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Abstract

We consider Lindblad equations for one dimensional fermionic models and quantum spin
chains. By employing a (graded) super-operator formalism we identify a number of Lind-
blad equations than can be mapped onto non-Hermitian interacting Yang-Baxter integrable
models. Employing Bethe Ansatz techniques we show that the late-time dynamics of some of
these models is diffusive.
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1 Introduction

Weak couplings to an environment can have very interesting effects on the dynamics of many-
particle quantum systems. In particular they can result in desirable non-equilibrium steady states
[1–5]. In order to arrive at a tractable theoretical description it is customary to employ a Markovian
approximation that assumes that the characteristic times scales associated with the environment are
much shorter than those of the many-particle system of interest. The absence of a back action of
the system onto its environment then facilitates a well defined mathematical description of open
many-particle systems. In the quantum case this a priori results in a Markovian quantum stochastic
many-particle system [6–9], which is however difficult to analyze. The customary approach is
therefore to focus on the dynamics averaged over the environment, which leads to a description by
the Lindblad master equation [10] for the time-dependent reduced density matrix ρ(t)

dρ

dt
= i[ρ,H] +

∑
a

γa

[
LaρL

†
a −

1

2
{L†aLa, ρ}

]
. (1)

Here H is the system Hamiltonian, La are jump operators that encode the coupling to the envi-
ronment and γa > 0. While much progress has been made in analyzing Lindblad equations for
many-particle systems by employing e.g. perturbative [11, 12] and matrix product states meth-
ods [13–16] it clearly is highly desirable to have exact solutions in specific, and hopefully repre-
sentative, cases. In the context of master equations for classical stochastic many particle systems
an example of such a solvable paradigm is the asymmetric simple exclusion process [17–22].
In the quantum case it has been known for some time that certain Lindblad equations describ-
ing many-particle systems can be represented by Liouvillians that are quadratic in fermionic or
bosonic creation and annihilation operators, which makes it possible to solve them exactly by el-
ementary means [23–26]. Very recently examples of Lindblad equations with Liouvillians related
to interacting Yang-Baxter integrable models have been found [27–29]. This opens the door for
bringing quantum integrability methods to bear on obtaining exact results for the dynamics of
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open many-particle quantum systems. An obvious question is whether the known cases are excep-
tional, or whether there are other examples of Yang-Baxter integrable Lindblad equations. In this
work we report on the results of a search for integrable cases among a particular class of Lindblad
equations for translationally invariant many-particle quantum systems.

2 Lindblad equations for lattice models

We now turn to the precise definition of the class of quantum master equations we will be interested
in. We consider one dimensional lattice models with local Hilbert spaces that can include bosonic
as well as fermionic degrees of freedom. A basis of the local Hilbert space is formed byN bosonic
and M fermionic quantum states

|α〉j , α = 1, . . . , N +M. (2)

We denote the fermion parity of the state |α〉j by εα

εα =

{
0 if α is bosonic
1 if α is fermionic

. (3)

An orthonormal basis of the full Hilbert spaceHL on an L-site chain is then given by the states

|α〉 ≡ ⊗Lj=1|αj〉j , αj ∈ {1, . . . , N +M}. (4)

We define the fermion parity of the states (4) by

εα =
L∑
j=1

εαj . (5)

A basis of the space of linear operators acting on site j is then provided by

Eαβj = |α〉j j〈β|, α, β ∈ {1, . . . , N +M}. (6)

These are often referred to as Hubbard operators. Their fermion parity is εα + εβ mod 2, i.e. they
are fermionic if either the state |α〉 or the state |β〉 is fermionic. The operators Eαβn act on the
states |α〉 as

Eαβn |α〉 = (−1)(εα+εβ)
∑n−1
j=1 εαj δβ,αn |α′〉 , α′ = α1, . . . , αn−1, α, αn+1, . . . , αL. (7)

Minus signs are acquired when moving fermionic operators past fermionic states. The operators
defined in this way either commute or anticommute on different sites

Eαβj Eγδk = (−1)(εα+εβ)(εγ+εδ)Eγδk E
αβ
j , k 6= j. (8)

For later convenience we define a graded permutation operator on sites j and j + 1

Πj,j+1 =
∑
α,β

(−1)εβEαβj Eβαj+1 . (9)

It acts on states as

Πj,j+1|β〉j |α〉j+1 = (−1)εαεβ |α〉j |β〉j+1, (10)

i.e. it permutes the states and generates a minus sign if both states are fermionic.
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2.1 A useful decomposition for N = n2
B + n2

F , M = 2nBnF for integer nB, nF
The general local Hilbert space VN+M introduced above has N bosonic and M fermionic basis
states. If N and M are such that they can be expressed as N = n2

B + n2
F and M = 2nBnF for

integer nB , nF it is possible to express VN+M as a graded tensor product of two n = nB + nF -
dimensional spaces VN+M = Vn⊗Vn. Here nB and nF are the numbers of bosonic and fermionic
basis states of Vn. Denoting the basis of Vn by {|1〉, . . . , |n〉} we can express the N + M basis
states of VN+M as

|α〉 = |α̃〉 ⊗ |ᾱ〉 , α = 1, . . . , N +M , (11)

where 1 ≤ ᾱ, α̃ ≤ n are related to α by

ᾱ = α mod n+ nδα mod n,0 , α̃ =

⌊
α

n+ 1

⌋
+ 1. (12)

We note that α = n(α̃−1)+ ᾱ and that the fermion parities are related by εα = εα̃+ εᾱ. Defining
operators

ẽα̃β̃j = |α̃〉j j〈β̃| , eᾱβ̄j = |ᾱ〉j j〈β̄|, (13)

we may express Eαβj in the form

Eαβj = |α〉〈β| = |α̃〉|ᾱ〉〈β̄|〈β̃| = (−1)
ε
β̃

(εᾱ+εβ̄)
ẽα̃β̃j eᾱβ̄j . (14)

We will use this decomposition in several models considered below. In the purely bosonic case
M = 0 such decompositions are possible for N = n2 with integer n.

2.2 Super-operator formalism for Lindblad equations

We now consider a Lindblad equation (1) with a Hamiltonian H and jump operators La acting on
HL defined above. We are ultimately interested in cases where the Hamiltonian density and La
have local expansions in terms of the Eαβj . To start with we will assume for simplicity that all
jump operators are bosonic. The cases where some of the jump operators are fermionic will be
discussed later. The reduced density matrix can be expressed in terms of the basis states defined
above as

ρ =
∑
α,β

ρα,β|α〉〈β| . (15)

The matrix elements are related to particular Green’s functions of the operators Eαβj

ρα,β = (−1)
∑L−1
j=1

∑L
k=j+1 εβj (εβk+εαk) Tr

[
ρ EβLαLL . . . Eβ1α1

1

]
. (16)

In terms of components the Lindblad equation reads

d

dt
ρα,β = i

∑
γ

ρα,γHγ,β −Hα,γργ,β

+
∑
a

γa

{∑
γ,δ

(
La
)
α,γ

ργ,δ
(
L†a
)
δ,β
− 1

2

∑
γ

(
L†aLa

)
α,γ

ργ,β + ρα,γ
(
L†aLa

)
γ,β

}
,

(17)

where we have introduced the following notations for the matrix elements of an operator O

〈α|O|β〉 = Oα,β . (18)
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We can view the density matrix as a state in a (N + M)2L dimensional Hilbert space HS =
HL ⊗HL with basis states

|α〉 |β〉〉 = |α1〉1 . . . |αL〉L |β1〉〉1 . . . |βL〉〉L . (19)

