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Abstract

Gauge theories possess nonlocal features that, in the presence of boundaries,
inevitably lead to subtleties. In the D + 1 formulation of Yang-Mills theories,
we employ a generalized Helmholtz decomposition rooted in the functional
geometry of the theory’s configuration space to (i) identify the quasilocal ra-
diative and pure-gauge/Coulombic components of the gauge and electric fields,
and to (ii) fully characterize the properties of these components upon gluing
of regions. The analysis is carried out at the level of the symplectic structure
of the theory, i.e. for linear perturbations over arbitrary backgrounds.
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1 Introduction and summary of the results

Physical degrees of freedom in gauge theories cannot be completely localized, since gauge-
invariant quantities have a certain degree of nonlocality; the prototypical example being
a Wilson line.

Here, we will address the problem of defining quasilocal degrees of freedom (quasilocal
dof) in electromagnetism and Yang-Mills (YM) theories. By “quasilocal”, we specifically
mean “confined to a finite and bounded region”, with a certain degree of nonlocality
allowed within the region. To emphasize that specific meaning, we will call such properties
regional.

In electromagnetism, or any Abelian YM theory, although the field strength Fµν =
∂µAν − ∂νAµ provides a local gauge-invariant observable, a canonical formulation unveils
the underlying nonlocality. The components of Fµν (i.e. the electric and magnetic fields)
do not provide gauge-invariant canonical coordinates on field space: in 3 space dimensions,
{Ei(x), Bj(y)} = εijk∂kδ(x, y) is not a canonical Poisson bracket and the presence of the
derivative on the right-hand-side is the first sign of a nonlocal behavior.

From a canonical perspective, the constraint whose Poisson bracket generates gauge
transformations, namely the Gauss constraint, is responsible for the non-local attributes
of gauge theories. The Gauss constraint gives an elliptic equation which must be satisfied
by initial data on a Cauchy surface Σ. In other words, the initial values of the fields cannot
be freely specified throughout Σ. Ultimately, this is the source of both the nonlocality
and the difficulty of identifying freely specifiable initial data—the “true” dof of the theory.
The viewpoint often adopted in the literature is that such nonlocality also prevents the
factorizability of gauge-invariant observables and of physical degrees of freedom across
regions. [1–3]. In this paper, we will clarify these statements, identifying the different
types of non-locality appropriate to different decompositions of the dof.

That is, we will address the definition of YM quasilocal dof in a perturbative setting
around a background configuration. We refer to these perturbative dof as “perturbations”
or, often, as “modes”. These modes are identified with tangent vectors to the YM config-
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uration space over a Cauchy hypersurface Σ. Such tangent vectors are the basic objects
required by the study of symplectic geometry, as encoded in the symplectic form Ω.

Our approach seamlessly adapts to the treatment of bounded regions R ⊂ Σ without
ever requiring any restriction on the dof: not even in the form of boundary conditions
∂R. This feature makes our approach uniquely adaptable to the study of arbitrary fidu-
cial subsystems and boundaries, with foreseen applications in e.g. entanglement entropy
computations. Nonetheless, restrictive boundary conditions (see e.g. [4]) on the physical
content can in principle be incorporated in the formalism by restricting the definition of
the configuration space (but we will not analyze this possibility here; see also [5]).

To be clear, in this paper we do not impose boundary conditions, and—most importantly—
the gauge freedom is never fixed, not even at the boundary. This is a central feature that
fundamentally distinguishes our approach from other standard approaches to gauge the-
ories in regions with either finite or asymptotic boundaries (e.g. [6–9]). Since we also
restrain from introducing any additional dof at the boundary, our approach is more eco-
nomical than the edge-mode approach [10–14]—of which it shares, and explains, various
important features (to be discussed in due time).

This paper has two parts. Each answers one of two related, but distinct, questions. In
the rest of this introduction, we will summarize our result.

1.1 Quasilocal dof

The first question concerns the organization of the regional dof into conjugate symplectic
pairs, on-shell of the Gauss constraint. In particular, we will focus on a split of the dof
into “physical”, or “radiative”, dof associated to the bulk of a region R ⊂ Σ, and more
subtle “Coulombic” dof whose importance lies in a quasilocal contribution to Ω associated
to the boundary of R.

The radiative/Coulombic split descends from a generalized Helmholtz decomposition
applied to the modes of both the electric field and the gauge potential. The decomposition
can be derived from the gauge-theoretic and geometric properties of the configuration space
intrinsic to each region, and it will be non-locally determined within R. The meaning of
this decomposition will be investigated at length in this paper and reviewed at the end of
the introduction.

The radiative dof are freely specifiable within R. Conversely, the Coulombic dof pre-
scribe the (nonlocal) coupling of the fields in R to the physics outside of R; they cannot
be tuned or affected from within R; their existence is due to the gauge nature of YM and
to the ensuing Gauss constraint.

The radiative contribution to Ω is physically intuitive: it features gauge invariant
and (quasi-)locally measurable dof that encode the locally tuneable modes of the electric,
magnetic, and matter fields. In particular, the radiative mode of the gauge potential is
a generalization of the standard notion of a transverse photon: transverse photons are
usually defined for infinite plane waves, but our generalization is also appropriate within
finite and bounded regions. The conjugate to the radiative mode of the gauge potential is
the radiative mode of the electric field, which does not enter the Gauss constraint and is
functionally independent from the (value of the) electric flux f through ∂R. Indeed, the
modes associated to the flux f appear entirely in the Coulombic contribution to Ω.

This Coulombic contribution appears in the symplectic structure by means of an in-
tegration by parts applied to the Gauss constraint, thus the pure-boundary nature of the
Coulombic contribution to Ω.1 This boundary contribution features the electric flux f as

1As for the matter sector of Ω, it can be itself decomposed into a pure-gauge part that feeds into the
Gauss constraint—thus feeding into the Coulombic part of Ω,—and a “radiative” gauge-invariant part.
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the conjugate variable to the pure-gauge mode of the gauge-potential A. The flux f and
the regional charge density due to the matter sector completely determine the Coulom-
bic component of the electric field in R. The pure gauge-mode of the gauge potential
is named $(δA); it is a regional nonlocal function of the perturbation δA throughout R.
The pure-gauge nature of $(δA) makes it non-physical, i.e. non-measurable. Nonetheless,
its conjugate quantity, the electric flux f , is physical but ultimately encodes dof that are
not directly accessible from within R. Indeed, f , as opposed to the regional matter charge
density, precisely summarizes those dof localized beyond the boundary of R that nonlocally
influence the regional physics by means of the Gauss law. We will extensively elaborate
on this point in section 3.3 (see also 3.6.2 and 3.7 for the symplectic significance).

These characteristics of the Coulombic pair mathematically substantiate the intuition
that gauge dof acquire significance in the (relational) coupling between subsystems [15,16].
The distinguished character of gauge dof at boundaries is made apparent through the
physical role of f [15, 16]. (more on this in the second part of the paper).

The characteristics of the Coulombic pair also support the claim that, from the purely
regional perspective of a putative quantum theory of the fields supported in R, the electric
flux f must be superselected [2,17,18]: being pure gauge, its conjugate quantity does not
correspond to any physical observable accessible in the quasilocal theory. In the next
section, 1.2, we will discuss how this picture is modified if knowledge of radiative fields in
both R and its complement is assumed.

It is important to emphasize that, in this first part of the paper, complete ignorance of
the field configuration outside of R is assumed. E.g. the only available information about
the field configuration beyond ∂R is that imprinted on f . This is important, because in the
second part of the paper, we will address the topic of “gluing”, and there the knowledge
of the fields in R and in its complementary regions within Σ will be assumed.

1.2 Gluing the quasilocal dof

Consider a simply connected, boundary-less, Cauchy hypersurface Σ that has been subdi-
vided into two regions,2 R+ and R− such that Σ = R+∪SR−. Each region can individually
be treated according to the precepts of the previous section. Now, we are interested in
their “gluing”. Here, gluing refers to the composition of two regional perturbations sup-
ported on R+ and R− into a global smooth perturbation supported on Σ. Specifically,
we will ask the question: given such a bipartite system Σ, which regional degrees of free-
dom from R+ and R− suffice to reconstruct the global physics? That is, do the radiative
degrees of freedom from both regions R+ and R− suffice to encode all the gauge-invariant
modes in Σ? The answer will be “yes”, and an explicit reconstruction formula will be
provided. This formula prescribes in particular the unique way to reconstruct the re-
gional Coulombic components of the electric field solely from the mismatch of its regional
radiative components at the interface S.

This reconstruction formula is remarkable since it shows that, given full knowledge of
both regional radiatives, regional modes can be glued into a global description unambigu-
ously, and without reference to any further (boundary, Coulombic) dof. The superfluous
status of the Coulombic information in this context is especially surprising because, as
described above, from an intrinsically regional perspective the Coulombic information is
instead an integral piece of information.

The fact that no extra boundary information is needed for gluing YM fields contradicts
previous claims from the literature which took such modes as physically necessary to

2In general terms, the case where the union of R± has a boundary can also be treated similarly by
keeping into account the flux f through S = ∂(R+ ∪S R−). However, the case where S and S intersect at
a “corner” can be subtle. We comment on this below.
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perform the gluing of the regions [2, 18–20] (see e.g. section 2.5 in [10] for an example).
Nonetheless, various features of our approach parallel formal aspects of those works. This
will be discussed in section 3.6. Looser parallels with the BV-BFV formalism [21–23] are
also suggestive, see e.g. section 4.2, but will not be discussed in this publication.

As a simple corollary to our gluing formula, we will show that the global radiative
sector always contains more energy than the disjoint union of its regional counterparts
(the exact converse holding for the Coulombic sector): a conversion, or “promotion”, of
Coulombic to radiative dof takes place upon gluing. This conversion is reflected in the
gluing properties of symplectic potentials: the global symplectic potential differs from the
sum of the regional radiative symplectic potentials by an (involved) term that depends
solely on the mismatch of the regional radiative field components at the interface S. Such
properties can be traced back to the fact that new, global, (and nonlocal) dof are seeded
by the mismatch of the regional radiative field components at the interface S, i.e. by
information which by its very nature is not part of either regional configuration space.

The uniqueness result for the reconstruction of the global Coulombic modes comes
with two physically interesting exceptions. The two exceptions concern: (i) a non-simply-
connected Σ, and (ii) reducible background configurations in the presence of charged
matter.

We start with the first, which is easily understood: global degrees of freedom sup-
ported by the first homology of Σ cannot be regionally detected. That is, if the gluing
produces new noncontractible cycles on Σ that were not present in either region, R±,
then the reconstruction formula is ambiguous; technically, this happens because the re-
construction requires the inversion of an operator with a nontrivial kernel (essentially a
Laplace-Beltrami operator). Physically, this kernel encodes global Aharonov-Bohm phases
associated to the newly produced cycles. The conjugate momenta to these phases are im-
printed in the electric flux, f . As a consequence, in the topologically nontrivial case, f
cannot be fully reconstructed from the knowledge of the regional radiatives, and can ac-
quire a finite number of topologically sourced components. Whereas most of our study
of gluing focuses on the topologically trivial case, Σ ∼= RD, we will nonetheless explicitly
work out the simplest topologically nontrivial example of two intervals glued into a circle.

To understand the second exception, we need to introduce the notions of stabilizers
and charges, which requires a slight detour.

The term “stabilizer” stands for those (infinitesimal) gauge parameters χ that leave
the background field configuration invariant,3 δχA = 0 = δχE. Such χ’s are also called
reducibility parameters or “stabilizers” of the conifiguration (see e.g. [24]), and are the
YM analogue of Killing vector fields in general relativity. Being reducible—i.e. admitting
a nontrivial reducibility parameter—is a gauge-invariant property of a field configuration,
and the number of reducibility parameters is imprinted in the geometrical properties of
field space. Any configuration can have at most dim(G) reducibility parameters, with G
the charge group of the theory in question.

In non-Abelian YM only certain configurations are reducible while in electromagnetism
all configurations admit one and only one reducibility parameter (up to an inconsequential
normalization), χEM = const. To each reducibility parameter is associated a conserved
charge which generalizes the total regional electric charge, Q[χ] =

∫
R Tr(χρ), where ρ

is the Lie(G)-valued charge density of the matter fields.4 Symplectically, these charges
generate a symmetry flow in the matter field sector, ψ 7→ e−tχψ, while leaving the YM

3Even if stabilizers are defined by action on gauge-dependent configurations, χ’s are gauge covariant,
and therefore their existence is still a gauge-invariant notion: if A has stabilizer χ, then Ag will have
Adg−1χ as a stabilizer.

4In the context of enlarged asymptotic symmetry groups [7], the association of charges solely to global
reducibility parameters may appear too strict; a resolution of this puzzle was proposed in [5].
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fields invariant by construction. In the presence of boundaries, the charges Q[χ] stand out
as the only non-vanishing gauge-flow generators of the radiative sector. This is actually
best interpreted as a signature of the physical, i.e. non-gauge, nature of the reducibility
parameters [24–27].

The point of this detour is that the existence of such reducibility parameters also gives
rise to a new ambiguity in the gluing formula since they are in the kernel of the covariant
Laplace operator: each reducibility parameter χ± in either region R± introduces a 1-
parameter ambiguity in the reconstruction of the regional “pure gauge” adjustments for
the YM field entering the gluing formula. However, this ambiguity is consequential to
gluing only in the presence of charged matter. That is, if matter is not present at all, the
glued fields will be insensitive to this particular ambiguity, simply because the χ± leave
the YM fields in R± unaffected. If matter is not present at the gluing interface but does
not vanish in the bulk of the regions, genuine gluing ambiguities arise.

In other words, as a consequence of the stabilizer ambiguity and of the enabling of
regional charges, on symmetric backgrounds with matter there exists a continuum of global
configurations that are regionally indistinguishable but globally distinct in a way that is
detectable by appropriate global observables, e.g. Wilson lines connecting charge particles
across S.

1.3 Configuration space geometry

So far we have summarized the physical content of our results on the characterization of
the quasilocal degrees of freedom in YM. However, this summary would be incomplete if
we did not spell out the significance of the tools used to arrive at these results. We have
mentioned that we make use of a generalized Helmholtz decomposition of the YM modes.
It is important to appreciate that this decomposition is not arbitrarily chosen, but has
deep roots in the gauge-thereotical and metric properties of the geometry of configuration
space [25,26].

