
Hermitian, and its ratio distribution agrees with the Gaussian Unitary Ensemble (GUE).
When λ = 1, the Hamiltonian is real, symmetric and has the inversion symmetry with
respect to its center, and its level statistics in the sector with even parity agrees with the
Gaussian Orthogonal Ensemble (GOE) [64,65].

We now characterize the asymmetric spreading of quantum information in this model
using two complementary methods for computing butterfly speeds that are known in the
literature. Both methods agree on the estimation of butterfly speeds within the accuracy
of finite-size numerics, and both show a strong asymmetry between vlB and vrB.

3.1 Asymmetric butterfly velocities from OTOCs

In this subsection, we estimate the asymmetric butterfly velocities from OTOCs.
As discussed earlier, as the time-evolved operator spreads ballistically, OTOCs can

detect the light cone and butterfly velocities. The saturated value of OTOCs equals
approximately one outside the ballistic light cone and zero inside it. Near the boundary of
the light cone, the OTOCs decay in a universal form C(j, t) = 1−f e−c(j−vBt)α/tα−1

[66,67],
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Figure 3: The histogram of the ratio of consecutive level spacings. It is computed from
32768 all energy eigenvalues of the Hamiltonian [Eq. (7)] with parameters λ = 0.5, hyz =
0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 15.

where c, f are constants, vB describes the speed of operator spreading, and α controls the
broadening of the operator fronts. In a generic “strongly quantum” system (i.e. away
from large N/ semiclassical/weak coupling limits) the operator front shows broadening
which corresponds to α > 1 so that the OTOC is not a simple exponential in t [67].

Nevertheless, the decay can still look exponential along rays j = vt in spacetime,
C(j = vt, t) = 1 − f eλ(v)t, defining velocity-dependent Lyapunov exponents (VDLEs)
which look like λ(v) ∼ −c(v − vB)α near vB [67]. The VDLEs provide more information
about the operator spreading than the butterfly velocities alone.
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Figure 4: OTOCs Cxz(j, t) (left panel) and Cxx(j, t) (right panel) in the Hamiltonian H
[Eq. (7)] with parameters λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5,
and length L = 41.

First, as shown in FIG. (4), we observe asymmetric butterfly velocities in relatively
large systems with L = 41 spins. In our numerical calculations, we use the time-evolving
block decimation (TEBD) algorithm after mapping matrix product operators to matrix
product states [77–79], which is able to efficiently simulate the evolution of operators in
the Heisenberg picture. In the numerical simulation, we ignore the singular values sk if
sk/s1 < 10−8 in the step of singular value decomposition, where s1 is the largest singular
value. And the bond dimension is enforced as χ ≤ 500. The OTOCs shown in FIG.(4)
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clearly demonstrate asymmetric butterfly velocities.
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Figure 5: OTOCs in the Hamiltonian H [Eq. (7)] with parameters λ = 0.5, hyz =
0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 14. The left (right)
panel shows the left (right) propagating OTOCs along rays at different velocities. Ex-
ponential decay can be observed which is consistent with the negative VDLEs for large
v.

Second, we estimate the asymmetric butterfly velocities from the extracted VDLEs
λ(v) ∼ −c(v−vB)α. Because of the limited computational resources for exact diagonaliza-
tion, the right and left butterfly velocities are measured by setting the initial local operator
at the boundary j = 1 and j = L respectively. In FIG. (5), the OTOCs exponentially decay
along the rays with different speed C(1 + xr, xr/v) = 〈σx1 (xr/v)σz1+xrσ

x
1 (xr/v)σz1+xr〉β=0

and C(L − xl, xl/v) = 〈σxL(xl/v)σzL−xlσ
x
L(xl/v)σzL−xl〉β=0. For a given velocity v, λ(v)/v

is the slope of logarithm of the left and right propagating OTOCs versus the distance x.
After extracting the VDLEs λ(v) from the OTOCs, here we give a rough estimation of
the butterfly velocities via fitting the curve λ(v) ∼ −c(v − vB)α. In FIG. (6), we obtain
the results vrB ∼ 0.29J and vlB ∼ 0.66J .
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Figure 6: VDLEs fitted from the left and right propagating OTOCs in FIG. (5) with
the slope equaling λ(v)/v. The parameters c, vB, α can be fitted via the least square
method. Here the results of fitting the last 7 points are vrB ∼ 0.29J, αr ∼ 1.52, and
vlB ∼ 0.66J, αl ∼ 1.61.
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3.2 Asymmetric butterfly velocities from right/left weights

Now we turn to the analysis of asymmetric butterfly velocities directly measured from
right and left weights of the spatial spreading operators.