In these notations we have
|ρ〉 =

∑
α,β

ρα,β|α〉|β〉〉 , (20)

and the “wave-functions” ρα,β correspond to Green’s functions in the original problem. The
Lindblad equation (17) can be cast in the form

d|ρ〉
dt

= L|ρ〉 , (21)

where the Liouvillian L for bosonic jump operators La is given by

L = −iH + iH̄ +
∑
a

γa

[
LaL

†
a −

1

2

(
L†aLa + L†aLa

)]
. (22)

Here we employ notations such that O = O ⊗ 1 and have defined related operators O = 1 ⊗ O
by

〈〈γ|O|β〉〉 = 〈β|O|γ〉. (23)

One can easily check that taking the scalar product of (21) with the state 〈〈β|〈α| precisely repro-
duces (17). A convenient basis for expanding operators O is constructed in terms of operators
Ẽαβn defined as

Ẽαβn = 1⊗
(
|α〉〉n n〈〈β|

)
. (24)

These act on basis states according to

Ẽαβn |α〉|β〉〉 = (−1)(εα+εβ)εα |α〉 Ẽαβn |β〉〉

= (−1)(εα+εβ)εα(−1)
(εα+εβ)

∑n−1
j=1 εβj δβ,βn |α〉‖β′〉〉 , (25)

where |β′〉〉 = |β1〉1 , . . . , |α〉n , . . . , |βL〉L and εα has been defined in (5). We note that the
operators Eαβn act onHS as Eαβn ⊗ 1.

2.3 Fermionic jump operators

If some of the jump operators are fermionic the super-operator formalism needs to be modified.
Let us denote the fermion parity of the jump operator La by εLa ∈ {0, 1}. When written in
components the Lindblad equation still takes the form (17). However, the Liouvillian (22) is now
replaced by

L = −iH + iH̄ +
∑
a

γa

[
(−i)εLaLaL†a −

1

2

(
L†aLa + L†aLa

)]
, (26)

The state representing the density matrix is also modified and now takes the form

|ρ〉 =
∑
α,β

ρα,β [(−i)εαP+ + iεβP−] |α〉|β〉〉 , (27)

where P± are projection operators onto states with even and odd fermion parity respectively

P± =
1± (−1)F

2
, (−1)F =

L∏
`=1

N+M∏
α=1
εα=1

(1− 2Eαα` )(1− 2Ẽαα` ). (28)
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We have
(−1)F |α〉|β〉〉 = (−1)εα+εβ |α〉|β〉〉. (29)

It is straightforward to check that inserting (26) and (27) into the equation

d

dt
|ρ〉 = L|ρ〉 (30)

and expanding it in a basis of states precisely recovers (17). We stress that in our construction both
bosonic and fermionic jump operators can be accommodated as long as any given jump operator
has a definite fermion parity.

3 Lindblad equations as non-Hermitian two-leg ladders

As we are interested in Liouvillians with local densities we focus on jump operators where the
index a runs either over the sites or the nearest-neighbour bonds of a one dimensional ring. In this
setting −iH −

∑
a
γa
2 L
†
aLa and iH̄ −

∑
a
γa
2 L
†
aLa describe interactions along the two legs of the

ladder, while
∑

a γaLaL̄
†
a play the role of interactions between the two legs.

3.1 Single-site jump operators

In translationally invariant situations the most general bosonic single-site jump operator can be
written in the form

`j =
∑
α,β

λαβE
αβ
j , (31)

where λαβ = 0 unless (εα + εβ) mod 2 = 0. This generates “interaction terms” between the two
legs of the form

`j`
†
j =

∑
αβ

∑
γδ

λαβ λ
∗
γδ E

αβ
j Ẽγδj . (32)

The other jump operator terms in the Liouvillian generate “generalized magnetic field terms”
acting on the two legs

`†j`j + `†j`j =
∑
β,γ

ΛβγE
βγ
j + ΛγβẼ

βγ
j , (33)

where Λβγ =
∑

α λ
∗
αβλαγ .

3.2 Single-bond jump operators

The most general bosonic jump operator acting on a bond takes the form

Lj =
∑
α,β

λαβE
αβ
j + λ′αβE

αβ
j+1 +

∑
α,β,γ,δ

µαβγδ E
αβ
j Eγδj+1 . (34)

This gives rise to quartic, cubic and quadratic “interaction terms” in the Liouvillian. The resulting
explicit expression is presented in Appendix A. The extension to fermionic jump operators is
straightforward.
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3.3 General form of the Liouvillian

In the following we will consider Liouvillians of the form

L = −iH + iH̄ +
L∑
j=1

∑
a

γa

[
L

(a)
j (L

(a)
j )† − 1

2

(
(L

(a)
j )†L

(a)
j + (L

(a)
j )†L

(a)
j

)]
, (35)

where L(a)
j are jump operators that act either on site j or the bond (j, j + 1) and γa > 0. Our

aim is to identify cases which are Yang-Baxter integrable. In practice this means that we need
to check whether any of the large number of integrable Hamiltonians that can be interpreted as
two-leg ladder models can be cast in the particular form (35). An added complication is that we
should allow for general similarity transformations, i.e. consider

L′ = SLS−1. (36)

The spatial locality of the Hamiltonian density of the various integrable models imposes strong
restrictions on the possible form of S. Transformations of the form

S =

L∏
j=1

Sj , (37)

where Sj acts non-trivially only on site j are always compatible with the aforementioned local
structure.

4 Generalized Hubbard models

The first example of a Lindblad equation that is related to an interacting Yang-Baxter integrable
model was presented in Ref. [27], where it was shown that the Lindblad equation for a tight-
binding chain with dephasing noise can be mapped onto a fermionic Hubbard model with purely
imaginary interactions. We now briefly review some results obtained in that work. We then show
that the mathematical structure that underlies the integrability of the Hubbard model quite naturally
leads to a connection with a Lindblad equation.

4.1 SU(2) Hubbard model

The Hubbard Hamiltonian is given by

H = −t
L∑
j=1

∑
σ=↑,↓

c†j,σcj+1,σ + c†j+1,σcj,σ + U
L∑
j=1

[
nj,↑ −

1

2

] [
nj,↓ −

1

2

]
, (38)

where nj,σ = c†j,σcj,σ. The model is integrable for any complex value of U/t [41]. In terms of the
notations of section 2.1 we can choose a basis such that

c†j,↑ = e21
j , c†j,↓ = ẽ21

j , nj,↑ = e22
j , nj,↓ = ẽ22

j , (39)

and concomitantly

H(U) = −t
∑
j

[
e21
j e

12
j+1 + ẽ21

j ẽ
12
j+1 + h.c.

]
+ U

∑
j

[
e22
j −

1

2

] [
ẽ22
j −

1

2

]
. (40)
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4.1.1 Associated Lindblad equation

Let us consider a tight-binding model

H0 = −t
∑
j

e12
j e

21
j+1 + h.c. , (41)

coupled to an environment by jump operators

Lj = e22
j . (42)

In the super-operator formalism the corresponding Liouvillian (22) is

L(γ) = it
∑
j

[e12
j e

21
j+1 − ẽ12

j ẽ
21
j+1 + h.c.] +

∑
j

γ

[
e22
j ẽ

22
j −

1

2
(e22
j + ẽ22

j )

]
. (43)

This is related to the Hubbard Hamiltonian by [27]

L(γ) = −iU†H(iγ)U − γL

4
, U =

L/2∏
j=1

(ẽ11
2j − ẽ22

2j ). (44)