To start with, the fields’ gauge orbits fibrate the configuration space A of YM theory,
turning it into a (generalized) infinite dimensional fibre bundle [27–36]. On this bundle
one can introduce a connection form $ ∈ Λ1(A,Lie(G)), i.e. a gauge covariant object
which is a 1-form on A taking value in the Lie algebra Lie(G) of the infinite dimensional
group of gauge transformations G = {g : Σ→ G}.

Physically, the role of this connection is to decompose in a gauge-covariant way the
tangent space TA into “vertical” (or pure-gauge) directions tangent to the gauge orbits,
and “horizontal” (or physical) directions transverse to them. In particular, the connection
acts on vectors in TA as a projector onto their pure-gauge part and, consequently, also ex-
tracts the linearly independent horizontal, or physical, or “gauge-fixed”, part. Interpreting
tangent vectors as field perturbations, we see that the pure-gauge part of a perturbation
δA, denoted above as $(δA), is precisely given by the contraction of the vector δA with
the connection form $. One can thus understand horizontal directions as given by a per-
turbative gauge-fixing, but one which is fully covariant with respect to choices of the base
point and which does not impose any restrictions on the boundary’s physical content.

However, as it is well known, fibre bundles do not carry a canonical connection form,
which means no canonical horizontal/vertical decomposition of TA is given. Therefore, to
uniquely select a connection form on A, more structure is needed beyond its fibration by
gauge orbits. On the configuration space of YM, this extra structure is provided by the
kinematical (super-)metric G [27–34].

The name of this metric comes from the fact that it features in the Lagrangian: it
is implicitly employed in the kinetic term of YM theory when interpreted as the squared
norm of the velocity vector Ȧ ∈ TA understood as the tangent vector to a certain history
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A(t) ⊂ A. This appearance of G in the kinetic term of the Lagrangian also means that
G features in the conversion of velocities into canonical momenta and thus enters the
expression of the (pre)symplectic potential and (pre)symplectic form.

Now, compatibility between the gauge-theoretic (fibration) and metric structures of
A singles out the unique connection form whose horizontal planes are orthogonal to the
fibres [27–34]. In [26], we named this connection form the Singer-DeWitt (SdW) connection
and generalized its definition to the case where A is the space of fields on a region with
boundaries.

It is the SdW connection that provides us—through the corresponding vertical/horizontal
split of TA—the appropriate generalization of the Helmholtz decomposition to non-Abelian
fields and bounded domains; a generalization crucially employed to obtain the results de-
scribed above. In particular, the SdW connection’s origin in the compatibility of the
gauge-theoretic and metric structures of A explains why the associated decomposition is
uniquely suited to address the interplay between the gauge and the symplectic structures
of YM in finite regions.

We emphasize that this abstract construction of a functional connection form on con-
figuration space is more than a curious mathematical superstructure: it is a concrete
computational tool. As it often happens, the geometrization of a problem makes it con-
ceptually clear and thus easier to manipulate, and, ultimately, altogether more treatable.
In the present case, it is a given that the introduction of $ makes the gauge covariance
of the generalized Helmholtz decomposition completely manifest and easy to manipulate.
But it does more than that: it also allows us to streamline and algebraically treat com-
putations which would otherwise require manipulations of nonlocal expressions, Green
functions, and nontrivial boundary conditions.

Lastly, $ elucidates [26] the role that certain geometrical features of field-space (e.g.
its SdW curvature) implicitly played in interesting previous constructions in gauge theory
(e.g. the definition of dressed matter fields and the geometric quantum effective action).
As a justification of these relations, we present in appendix D a novel and independent
construction of $ through the analysis (in the non-Abelian and finite-region setting) of
Dirac’s notion of the dressed electron field.

1.4 Broad roadmap

We devote the beginning of the paper to a review of the geometry of the field space of
YM theory and of the SdW connection, section 2. However, in contrast with our previous
work, which was done in the covariant Euclidean context [25, 26, 37], we specialize our
discussion to configuration space and the D + 1 decomposition. Next, in section 3, we
will discuss in great detail the symplectic geometry of YM theory and show how the SdW
connection is uniquely suited to answer the questions dealt with in this paper. This section
contains our first main result: a full characterization of the quasilocal dof of YM theory
in the presence of boundaries. The second main topic of this paper, gluing, is instead the
subject of section 4. In section 5 we summarize and conclude.

To ease the reading of the paper, we tried to organize the material in such a way that
more conceptual discussions of the results are separated from their technical derivations.

2 Field space geometric preliminaries

2.1 Horizontal splittings in configuration space

To start, we introduce notation and recall some basic facts.
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Figure 1: A pictorial representation of the configuration space A seen as a principal
fibre bundle, on the right. We have highlighted a generic configuration A, its (gauge-
transformed) image under the action of Rg : A 7→ Ag, and its orbit OA ∼= G. We have
also represented the quotient space of ‘gauge-invariant configurations’ A/G. On the left
hand side of the picture, we have “zoomed into” a representation of A and Ag as two
gauge-related local sections of a connection ω on P , the finite dimensional principal fibre
bundle with structural group G over Σ. The principal fibre bundle picture of A will be
partially revisited in section 3.8—see figure 3.

Consider a Lagrangian D+1 formulation of YM theory on a globally hyperbolic space-
time M foliated by equal-time Cauchy surfaces Σt

∼= Σ.
To distinguish issues of global (topological) nature—which we will discard with the

exception of section 4.7—from those associated with finite boundaries—which constitute
our main focus,—we assume Σ ∼= RD. This choice is made for mere convenience and will
play no role in the following where our focus will be on compact subregions R ⊂ Σ.

Denote the corresponding YM configuration space A (see figure figure 1). This is the
space of Lie-algebra valued one-forms on Σ,5

A ∈ A := Λ1(Σ,Lie(G)). (1)

Notice that the component of A in the transverse direction to Σ, A0, is left out of the
description—for now. We will reintroduce it in due time.

The group G is assumed to be compact and semisimple and will be referred to as the
charge group of the theory. In specific applications, we will have G = SU(N) in mind. We
write, A = Aidx

i = Aαi dxiτα, where {τa} is a basis of generators of Lie(G).
The space of gauge transformations G := C∞o (Σ, G) 3 g, i.e. the space of smooth

G-valued functions on Σ, inherits a group structure from G via pointwise multiplication.
Call G the gauge group. The gauge transformation g : Σ→ G acts on the gauge potential’s
configuration A as

Ai 7→ Agi = g−1Aig + g−1∂ig. (2)

This defines an action of G on A. This action induces a fiducial principal fibre bundle
structure on configuration space, π : A → P. The orbits of this action, OA, are called
gauge orbits and their space P ∼= A/G is the space of physical configurations. This is

5Rigorously speaking, dealing with a non-compact Cauchy surface would require us to consider only
fields that vanish fast enough at infinity. However, our focus on compact region will make this restriction
virtually irrelevant in the following. Therefore, we do not concern ourselves with a precise determination
of the fall off rates and hereafter neglect them completely. For an application of our formalism where
asymptotic conditions at null infinity are carefully treated, see [5].
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the “true”, or “reduced”, or “gauge invariant”, configuration space of the theory, but it is
only defined abstractly through an equivalence relation, and is most often inaccessible for
practical purposes.

An infinitesimal gauge transformation ξ ∈ Lie(G) defines a vector field tangent to the
gauge orbits. This is denoted by ξ] ∈ TA, and its value at A is

ξ]A =

∫
Σ

dDx (Diξ)
α(x)

δ

δAαi (x)
∈ TAA, (3)

where Diξ := ∂iξ + [Ai, ξ] is the gauge-covariant derivative. The span of the ξ]’s defines
the vertical subspace of TA, i.e. V := Span(ξ]) ⊂ TA. V comprises the “pure gauge
directions” in A: vertical changes are “pure gauge” and carry no physical information.

The “physical” directions in TA are therefore those transverse to V , i.e. the horizontal
directions H ⊂ TA. The decomposition TA = V ⊕ H is not canonically defined by the
fibre bundle structure. The choice of any such decomposition that is compatible with the
gauge structure of A is in one-to-one correspondence with the choice of a connection form
$ on the bundle π : A → P, and vice-versa.

A connection form $ is a (functional) 1-form on A valued in the Lie algebra of the
gauge group,

$ ∈ Λ1(A,Lie(G)), (4)

characterized by the following two properties (see [26,38]):{
iξ]$ = ξ,

Lξ]$ = [$, ξ] + dξ.
(5)

Hereafter, double-struck symbols refer to geometrical objects and operations in configura-
tion space: d is the (formal) field-space de Rham differential,6 i is the inclusion operator
of field-space vectors into field-space forms, and LX is the field-space Lie derivative along
the vector field X ∈ X1(A). Its action on field-space forms is given by Cartan’s formula,
LX = iXd + diX.

The first of the properties (5), the projection property, means that $ defines a hori-
zontal complement H to the fixed vertical space V , via

H := ker$. (6)

The second of the properties (5) ensures the compatibility of the above definition with
the group action of G on A, i.e. it embodies covariance under gauge transformations. See
figure 2 for a pictorial representation.

The term dξ on the right hand side of the covariance condition is only present if ξ is
chosen differently at different points of A, i.e. if ξ is an infinitesimal field-dependent gauge
transformation.7 Geometrically, the field-dependent gauge transformations correspond to
generic vertical vector fields on A, generalizing the rigid vertical elements corresponding to
the action of the (field-independent) Lie algebra. Therefore, this generalization does not
require any extra geometrical information. Nonetheless, it provides a refined diagnostic
tool in the presence of boundaries (in their absence, generalizing to field-dependent gauge
transformations changes nothing). More on this point in section 3.7.

6We prefer this notation to the more common δ, because the latter is often used to indicate vectors as
well as forms, hence creating possible confusions.

7The form of this equation can be deduced from the standard transformation property, Lξ]$ = [$, ξ],
for ξ’s constant throughout A (i.e. for ξ’s that are field independent) and the projection property of $
which holds pointwise in field-space. See [26].
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Figure 2: A pictorial representation of the split of TAA into a vertical subspace VA spanned
by {ξ]A, ξ ∈ Lie(G)} and its horizontal complement HA defined as the kernel at A of a
functional connection $. With dotted lines, we represent a different choice of horizontal
complement associated to a different choice of $.

Given a connection form characterized by (5), alongside d we can introduce the hor-
izontal differential, dH [25, 26, 37]. Horizontal differentials are by definition transverse to
the vertical, pure gauge, directions: iξ]dHA = 0.

Horizontal differentials can be loosely understood as “$-covariant” differentials on field
space. E.g. the horizontal differentials of Ai is

dHAi = dAi −Di$. (7)

The covariance property of this horizontal differential under any (possibly field-dependent)
gauge transformation is easy to show; it reads

Lξ]dHAi = [ξ, dHAi]. (8)

For details and generalizations to differentials of equivariant field-space forms of general
degree, see [37].

We conclude this section by introducing for future reference the curvature F of a
functional connection $ [26, 29]:

F := dH$ ≡ d$ + 1
2 [$ f, $] ∈ Λ2(A,Lie(G)). (9)

The curly wedge f denotes the wedge product in Λ•(A), where • stands in for arbitrary
degrees. By definition, F is purely horizontal, i.e. iξ]F ≡ 0.

2.2 Horizontality and the electric field

In this section we introduce the electric field into the picture.
In temporal gauge (A0 ≡ 0) the electric field is nothing more than the velocity8 of A,

Ei = Ȧi. Now, Ȧi is geometrically best understood as the tangent vector Ȧ ∈ TA to a

8More generally, Ei := nµFµi, where nµ is the unit timelike normal to Σ. The appearance of nµ

forces us to consider the extrinsic geometry of our foliation, i.e. how Σ is embedded in spacetime. Unless
stated otherwiese, all our formulae we will hold when Σ belongs to an Eulerian foliation of spacetime, i.e.
to a foliation whose lapse is equal to one and whose shift vanishes. In other words, Σ is an equal-time
hypersurface in a spacetime with metric ds2 = −dt2+gij(t, x)dxidxj . The inclusion of nontrivial lapse and
shift is in principle straightforward, but makes some formulae more cluttered, and most likely wouldn’t add
much to our considerations here. However, we point the reader to [5] for a situation where the introduction
of a nontrivial shift plays a crucial role in dealing with asymptotic gauge transformations and charges.
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curve (history) A(t) ⊂ A, i.e.

ȦA :=

∫
Σ

dDx Ȧαi (x)
δ

δAαi (x)
∈ TAA. (10)

Irrespectively of temporal gauge, we thus associate Ei to a configuration-space vector

E :=

∫
Σ

dDxEαi (x)
δ

δAαi (x)
∈ TA (11)

We will now study the properties of E in relation to a choice of horizontal/vertical split
of TA. We start by proving a simple lemma that follows from the fact that the field-space
scalar coordinate functions Ei must transform covariantly, i.e. Lξ]Ei ≡ ξ](Ei) = [Ei, ξ].

The lemma states that the vector field E is constant along the flow of ξ] if ξ is field
independent, and otherwise changes along that flow by the vertical vector field9 (E(−ξ))].
Here is the proof:

Lξ]E ≡ Jξ],EKTA =

∫ (
ξ](Ei)− E(∂iξ − [Ai, ξ])

) δ

δA

=

∫ (
[Ei, ξ]− [Ei, ξ]−DiE(ξ)

) δ

δA
= −(E(ξ))], (12)

with J·, ·KTA the Lie-bracket between configuration-space vectors. We will use this lemma
in a moment.

In the last section, we saw that any vector on TA is decomposed by$ into its horizontal
and vertical components. In the case of E, we denote its vertical component as:10

ϕ := $(E) ∈ Lie(G). (13)

The leftover horizontal component of E can be written as the horizontal projection of any
Ȧ associated to Ei. That is, in coordinates, if Ei = Ȧi + DiA0, then:

E := ȦH + ϕ], (14)

for

ȦH := Ȧ−$](Ȧ) =

∫
Σ

dDx
(
Ȧαi −Di$

α(Ȧ)
)

︸ ︷︷ ︸
=: ȦHi

δ

δAαi
. (15)

These formulae identify ϕ = $(Ȧ)−A0.
Now, thanks to the lemma (12) and the defining properties of$ given in (5), it is easy to

see that ϕ := $(E) transforms in the adjoint representation under a gauge transformation
ξ:

δξϕ ≡ Lξ]ϕ = [ϕ, ξ]. (16)

Indeed,

Lξ]ϕ = Lξ]$(E) =
(

[$, ξ]+dξ
)

(E)+$(Jξ],EK) =
(

[ϕ, ξ]+E(ξ)
)
−$(E(ξ)]) = [ϕ, ξ], (17)

It follows from (14) and (12) that ȦHi also transforms in the adjoint representation,

δξȦ
H
i ≡ Lξ]Ȧ

H
i = [ȦHi , ξ], (18)

9Here, and in the following, X(f) =
∫
Xi

δf
δAi

, for any function f on A and any a vector field X in TA.
10Here, and in the following, $(X) ≡ (iX$) and $](X) ≡ (iX$)] for any X ∈ TA.