To define the right/left weight, note that every operator in a spin 1/2 system with
length L can be written in the complete orthogonal basis of 4L Pauli strings S = ⊗Lj=1Sj ,
i.e. O(t) =

∑
S aS(t)S, where Sj = I, σx, σy or σz. Unitary evolution preserves the norm

of operators, so
∑

S |aS(t)|2 = 1 holds for a normalized operator. The information of
operator spreading is contained in the coefficients aS(t). In order to describe the spatial
spreading, the right weight is defined by

ρr(j, t) =
∑

S:Sj 6=I,Sj′>j=I
|aS(t)|2, (9)

where the left weight is defined analogously. Because of the conservation of operator norm∑
j ρr(l)(j, t) = 1, the weight can be interpreted as an emergent local conserved density

for the right/left fronts of the spreading operator.
Recent studies [58–61] showed that the hydrodynamics for the right/left weight can be

characterized by a biased diffusion equation in non-integrable systems, which means that
the front is ballistically propagating with diffusively broadening width. Thus, when the
time-evolved operator spreads, ρr moves to the right with velocity vrB, and ρl moves to
the left with velocity vlB.

Here in the numerical calculations of exact diagnolization, the right and left weights
are obtained by setting the initial local operator at the boundary j = 1 and j = L
respectively. The right weight ρr(1 + xr, t) of σx1 (t) is calculated in order to compare the
left weight ρl(L− xl, t) of σxL(t), where xr(xl) is the distance between the right (left) end
and the location of initial operator. As shown in FIG. (7), the estimated velocities are
vrB ∼ 0.30J and vlB ∼ 0.65J by fitting the times when the weights reach the maximum
peak for given distances. This is in very good agreement with the values obtained from
OTOCs in the prior subsection, especially considering the finite resolution of our methods
given the limited system sizes and times accessible to numerics.
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Figure 7: Left panel: the right weights (solid lines) of σx1 (t) and the left weights (dashed
lines) of σxL(t). The parameters in the Hamiltonian H [Eq. (7)] are λ = 0.5, hyz =
0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 14. The symbols ×/+
mark the times when the right/left weights reach the maximum peak for given distances.
Right panel: time of the peak versus the distance. The solid and dashed lines are the
results of linear fitting.
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4 Conclusion and Discussion

In summary, we have constructed a physically transparent family of integrable Hamilto-
nians with asymmetric information spreading, and shown that this asymmetric transport
persists even upon adding interactions. Exact solutions of the butterfly velocities are
obtained in the integrable models while, in the non-integrable case, the asymmetric but-
terfly velocities are numerically estimated from different quantities characterizing operator
spreading including out-of-time-ordered correlations and right/left weight of time-evolved
operators. Our constructions present simple mechanisms for obtaining asymmetric trans-
port in simple free-fermion models and spin chains, without invoking notions such as
anyonic particle statistics that were previously thought to necessary for asymmetric trans-
port [69].

Given the constructions and studies in this paper, several open questions would be in-
teresting to explore in the future work. Here we have focused on the information spreading
at infinite temperature in one dimension. How does the asymmetric spreading change at
finite temperature, or in higher dimensional systems? Additionally, it is worth studying
how asymmetries encoded in various quantities are intertwined with each other. For ex-
ample, does the transport of conserved quantities (like energy) inherit the same signatures
of asymmetry as the spreading of local operators? Is it possible to disentangle them? Our
strategy of starting with free models also seems promising for answering these more general
conceptual questions. For example, these ideas could be explored in higher dimensions by
constructing free models without radially symmetric dispersions.