4.2 Integrable structure of generalized Hubbard models and associated Lindblad
equations

The Hubbard model was embedded into the general framework of the Quantum Inverse Scattering
Method [40] in seminal work by Shastry [31,32]. This construction was subsequently generalized
to other classes of integrable models [35–39]. The construction is based on an R-matrix r12(λ)
acting on the tensor product of two graded linear vector spaces V ⊗ V and a conjugation matrix
C acting on V that fulfil the Yang-Baxter relation

r12(λ1 − λ2)r13(λ1 − λ3)r23(λ2 − λ3) = r23(λ2 − λ3)r13(λ1 − λ3)r12(λ1 − λ2) , (45)

as well as the “decorated” Yang-Baxter relation

r12(λ1 + λ2)C1r13(λ1 − λ3)r23(λ2 + λ3) = r23(λ2 + λ3)r13(λ1 − λ3)C1r12(λ1 + λ2) . (46)

In the cases considered below the r12(λ) is given by

r12(λ) =

[
cos2

(λ
2

)
− sin2

(λ
2

)
C1C2

]
Π12 +

sin(λ)

2
[I⊗ I− C1C2] , (47)

where Π12 is a graded permutation operator (9) acting on V ⊗ V and

C = 2π̂ − 1, (48)

where π̂ is a projection operator onto a subspace of V . The R-matrix of an integrable generalized
Hubbard model is then obtained by gluing together two copies [37, 39, 41]

R〈12〉〈34〉(λ1, λ2) = r13(λ1 − λ2)r24(λ1 − λ2)

+ α(λ1, λ2)r13(λ1 + λ2)C1r24(λ1 + λ2)C2. (49)

Here the function α(λ, µ) is given by

α(λ, µ) =
cos(λ− µ) sinh

(
h(λ)− h(µ)

)
cos(λ+ µ) cosh

(
h(λ)− h(µ)

) , (50)
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where h(µ) is a solution of the equation

sinh
(
2h(λ)

)
= U sin(2λ). (51)

The local Hamiltonian density of the integrable “fundamental spin model” [40] corresponding to
this R-matrix is

H〈12〉〈34〉 =
d

dλ

∣∣∣∣
λ=u0

Π13Π24R〈12〉〈34〉(λ, u0)

= Π13r
′
13(0) + Π24r

′
24(0) + α′(u0, u0)Π13r13(2u0)C1Π24r24(2u0)C2. (52)

Here we have generalized the construction of [37] by taking the logarithmic derivative of the
transfer matrix at a shifted point u0 following Ref. [43, 44]. Importantly the structure of the
Hamiltonians (52) is such that they all can be related to Liouvillians of Lindblad equations. In the
following we discuss a number of examples.

4.3 USW model

As a first application we consider eqn (52) for the case of the Hubbard model R-matrix [44]. The
Hamiltonian of these models was first derived by Umeno, Shiroishi and Wadati in [43] and is of
the form

HUSW(U) = −
∑
j

[
e21
j e

12
j+1 + ẽ21

j ẽ
12
j+1 + h.c.

]
+

U

cosh (2h(u0))

∑
j

Bj,j+1B̃j,j+1 (53)

where

Bj,j+1 =
[

cos2(u0)
(
e11
j − e22

j

)
− sin2(u0)

(
e11
j+1 − e22

j+1

)
+ sin(2u0)

(
e21
j e

12
j+1 − e21

j+1e
12
j

) ]
,

(54)
and B̃j,j+1 is obtained from Bj,j+1 by replacing eαβn → ẽαβn . Here u0 is a free (complex) param-
eter and the function h(u) is fixed by the requirement

sinh (2h(u0)) = U sin(2u0) . (55)

We note that the operators eαβj are related to spinful fermion creation and annihilation operators
by (39). The Hamiltonian (53) is SO(4) symmetric [43] and in particular commutes with the total
particle number

N̂ =
L∑
j=1

e22
j + ẽ22

j . (56)

4.3.1 Associated Lindblad equation

The USW model is related to a Lindblad equation with a tight-binding Hamiltonian

H0 = −
∑
j

e12
j e

21
j+1 + h.c. , (57)

and jump operators

Lj = Bj,j+1, (58)

where the parameter u0 is taken to be purely imaginary. In the super-operator formalism the
corresponding Liouvillian (22) is

L(γ) = i
∑
j

[
e12
j e

21
j+1 − ẽ12

j ẽ
21
j+1 + h.c.

]
+ γ

∑
j

[
Bj,j+1B̃

∗
j,j+1 − cos2(2u0)

]
. (59)
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This is related to the USW Hamiltonian by

L(γ) = −iU†HUSW(u)U − γ cos2(2u0)L , (60)

where the unitary transformation U is given by (44) and the parameter u is purely imaginary and
related to γ by

γ = −i u

cosh
(
2h(u0)

) . (61)

4.3.2 Differential equations for correlation functions

As the jump operators are Hermitian the Lindblad equation implies the following time evolution
for expectation values of (time independent) operators

d

dt
Tr [ρ(t)O] = −iTr (ρ(t)[O, H0]) +

γ

2

∑
j

Tr (ρ(t) [[Lj ,O], Lj ]) . (62)

It is straightforward to verify that the jump operators (58) fulfil

[Ln, cj ] = 2δn,j−1 sin(u0)
(

cos(u0)cj−1 − sin(u0)cj
)

+ 2δn,j cos(u0)
(

cos(u0)cj − sin(u0)cj+1

)
. (63)

This shows that n-particle Green’s functions fulfil simple, closed evolution equations. This is
analogous to the case of the imaginary-U Hubbard model [27]. For example, the single-particle
Green’s function

Gj,k(t) = Tr
[
ρ(t)c†jck

]
(64)

has the following equation of motion

d

dt
Gj,k =

∑
`,m

K`,m
j,k G`,m ,

K`,m
j,k = δj,`δk−1,m

[
i− γ sin(4u0)

2

]
+ δj,`δk+1,m

[
i+

γ sin(4u0)

2

]
− δj−1,`δk,m

[
i− γ sin(4u0)

2

]
− δj+1,`δk,m

[
i+

γ sin(4u0)

2

]
− 4γδj,`δk,m cos2(2u0)− 4γδj,k

[
sin2(u0)M `,m

j−1 − cos2(u0)M `,m
j

]
− 4γ

[
δj−1,k sin(u0) cos(u0)M `,m

j−1 − δj,k−1 sin(u0) cos(u0)M `,m
j

]
. (65)

Here we have defined

M `,m
j = cos2(u0)δ`,jδm,j − sin(u0) cos(u0)

[
δ`,jδm,j+1 − δ`,j+1δm,j

]
− sin2(u0)δ`,j+1δm,j+1.

(66)

4.4 Maassarani models

In [33,34] Maassarani introduced a class of integrable 2n-state models that generalize the Hubbard
model along the lines set out in section 4.2 above. We now discuss these models in more detail. A
basis of the local Hilbert space is given by the tensor product

|a〉 ⊗ |ã〉 , a, ã = 1, . . . , n, (67)

where all states are bosonic, i.e. εa = 0 = εã. While these models a priori are generalized spin
models they can be related to interacting fermion models by Jordan-Wigner transformations as is

10
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done for a simple case below. A basis of operators acting on these states is then given by eabj ẽ
ãb̃
j .

In terms of these (bosonic) operators Maassarani’s Hamiltonian reads

HMa,n(U) =
L∑
j=1

P
(n)
j,j+1 + P̃

(n)
j,j+1 + U

(
CjC̃j − 1

)
, (68)

where

P
(n)
j,j+1 =

∑
a∈A

∑
b∈B

xabe
ba
j e

ab
j+1 + x−1

ab e
ab
j e

ba
j+1 ,

Cj =
∑
a∈A

eaaj −
∑
b∈B

ebbj . (69)

Here the two sets A and B form an arbitrary partition of {1, . . . , n} and xab are arbitrary complex
parameters. In the following we will simply set them equal to 1. The operators P̃ (n)

j,j+1 and C̃j are

of the same forms as P (n)
j,j+1 and Cj respectively but with the replacement eabj → ẽabj .