11
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which can also be seen as a consequence of $(Ȧ) having the same transformation properties
of A0, i.e.

δξ$(Ȧ) ≡ Lξ]$(Ȧ) = ξ̇ + [$(Ȧ), ξ]. (19)

This concludes the derivation of the transformation properties of E and its components.
In our framework, it is actually possible to reverse-engineer the transformation proper-

ties of Ei from those of ϕ and Ai. By using only the defining properties of $ and techniques
similar to those employed in the proof of (12), it is possible to explicitly prove the trans-
formation property (19), independently of any of the above considerations (see appendix
A). Then, from (19) and the postulated covariance of ϕ, we find that Ei = ȦHi − Diϕ
transforms covariantly and can be recast in its usual form Ei = Ȧi + DiA0 as soon as A0

is identified with the combination

A0 = −ϕ+$(Ȧ). (20)

Note that, thanks to the geometrical nature of our constructions, these statements hold
for field-dependent gauge transformations (dξ 6= 0) as well—see appendix A.

Summarizing, we start from the configuration space A = Λ1(Σ,Lie(G)) and define its
tangent bundle π : Φ→ A,

Φ := TA, (21)

which we coordinitize with (A,E). We identify unphysical directions with vertical direc-
tions in TΦ, which, at the base point (A,E), take the form (Dξ, [E, ξ]).

On TΦ, vertical vectors are along pure-gauge directions, whereas horizontal vectors
with respect to the pulled-back connection form π∗$ are along physical directions, encod-
ing a variation between neighbouring gauge orbits. Notice that now the identification of
pure-gauge with verticality is done in TΦ = T(TA), i.e. the phase space that is the arena
for symplectic geometry.11

In other words, Φ also has a fibre bundle structure, and the pullback π∗$ defines a
connection form12 on it. This pulled-back connection allows us to define the horizontal
differential of E:

dHE = dE − [E, π∗$] ∈ Λ1(Φ) (22)

However, using $, we can also further decompose E =
∫
E δ
δA ∈ Φ as an element of

the phase space Φ = TA into its horizontal and vertical components, ȦH and ϕ] respec-
tively. Since this decomposition happens in Φ, and not TΦ, it has to be understood as
a generalized Helmholtz decomposition into the gradient-free and pure-gradient compo-
nents of E, rather than as a gauge versus physical split. Indeed, in electromagnetism,
both components of E are equally physical.

Now, this decomposition of E induces a finer decomposition of the coordinates of Φ:

(Ai, Ȧ
H
i , ϕ) ∈ Φ. (23)

11 The natural arena for the symplectic geometry of finite dimensional systems is the cotangent bundle
of configuration space. Here, we will formally work in the tangent bundle of configuration space equipped
with a supermetric that allows the translation of velocities (tangent vector) into momenta (cotangent
vectors). I.e. we will work with the pullback of the canonical symplectic structure by the supermetric seen
as a map from the tangent to the cotangent of configuration space. This treatment is standard in any
second-order Lagrangian theory and will be elaborated on in section 3.2.

12This statement is true generically : i.e.: in an everywhere dense set (according to the standard Inverse
Limit Hilbert (ILH) manifold metric structure on field-space [35, 36], see also [39]) on Φ. But it fails at
some specific configurations that we will analyze in section 3.8. Until then, these exceptions will be ignored.
But on this topic we should also point out that being generic is here a kinematical statement: dynamics
might still favor topologically meagre sets.

12
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With this coordinatization of Φ, gauge transformations read
Ai 7→ g−1Aig + g−1∂ig

ȦHi 7→ g−1ȦHi g

ϕ 7→ g−1ϕg

or, infintesimally,


Ai 7→ Ai + Diξ

ȦHi 7→ ȦHi + [ȦHi , ξ]

ϕ 7→ ϕ+ [ϕ, ξ]

(24)

The infinitesimal transformations of (24) give us the vertical, pure-gauge, directions of
TΦ in the new coordinates: i.e. at the base point (Ai, Ȧ

H
i , ϕ) they are of the form

(Diξ, [Ȧ
H
i , ξ], [ϕ, ξ]).

Let us emphasize once again that the identification of “vertical” with “unphysical” does
not apply to the above coordinate-decomposition of E: E is seen as a point of the phase
space Φ and does not constitute a direction in TΦ; only these directions get decomposed
into their physical and pure-gauge components by the pulled-back connection π∗$. In
particular, both ȦHi and ϕ encode physical information. Indeed, it is one of the goals
of this first part of the paper to provide a definite physical significance to these two
components. This goal will be accomplished in the next section, following the introduction
of a particular choice of connection form according to which the horizontal/vertical splits
are performed.

In the following, we will commit an abuse of notation and denote the pullback connec-
tion form on Φ simply by $.

We conclude with one important remark: all the constructions of this section can be
performed at the quasilocal level, by formally replacing Σ with any compact subregion R,
with ∂R 6= ∅.

Since our interest lies mostly in bounded regions, we now transition our discussion to
focus mostly on such subregions, R. As announced in the introduction, motivated by the
study of fiducial subregions of Σ, we will assume no boundary condition at ∂R, not even
in the allowed gauge freedom.

3 Quasilocal degrees of freedom

3.1 The symplectic potential

The Lagrangian L = K − V of (D + 1)-dimensional YM on Σ× I has kinetic term13

K = 1
2

∫
Σ

dDx
√
g gijTr(EiEj). (25)

and potential (Fij = 2∂[iAj] + [Ai, Aj ])

V = 1
4

∫
Σ

dDx
√
g gii

′
gjj
′
Tr(FijFi′j′). (26)

Variation of the YM action S =
∫

dtL, gives

δS =

∫
I

dt

∫
Σ

dDx
√
gTr

(
gij(DkFik −DtEi)δAj + (DiEi)δA0

)
+ ∂tTr

(
ϑ(δA)

)
, (27)

where we recognize the YM equations of motion, the Gauss law, as well as the evaluation
of the (pre)symplectic density on Σ, that is ϑ =

√
ggijTr(EidAj)—here understood as

a functional 1-form,—on the perturbation δA (here understood as a functional vector).

13The trace is normalized so that Tr(τατβ) = δαβ in the fundamental representation W of G.
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The symplectic density ϑ encodes the gauge-variant dof of YM theory at each point of
Σ. Since we are interested in the quasilocal properties of the YM dof, we will henceforth
focus on the integral of ϑ throughout a region R ⊂ Σ. This integral gives us θ =

∫
R ϑ, the

symplectic-potential 1-form on Φ (the phase-space of YM theory on R):14

θ =

∫
R

dDx
√
g gijTr(EidAj) ∈ Λ1(Φ). (28)

As any 1-form on Φ, θ can be decomposed into its horizontal and vertical components
[25,26,37]:

θ = θH + θV with


θH :=

∫
√
g gijTr(EidHAj)

θV :=

∫
√
g gijTr(EiDj$)

(29)

Now, it is natural to ask which components of the horizontal/vertical split E = ȦH + Dϕ
enter θH and θV respectively.

3.2 Kinetic supermetric and the Singer-DeWitt connection

To clarify this question, we turn to the interpretation of E as a vector field on the con-
figuration space A. This interpretation prompts us to write the kinetic term K as the
squared norm of E,

K = 1
2G(E,E), (30)

with respect to the kinetic supermetric G on A defined by

G(X,Y) :=

∫
R

dDx
√
g gijTr(XiYj) ∀X,Y ∈ TA. (31)

With this notation, and interpreting the kinetic supermetric as a map G : Φ = TA → T∗A,
the symplectic potential reads15

θ = G(E) ≡ G(E, dA), (32)

with the following expressions for its horizontal and vertical components as a one-form in
T∗A:

θH = G(E, dHA) and θV = G(E, $]). (33)

Hence, using the horizontal/vertical (coordinate-)split of E,

θH = G(ȦH + ϕ], dHA) and θV = G(ȦH + ϕ], $]). (34)

Note that the “horizontal coordinates” are not paired solely with the horizontal one-forms,
and mutatis mutandis for the vertical parts. However, fixing the choice of connection form
$ by demanding its compatibility with the metric structure of A (i.e. with G) indeed
leads to a complete factorization of θ into parts featuring only the horizontal or vertical

14There are total derivative ambiguities in the definition of θ from the Lagrangian of the theory. Our
choice here is made such that Lξ]θ = 0 for field-independent ξ (valid for invariant Lagrangian densities).
See [26, eq. 6.3] for more on this choice. And also [23] for a more general treatment in the BV-BFV
formalism.

15 The last expression of (32) has been introduced for notational convenience, even if geometrically
imprecise. But the meaning is intuitively clear: θ(X) ≡ iXG(E) ≡ G(E,X) for any X ∈ TA. We also notice

that iX(dHA) = Ĥ(X) and (iX$)] = V̂ (X) where Ĥ and V̂ are the horizontal and vertical projections
respectively. The notation (32) will be especially convenient when the one-form basis will be restricted to
the horizontal space, as in (33).

14
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data respectively. This compatibility amounts to demanding that the horizontal spaces
with respect to $ are G-orthogonal to the gauge fibres of A. This condition completely
fixes $ and ensures its projection property (the first equation of (5)); its gauge covariance
(the second of (5)) is also guaranteed as long as the supermetric is gauge invariant in
the sense that16 Lξ]G = 0 [26, 27]. We named the unique connection ensuing from these
requirements, the Singer-DeWitt (SdW) connection $SdW [26].

In formulae, the SdW connection is defined by the following condition:

G
(

X−$]
SdW(X) , ξ]

)
!

= 0 ∀X ∈ TA, ∀ξ ∈ Lie(G). (35)

In a compact region R, ∂R 6= ∅, it is easy to see17 that this is equivalent to defining $SdW

through the following elliptic boundary value problem [25,26] (·s denotes the contraction
with the outgoing normal si at ∂R){

D2$SdW = DidAi in R,

Ds$SdW = dAs at ∂R.
(36)

In electromagnetism, this boundary value problem is of the Neumann type, while in non-
Abelian YM theories it is of a specific Robin type fixed by the background configuration
A ∈ A.

Let us reiterate this point: the above boundary value problem involves boundary condi-
tions for $SdW, but not for the gauge potential Ai nor for its perturbations. The boundary
conditions on $SdW ensure that the connection in a region R—and the corresponding hor-
izontal projections—are uniquely defined; they do not pose any restrictions on the fields
nor on the gauge parameters that we allow, neither in R nor at ∂R.

As a consequence of the bulk and boundary properties of$SdW, SdW-horizontal pertur-
bations, i.e. those in the kernel of $SdW, do satisfy specific bulk and boundary properties:
they are covariantly divergenceless in the bulk and vanish when contracted with si at the
boundary.

From this observation, it follows that the SdW-horizontal perturbations of the gauge
potential, δA = h, are (covariantly) transverse photons (gluons, resp.), with vanishing
normal-component to the boundary ∂R:

h =

∫
h
δ

δA
is SdW-horizontal iff

{
Dihi = 0 in R,

hs = 0 at ∂R.
(37)

As a side note to this formula, we add the following comment: at the level of the space
of gauge potential A (not Φ), the surprising fact about (37) interpreted as a perturba-
tive gauge-fixing in a bounded region, is that it encompasses all the physical content of
perturbations over that region: although the boundary conditions might seem restrictive,
a completely general perturbation X ∈ TA, with any other boundary condition can be
generated from a h of (37) with the aid of a unique infinitesimal gauge transformation
(up to stabilizers). This is only possible because we do not restrict gauge freedom at the
boundary, and it means that the horizontal projection is a complete and viable gauge
fixing for the perturbation around A ∈ A.

16A weaker condition is in fact sufficient, see [26].
17 Asking that 0 = G

(
X − $]

SdW(X) , ξ]
)

=
∫ √

g gijTr
((
Xi − Di$(X)

)
Djξ

)
holds for all ξ ’s and X

gives condition (36) after an integration by parts.

15
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The curvature of the SdW-connection, obtained from (9), satisfies the following bound-
ary value problem (see [29], and especially18 [26]):{

D2FSdW = gij [d⊥Ai f, d⊥Aj ] in R,

DsFSdW = 0 at ∂R,
(38)

where here and in the following we will use the sub- (or super-)script ·⊥ instead of ·H to
denote horizontality with respect to $SdW. Notice that FSdW ≡ 0 in the Abelian case.

We conclude this section by pointing the reader to an independent argument for the
derivation of $SdW that is based on generalizing Dirac’s dressing of the electron to the
regional (non-Abelian) context. This is discussed in appendix D.

3.3 SdW-horizontality and the Gauss constraint

The SdW horizontal condition (37) applies also to the SdW-horizontal component Ȧ⊥ of
the electric field vector E,

Ȧ⊥ := Ȧ−$]
SdW(Ȧ) =

∫ (
Ȧ−D$SdW(Ȧ)

)
︸ ︷︷ ︸

=: Ȧ⊥

δ

δA
, (39)

that is {
DiȦ⊥i = 0 in R,

A⊥s = 0 at ∂R.
(40)

Notice that this means that Ȧ⊥i drops from the Gauss constraint DiEi ≈ 0.
Indeed, the burden of satisfying the Gauss constraint is fully entrusted to the SdW-

vertical component of E, i.e. ϕSdW. This is readily seen when writing the boundary value
problem defining ϕSdW: contracting19 E with equation (36), one gets{

D2ϕSdW = DiEi ≈ 0 in R,

DsϕSdW = Es at ∂R.
(41)

We will come back to this equation in a moment, after having introduced charged
matter to the picture. This will allow us to include sources in the Gauss constraint.