Finally, probing the asymmetry of information propagation may be also interesting to
explore in many-body localized systems or disordered systems with Griffiths effects, where
the butterfly velocities are zero and the light cones are logarithmic or sub-ballistic.
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Appendix A: Analytic solution of time-evolved operators and
OTOCs in the free model

The Jordan-Wigner mapping allows spin operators to be written in terms of free Ma-
jorana fermions as follows: : σxj = iγ2jγ2j+1, σ

z
j = (

∏j−1
k=−∞ iγ2kγ2k+1)γ2j and σyj =

(
∏j−1
k=−∞ iγ2kγ2k+1)γ2j+1. Then the Hamiltonian [Eq. (2), FIG. (8)] is

Hλ = (1− λ)
−J
2

∑
j

[
hyz(−iγ2jγ2j+2) + hzy(iγ2j+1γ2j+3)

]
+ λ
−J
2

∑
j

[
hzz(iγ2j+1γ2j+2) + hx(iγ2jγ2j+1)

]
. (10)

Below, we obtain analytic solutions for time-evolved operator for this Hamiltonian
[Eq. (2)] within the Heisenberg picture. Denoting γ0(t) =

∑
n fn(t)γn and γ1(t) =

9
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Figure 8: Majorana fermion representation for the Hamiltonian [Eq. (2)]: the solid points
represent Majorana fermions, the ellipses represent the local field at each site, and the
lines connecting Majorana fermions denote the nearest or next-nearest neighobor hopping
terms.

∑
m hm(t)γm, the time-evolved operator is σx0 (t) = iγ0(t)γ1(t) = i

∑
n<m Fn,m(t)γnγm,

where Fn,m(t) = fn(t)hm(t)− fm(t)hn(t), and the out-of-time-ordered correlations are

Cxz(j, t) = 1− 2
∑

n≤2j,m≥2j+1

|Fn,m(t)|2, (11)

Cxx(j, t) = 1− 2
[ ∑
n<2j

(
|Fn,2j(t)|2 + |Fn,2j+1(t)|2

)
+

∑
m>2j+1

(
|F2j,m(t)|2 + |F2j+1,m(t)|2

)]
. (12)

Next, we get the analytic solution of time-evolved operators γ0(t) =
∑

n fn(t)γn and
γ1(t) =

∑
m hm(t)γm in the integrable Hamiltonian [Eq. (2)]. Plugging the candidate

solution into the Heisenberg equation, it is straightforward to get the differential equations
for the coefficients fn(t)

df2n(t)
dt = −λJhzzf2n−1(t) + λJhxf2n+1(t)

+(1− λ)Jhyz[−f2n+2(t) + f2n−2(t)],
df2n+1(t)

dt = −λJhxf2n(t) + λJhzzf2n+2(t)
+(1− λ)Jhzy[−f2n−1(t) + f2n+3(t)],

where the initial condition is fn(0) = δn,0. After applying the Fourier transformation
f2n(t) = 1

2π

∫ π
−π dq e

−inqA(q, t), f2n+1(t) = 1
2π

∫ π
−π dq e

−inqB(q, t), we get{
∂A(q,t)
∂t = λJ [hx − hzzeiq]B(q, t) + (1− λ)2iJhyz sin(q)A(q, t),

∂B(q,t)
∂t = λJ [−hx + hzze

−iq]A(q, t)− (1− λ)2iJhzy sin(q)B(q, t).
(13)

Then the analytic solution is f2n(t) = 1
2π

∫ π
−π dq e

−inq ελ,1e
iελ,1t−ελ,2e

iελ,2t

ελ,1−ελ,2 ,

f2n+1(t) = 1
2π

∫ π
−π dq e

−inqλJ [−hx + hzze
−iq]× (−i)(eiελ,1t−eiελ,2t)

ελ,1−ελ,2 ,
(14)

where ελ,1(2)(q) = J
[
(1 − λ)(hyz − hzy) sin q + (−)

(
(1 − λ)2(hyz + hzy)

2 sin2 q + λ2(h2zz +

h2x − 2hzzhx cos q)1/2
)]

.

Similarly the coefficients in the exact solution γ1(t) =
∑

m hm(t)γm are h2m(t) = 1
2π

∫ π
−π dq e

−imqλJ [hx − hzzeiq]× (−i)(eiελ,1t−eiελ,2t)
ελ,1−ελ,2 ,

h2m+1(t) = 1
2π

∫ π
−π dq e

−imq ελ,1e
iελ,1t−ελ,2e

iελ,2t

ελ,1−ελ,2 .
(15)
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