Maassarani’s models are related to Lindblad equations with Hamiltonians

H
(n)
0 = −

∑
j

[∑
a∈A

∑
b∈B

ebaj e
ab
j+1 + eabj e

ba
j+1

]
, (70)

and jump operators
Lj = c− Cj , (71)

where c ∈ R is a free parameter. In the superoperator formalism the corresponding Liouvillian is

LMa,n(γ) = −i(H(n)
0 − H̃(n)

0 ) + γ
∑
j

[
CjC̃j − 1

]
, (72)

where H̃(n)
0 is of the same form as H(n)

0 but with eabj replaced by ẽabj . This is related to Maas-
sarani’s Hamiltonian by

LMa,n(γ) = iUHMa,n(−iγ)U† , U =

L/2∏
j=1

C̃2j . (73)

4.4.1 3-state Maassarani model

The simplest Maassarani model is obtained by considering a local Hilbert space of three bosonic
states. Choosing a decomposition A = {1}, B = {2, 3} gives

H
(3)
0 = −

∑
j

e21
j e

12
j+1 + e31

j e
13
j+1 + h.c. . (74)

In order to fermionize this model we embed it into an enlarged Hilbert space with four states per
site, and then employ the results of section 2.1. This gives

e12
j = e12

j ẽ11
j , e13

j = e11
j ẽ12

j . (75)

Finally we carry out a Jordan-Wigner transformation

e21
j =

j−1∏
`=1

(1− 2n`,↑)c
†
j,↑ , ẽ21

j =

L∏
`=1

(1− 2n`,↑)

j−1∏
`=1

(1− 2n`,↓)c
†
j,↓ . (76)

11
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After these transformations the Hamiltonian H(3)
0 can be written in the form

H
(3)
0 = −P

∑
j,σ

[
c†j+1,σcj,σ + h.c.

]
P, (77)

where

P =

L∏
j=1

(1− nj,↑nj,↓) (78)

is a projection operator that ensures that all sites are at most singly occupied. The Hamiltonian
(77) can be viewed as the U →∞ limit of the Hubbard model and is sometimes referred to as the
t− 0 model. In terms of the fermionic operators the jump operator takes the form

Lj = 1− 2(1− nj,↑)(1− nj,↓) + c. (79)

Choosing c = 1 we have
Lj |0〉 = 0 , Ljc

†
j,σ|0〉 = 2c†j,σ|0〉, (80)

which shows that the bath acts on the charge degrees of freedom. The Hamiltonian part H(3)
0

has a free fermionic spectrum [45, 46], but the creation operators of the non-interacting fermion
degrees of freedom are related to the c†j,σ in a non-local way [47,48]. As a result the single-particle
Green’s function does not obey a simple evolution equation. The time evolution is again given by
the general expression (62), where the relevant commutators are

[[Ln, cj,σ], Ln]P = −4cj,σδj,n P ,

P[cj,σ, H
(3)
0 ]P = P

[
− (cj+1,σ + cj−1,σ)− c†j,σ̄cj,σ(cj+1,σ̄ + cj−1,σ̄)

]
P. (81)

4.4.2 4-state Maassarani model

In the 4-state case we can express the eabj in terms of two species of Pauli operators, cf. 2.1.

Choosing A = {1, 2, 3} and B = {4} we then can interpret H(4)
0 as the Hamiltonian of a two-leg

spin ladder model

H
(4)
0 =

L∑
j=1

[
σ+
j σ
−
j+1τ

+
j τ
−
j+1 + σ−j σ

+
j+1τ

−
j τ

+
j+1 +

1

4
(σ+
j σ
−
j+1 + σ−j σ

+
j+1)(1− τ zj )(1− τ zj+1)

+
1

4
(τ+
j τ
−
j+1 + τ−j τ

+
j+1)(1− σzj )(1− σzj+1)

]
, (82)

The jump operators become (setting again c = 1 in (71))

Lj =
1

2
(1− σzj )(1− τ zj ) . (83)

4.4.3 Bethe Ansatz solution

The Maassarani models have been solved by Bethe Ansatz in Ref. [49]. Without loss of generality
we restrict our discussion to the case where the sets A and B in (69) are given by

A = {1, 2, . . . , p} , B = {p+ 1, p+ 2, . . . , n} . (84)

The exact eigenstates of HMa,n(U) are then labelled by good quantum numbers as follows. The
operators

Qa =

L∑
j=1

eaaj , Q̃a =
L∑
j=1

ẽaaj , a = 1, . . . , n (85)

12



SciPost Physics Submission

commute with HMa,n(U) and with one another. Hence their eigenvalues Na, Ña can be used as
good quantum numbers. Following Ref. [49] we introduce integers

NA =

p∑
a=2

Na , NB =
n∑

a=p+1

Na , ÑA =

p∑
a=2

Ña , ÑB =
n−1∑
a=p+1

Ña , (86)

and N ≥ NA +NB + ÑA + ÑB . We then define sets

MA = {1, . . . , NA} , MB = {NA + 1, . . . , NA +NB} ,
M̃A = {NA +NB + 1, . . . , NA +NB + ÑA} ,
M̃B = {NA +NB + ÑA + 1, . . . , NA +NB + ÑA + ÑB} , (87)

and finally introduce two non-intersecting ordered sets of integers 1 ≤ aj ≤ N ≤ L

AA = {aj |j ∈MA} , ÃA = {aj |j ∈ M̃A} , AA ∩ ÃA = ∅ , AA ∪ ÃA ≡ A. (88)

By ordered we mean that aj < aj+1 if aj , aj+1 ∈ AA and similarly for ÃA. The eigenstates
of the Liouvillian LMa,n(γ) are then given in terms of rapidities {k1, . . . , kN}, {Λj |j ∈ MB},
{bm|m ∈ M̃B} and integers {n1, . . . , nÑB−Ñn−1

}, {n̄1, . . . , n̄NB−Nn} subject to the following
set of Bethe Ansatz equations [49]

eikjL = e2πiΦ
∏
l∈MB

Λl − sin kj + γ

Λl − sin kj − γ
, j ∈ [1, N ]\A,

N∏
j=1
j /∈A

Λm − sin kj + γ

Λm − sin kj − γ
= e2πiΨ

∏
l∈MB
l 6=m

Λm − Λl + 2γ

Λm − Λl − 2γ
, m ∈MB , (89)

bÑB+Ñn
` =

ÑB−Ñn−1∏
j=1

e
2πi

nj

ÑB , 1 ≤ n1 < · · · < nÑB−Ñn−1
≤ ÑB , ` ∈ M̃B ,

eikj(L−NB) = (−1)NA−1e
2πimα

NA , mα ∈ [1, NA] , j ∈ AA ,

eikj(L−ÑB−Ñn) = (−1)ÑA−1e
2πi m̃α

ÑA , m̃α ∈ [1, ÑA] , j ∈ ÃA , (90)

where we require arg(b`) < arg(b`+1) and the phases Φ and Ψ are given by

e2πiΦ = (−1)ÑB+Ñn−1
∏

m∈M̃B

bm
∏
j∈M̃A

e−ikaj ,

e2πiΨ = (−1)N−NA−ÑA
∏
j∈MA

e−ikaj
∏

m∈M̃A

eikam
∏
`∈M̃B

b−1
`

NB−Nn∏
s=1

e
2πi n̄s

NB ,

1 ≤ n̄1 < · · · < n̄NB−Nn < NB. (91)

The corresponding eigenvalues of LMa,n(γ) are

E = 2i
∑

j∈MB∪M̃B

cos kj − 2γ(NB + ÑB + Ñn). (92)

4.4.4 String solutions and vanishing of the Liouvillian gap in the thermodynamic limit

The first two sets (89) of the Bethe Ansatz equations are the same as for the Hubbard model with
imaginary interactions strength and twisted boundary conditions. This ensures that the “k-Λ string

13
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solutions” constructed in [27] are valid solutions for the n-state Maassarani models as well. A k-Λ
string of length m corresponds to the following pattern of rapidities

k
(m)
α,j = arcsin(iΛ(m)

α − (m− 2j + 2)γ′),

k
(m)
α,j+m = π − arcsin(iΛ(m)

α + (m− 2j + 2)γ′),

Λ
(m)
α,j = iΛ(m)

α + γ(m+ 1− 2j) , 1 ≤ j ≤ m. (93)

Here the string centres Λ
(m)
α are real and γ′ = −γ sgn(Λ

(m)
α ).