For definiteness, we consider Dirac fermions valued in the fundamental representation
W of the gauge group G = SU(N),

ψB,b ∈ C∞(Σ,C4 ⊗W ). (42)

These transform under the action of a gauge transformation g ∈ G as

ψ 7→ g−1ψ. (43)

18In [26, eq. 5.6], the differential equation for FSdW is found in the context without boundary. To find
the boundary condition used in (38), we note that, in [26] to obtain equation 5.6, one uses equations 5.4
and 5.5. The first requires no integration by parts, contrary to the second, which yields an extra boundary
term:

∮ √
hTr(ξsiDiF). Hence, from the arbitrariness of ξ at the boundary, we deduce the boundary

condition of (38). In [26], the significance of FSdW for the non-Abelian theory is extensively discussed
in relation to: (i) the obstruction to extend the dressing of matter fields à la Dirac (see e.g. [40–43]) to
the non-Abelian setting [44]; (ii) the Gribov problem [28, 45]; and (iii) the Vilkovisky-DeWitt geometric
effective action [27,46–50]. See also appendix D.

19Recall, iE$ ≡ $(E) = ϕ and iEdAi = Ei.
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The fermions ψ carry a Lie(G)-current density

Jµ = (ρ, J i) with Jµα = ψγµταψ (44)

where (γµ)B
′
B are the Dirac matrices,20 (τα)b

′
b is an anti-Hermitian generator of G in the

fundamental representation W , and ψ = iψ†γ0.
The complete Lagrangian is then given by

L = 1
e2
LYM + LDirac with LDirac = −

∫
dDx
√
g ψγµDµψ (45)

where LYM is the (renamed) Lagrangian defined in section 3.1, and Dµψ := ∂µψ + Aµψ.
The unit charge e will be henceforth set to e ≡ 1. From L, one deduces the following
equations of motion: γµDµψ = 0 and its conjugate, (DkFik − Ėi) = Ji and the Gauss
constraint

DiEi ≈ ρ. (46)

Turning back to the equation defining ϕSdW, we can finally set it in its definitive form
on-shell of the Gauss constraint (≈){

D2ϕSdW = DiEi ≈ ρ in R,

DsϕSdW = f at ∂R.
(47)

where we defined the local electric flux through the boundary

f := Es at ∂R. (48)

Thus, we recognize ϕSdW to be the Coulombic component of E in R, i.e. the component
of E sourced by the charged matter density. In a bounded region, the source equation
would not be enough to fully determine ϕSdW. That is why this equation appears here
complemented by the information encoded in the electric flux f through ∂R. This can be
seen as summarizing the Coulombic, nonlocal, influence of the charges beyond ∂R on the
fields in R.21

In particular, note that from within R it is actually impossible to compute the part of f
that is ultimately sourced by the charges contained in R: to actually compute the regional
charges’ contribution to f , one would require knowledge of the global Green’s function
of the Laplace operator on the whole Σ, a knowledge that is not available from within
R. Moreover, away from reducible backgrounds22, it is always possible to add a charged
particle in the bulk without altering in any way f at the boundary through the choice of
Green’s functions with appropriate boundary conditions. In other words, from a regional
perspective, f is an integral part of the definition of the Laplace equation which defines
the Coulombic potential from the charge density. The flux f and the charge density ρ
constitute fully23 independent data (see also appendix D).

For these reasons, we will refer to ϕSdW as the Coulombic component of the electric
field, and to Ȧ⊥ as its radiative component.

20For a metric gij on Σ, the commutator is {γµ, γν} = 2gµν = 2diag(−1, gij), i.e. γµ := eµI γ
I for γI

the flat-space Dirac matrices and eµI a local inertial frame, gµνe
µ
I e
ν
J = ηIJ . See footnote 8. We adopt

the following conventions for the γI : γ0 = −i
(
0 1
1 0

)
, γj = −i

(
0 σj

−σj 0

)
with σj the Hermitian Pauli

matrices.
21In D=3, it is easy to see that f = Es does not encode any incoming/outgoing radiation through ∂R,

since Es does not feature in the normal component through ∂R of the Poynting vector.
22Cf. section 3.8.1 and comments on section 1.2 for the meaning of a ‘reducible’ background.
23Even at reducible background configurations, the region’s charge content only imposes a small finite

number of boundary-global constraints on f .
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Finally, since from this point onwards all our considerations will concern the SdW
connection and related objects, we will hereafter drop the redundant “SdW” subscript:

$SdW  $, ϕSdW  ϕ, and FSdW  F. (49)

3.4 SdW decomposition of the symplectic potential

At this point, we are simply left with the task of applying the results obtained so far to
the symplectic potential and form, thus unveiling the intimate relationship between the
field-space geometry, the Gauss law, and the gauge nature of the YM dof.

To start with, we revisit the construction of section 3.1 to the case with charged matter
field. From (45), we find

θ = θYM + θDirac with θDirac = −
∫

dDx
√
g ψγ0dψ ∈ Λ1(Φ′) (50)

where Φ′ is now the field space with matter

Φ′ = Φ× {(ψ,ψ)}. (51)

This also has a fibre bundle structure and $ can be pulled-back onto it, where it is still a
valid connection form.24 We thus define the SdW-horizontal differentials

d⊥ψ := dψ +$ψ and d⊥ψ := dψ − ψ$, (52)

with (we recall) the subscript ·⊥ evoking “orthogonality” to the vertical directions (with
respect to G). In (52), actions in the fundamental representation and its transpose are
assumed (in our conventions, (τα)b

′
b ∈W ⊗W † is antihermitian and therefore the Lie(G)-

valued connection form satisfies $† = −$). By construction, the horizontal differentials
satisfy Lξ]d⊥ψ = −ξd⊥ψ. As discussed in appendix D (see also section 9 of [26]), in
a perturbative setting, the SdW-horizontal modes of ψ can be understood in terms of a
generalized Dirac dressing of electrons in two ways: to non-Abelian theories and to finitely
bounded domains.25

We are now in the position to spell out the detailed form of the SdW-horizontal and
SdW-vertical components of the symplectic potential θ. However, to emphasize the geo-
metrical aspects of our construction, let us start without matter. Then, specializing the
decomposition θYM = θHYM + θVYM of (34) to the SdW choice of $, we obtain

θ⊥YM = G(Ȧ⊥, d⊥A) and θVYM = G(ϕ], $]), (53)

where we used the metric-compatibility properties of the SdW-connection to set G(Ȧ⊥, $]) ≡
0 ≡ G(ϕ], d⊥A)—see equation (40).

Including matter, and spelling out the various contributions, on-shell of the Gauss
constraint (47), we obtain (θ = θ⊥ + θV , θ⊥ ≡ θ⊥YM + θ⊥Dirac)

θ⊥YM =

∫
R

dDx
√
g gijTr(Ȧ⊥i d⊥Aj),

θ⊥Dirac = −
∫
R

dDx
√
g ψγ0d⊥ψ,

θV ≈
∮
∂R

dD−1x
√
hTr(f $),

(54)

24In [26] we named this fact the “corotation principle”, meaning that a gauge transformation must act
on every field at the same time and can therefore be detected by assessing just the transformation of A
(which is arguably the most “sensitive” to the action of gauge transformations). See [26, Section 5].

25Cf. also footnote 18 for the role of the SdW-curvature FSdW in obstructing a non-perturbative definition
of the dressed quark as opposed to the dressed electron.
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where h = ι∗∂Rg is the induced metric on ∂R. Note that the vertical contribution to θDirac

is θVDirac =
∫ √

gTr(ρ$), which therefore just plays into the Gauss constraint and the
associated integration by parts.

3.5 SdW decomposition of the symplectic form

We now turn our attention to the symplectic form and its interplay with the SdW-
decomposition.

The symplectic form is defined as

Ω = dθ ∈ Λ2(Φ). (55)

In [26] it was shown that generally, and therefore a fortiori in relation to the SdW con-
nection, the horizontal part θ⊥ of θ gives

Ω⊥ := d⊥θ
⊥ = dθ⊥, (56)

and that Ω⊥ differs from Ω by the term Ω∂ = dθV which, on-shell of the Gauss constraint
has support on the boundary only (i.e. is “pure boundary”):

Ω = Ω⊥ + Ω∂ . (57)

As proved in appendix B, Ω is given by (Ω⊥ ≡ Ω⊥Dirac + Ω⊥YM ≡ dθ⊥Dirac + dθ⊥YM)

Ω⊥Dirac = −
∫
√
g
(

d⊥ψ f γ
0d⊥ψ − Tr(ρF)

)
Ω⊥YM =

∫
√
g gijTr

(
d⊥Ȧ

⊥
i f d⊥Aj

)
Ω∂ ≈

∮ √
hTr

(
d⊥f f$ + f F

) (58)

where the SdW curvature F was defined in (9) and (38), and the horizontal differentials
d⊥A and d⊥ψ were established in (7) and (52). Instead, the horizontal differential of d⊥Ȧ⊥i
is equal to dȦ⊥i − [Ȧ⊥i , $] as follows from (18) (cf. (22)).

Observe that the SdW curvature F is a functional on the horizontal radiative modes
d⊥A (see (38)). This prevents Ω⊥Dirac = dθ⊥Dirac and Ω∂ = dθV to be a symplectic forms of
only the matter and Coulombic modes, respectively.26 The role of the terms containing
the SdW curvature is to ensure that Ω⊥Dirac, Ω⊥YM, and Ω∂ are all d-closed and d-exact, i.e.
that they descend from a symplectic potential.27

Nonetheless, it is convenient to separate the matter, radiative, and Coulombic contri-
butions more neatly; thus we introduce a second decomposition:

Ω ≈ ΞDirac + Ξrad + ΞCoul, (59a)

where 

ΞDirac := −
∫
√
g
(

d⊥ψ f γ
0d⊥ψ

)
,

Ξrad :=

∫
√
g gijTr

(
d⊥Ȧ

⊥
i f d⊥Aj − ρF

)
+

∮ √
hTr

(
f F
)
,

ΞCoul :=

∮ √
h
(

d⊥f f$
)
,

(59b)

26However, recall that FAbelian ≡ 0 in the Abelian case.
27On Φ, an n-form Θ(n) ∈ Λn(Φ) is closed if and only if it is exact, Θ(n) = dΘ(n−1).
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As a bonus, the purely radiative component Ξrad can be rewritten in the following more
suggestive (and also manifestly gauge-invariant) form

Ξrad ≈
∫
√
g gijTr

(
( D

dtd⊥Ai)f d⊥Aj
)
. (60)

where D
dt is the gauge covariant time derivative. To get to this last formula, ∂tgij = 0 in

R was assumed—see appendix C for a proof.

A quick translation into common notation

To conclude, we provide a quick bridge to a more common notation (e.g. [51] or [52]). Let
X1,2 =

∫
(Xα

i )1,2
δ

δAαi
be two tangent vectors on configuration space. In interpreting them as

two infinitesimal variations, we denote their components with the more common notation
(Xα

i )1,2 ≡ δ1,2A
α
i . Then, the SdW decomposition of δ1,2A is given by the generalized

Helmholtz decomposition
δ1,2Ai = (h1,2)i + Diη1,2 (61)

where Di(h1,2)i = 0 in R and (h1,2)s = 0 at ∂R (see (37)) is the horizontal part of δ1,2A
and λ1,2 its vertical part.

On-shell of the Gauss constraint and in vacuum, to obtain a complete basis of variations
in Φ (rather than just A), we define the field space vectors

δ1,2 := (δ1,2A, δ1,2E) = (h1,2, η1,2,
d
dth1,2, δ1,2f) (62)

where we traded the variation of the radiative part of the electric field, i.e. δȦ⊥i , for d
dth

(see (177) in appendix C). Then,
Ξrad(δ1, δ2) =

∫
√
g gijTr

((
D
dt(h1)i

)
(h2)j − (1↔ 2)

)
ΞCoul(δ1, δ2) =

∮ √
hTr

(
δ1f λ2 − (1↔ 2)

)
.

(63)

Similarly, D2F(δ1, δ2) = 2gij [(h1)i, (h2)j ].

3.6 SdW decomposition of the symplectic structure: discussion

3.6.1 Horizontal symplectic potential

In section 3.4, we have decomposed the symplectic potential of YM theory with matter
into its horizontal and vertical parts, i.e. θ = θ⊥+ θV respectively (54). Upon contraction
with a generic vector δ = (δA, δE, δψ) in TΦ′, the SdW-horizontal component of the
symplectic potential,

θ⊥(δ) =

∫
R

√
g
(
gijTr(Ȧ⊥i δ⊥Aj)− ψγ0δ⊥ψ

)
, (64)

involves: the (covariantly) transverse gluon perturbations h ≡ δ⊥A = δA−D$(δA) (37),
the radiative component of the electric field Ȧi⊥ (40), and the (infinitesimal non-Abelian
finite-region) analogue δ⊥ψ = δψ + $(δA)ψ of the Dirac-dressed electron (eq. 52 and
appendix D). These degrees of freedom are all gauge-invariant, quasilocal in R, and can
be affected only through operations within R. In other words, the SdW horizontal con-
tribution θ⊥ has all the regional localization properties one would expect from a standard
field theory with no gauge symmetry—even if, within that region, the radiative dof are
non-local.
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3.6.2 Vertical symplectic potential

On the other hand, contracted with δ, the SdW-vertical component

θV (δ) ≈
∮
∂R

√
hTr(f $(δA)) (65)

involves (on-shell of the Gauss constraint) only the electric flux f and the pure-gauge part
$(δA) of the perturbation δA (and no matter field). Let us emphasize some important
characteristics of $(δA) and f .

First, the pure-gauge part $(δA) is a nonlocal functional of δA throughout R. Only
when the perturbation is pure gauge, δA = Dξ, does this contribution become local, en-
tering θV only through the local value of ξ at the boundary (this happens by construction,
see the first of (5)).

Second, as we have already stressed in section 3.3 (see in particular text below equation
(48)), the electric flux f summarizes the information from beyond ∂R which non-locally
influences the physics within R through the elliptic Gauss constraint. Here, this is con-
firmed in the symplectic treatment: f enters the only contribution to θ that is not directly
influenced by the region’s interior.

The vertical part θV and its properties are unique to gauge theory: they are a man-
ifestation of the local Gauss laws, which are in turn seen as the distinguished signature
of “gauge” [53]. It is then satisfactory to see that these properties fit, and mathemati-
cally translate, the expectation that the raison d’être of “gauge” hinges on the coupling
of subsystems [15,16].