We now take NA = ÑA = 0 and consider a Bethe Ansatz state with a single k-Λ string of
length m� L. The corresponding eigenvalue of the Liouvillian is

ε = 4Im

√
1− (i|Λ(m)

α | −mγ)2 − 4γm. (94)

In the framework of the string hypothesis the equation that fixes the allowed positions of the string
centres Λ

(m)
α is obtained my “multiplying out the string” [50], which gives

exp

iL 2m∑
j=1

k
(m)
j

 = e2πim(2Φ+Ψ). (95)

Taking logarithms this can be cast in the form

sgn(Λ(m))
[
π − arcsin(iΛ(m) +mγ) + arcsin(iΛ(m) −mγ)

]
=

2π

L

(
J (m)
α + ϕ

)
, (96)

where we have defined
ϕ = m(2Φ + Ψ) mod 1. (97)

For even lattice lengths L the J (m)
α are integers with range

−L+ 1− 2m

2
− ϕ < J (m) <

L+ 1− 2m

2
− ϕ. (98)

We now focus on the particular sequence of string states characterized by integers

J (m)
α =

L

2
−m− α , α = 1, 2, · · · � L. (99)

In the limit of large system sizes L� 1 the corresponding string centres follow from (96)

Λ(n)
α =

mγL

π(m+ α− ϕ)
+O(1). (100)

Substituting this into our expression (94) for the eigenvalue of the Liouvillian gives

ε(m)
α = − 2π2

mγL2
(m+ α− ϕ)2 +O(L−4). (101)

This shows that in the large-L limit we have a band of Liouvillian eigenstates with eigenvalues
that scale as L−2. This establishes that the Liouvillian gap vanishes in the thermodynamic limit.
Moreover, the scaling with system size suggests that the corresponding eigenmodes are diffusive.
Our calculation does not rule out the existence of eigenstates with gaps that approach zero faster
than L−2.
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4.5 GL(N,M) Maassarani models

As we already mentioned above in section 4.2 the Shastry-Maassarani construction can be gen-
eralized to graded magnets based on GL(N,M). Following Ref. [37] we consider the class of
Hamiltonians

HgMa(U) =
∑
j

Π
(n)
j,j+1 + Π̃

(n)
j,j+1 + U

[
CjC̃j − 1

]
, (102)

where

Π
(n)
j,j+1 =

∑
k 6=N,K

[
EkNj ENkj+1 − EkKj EKkj+1 + (−1)εk(ENkj EkNj+1 + EKkj EkKj+1)

]
,

Cj = 1− 2EKKj − 2ENNj , K = N +M. (103)

We can relate this to a Lindblad equation with Hamiltonian

H0 = −
∑
j

Π
(n)
j,j+1, (104)

and jump operators
Lj = 1− Cj . (105)

4.5.1 3-state GL(1, 2) model

The simplest example is the 3-state model based in GL(1, 2). Like in the case of the 3-state
Maassarani model considered above we may represent the Hamiltonian in terms of canonical
spinful fermion creation and annihilation operators by identifying the three states per site as

|1〉j = |0〉j , |2〉j = c†j,↑|0〉j , |3〉j = c†j,↓|0〉j . (106)

Then H0 can be represented as

H0 = −P
L∑
j=1

(
c†j,↑cj+1,↑ − S+

j S
−
j+1 + h.c.

)
P, (107)

where P is the projection operator on singly occupied sites (78) and S+
j = c†i,↑cj,↓. This describes

correlated hopping of the up fermions, whereas the down fermions can only move through spin-flip
processes. The jump operator is

Lj = 2nj,↑ − 1 . (108)

5 Other integrable two-leg ladder models

The generalized Hubbard models considered above are all related to Lindblad equations with a
single jump operator on each bond by virtue of their integrability structure. There are many other
integrable models that can be represented as two-leg ladders and a question we have investigated
at some length is whether some of them can be associated with Lindblad equations as well.

5.1 GL(N2) magnets

We now consider generalized spin models on a local Hilbert space with N2 bosonic states. A
well-known class of integrable models is obtained by taking [51, 52]

HGL(N2) =
L∑
j=1

N2∑
α,β=1

Eαβj Eβαj+1 , (109)
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where Pj,j+1 =
∑N2

α,β=1E
αβ
j Eβαj+1 is a permutation operator acting on nearest-neighbour lattice

sites
Pj,j+1|γ〉j |δ〉j+1 = |δ〉j |γ〉j+1. (110)

The Hamiltonian H is GL(N2) symmetric and hence

[H,Qα,β] = 0 , Qα,β =
L∑
j=1

Eαβj . (111)

5.1.1 Representation as a 2-leg ladder

The permutation models can be viewed as 2-leg ladders by employing the decomposition of section
2.1 for M = N . This provides a representation of the permutation operator as a tensor product

Pj,j+1 =

 N∑
α,β=1

ẽαβj ẽβαj+1

 N∑
γ,δ=1

eγδj eδγj+1

 . (112)

It is clear from the representation (112) that

[H,Jαβ] = 0 = [H, J̃αβ] = 0 , (113)

where

J̃αβ =
L∑
j=1

ẽαβj , Jαβ =
L∑
j=1

eαβj , α, β = 1, . . . N. (114)

These operators are related to the GL(N2) symmetry generators by

Jαβ =
N∑
γ=1

QN(γ−1)+α,N(γ−1)+β , J̃αβ =
N∑
γ=1

QN(α−1)+γ,N(β−1)+γ . (115)

5.1.2 Associated Lindblad equation

Consider now a Lindblad equation with Hamiltonian H0 and two sets of jump operators {Lj} and
{`αβj }

H0 =

N∑
α,β=1

λαβJ
αβ , Lj =

 N∑
ᾱ,β̄=1

eᾱβ̄j eβ̄ᾱj+1

 , `αβj = eαβj . (116)

Noting that L†jLj = 1 we conclude that the corresponding Liouvillian is

L =

N2∑
α,β=1

fαβQ
α,β + γ

L∑
j=1

(
Pj,j+1 − 1

)
, (117)

where
N2∑

α,β=1

fαβQ
α,β =

N∑
ᾱ,β̄=1

−iλᾱβ̄[J ᾱβ̄−J̃ ᾱβ̄]+γᾱβ̄

[
QN(ᾱ−1)+ᾱ,N(β̄−1)+β̄ − J β̄β̄ + J̃ β̄β̄

2

]
. (118)

By construction the first term in (117) commutes with the second, which is γHGL(N2). As
HGL(N2) is invariant under all global GL(N2) rotations U we conclude that (117) is integrable
for choices of γαβ and λαβ such that

U

N2∑
α,β=1

fαβQ
α,βU † =

N2∑
α=1

gαQ
α,α , gα ∈ C. (119)
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5.1.3 Twisting the boundary conditions

As we have mentioned above, in general we need to consider similarity transformations when
trying to ascertain whether a Lindblad equation is related to an integrable Hamiltonian. A simple
example is provided by considering a Lindblad equation with vanishing Hamiltonian and jump
operators