We notice some analogies between the SdW vertical part θV and the constructions
of [10]. In particular, our $ seems to occupy the place there taken by their ‘extra’
boundary dof, aka “edge modes”. The fact that edge modes are introduced as gauge-
compensating fields, or gauge reference frames, adds to the analogy (see [37]). However,
it is important to notice that here $ is not a new boundary dof, but the pure-gauge part
of δA from which it is nonlocally constructed. And crucially, in the SdW-decomposition
of θ, the bulk (radiative) and boundary (Coulombic) components of the electric field are
functionally independent from each other. See also section 3.7.

3.6.3 Symplectic form

The structure of the symplectic forms Ω = dθ, unravelled in section 3.5, for the most part
parallels the one we just described, modulo one subtlety. That is the decomposition of
Ω into radiative and Coulombic components (59) is more subtle than that of θ because
of the role played by the SdW curvature F (9). In particular, this means that the purely
radiative and Coulombic components of Ω, i.e. Ξrad and ΞCoul, are not given by dθ⊥YM and
dθV ; in fact, they do not descend from a potential at all. (This discussion does not apply
to the Abelian case, where FAbelian ≡ 0; cf. footnote 18).

3.6.4 Flux superselection

However, there is one fact that is most clearly emphasized by the structure of Ω: i.e. that
the symplectic form does not have a purely vertical component. Indeed, the Coulombic
component ΞCoul is of mixed horizontal/vertical nature,

ΞCoul =

∮ √
hTr

(
d⊥f f$

)
. (66)

This of course reflects the fact that the physical modes of f are conjugate to purely gauge
modes of A that are by definition non-physical. Therefore, in a putative quasilocal quan-
tization intrinsic to the region R, the observable associated to f should be superselected.

21



SciPost Physics Submission

This fact, already recognized on the lattice28 and important for the computation of en-
tanglement entropy in a gauge theory [2,18,19], is here supported and made more precise
by a continuum analysis of the quasilocal symplectic geometry.

This symplectic pairing also suggests that working within a superselection sector re-
quires us to fix the gauge freedom at the boundary ∂R (recall the discussion just below
equation (65)). This remark will be relevant for the discussion of symplectic generators
and charges in the next sections.

3.7 Gauge invariance and the symplectic potential

In this section we provide some comments on the gauge invariance properties of the YM
symplectic potential. To start, let us define

H[ξ] := iξ]θ =

∫
R

√
gTr

(
EiDiξ + ρξ

)
. (67)

Then, the gauge transformation properties of θ, easily obtained from (50) and its compo-
nents’ behavior under gauge transformations, are encoded in the equation

Lξ]θ =

∫
√
gTr

(
EiDidξ + ρdξ

)
= H[dξ]. (68)

Using Cartan’s formula on its left-hand side, i.e. Lξ]θ = iξ]dθ + diξ]θ, we recognize:

iξ]Ω = −d(H[ξ]) +H[dξ], (69)

which provides a measure of the obstruction for the definition of a Hamiltonian generator
for the gauge transformation ξ.

We readily see that for field-independent gauge transformations, dξ = 0, the functional
H[ξ] is a valid Hamiltonian generator.

Moreover, in the absence of boundaries, it turns out that the field-dependence of ξ does
not create any issue. Indeed, although the flow equation does not strictly hold, in that
case H[dξ] vanishes on-shell of the Gauss constraint and thus does not “interfere” with the
gauge structure. This situation can be translated into the standard Hamiltonian formalism
as follows: for a field-dependent gauge-parameter—i.e. a smearing λα = λα(p, q) of first
class constraints Hα—we obtain

{Hα[λα], F} = {Hα, F}[λα] +Hα[{λα, F}] ≈ {Hα, F}[λα], (70)

i.e. the constraints still effect a homomorphism from the gauge group of transformations
into canonical transformations in phase space.

However, the situation is different in the presence of boundaries [10, 12–14, 26]. To
relate H[dξ] and the Gauss constraint, an integration by parts is needed and thus, if
∂R 6= ∅ one gets the following obstruction for ξ to admit a Hamiltonian generator:

H[dξ] ≈
∮
∂R

Tr
(
fdξ
)
. (71)

In the presence of boundaries ∂R 6= ∅, field dependent gauge transformations do not admit
a Hamiltonian generator within R even on-shell of the Gauss constraint. Of course, this
obstruction is related to another puzzling fact, which does not require field-dependence,

28It is however interesting to note that in [2,54] the possibility to superselect a magnetic flux was made
concrete both for Abelian and (2+1 dimensional) non-Abelian gauge theories (on the lattice).
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namely, the fact that in the presence of boundaries, the Hamiltonian generator of a gauge
transformation does not necessarily vanish on-shell:

H[ξ] ≈
∮
∂R

Tr
(
fξ
)
. (72)

One route to resolving these issues is to consider f as superselected (cf. the discussion
at the end of the previous section) and their conjugate gauge transformations at the
boundary as fixed (cf. section 3.6.2), thus setting ξ|S = 0 and H[ξ] = 0. But this creates
issues if one wants to recover conserved charges, leading to several distinct proposals to
allow only a selected class of gauge transformations at the boundary, taken to represent
‘physical dof’ (see e.g. [6–8]). The constructions of [10] can be seen as a way of maintaining
the arbitrary gauge transformations at the boundary while recovering non-trivial charges.29

Here, we rely instead on yet a different, more minimal, geometric perspective on this
question. Prompted by the observation that the Hamiltonian nature of the gauge flow
is obstructed by field-dependent ξ, we introduced a connection form in the treatment of
symplectic geometry in bounded regions [5,16,25,26,37] and thus reframed the symplectic
analysis of YM in the presence of boundaries in terms of an SdW-horizontal/vertical
decomposition—as detailed in the previous sections.

In light of our analysis, the fact that the obstruction to the Hamiltonian nature of
the gauge flow is controlled by the electric flux f acquires a precise physical meaning: f
is the observable at the boundary of R that summarizes the exterior information needed
to reconstruct the physics inside R. The point is that f holds this role without being
conjugated to—and therefore actable upon by—any physical quantity intrinsic to R (or
∂R).

In this perspective, the unique gauge-invariant, or physical, charge intrinsic to the
region, is given not by H[ξ] = iξ]θ, but by iξ]θ

⊥. In other words, without treating gauge
transformations at the boundary any differently—i.e. without fixing them or endowing
them with physical significance—we can define horizontal charges. These can be loosely
understood as “perturbatively gauge-fixed” charges. It has often been forcefully argued
that on a Cauchy surface gauge-fixed/gauge-invariant objects are the only ones which can
carry physical meaning [53]. Here we are, in a way, extending this criterion to quantities
intrinsic to the region.

In the absence of boundaries, and on-shell of the Gauss constraint, θV vanishes and
there is no difference between θ and θ⊥. In their presence, however, θV precisely encodes
the Coulombic obstruction to the Hamiltonian nature of the gauge flow (71)

Lξ]θ
V = H[dξ] ≈

∮ √
hTr

(
fdξ
)
, (73)

whereas θ⊥ maintains its gauge invariance properties

Lξ]θ
⊥ = iξ]Ω

⊥ + diξ]θ
⊥ ≡ 0. (74)

From the Hamiltonian perspective, this equation is somewhat trivial, since both iξ]θ
⊥ and

iξ]Ω
⊥ vanish identically and independently.
Of course, if we are truly to entrust regional physical status to those charges for which

iξ]θ
⊥ 6= 0 it would seem that we are forced to conclude no such regionally intrinsic charges

exist. However, as we will see, these regional horizontal charges will only vanish almost-
everywhere on Φ′ 3 {(A,E, ψ, ψ)}; they are sometimes nontrivial. The time has come to
investigate where the connection-form properties of $ fail. This is the goal for the next
section.

29 It should be noted that they recover an infinite group of charges, and that it is not clear in which
manner such charges obey non-trivial conservation laws. See e.g. [55–57] for attempts in this direction.
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Figure 3: In this representation A is the page’s plane and the orbits are given by concentric
circles; σ is a section in A. The field A is generic, and has a generic orbit, OA. The field
Ã has a nontrivial stabilizer group (i.e. it has non-trivial reducibility parameters), and its
orbit OÃ is of a different dimension than OA. The projection of Ã on A/G therefore sits
at a qualitatively different point than that of A (a lower-dimensional stratum of A/G).

3.8 Charges

3.8.1 Reducible configurations

Consider a configuration Ãi such that there exists a gauge transformation χ with the
following property:

δχÃi = D̃iχ = 0. (75)

Then, Ãi is said “reducible” and χ is called a “reducibility parameter” or “stabilizer”.
The stabilizers χ depend on the global properties of Ãi and constitute a finite dimensional
vector space (possibly of dimension zero).

In non-Abelian theories reducible configurations form a meager set,30 in the same way
as those spacetime metrics which admit non-trivial Killing vector fields are “extremely
rare” (i.e. form a meager set).31 In this respect, electromagnetism is an exception, since all
its configurations have as their reducibility parameter the constant gauge transformation,
χEM = const.

Since (iχ]dAi)|Ã = δχÃi = 0, it follows from the definition (3) that at these configu-

rations of A, χ]|Ã ∈ TÃA vanishes, thus establishing the degeneracy of the gauge orbit
OÃ ⊂ A. See figure 3.

Notably, on simply connected manifolds, the reducibility parameters χ constitute the
only32 kernel of the SdW boundary value problem featured in the defining equations of
$SdW (36), ϕSdW (47), and FSdW (38). As we will discuss, this fact has far reaching
consequences for the nature of charges in YM.

30A meager set is one whose complement is an everywhere dense set: roughly, an arbitrarily small
perturbation takes one out of a meager set. Here, reducible configurations form a meager set according to
the standard field-space metric topology on A (the Inverse-Limit-Hilbert topology [35, 36], see also [39]).
cf. footnote 12.

31Because of the existence of these configurations, A is not quite a bona fide fibre bundle, and its base
manifold is in fact a stratified manifold, figure 3 (see [26] for a more thorough discussion of the geometry
involved and further references on the topic).

32This is easy to see: demanding that ξ is in the kernel of the SdW boundary value problem, i.e. that
D2ξ = 0 and Dsξ|∂R = 0, implies that 0 =

∫√
gTr(ξD2ξ)−

∮ √
hTr(ξDsξ) = −

∫√
g gijTr(DiξDjξ). From

which Dξ = 0.
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So far we have discussed the situation in the YM configuration space A, but what
happens in Φ′ = Φ × {(ψ,ψ)}, that is when we add the electric and matter fields to the
picture?

3.8.2 Electromagnetism

Let us start with electromagnetism. In EM, although all configurations A ∈ AEM are
reducible with respect to the constant gauge transformations χEM = const (and so are all
(A,E) ∈ TA = ΦEM), none of the matter field configurations for which ψ 6= 0 is:

δχEMψ = −χEMψ 6= 0. (76)

Therefore, χ]EM as a vector field on Φ′EM reads33

χ]EM =

∫
(−χEMψ)B(x)

δ

δψB(x)
∈ TΦ′EM. (77)

Hence, in Φ′EM, the vector χ]EM does not vanish and is nonetheless in the kernel of (the
pullback of) $EM:

$EM(χ]EM) = 0. (78)

Thus, we see that we have geometrically isolated the only “gauge transformations” of EM
that have a physical significance in R, i.e. those that are associated to the total electric
charge contained in R. At the light of these findings, it is particularly instructive to revisit
the gauge invariance of θ⊥EM (74). With this purpose we define,

QEM[χEM] := θ⊥EM(χ]EM) =

∫
R

√
g (χEMρ) 6= 0 (79)

and thus obtain, through Cartan’s formula, the nontrivial flow equation

0 = LχEMθ
⊥
EM = dQEM[χ]EM] + i

χ]EM
Ω⊥EM. (80)

Furthermore, the fact that the SdW boundary value problem has a kernel in EM,
implies the (integrated) Gauss law—usually expressed for χEM = 1:

QEM[χEM] ≈
∫
√
g (χEMD2ϕ) =

∮ √
h (χEMf). (81)

Finally, we notice that, if χEM is not only a constant in space but also in time,
QEM[χEM] is a quantity satisfying a balance equation (electric charge conservation).

That such charges are physical, and are thus distinguished from gauge transformations
is thus not postulated, but derived. After all, the transformations corresponding to χEM

are entirely generated by the θ⊥ components, and are thus not generated by the Gauss
constraint (which is entirely in θV ).

3.8.3 Yang-Mills theory

We now want to generalize these considerations to the non-Abelian theory. The construc-
tion is mathematically completely analogous, albeit more subtle. Physically, however,
these subtleties have fundamental consequences.

To start with, as we have already said, not all configurations of the gauge potential
A ∈ A are reducible. Only at reducible configurations Ã ∈ A there are χ ∈ Lie(G) for

33Here, B is a spinorial index in C4, e.g. the Dirac gamma matrices γµ have components (γµ)B
′
B .
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which χ]|Ã vanishes. Extending the above construction to include the electric field, we

move our attention to (Ã, E) ∈ Φ. Then, the question arises whether χ] also vanishes on
Φ. For this to happen χ has to also stabilize E, i.e. δχE = [E,χ] also has to vanish.
However, this condition does not automatically follow from the reducibility of Ã:

δχÃ = D̃χ = 0 6⇒ δχE = [E,χ] = 0 at (Ã, E) ∈ Φ. (82)

Heuristically, one can see the extra requirement as demanding that stabilizer not only
stabilize the instantaneous A, but also (the physical component of) its velocity.

Configurations (Ã, E) = (Ã, Ȧ⊥, ϕ) which are reducible in A but not in Ȧ⊥, that is
D̃χ = 0 but [χ, Ȧ⊥] 6= 0, provide an exception to equation34 (74). In fact, at such
configurations one has Lχ]θ

⊥ =
∫
gijTr([Ȧ⊥i , χ]δ⊥Aj) 6= 0. That is, while generically

iξ]d⊥Ȧ⊥ = 0, for a stabilizer χ of A but not of Ȧ⊥ we have iχ]d⊥Ȧ⊥ = [Ȧ⊥, χ]. We will
henceforth assume our stabilizers are not of this form.35

Thus, we focus on those configurations (Ã,˜Ȧ⊥, ϕ) ∈ Φ at which there exists a χ ∈
Lie(G) such that

δχÃ = D̃χ = 0 and δχ˜Ȧ
⊥ = [˜Ȧ⊥, χ] = 0. (83)

At these configurations of the YM field, and in the presence of matter, one has

$(χ]) = 0. (84)

even though

χ] =

∫
(−χψ)

δ

δψ
∈ TΦ′ (85)

is nonvanishing—which means that at (Ã,˜Ȧ⊥, ϕ, ψ) ∈ Φ′ the projection property $](ξ]) =
ξ] fails for ξ = χ. Then, the quantity36

Q[χ] := θ⊥(χ]) =

∫
R

√
gTr(χρ) 6= 0 (86)

is the analogue of the EM charge built above and nontrivially satisfies

0 = Lχθ
⊥ = dQ[χ] + iχ]Ω

⊥. (87)

Indeed, the two terms on the right-hand side of (87) are both nonvanishing and Q[χ]
satisfies an (integrated) Gauss law:

Q[χ] ≈
∫
√
gTr(χD2ϕ) =

∮ √
hTr(χf). (88)

It is crucial to appreciate that this relation between the total charge and the integrated
flux holds only at reducible configurations Ã. This means that at a generic (non-Abelian)

34This occurs because at such points of Φ = TA, the pull-back of $ from A to Φ does not constitute a
well-posed connection-form in Φ. In the absence of matter, ξ] = (Dξ, [E, ξ]) ∈ T(A,E)Φ. The connection $
is only sensitive to the first term. For generic ξ we have as usual $(ξ]) = ξ and $](ξ]) = (Dξ, [E, ξ]) = ξ].
But if the specific χ considered above exist, then $](χ]) = (0, 0) 6= χ] = (0, [E,χ]) since D̃χ = 0.

35The issue discussed in footnote 34 suggests that an improvement of $ is necessary so that it satisfies
the projection property $](ξ]) = ξ] everywhere on Φ, and not just on A. We will not address this problem
here.

36This charge can be zero, if ψ = 0 or if χψ = 0. The latter condition is not attainable for G = SU(2),
but it is for larger N > 2. This situation was analyzed in [26] through the lens of the Higgs mechanism
for condensates. To simplify the discussion, we will hereafter ignore this possibility.
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configuration it is possible to add charged matter to the bulk without altering the boundary
flux at all.37

This construction provides the minimal requirement for the definition of non-trivial
horizontal charges within R. Their time-evolution and conservation properties are however
not as clear. Here, we abstain from performing a detailed analysis involving the equations
of motion, and rather limit ourselves to the following scenario.

We consider a configuration of Φ′ whose time evolution allows an extension of χ to a
time neighbourhood N of R that satisfies (D̃0χ, D̃iχ) = (0, 0).38 Then, the quantity Q[χ] is
conserved in the sense that it satisfies a balance law in terms of the matter current [24,27]:

0 =

∫
N

√
g∇µTr(χJµ) = ∆Q[χ] +

∫
dt F∂R[χ], (89)

where we introduced the fluxes F∂R[χ] =
∮ √

hTr(χJs) through ∂R, and used that D̃µχ = 0
as well as the equation of motion D̃µJ

µ = 0. Notice that all integrands are gauge invariant
quantities constructed geometrically from the properties of Ã in N . Indeed, the existence
and properties of a χ such that D̃µχ = 0 are gauge-invariant features of the configuration
history Ã(t).

Notice that the condition D̃µχ = 0 implies that A = Ã and E = Ẽ are reducible, and
therefore—via the Gauss constraint—that ρ = ρ̃ commutes with χ:

D̃µχ = 0 ⇒ D̃iχ = 0, [Ẽi, χ] = 0 and [ρ̃, χ] = 0. (90)

The last equation might raise the suspicion that the charge Q[χ] is bound to vanish, but
this suspicion is unfounded. In particular, although a χ which is covariantly conserved,
D̃µχ = 0, is also a reducibility parameter of Φ, it does not need to be a reducibility
parameter of the field space with matter, Φ′, as well. To prove this statement for G =
SU(N) it is enough to verify it when G = SU(2): in ρ the global U(1) phase of ψ plays no
role, but it is precisely this phase that enters the definition of Q[χ], cf. footnote 36 (the
U(1) EM case provides an even more basic example of this mechanism).

We conclude this section by noticing that the balance equation expressed in (89) is
akin to the conservation of Komar charges for Killing vector fields in general relativity;
similarly, the impossibility of identifying a meaningful non-Abelian charge density over
generic, i.e. nonreducible, configurations parallels, in general relativity, the difficulties
in identifying conserved stress-energy charges away from backgrounds with Killing sym-
metries [58]. Finally, within the present framework, the construction of asymptotic YM
charges at null infinity that are more akin to the Bondi, rather than Komar, charges was
carried out in [5].

4 Gluing

4.1 SdW gluing

4.1.1 Mathematical statement of the problem and of its solution

In this and the following sections, we will analyze how the SdW split (for non-Abelian
fields, in the presence of boundaries) behaves with regards to the composition, or gluing,

37See section 3.6.2. There we explain how f summarizes the physics beyond R, and the fact that, at
generic, i.e. non-reducible, YM configurations, f is a datum independent of the local matter charge density
in R. In this regard, see also the initial discussion of appendix D.

38It is possible that such χ’s are uniquely fixed by demanding that they conserve both Ã and˜Ȧ⊥ (and
then evolving these solutions in time).
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of regions. Specifically, we will here state, and in the next section prove, the theorem at
the root of all our physical results on the composition of both the electric field E and of
the perturbations X ∈ TA of the gauge potential A.

For simplicity, we consider a closed, simply connected manifold Σ, with ∂Σ = ∅, which
is split into two regions, R±, such that R+ ∩R− = S = ∂R±:

Σ = R+ ∪S R−. (91)

To formally encode the separation of regions, we introduce Θ± as the characteristic func-
tions of the regions R±. Denoting si the outgoing co-normal at S with respect to the
region R+, one has

∂iΘ± = ∓siδS (92)

where δS is a (D − 1)-dimensional delta function supported on the interface S.
A generic Lie-algebra-valued vector in TA can be written as Y =

∫
Σ Y

δ
δA ∈ TA. It is

useful to introduce the following notation for the regional decomposition of Y supported
on Σ:

Y = Y+ ⊕ Y−, (93)

where Y = Y +Θ+ + Y −Θ− and Y± =
∫
R± Y

± δ
δA . Notice that smoothness of Y implies all

derivatives of Y + match those of Y − at S.
We then introduce the SdW decompositions of Y, both in Σ and in R±. That is, we

introduce the SdW connection defined through (36) for the whole manifold and also for
its bounded subregions. For the entire manifold Σ, no boundary condition is needed, since
∂Σ = ∅.

Let us start from Σ, and denote the SdW decomposition of Y as Y = H + Λ], where
Λ = $(Y) and where H denotes the SdW-horizontal part of Y, i.e. $(H) = 0 by definition.
In components,

Y = H + DΛ, (94)

with DiHi = 0 in Σ.
We now turn to the SdW-decomposition in R±. We henceforth denote the regional

SdW connections $± (i.e. the SdW connections defined through (5) over R±); and the
regional decompositions of Y± become

Y ± = h± + Dλ±, (95)

where $±(Y±) = λ± and $±(h±) = 0, i.e.{
Dih±i = 0 in R±,

sih±i = 0 at S.
(96)

Importantly, h± and λ± are not the restrictions of H and Λ to R±: the operations of
regional restriction and SdW-projection do not commute. Indeed, in general one has

H = (h+ + Dξ+)Θ+ + (h− + Dξ−)Θ− (97)

where ξ± = λ± − ΛΘ±.
These equations govern the relationship between the global and the regional SdW

splits. Here, however, we are interested in the following inverse problem: given solely
the regional information h± and λ±—i.e. without any a priori knowledge of H and Λ—is
it possible to uniquely reconstruct the global H and Λ (see figure 4)? And furthermore:
under which conditions can we uniquely determine the Lie-algebra valued functions ξ±

solely from the knowledge of the h±?
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Figure 4: The two subregions of Σ, i.e. Σ±, with the respective horizontal perturbations
h± on each side, along with the separating surface S.

In the following we will provide an explicit reconstruction formula for the ξ±, and
hence for H, once the h± are given. This will be achieved under the assumption that the
smooth, global, H exists. From this assumption we will deduce a constructive proof of its
uniqueness (up to possible stabilizer and topological ambiguities). This is the content of
this section. In a second moment we will come back to analyze the continuity condition
also from a more constructive perspective. This will be done in section 4.2.

Let us chart a roadmap, consisting of three steps, for finding the ξ±:

1. First, from the smoothness of H at S, we will deduce restrictions on the difference
h+ − h− at S. Combined with the horizontality of the regional h±, the requirement
of smoothness gives us conditions on the longitudinal and transverse derivatives of
(ξ+−ξ−) at the boundary. In particular, the transverse condition states the equality
of the derivatives normal to the boundary Dsξ

+
|S = Dsξ

−
|S , while the longitudinal

condition allows us to solve for the difference (ξ+ − ξ−)|S in terms of the interface
mismatch (h+ − h−)|S , which is parallel to the boundary due to (96).

2. Second, imposing the horizontality of the global H, which is now guaranteed to be
smooth at S, provides us with one extra condition on the bulk part of the ξ±’s,
stating that the ξ± must be (covariantly) harmonic in their own regional domains.

3. Finally, we show that the information above suffices to uniquely and fully reconstruct
the ξ± in terms of h+ and h−: indeed, we will manage to recast the system of
equations above into (i) two homogeneous elliptic boundary-value problems, one per
region, with generalized Neumann conditions of the type we already encountered
in the study of $, and (ii) another equation that fixes the generalized-Neumann
boundary condition in terms of (ξ+ − ξ−)|S and thus, thanks to step 1, in terms of
(h+−h−)|S . The equation of (ii) involves the inversion of an elliptic operator intrinsic
to the boundary, as well as a combination of ‘generalized Dirichlet-to-Neumann
operators’ R± attached to the boundary (but associated to each region). The details
on the nature of these standard operators are postponed to the next section.

The final result is provided by the unique solution to the following boundary value
problem {

D2ξ± = 0 in R±,

Dsξ
± = Π at S,

(98)

with Π ∈ Λ0(S,Lie(G)) given by

Π =
(
R−1

+ +R−1
−

)−1 (
SD2

)−1 SDaι∗S(h+ − h−)a. (99)
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Here SDa := (ι∗SD)a is the covariant derivative intrinsic to S and hab = (ι∗Sg)ab is the
induced metric there. Similarly SD2 = hab SDa

SDb is the covariant Laplace operator on
S. The next section is devoted to the proof (and explanation) of the above formula.

4.1.2 Proof

For the first step, from the assumed continuity of H across S (97), we get that

(h+
i − h

−
i )|S = −Di(ξ

+ − ξ−)|S . (100)

Observe that a priori this equation not only imposes a series of conditions on our unknown
ξ±, but also demands the interface mismatch of our variables h±i to be of a pure-gradient
form. This condition is restrictive and will be analyzed in more detail in the following
sections. For now, we take it for granted and focus on the consequences of this equation
on ξ±.

We start by decomposing this equation into its transverse and longitudinal components
with respect to S. Now, since the component of h± transverse to S vanishes because of
regional horizontality (96), contracting (100) with si we obtain that the normal derivatives
of ξ± at S must match

Ds(ξ
+ − ξ−)|S = 0. (101)

Therefore, taking the boundary divergence of the pullback of (100) to S (i.e. effectively
contracting with SDa) we find that (ξ+ − ξ−)|S is solely determined by the mismatch of
the two horizontals at the boundary (recall that ∂S = ∅):

(ξ+ − ξ−)|S = −
(
SD2

)−1 SDaι∗S(h+ − h−)a, (102)

This concludes step 1 of the proof outlined above.
Now we move to the step 2: assuming that the global region Σ has no boundaries, by

smearing the global horizontality condition, DiHi = 0, with H given by (97), we obtain:∫
Σ

Tr
[
σDi

(
(h+
i + Diξ

+)Θ+ + (h−i + Diξ
−)Θ−

)]
= 0 (103)

for any σ ∈ C∞(Σ,Lie(G)). Now, thanks to the identity ∂iΘ± = ∓siδS (92) and to the
regional horizontality conditions Dih±i = 0 = sih±i |S (96), we get:∫

R+

Tr
[
σD2ξ+

]
+

∫
R−

Tr
[
σD2ξ−

]
−
∮
S

Tr
[
σ siDi

(
ξ+ − ξ−

) ]
= 0, (104)

where the last term above already vanishes due to (101). From the arbitrariness of σ, we
obtain the last, bulk, condition mentioned in step 2 of the outline above. We thus deduce
that the ξ± must satisfy the following elliptic boundary value problem

D2ξ± = 0 in R±

siDi

(
ξ+ − ξ−

)
= 0 at S

(ξ+ − ξ−) = −
(
SD2

)−1 SDaι∗S(h+ − h−)a on S

(105)

This concludes step 2. Now we must use the appropriate PDE tools to show that this
boundary value problem determines ξ± in terms of the regional horizontal perturbations
h±.

For step 3, we proceed as follows: start by setting

Π := si(Diξ
±)|S , (106)
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from the second equation in (105). Note that in possession of Π, we can determine ξ±

by solving the boundary value problem given by (106) and the first equation of (105). In
this way, given Π, ξ± are uniquely determined up to stabilizers, i.e. up to elements χ± ∈
C∞(Σ,Lie(G)) such that Diχ

± = 0 which are nontrivial only at reducible configurations.
In the topologically simple case that we have analyzed so far, this is the only ambiguity
present in the determination of ξ±. We postpone the discussion of reducible configurations
and of nontrivial topologies until sections 4.3.2 and 4.7, respectively.

Now, to determine Π, we introduce generalized Dirichlet-to-Neumann operators (see
e.g. [59] and references therein), R±. In each region, such operators map Dirichlet condi-
tions for a (gauge-covariantly) harmonic function to the corresponding (gauge-covariant)
Neumann conditions. In brief, for a given bounded region, R functions as follows: a given
harmonic function with Dirichlet conditions—these conditions are the input of R—will
possess a certain normal derivative at the boundary; i.e. will induce certain Neumann
conditions there—these conditions are the output of R. But let us be more explicit.