Lj =

 N∑
ᾱ,β̄=1

ei(ϕβ̄−ϕᾱ)eᾱβ̄j eβ̄ᾱj+1

 , ϕᾱ ∈ R. (120)

The corresponding Liouvillian is

L = γ
L∑
j=1

 N∑
α̃,β̃,ᾱ,β̄=1

e
i(ϕβ̄−ϕᾱ−ϕβ̃+ϕα̃)

eᾱβ̄j eβ̄ᾱj+1 ẽ
α̃β̃
j ẽβ̃α̃j+1 − 1


= γ

L∑
j=1

N2∑
α,β=1

[
Eαβj Eβαj+1e

i(φβ−φα) − 1
]
, (121)

where we have used the decomposition 2.1 and fixed the phases φα by

φβ − φα = ϕβ̄ − ϕᾱ + ϕα̃ − ϕβ̃ , (122)

where α, β, ᾱ, β̄, α̃, β̃ are related by (12). To relate this to the GL(N2) Hamiltonian we consider
the canonical transformation

UEαβj U † = Eαβj e−i(φα−φβ)j , (123)

under which the Liouvillian transforms as

ULU † =
L∑
j=1

N2∑
α,β=1

[
Eαβj Eβαj+1 − 1

]
, (124)

where we have imposed twisted boundary conditions

EβαL+1 = Eβα1 e−i(φα−φβ)L . (125)

We conclude that the Liouvillian is related to the integrable GL(N2) Hamiltonian with twisted
boundary conditions

ULU † = γHGL(N2)

∣∣∣∣
twisted bc

. (126)

The integrability of twisted boundary conditions in the GL(N2) models is well known and can be
straightforwardly established along the lines of Refs [41, 53, 54].

5.1.4 Example: GL(4) spin ladder

As a specific example let us consider the GL(4) case

H = J
L∑
j=1

Pj,j+1 +
h

2

[
Q1,1 +Q2,3 +Q3,2 +Q4,4

]
, (127)

where we have added a particular generalized magnetic field term. Using 2.1 we can express this
in terms of two species of Pauli operators, cf. [42]

H =
1

4

L∑
j=1

J (σj .σj+1 + 1) (τj .τj+1 + 1) + h (σj .τj + 1) . (128)
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The related Lindblad equation has no Hamiltonian and two sets of jump operators

Lj =
1

2

∑
a=x,y,z

σaj σ
a
j+1 + 1 , {`(a)

j = σaj |a = x, y, z} . (129)

The corresponding Liouvillian is

L = γ
L∑
j=1

(Pj,j+1 − 1) + γ′
L∑
j=1

(σxj σ̃
x
j − σ

y
j σ̃

y
j + σzj σ̃

z
j − 3). (130)

After a local basis rotation around the y-axis

τxj = −σ̃xj , τyj = σ̃yj , τ zj = −σ̃zj (131)

this maps onto (128) (up to a constant contribution) if we identify γ = J/4 and h = −γ′.

5.2 GL(n2
B + n2

F |2nBnF ) magnets

We now turn to particular graded magnets, where we have n2
B+n2

F bosonic and 2nBnF fermionic
states at a given site of the lattice, where nB,F ∈ N0. A much studied family of integrable models
is given by [52, 55–60]

H =
∑
j

Πj,j+1 +
∑
j

∑
α

λαE
αα
j , (132)

where Πj,j+1 is a graded permutation operator (9) and λα are generalized chemical potentials. The
case nB = nF = 1 gives the EKS model (a.k.a. supersymmetric extended Hubbard model). We
now employ the decomposition 2.1 and choose a tensor product basis for the local Hilbert space
as

|α〉 = |α̃〉 ⊗ |ᾱ〉 , εα = εα̃ + εᾱ , α, ᾱ = 1, . . . , nB + nF , (133)

where α = (nB + nF )(α̃− 1) + ᾱ. The Eαβj ’s can then be expressed as

Eαβj = (−1)
ε
β̃

(εᾱ+εβ̄)
ẽα̃β̃j eᾱβ̄j , (134)

which in turn leads to the following decomposition of the graded permutation operator

Πj,j+1 =

nB+nF∑
α̃,β̃=1

(−1)
ε
β̃ ẽα̃β̃j eβ̃α̃j+1

nB+nF∑
ᾱ,β̄=1

(−1)εβ̄eᾱβ̄j eβ̄ᾱj+1

 . (135)

5.2.1 Associated Lindblad equation

Consider now a Lindblad equation with no Hamiltonian and Hermitian jump operators

Lj =

N∑
ᾱ,β̄=1

(−1)εβ̄eᾱβ̄j eβ̄ᾱj+1 , (136)

Noting that
L†jLj = 1 , (137)

we conclude that the corresponding Liouvillian is

L = γ

L∑
j=1

(Πj,j+1 − 1) . (138)

We can slightly generalize this by following the construction for the GL(N2) case, e.g. we can
add a Hamiltonian

H =

nB+nF∑
ᾱ=1

λᾱ

L∑
j=1

eᾱᾱj . (139)
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5.3 Integrable spin ladder model of Refs [61, 62]

The Hamiltonian of this model can be cast in the form of a two-leg spin ladder [42]

H(J) =
1

4

L∑
j=1

[
(σj .σj+1 + 1) (τj .τj+1 + 1) + J (σj .τj + 1)

+ (σj .τj + 1) (σj+1.τj+1 + 1)− (σj .τj+1 + 1) (τj .σj+1 + 1)
]
. (140)

5.3.1 Associated Lindblad equation

The Hamiltonian (140) is related to a Lindblad equation with no Hamiltonian part and a set of
Hermitian jump operators

Lj = σj · σj+1 + 1 , A
(a)
j =

∑
b,c

εabcσ
b
jσ

c
j+1 , B

(a)
j = σaj + σaj+1 , a = x, y, z. (141)

After a local basis rotation
τaj → τyj τ

a
j τ

y
j , a = x, y, z (142)

and setting the γ parameters to be equal for all jump operator terms we arrive at a Liouvillian

L = 4γH(−4)− 12Lγ. (143)

6 A comment on scaling limits

A standard way of generating integrable QFTs is by taking appropriate scaling limits of integrable
lattice models. A paradigmatic example is the scaling limit of the Hubbard model, which gives
rise to the integrable Yang-Gaudin model. An interesting question is whether we can carry out an
analogous construction for our integrable Liouvillians and arrive at non-unitary integrable QFTs.
The answer seems to be negative. Let us consider a lattice model with Hamiltonian

H0 = −t
∑
j

c†jcj+1 + c†j+1cj − µ
∑
j

c†jcj , (144)

where cj and c†j are annihilation and creation operators of spinless fermions, and jump operators

Lj = nj = c†jcj . (145)

These give rise to a Liouvillian

L = −iH0 + iH̃0 + γ
∑
j

njñj −
1

2
(nj + ñj) , (146)

where H̃0 is of the same form as H0 but written in terms of fermion annihilation and creation
operators c̃j and c̃†j . The sign difference between H̃0 and H0 can be removed by a canonical
transformation

c̃j → c̃j(−1)j . (147)

In analogy of what we do in order to obtain the Yang-Gaudin model from the Hubbard model we
now consider the scaling limit

t→∞ , a0 → 0, ta2
0 fixed. (148)
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In this limit lattice fermion operators are replaced by continuum fields

cj '
√
a0Ψ↑(x) , c̃j '

√
a0Ψ↓(x) , x = ja0. (149)

The Liouvillian becomes

L =
[
i(2t+ µ)− γ

2

] ∫
dx
∑
σ

Ψ†σ(x)Ψσ(x)

+ ita2
0

∫
dx
∑
σ

Ψ†σ(x)∂2
xΨσ(x) + γa0

∫
dxΨ†↑(x)Ψ↑(x)Ψ†↓(x)Ψ↓(x). (150)

A problem now occurs in the first term. If γ were purely imaginary, as is the case for the Hubbard
model, we could tune the chemical potential in such a way to ensure that the prefactor remains
finite in the scaling limit. This would leave us with a Yang-Gaudin model at a finite density, but
with imaginary interaction strength. However, given that γ is real and positive we cannot take
γ →∞, but must keep it finite in order to describe states with finite real parts of their “energies”.
This means that the only scaling limit is trivial as the interaction term disappears. This would
appear to be a more general feature, independent of integrability.