In general, for a manifold with boundary S and outgoing normal si, we define the
Dirichlet-to-Neumann operator R by

R(u) := siDi(ζu)|S (107)

where ζu is the unique (gauge-covariantly) harmonic Lie-algebra-valued function defined
by the elliptic Dirichlet boundary value problem: D2ζu = 0 with (ζu)|S = u. Notice that
the subscript u encodes the Dirichlet boundary condition employed. Using superscripts
to denote (gauge-covariant) Neumann boundary conditions, we would have by definition
ζR(u) ≡ ζu. Moreover, since the corresponding Neumann problems also have unique
solutions of stabilizers), R is invertible, i.e. ζΠ ≡ ζR−1(Π). We can thus define R±
associated to R± with boundaries ∂R± = S, and their inverses R−1

± .
Now, from (106) and the fact that ξ is itself (gauge-covariantly) harmonic from the

first equation of (105), we have

ξ± = (±)ζ±Π ≡ (±)ζR−1
± (±Π) (108)

where the back-superscript (±) indicate whether the respective covariantly harmonic func-
tions are defined over R+ or R−, respectively. The challenge now is to use the last equation
of (105) to fix Π uniquely. Once this is done, (108) contains all the information we sought
for the gluing.

Notice that there is a ± sign in the argument of R−1
± in (108). This sign is due to the

fact that, at S, siDiξ
+ = siDiξ

− but si is the outgoing normal on one side and the ingoing
normal on the other, so the conditions siDiξ

± = Π fix opposite Neumann conditions on
the two sides. By the linearity of R we have

R−1
± (±Π) = ±R−1

± (Π). (109)

Hence, since by defintion (ζu)|S = u, together with (108) and (109) we have

(ξ+ − ξ−)|S = R−1
+ (Π)−R−1

− (−Π) =
(
R−1

+ +R−1
−

)
(Π). (110)

This gives us a relation between the (gauge-covariant) Neumann boundary condition Π
and the difference of the Dirichlet boundary conditions ξ±|S .

This relation finally allows us to provide a formula that fixes Π in terms of the boundary
discrepancy of the regional horizontals (h+ − h−)|S . That is, we insert (110) into the last
of the equations (105) to obtain:(

R−1
+ +R−1

−

)
(Π) =

(
SD2

)−1 SDaι∗S(h+ − h−)a. (111)
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This is the equation that Π has to satisfy. Since its solution is unique (as we will discuss
in a moment), it also fixes ξ± uniquely through (108), thus subsuming the entire set of
equations (105). This concludes step three.

For the uniqueness statement for Π to be meaningful, it is important to check that
the operator (R−1

+ + R−1
− ) is invertible. That this is the case follows from R± being

positive self-adjoint operators, and from the relative sign appearing on the left-hand-side
of (111)—a consequence of the sign in (109).

To show that the generalized Dirichlet-to-Neumann operators R± are self-adjoint and
have positive spectrum we proceed as follows. Consider again ζu 6= 0 to be the unique
solution to the problem D2ζu = 0 in the bulk and (ζu)|S = u at the boundary. Then, for
any Lie-algebra valued functions u, v on the boundary, one has∫

Σ+

√
g gijTr(DiζuDjζv) = −

∫
Σ+

√
gTr(ζuD2ζv) +

∮
∂Σ

√
h siTr(ζuDiζv)

=

∮
S

√
hTr(uR+(v)) =

∮
S

√
hTr(R+(u)v). (112)

Notice that the first step in (112) follows from an integration by parts and properties of
the commutator under the trace.39 The last line of (112) proves the self-adjointness of
R+ with respect to the natural inner product 〈u, v〉S =

∮
S

√
hTr(uv), while setting u = v

in (112), gives positivity: ∮
S

√
hTr(uR+(u)) ≥ 0. (113)

At irreducible configurations, the equality holds if and only if ζu = 0 and therefore if
and only if u = 0. Similar manipulations lead to the analogous conclusion for R−. This
concludes our proof.

4.2 A dimensional tower of compatibility conditions on h±

Recall that, whereas the normal component of the continuity condition for H (100) is a
condition on the (ξ+− ξ−)|S only, its parallel component to S not only encodes a relation
between (ξ+− ξ−)|S and (h+− h−)|S , but also requires (h+− h−)|S to be a pure gradient
parallel to S. This is a necessary and sufficient condition on h± for there to exist a smooth
global horizontal field H corresponding to their composition.

In this section we will discuss a more constructive procedure to understand this condi-
tion on (h+ − h−)|S . This procedure can be iteratively applied to the “boundaries of the
boundaries”, opening a door to the discussion of the more general gluing schemes involving
corners.

In a gauge theory, the space of the pullbacks to S of the fields in A defines a new
“boundary configuration space”, SA which is isomorphic to the space of gauge fields
intrinsic to S:

SA := ι∗SA ∈ SA. (114)

Moreover, the induced metric on S defines a supermetric SG on SA. From this, one can
define an SdW connection $S on SA and hence, via pullback, on SΦ = T(SA). Now,
thanks to the second of the equations (96), i.e. sihi = 0, the difference between two

39The following identity is valid for any smearing σ ∈ C∞(Σ,Lie(G)):

Tr
(
− σ ∂iDiζ + gij [Ai, σ]Djζ

)
= Tr

(
− σ ∂iDiζ − gijσ[Ai,Djζ]

)
= Tr

(
− σD2ζ

)
.
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generic40 horizontal perturbations h± defines, without any loss of information, a vector
field intrinsic to the boundary:

SY :=

∮
S
ι∗S(h+ − h−)

δ

δ(SA)
∈ T(SA)(

SA). (115)

This vector field can be decomposed via $S into its horizontal and vertical parts within
SA:

SY = SH +
(
Sξ
)]S

, (116)

where the ·]S operation is the S-intrinsic analog of ·]. Given equations (115) and (116),
then it becomes clear that the parallel component of the continuity condition for a fiducial
boundary (100), is equivalent to demanding that SY has no horizontal component, i.e.
SH = 0. Of course, in this case, the Sξ of (116) is identified with the (ξ− − ξ+) of (100).

From these observations we conclude that the parallel continuity condition is satisfied
if and only if SY is purely vertical, that is if and only if SY = $]S

S

(
SY
)
. In such a case,

this last equation is only a more formal way to write (100), with (ξ+ − ξ−)|S = −$S(SY)
being a rewriting of (102).

We conclude this section by observing that the parallel continuity condition bears
an interesting possibility. Note that if S itself had corners, i.e. if it was subdivided into
regions S± sharing a boundary, we could have repeated the same treatment for two possible
horizontal differences, (Sh)+− (Sh)−, themselves arising from the difference of horizontals
in a manifold of one higher dimension, as expressed in (116). This chain of descent
to the boundaries of boundaries might become useful in discussions of more complex
gluing patterns involving corners; a necessary extension for building general manifolds
from fundamental building blocks. We conclude this section by noticing that this chain of
descent is reminiscent of the BV-BFV formalism [21–23], but we will leave an investigation
of these matters to future work.

4.3 Gluing of the gauge potential

4.3.1 Unique gluing of the gauge potential

We are now ready to apply the above results to the gluing of the perturbations of the
gauge potential A. We include matter in the next section, and apply the construction to
the elecric field in section 4.4.

Therefore, we consider

X =

∫
X

δ

δA
∈ TAA, (117)

and decompose it, and its regional restrictions, into their SdW-horizontal and -vertical
components

X = H + DΛ and X± = h± + Dλ±. (118)

Physically, whereas Λ and λ± encode the “pure gauge” components of X in Σ and R±

respectively, H and h± encode their physical components. Therefore, the gluing question
can be rephrased as the following: given only the regional gauge invariant perturbations
h±, is the global gauge invariant perturbation41 H uniquely reconstructed? And if yes,
under which conditions is this possible?

40I.e. that do not have to necessarily satisfy the continuity condition (100).
41Notice that the theorem involves the perturbations of A (elements of TA) over a globally smooth,

fixed, background configuration A.
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The theorem of the previous sections states that—whenever possible—the reconstruc-
tion of a continuous H from h± is indeed unique, and no additional information is needed
to perform the gluing.

In particular, the theorem provides an explicit formula (99) for the reconstruction of
the gauge transformations ξ± that relate the regional and global horizontals according to

H = (h+ + Dξ±)Θ+ + (h− + Dξ−)Θ−, (119)

where the ξ± were fully determined in (111) and (108), i.e. by a covariant Laplace equa-
tions with boundary conditions determined in terms of the mismatch ι∗S(h+ − h−).

However, the derivation assumed the mismatch ι∗S(h+ − h−) to be a pure (gauge-
covariant) gradient intrinsic to S. As explained in the previous section, whether this is
the case can be checked by considering an SdW connection $S intrinsic to S, and verifying
whether ι∗S(h+ − h−) is purely vertical with respect to $S . If this mismatch is not purely
boundary-vertical, then there is a physical discontinuity in the magnetic flux across S,
i.e. in Fab (a, b are tangential indices over S).42 It is interesting to observe that such
a discontinuity is not the consequence of a distributional surface current density on S,
which would rather contribute a discontinuity in siFia. Rather, it is the consequence of a
distributional surface density of magnetic monopole charges.

However, postulating the configuration space of Yang-Mills theory to be fundamentally
given by the space of smooth (or at once-differentiable) connections A, we are implicitly
excluding this possibility from the onset: the algebraic validity of the Bianchi identities
DF [A] = 0 excludes the existence of magnetic monopoles—and thus guarantees that the
perturbations h± are always glueable.43

4.3.2 Gluing of the gauge potential, with matter: ambiguities, reducibility
parameters, and charges

In the presence of matter, gluing is more subtle. Let us first introduce some notation. Let
h± = h±A + h±ψ and H = HA + Hψ, be horizontals, which decompose according to

HA = (h+
A + Dξ+)Θ+ + (h−A + Dξ−)Θ−

Hψ = (h+
ψ − ξ

+ψ)Θ+ + (h−ψ + ξ−ψ)Θ−

. (120)

and e.g.

H = HA ⊕ Hψ =

∫
HA

δ

δA
+

∫
Hψ

δ

δψ
. (121)

As above, we are here implicitly using the SdW connection to assess horizontality.
It is important to note that the matter horizontal components h±ψ are then, in a sense,
parasitic on the gauge-field: they are just the matter perturbations corrected by the

42More precisely, in a neighbourhood of S, the relation between the curvature and the perturbation is:
Fab(A+X)− Fab(A) = [Fab(A),Λ] + SD[bHa] +O(X2), where the first term on the right-hand side is an
inconsequential perturbation in the gauge (vertical) direction and the second is the physical perturbation.
Thus, only if (h+−h−)a = DaΞ does SD[b(h

+−h−)a] = [Fab,Ξ] feed into the gauge ambiguity; otherwise,
a physical discontinuity in the parallel curvature will emerge.

43Notice that, the discontinuity in the components siFia of the magnetic field at S induced by the
presence of surface currents is more subtle from a gluing perspective since it does not necessarily stem
from a discontinuity of hi (it could also be due to a discontinuity in its normal derivative). Given any
vector field u in a neighbourhood of S that is tangent to S, and recalling that hs = 0 by the horizontality
condition, one has that the perturbation of F±su ≡ siujF±ij is given by siujDih

±
j = Dsh

±
u − h±j (£us)

j .
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vertical displacement provided by the gauge sector. Namely, for a fermion field in the
fundamental representation of G [26],

hψ = Xψ −$(XA)Xψ. (122)

where Xψ and XA denote arbitrary (not necessarily horizontal) matter and gauge-potential
perturbations respectively. In other words, the h±ψ do not satisfy horizontality conditions of
their own. In appendix D we provide an interpretation of this in terms of Dirac dressings.

Then, we see that H (and h±) is horizontal (regionally horizontal, respectively) if and
only if HA (h±A, respectively) is. This means in particular that the above procedure aimed
at the determination of ξ± is completely insensitive to the presence of matter, and can be
applied in the same way. The hypothesis of continuity of the original global perturbation
X = XA + Xψ ensures that the same ξ± needed to glue one field will work for the other as
well.

Now, all previous results on gluing go through seamlessly, unless either one of the
regional configurations of the gauge potential, i.e. A± = A|R± , is reducible. If, say,

A+ = Ã+ is reducible, then the resulting ambiguity in the reconstruction of ξ+ will have
no effect on the reconstruction of the global horizontal gauge potential HA, but it will
generically render the reconstruction of the horizontal matter field Hψ ambiguous.44 We
will now spell this out.

Let us suppose, for definiteness, that only the regional configuration A+ = Ã+ is re-
ducible by a single reducibility parameter, i.e. χ+ such that D̃χ+ = 0, while A− is not
reducible. (Generalizations are straightforward.) This means that we have a continu-
ous 1-parameter family of solutions for ξ+ that we write, by choosing an origin ξ+

o and
introducing the parameter r (depending on the charge group), as

ξ+
r := ξ+

o + rχ+ r ∈ R or C. (123)

Then, two distinct possibilities are given: either ψ vanishes at S or it does not. The
second case allows us to glue the two perturbations together if and only if we can find an
r such that

ξ+
r ψ|S = ξ−ψ|S . (124)

With the continuity hypothesis for the original global field perturbation X = XA + Xψ,
this equation would then fix the global ambiguity, but for generic values of ψ|S no solution
exists.45 If no solution exists, it means that the two perturbations are not glueable, i.e.
they do not descend from a global smooth perturbation.

Conversely, in the first case, which is realized if ψ+ vanishes at S, gluing of the two
perturbations h± is possible for any r but will give rise to physically distinct global per-
turbations.

To see this, we observe that the 1-parameter family of global horizontal perturbations

44This is always the case in QED, where we can always add constants c± to the reconstructed ξ± and
where a constant phase shift will affect the Dirac fermions, unless they vanish. In a non-Abelian theory,
the zoology is more complicated, and will depend on the gauge group as well as the type of matter fields
(fundamental, adjoint, etc).

45These compatibility requirements between χ+ and ψ+ could be further formalized in terms of the kernel
of the Higgs functional connection introduced in [26]. However, the presence of distributional charged
matter at S—as manifested over e.g. an idealized conducting plate—generally blocks the possibility of a
smooth gluing of the electric field, E, discussed in the following section.
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corresponding to ξ+
r , i.e.46 Hr = Hr

A ⊕ Hr
ψ, is given by

Hr
A ≡ Ho

A and Hr
ψ = Ho

ψ − rχ+ψΘ+. (125)

Note that each of the Hr for different r is horizontal—hence physical, according to our
identification.

Now, two possible situations are given: either χ+ stabilizes ψ+ throughout R+, or it
does not.