7 Some unsuccessful maps

Most of the integrable ladder models we have considered cannot be associated in a straightforward
way with Lindblad equations. In the following we present some representative examples.

7.1 Perk-Schultz models

As an example we consider the N = 4 Perk-Schultz model [63, 64]

HPS = J
∑
j

[
cosh(η)

∑
α

Eααj Eααj+1 +
∑
α 6=β

Eβαj Eαβj+1 + sgn(α− β) sinh η Eααj Eββj+1

]
. (151)

This can be viewed as a q-deformation of the GL(4) Hamiltonian considered above. Using the
decomposition 2.1 we can rewrite HPS as

HPS = J
∑
j

Pj,j+1 +
cosh(η)− 1

4

(
1 + σzjσ

z
j+1

)(
1 + τ zj τ

z
j+1

)
+
J sinh(η)

4

∑
j

(
σzj+1 − σzj

)(
1 + τ zj τ

z
j+1

)
. (152)

As the spectra of σzj+1 − σzj and 1 + τ zj τ
z
j+1 are different the term in the second line cannot be

related to a jump operator structure in this representation.

7.2 Higher conservation laws

A well-known way of obtaining integrable spin-ladder models is by considering higher conser-
vation laws [40, 65]. In case of the spin-1/2 Heisenberg XXX chain higher conservation laws
H(k+1) can be obtained from the transfer matrix by taking logarithmic derivatives at the “shift
point”. By construction we have [H(k), H(l)] = 0. The Hamiltonian we want to consider here is
H(b) = H(2) + bH(4) + const [65–67], which takes the form

H(b) = 4
L∑
j=1

[
(1− b)Sj · Sj+1 +

b

2
Sj · Sj+2 + 2b (Sj−1 · Sj+1) (Sj · Sj+2)

−2b (Sj−1 · Sj+2) (Sj · Sj+1)
]
. (153)

20



SciPost Physics Submission

This can be viewed as a zig-zag ladder model by associating all even (odd) sites with the first
(second) leg, which gives

H(b) =

L/2∑
j=1

(1− b)σj · [τ j + τ j+1] +
b

2

{
σj · σj+1[τ j · τ j+1 + τ j+1 · τ j+2]

+ σj · σj+1 + τ j · τ j+1 − τ j · σj+1 σj · τ j+1 − σj · τ j+2 σj+1 · τ j+1

}
. (154)

This is asymmetric under leg exchange in a way that precludes a direct relation with a Lindblad
equation.

7.3 Alcaraz-Bariev model

The Alcaraz-Bariev two-parameter families of integrable models [68] come in two classes denoted
by A± and B± respectively. The B± family contains the Hubbard model as a special limit and
this is the only case in which we succeeded in obtaining an interpretation in terms of a Lindblad
equation. We now discuss why such a relation does not seem to exist in general for the A± family
of models. The Hamiltonian of the A± family can be cast in the form

H
(ε)
A =

∑
j

Tj,j+1+T
(1)
j,j+1+T

(2)
j,j+1+gT

(3)
j,j+1+cos θ[Sj,j+1−εT (p)

j,j+1+Vj,j+1−εUj,j+1] , (155)

where g = (1 + ε)(1− sin θ) and

Tj,j+1 = −e21
j e

12
j+1 + ẽ21

j ẽ
12
j+1 + h.c.,

T
(1)
j,j+1 = −(e21

j e
12
j+1 − e12

j e
21
j+1)ẽ22

j (ε sin θ − 1) + (ẽ21
j ẽ

12
j+1 − ẽ12

j ẽ
21
j+1)e22

j (sin θ − 1),

T
(2)
j,j+1 = −(e21

j e
12
j+1 − e12

j e
21
j+1)ẽ22

j+1(sin θ − 1) + (ẽ21
j ẽ

12
j+1 − ẽ12

j ẽ
21
j+1)e22

j+1(ε sin θ − 1),

T
(3)
j,j+1 = −e21

j e
12
j+1ẽ

22
j ẽ

22
j+1 + ẽ21

j ẽ
12
j+1e

22
j e

22
j+1 + h.c.,

Sj,j+1 = e21
j e

12
j+1ẽ

12
j ẽ

21
j+1 + h.c.,

T
(p)
j,j+1 = −e21

j e
12
j+1ẽ

21
j ẽ

12
j+1 + h.c. ,

Vj,j+1 = e−2ηe22
j ẽ

22
j+1 + e2η ẽ22

j e
22
j+1,

Uj,j+1 = e22
j ẽ

22
j + e22

j+1ẽ
22
j+1. (156)

Here we have carried out a unitary transformation

Ueabj U
† = eabj (−1)j(a−b) (157)

on the Hamiltonian given in [68] in anticipation of relating it to a Liouvillian on a Lindblad equa-
tion. We start by noting that we require g = 0 for such an interpretation to be possible. The reason
is that the only way to generate T (3)

j,j+1 is as a “cross-term” in `j`
†
j with

`j = ae21
j e

12
j+1 + be12

j e
21
j+1 + ce22

j e
22
j+1. (158)

However, such jump operators would also generate an unwanted contribution

|c|2e22
j e

22
j+1ẽ

22
j ẽ

22
j+1. (159)

As this cannot be cancelled by introducing additional jump operators and does not feature in H(ε)
A

we conclude that we must have g = 0. Next we turn to the cubic terms T (1)
j,j+1. These must arise

from jump operators of the form

Lj = ae21
j e

12
j+1 + be12

j e
21
j+1 + ce22

j . (160)
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These jump operators give rise to inter-species interactions

LjL
†
j = |a|2e21

j e
12
j+1ẽ

21
j ẽ

12
j+1 + ab∗e21

j e
12
j+1ẽ

12
j ẽ

21
j+1 + a∗be12

j e
21
j+1ẽ

21
j ẽ

12
j+1

+ |b|2e12
j e

21
j+1ẽ

12
j ẽ

21
j+1 + |c|2e22

j ẽ
22
j + c∗(ae21

j e
12
j+1 + be12

j e
21
j+1)ẽ22

j

+ ce22
j (a∗ẽ21

j ẽ
12
j+1 + b∗ẽ12

j ẽ
21
j+1), (161)

and intra-species interactions

L†jLj = |a|2(1− e22
j )e22

j+1 + |b|2e22
j (1− e22

j+1) + |c|2e22
j − a∗ce12

j e
21
j+1 + c∗ae21

j e
12
j+1,

L†jLj = |a|2(1− ẽ22
j )ẽ22

j+1 + |b|2ẽ22
j (1− ẽ22

j+1) + |c|2ẽ22
j − ac∗ẽ12

j ẽ
21
j+1 + ca∗ẽ21

j ẽ
12
j+1.(162)

In order to produce the cubic terms in H(ε)
A we require

a = −b , ac∗ = 1− ε sin θ , ca∗ = sin θ − 1. (163)

Combining these with the requirement that g = 0 leads to

ε = sin θ = 1. (164)

In this case the A± model reduces to free fermions. We have also investigated whether carrying
out a similarity transformation SH(ε)

A S−1 with

S =

L∏
j=1

exp
(
ϕe22

j ẽ
22
j + j

(
ϕ1e

11
j + ϕ2e

22
j + ϕ̃1ẽ

11
j + ϕ̃2ẽ

22
j

) )
(165)

may facilitate a Lindblad interpretation. The answer appears to be negative.

8 Discussion

In this work we have reported our findings for a search for Yang-Baxter integrable Lindblad equa-
tions. We have focused on translationally invariant situations where jump operators act on bonds
or sites of a one dimensional chain. We have derived a superoperator representation for lattice
models with both fermionic and bosonic degrees of freedom, and jump operators which can be
bosonic or fermionic. In this representation the Lindblad equation takes the form of a imaginary
time Schrödinger equation with a non-Hermitian “Hamiltonian” with local density, which can be
thought of in terms of a two-leg ladder model of interacting spins or fermions. We have then
investigated which Yang-Baxter integrable two-leg ladder models can be related to such Lindblad
equations in a “direct” way. Our main result is that a wide class of generalized Hubbard models
can be interpreted as Liouvillians of Lindblad equations. We traced this back to their integrability
structure, which is based on gluing together certain solutions of the Yang-Baxter equation in a par-
ticular way. Some of the corresponding dissipative models are physically meaningful, an example
being the infinite-U Hubbard model subject to on-site dephasing noise. As the jump operators in
this class of models are Hermitian, the completely mixed state is a steady state in all cases. Using
the Bethe Ansatz solution we have shown for a subclass of generalized Hubbard models that the
Liouvillian gap vanishes like L−2 as the thermodynamic limit is approached. The corresponding
eigenstates correspond to particle-like “excitations” with quadratic dispersions, which suggests
that the late-time behaviour in these models is likely to be diffusive.

We have identified a few Yang-Baxter integrable Lindblad equations that are not generalized
Hubbard models by showing that certain known integrable Hamiltonians can be cast in the form
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of Liouvillians associated with a Lindblad equation. However, in most cases we have considered
such mappings are not possible. As this is often difficult to see we have presented a non-trivial
case of such a failure in the Alcaraz-Bariev two-parameter family of integrable models.

We stress that in this work we have focused on a particular “direct” relation between Liou-
villians of Lindblad equations and Hamiltonians of Yang-Baxter integrable models. There are
known cases where it is possible to establish such relationships by means of more complicated
(non-local) maps [29]. Moreover, as we pointed out in section 3.3, one ought to allow for simi-
larity transformations that maintain locality of the Hamiltonian density in integrable models when
trying to establish relations with Lindblad equations. A systematic way of doing this is by consid-
ering invariances of the Yang-Baxter equation, cf. Chapter 12.2.5 of Ref. [41]. For example, given
a solution R(λ, µ) ∈ End(C⊗C) of the Yang-Baxter equation other solutions can be obtained as[

V (µ)⊗ V (λ)
]
R(λ, µ)

[
V −1(λ)⊗ V −1(µ)

]
, (166)

where V (λ) is an invertible n× n matrix. This allows one to introduce additional free parameters
in the resulting Hamiltonian. The latter will generally be non-Hermitian, but this is not a problem
in the present context of Lindblad equations. It would be interesting to pursue this line of enquiry
further and a good starting point will be the models successfully related to Lindblad equations in
this work.

In this we work we focused on identifying integrable Lindblad equations and only briefly ex-
plored using methods of quantum integrability to obtain physical properties. A good starting point
for this is to determine the spectrum of the Liouvillian, which is given in terms of the solutions
of the relevant Bethe Ansatz equations. It is well understood that the nature of solutions to Bethe
Ansatz equations changes quite substantially when a parameter is made complex, as this results
in the “scattering phases” acquiring magnitudes different from unity. In practice this means that
the structure of solutions to the Bethe Ansatz equations, which is usually encoded in appropriate
string hypotheses, must be revisited and typically becomes more involved. Even in the simplest
case of the Hubbard model the structure of Bethe Ansatz roots for Liouvillian eigenstates with
eigenvalues that have large real parts and non-zero imaginary parts appears to be non-trivial. We
plan to report on this issue in a future publication. Ultimately one would like to determine the
dynamics of general Green’s functions

Tr
[
ρ(t)Eα1β1

j1
. . . Eαnβnjn

]
(167)

for evolution from a given initial density matrix ρ(0). In some of the cases discussed above this
is relatively simple because the equations of motion for these Green’s functions decouple and
for two-point functions can thus either be integrated numerically or determined from the exact
Liouvillian eigenstates in the two-particle sector [69]. In cases like the 3-state Maassarani model
a more involved analysis is required and it would be interesting to investigate this case in more
detail.
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A Structure of the Liouvillian for the most general jump operator
acting on a bond

The most general two site bosonic jump operator with nearest-neighbour interactions is

Lj =
∑
αβ

(
λαβE

αβ
j + λ

′
αβE

αβ
j+1

)
+
∑
αβγδ

µαβγδE
αβ
j Eγδj+1 . (168)
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This gives rise to interaction terms between the two legs of the ladder

LjL
†
j = I(2)

j + I(3)
j + I(4)

j , (169)

where I(n)
j involves n Hubbard operators Eαβj , Ẽαβj . The interaction along a single rung of the

ladder is

I(2)
j =

∑
α1β1
α2β2

(
λα1β1λ

∗
α2β2

Eα1β1
j Ẽα2β2

j + λα1β1λ
′∗
α2β2

Eα1β1
j Ẽα2β2

j+1

+ λ
′
α1β1

λ∗α2β2
Eα1β1
j+1 Ẽ

α2β2
j + λ

′
α1β1

λ
′∗
α2β2

Eα1β1
j+1 Ẽ

α2β2
j+1

)
,

(170)

while the three and four point interactions on a given plaquette are given by

I(3)
j =

∑
α1β1γ1δ1
α2β2

µα1β1γ1δ1E
α1β1
j Eγ1δ1

j+1

(
λ∗α2β2

Ẽα2β2
j + λ

′∗
α2β2

Ẽα2β2
j+1

)
+

∑
α1β1

α2β2γ2δ2

µ∗α2β2γ2δ2

(
λα1β1E

α1β1
j + λ

′
α1β1

Eα1β1
j+1

)
Ẽα2β2
j Ẽγ2δ2

j+1 ,

I(4)
j =

∑
α1β1γ1δ1
α2β2γ2δ2

µα1β1γ1δ1µ
∗
α2β2γ2δ2E

α1β1
j Eγ1δ1

j+1 Ẽ
α2β2
j Ẽγ2δ2

j+1 . (171)

There are also interaction terms along the two legs of the ladder

L†jLj =
∑
βγ

[(∑
α

λαβλ
∗
αγ

)
Eγβj +

(∑
α

λ
′
αβλ

′∗
αγ

)
Eγβj+1

]
+
∑
αβγδ

[
fαβγδE

αβ
j Eγδj+1 + h.c.

]
,

L†jLj =
∑
βγ

[(∑
α

λ∗αβλαγ
)
Ẽγβj +

(∑
α

λ
′∗
αβλ

′
αγ

)
Ẽγβj+1

]
+
∑
αβγδ

[
fβαδγẼ

γδ
j+1Ẽ

αβ
j + h.c.

]
,(172)

where

fαβγδ = λ∗βαλ
′
γδ +

∑
η

[
λ∗ηαµηβγδ + λ

′∗
ηγµαβηδ

]
+

1

2

∑
ην

(−1)(εα+εβ)(εη+εγ)µνβηδµ
∗
ναηγ . (173)

References

[1] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Büchler and P. Zoller , Nature Phys. 4, 878
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