If ψ+ is also stabilized (for this we need G = SU(N ≥ 3) if ψ 6= 0 in R+, see [26, Sec.7]),
then uniqueness of the reconstructed global radiative mode is untouched: even if the
regional gauge transformations ξ± are ambiguous, H of (120) will not be since in this case
Hr ≡ Ho. The generally quite restrictive condition of χ+ stabilizing ψ+ trivially applies
if matter is absent from R+, in which case H = HA is clearly unaffected by χ+ such that
D̃χ+ = 0.

If ψ+ is not stabilized by χ+, on the other hand, the resulting Hr are indeed distinct
from one another. This setup formalizes ’t Hooft’s beam splitter thought experiment [60],
and can be used to provide a concrete example for the considerations of Wallace and
Greaves, characterizing “symmetries with direct empirical significance” (aka DES) [61].

To prove that the ensuing states are regionally indistinguishable but globally distinct,
let us consider the following simplified scenario: R± contain one charged particle each,
located at x± ∈ R± and A+ admits a reducibility parameter χ+. Denoting the particle’s
spinorial configurations47 by |ψ±〉, we consider then the following global gauge-invariant
Wilson-line observable (with obvious notation):

W = 〈ψ−|Pexp

(∫
γ
A

)
|ψ+〉, (126)

where γ is some path connecting across S the positions x± ∈ R± of the charged particles
|ψ±〉 . Now, if we “unglue” the two regions, perform the (infinitesimal) gauge transforma-
tion χ+ in R+ and glue back (which as we saw above is a seamless operation), we will find

that: whereas Pexp
(∫

γ A
)

and |ψ−〉 have not changed at all, |ψ+〉 has changed by the

(infinitesimal) amount δχ+ |ψ+〉 = χ+|ψ+〉; in turn this means that the global observable
W is able to distinguish the two global states, since generically

δχ+W = 〈ψ−|Pexp

(∫
γ
A

)
χ+|ψ+〉 6= 0. (127)

Of course, this construction is strictly related to the ability of defining a charge for
the |ψ+〉 on the reducible background A+, and confirms that (regional) stabilizers must
be attributed a different status than generic gauge transformation, as discussed in section
3.8 (see in particular the last paragraph of 3.8.2).

4.4 Gluing of the electric field

We now turn our attention to the gluing of the electric field E. Let us first stress a
somewhat trivial point: in the study of the purely regional properties of the YM fields

46 We are using the following notation:

H =

∫
HA

δ

δA
+Hψ

δ

δψ
≡ HA ⊕ Hψ.

47 The bra-ket notation is employed to ease the writing of the following formulae, it does not refer to
any quantum treatment.
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performed in the first part of this paper, we were not allowed to access the physics beyond
a given region, say R+. In this context, we argued that such physics was “summarized”
by the electric flux f at S. However, now that we are considering the gluing of regions, we
do have access to the physics beyond R+: it is simply the physics within R−. This trivial
observation allows us to shift viewpoints and ask questions that were not “allowed” from a
purely regional perspective. This shift will shed further light on the quasi-local properties
of the YM fields.

We start by recalling the representation of the electric field as a configuration-space
vector E:

E =

∫
E
δ

δA
∈ TAA ⊂ Φ, (128)

and (the components) of the global and regional SdW decompositions of E

E = Ȧ⊥ + Dϕ and E± = Ȧ±⊥ + Dϕ±. (129)

We emphasize that, as was the case with h± and λ± in relation to H and Λ in (96), ϕ± is
not the regional restriction48 of ϕ to R±, and similarly Ȧ±⊥ is not the regional restriction

of Ȧ⊥ to R±; instead, {
ϕ = (ϕ+ − η+)Θ± + (ϕ− − η−)Θ−

Ȧ⊥ = (Ȧ+
⊥ + Dη+)Θ+ + (Ȧ−⊥ + Dη−)Θ−

(130)

where, according to the theorem of section 4.1, the η± are fully determined by the mismatch
of (Ȧ+

⊥−Ȧ
−
⊥)|S ; the appropriate behaviour of ϕ merely follows. Notice also that the electric

flux f through S corresponds precisely to Π = f of (99) in our main gluing theorem in
section 4.1.

In the case of the electric field, we do not interpret the SdW vertical component ϕ of
E as a pure-gauge quantity, but as a Coulombic component of the electric field, while Ȧ⊥
is what we called its radiative component.

Therefore, equation (130) states that the Coulombic/radiative split of the electric field
depends on the choice of region in which the split is performed. In light of section 3.6.2,
this should not come as a surprise. It is nonetheless worth revisiting those considerations
in the context of gluing.

In this context, as we stressed at the beginning of this section, we do have access to
both R+ and to its complement R−. This simple observation crucially affects the physical
interpretation and properties that we ascribe to both the flux f through the interface
S—from the regional perspective f was interpreted as summarizing the physics beyond
e.g. R+—and to the (regional) Coulombic components of E in general.

To ascertain more specifically how the interpretation of f and the Coulombic compo-
nents are affected, it is particularly instructive to consider first the case without matter.
For simplicity we will also assume that the simply connected global region Σ = R+ ∪S R−
has no boundary, i.e. ∂Σ = ∅. It then follows that ϕ ≡ 0, and therefore, according to
(130) ϕ± = η±. Since η± are entirely functions of Ȧ±⊥|S , it follows that all components
of the global electric field are determined solely by its regional radiatives. Indeed, for
a globally radiative electric field (i.e. no global boundary and no charges), E = Ȧ⊥ and
E|R± = Ȧ±⊥−Dη± with η± functionals of (Ȧ+

⊥−Ȧ
−
⊥)|S only.49 Thus, in this case, once both

regional radiatives are known, even the regional Coulombic components are completely

48Having run out of symbols, we could not use the same capitalized vs. lower case variables to indicate
that relationship.

49Again, as already stressed, it is important to note that regional restriction and horizontal projection
do not commute, thus e.g.: Ȧ±⊥ 6= Ȧ⊥|R± .
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determined. Indeed, knowledge of a reconstruction of E includes any knowledge of f ,
which is thus no longer an independent degree of freedom once the radiative modes are
accessible in both regions.

Thus, in this case—when the larger (glued) region R has no boundary,—the regional
radiative modes encode the entire physical information of the system.

The addition of charged matter does not change this conclusion: the matter fields
merely join the radiative modes in determining ϕ and therefore in fixing the full physical
content of the system.

In sum, once the radiative modes are accessible in both regions, the role of the flux f
at S—i.e. to regionally fix ϕ±—is taken over by (Ȧ+

⊥ − Ȧ
−
⊥)|S . Thus f—which is often

claimed to embody the “new boundary degrees of freedom” [18] or their momenta [10]—
also constitutes a piece of redundant information for the final result of the gluing: it only
shows up when encoding one subregion’s ignorance of the other, i.e. when we do not have
access to both radiatives, Ȧ±⊥.

Explicitly, playing the role of Π in the theorem of section 4.1, the flux is given by(
R−1

+ +R−1
−

)
(f) =

(
SD2

)−1 SDaι∗S(Ȧ+
⊥ − Ȧ

−
⊥)a. (131)

This conclusion is only challenged in the presence of nontrivial cohomological 1-cycles in
the Cauchy surface, a point exemplified in section 4.7.

Concerning the analogues of the continuity conditions explored in section 4.2 for the
gauge potential, we observe that on-shell the electric field is continuous across S if and
only if there is no distributional charge density there. Such a charge density would create
a discontinuity in the fluxes E±s |S ≡ f±. No analogous physical discontinuity can be found
in the components of the electric field parallel to S. Moreover, if there is no charge density
and therefore E is continuous, the difference (Ȧ+

⊥ − Ȧ
−
⊥)|S is the same as the difference

(Diϕ
+−Diϕ

−)|S . Since the latter is always of the pure-gradient form, the radiative parts
of a continuous electric field (on-shell) satisfy the analogue of (100) and are therefore
guaranteed to be glueable.

4.5 On the energy of radiative and Coulombic modes

The radiative/Coulombic split of E satisfies a monotonocity property, which roughly states
that in a composite region Σ = R+ ∪S R−, a larger portion of the energy is attributed to
the radiative part of the electric field than it is in the disjoint union of R+ and R−;
the converse holds for its Coulombic part. This section is devoted to establishing and
interpreting this result.

Let us start by writing the energy H contained in Σ. We decompose this energy into
its electric (kinetic) and magnetic (potential) parts,

H = E + B =

∫
Σ

√
gTr(EiEi) +

∫
Σ

√
g 1

2Tr(F ijFij) (132)

Since F is fully determined by the background value of A (which undergoes no SdW
splitting), we will henceforth focus on the electric contribution. This can be written more
abstractly as

E = ||E||2 = ||E||2+ + ||E||2−, (133)

with || · || and || · ||± the SdW-norms on Σ and R± respectively.50

50E.g. ||E||2+ = GR+(E,E) =
∫
R+

√
g gijTr(EiEj).
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Consider now the radiative/Coulombic decomposition of E, and recall that it corre-
sponds to a horizontal/vertical orthogonal decomposition with respect to the SdW super-
metric. Then,

||E||2 = ||Ȧ⊥||2 + ||ϕ]||2, (134)

and similarly on R±. Applying the same decomposition to the second gluing formula of
(130) gives

||Ȧ⊥||2 = ||Ȧ+
⊥ + (η+)]||2+ + ||Ȧ−⊥ + (η−)]||2−

= ||Ȧ+
⊥||

2
+ + ||Ȧ−⊥||

2
− + ||(η+)]||2+ + ||(η−)]||2−

≥ ||Ȧ+
⊥||

2
+ + ||Ȧ−⊥||

2
−. (135)

From the additivity of E (133), the gluing formula (130) and the equation above, it follows
that the total Coulombic contribution correspondingly decreases by the same amount:51

||ϕ]||2 = ||(ϕ+)]||2+ + ||(ϕ−)]||2− − ||(η+)]||2+ − ||(η−)]||2−
≤ ||(ϕ+)]||2+ + ||(ϕ−)]||2−. (136)

We have thus proved (and qualified) our statement above.
So, if to the radiative part of E we ascribe the kinetic energy of the radiative modes,

the following question arises: which new radiative field strengths are included in Σ that
are not present in the disjoint union of R+ and R−?

The answer lies at the interface S: the regional Coulombic and vertical adjustments,
η± and ξ±, respectively, from the global perspective are additions to the radiative sector
of Σ with respect to the radiative sectors of R±. Although supported on the whole regions
R± respectively, these new components, are completely determined by the mismatch at S
of the two regional radiative modes, Ȧ±⊥|S (or h±|S , resp). In other words, the new global
radiative field strength that emerges on Σ upon gluing R± is entirely determined by the
standard regional radiative modes at the boundary. However, it is important to stress that
these new global contributions are not encoded in either region, since they depend on the
mismatch at S of the two regional components. Thus, in this precise sense, we can claim
that there is an additional component to the global radiative field strength: it results from
the gluing and arises from the relation of the two subsystems at their common boundary.

4.6 Gluing of the symplectic potentials

It is now straightforward to study the gluing of the symplectic potential. As above,
we focus on the situation where a D-dimensional simply connected hypersurface without
boundary ∂Σ = ∅ is split into two regions R± sewn at S = ∂R±, i.e. Σ = R+ ∪S R−.

In this case, from (54), the total symplectic potential reads

θ =

∫
Σ

√
g
{
gijTr

(
EidAj

)
− ψγ0dψ

}
≈
∫

Σ

√
g
{
gijTr

(
Ȧ⊥i d⊥Aj

)
− ψγ0d⊥ψ

}
= θ⊥,

(137)
where θ ≈ θ⊥ since ∂Σ = ∅.

51 This follows from the comparison of the following two expressions{
||E||2 = ||Ȧ⊥ − ϕ]||2 = ||Ȧ⊥||2 + ||ϕ]||2 = ||Ȧ+

⊥||
2
+ + ||Ȧ−⊥||

2
− + ||(η+)]||2+ + ||(η−)]||2− + ||ϕ]||2

||E||2 = ||E||2+ + ||E||2− = ||Ȧ+
⊥ − (ϕ+)]||2+ + ||Ȧ−⊥ − (ϕ−)]||2+ = ||Ȧ+

⊥||
2
+ + ||(ϕ+)]||2+ + ||Ȧ−⊥||

2
− + ||(ϕ−)]||2+.
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Now, θ can also be decomposed into θ = θ+ + θ− simply by factorizing the integration
domain in the first expression above,

θ± =

∫
R±

√
g
{
gijTr

(
EidAj

)
− ψγ0dψ

}
. (138)

Each of these regional contributions can be written in the SdW decomposition following
(54):

θ± ≈
∫
R±

√
g
{
gijTr

(
Ȧ
⊥(±)
i d⊥(±)Aj

)
− ψγ0d⊥(±)ψ

}
±
∮
S

√
hTr

(
f$±

)
. (139)

where ⊥ (±) denotes that the SdW decomposition intrinsic to R± has been respectively
used, and the sign of the last term depends on the fact that, in f = siEi|S , the normal si

to S is outgoing for R+ and ingoing for R−. Thus, we find

θ ≈ θ⊥(+) + θ⊥(−) +

∮
S

√
hTr

(
f($+ −$−)

)
. (140)

The results of section 4.1, and in particular equation (102), can be applied52 to $± to
obtain

($+ −$−)|S = −(SD2)−1SDaι∗S(d⊥(+)A− d⊥(−)A)a ≡ −
SD[d⊥A]±S

SD2
. (141)

Here, we have introduced a new short-hand symbol for the interface difference of a given
quantity •, namely [•]±S . For more compact notation, we have also schematically denoted
the inverse operator by a fraction (SD2)−1(•) := •

(SD2)
. Similarly, we recall53 (131)

(
R−1

+ +R−1
−

)
(f) = −(SD2)−1SDaι∗S(Ȧ⊥(+) − Ȧ⊥(−))a ≡ −

SD[Ȧ⊥]±S
SD2

. (142)

Hence, combining these results, and remembering that R± is self-adjoint, we find the
following gluing formula for the composition of the symplectic potential:

θ
∂Σ=∅
≈ θ⊥ = θ⊥(+) + θ⊥(−) +

∮
S

√
hTr

(
SD[Ȧ⊥]±S

SD2

(
R−1

+ +R−1
−

)−1 SD[d⊥A]±S
SD2

)
. (143)

This formula emphasizes the role of the “new” radiative degrees of freedom that emerge
upon gluing as discussed in section 4.5: the mismatch of the horizontal/radiative modes at
the interface S plays—from the global perspective—the role of a new horizontal/radiative
dof which is not present in either region, but is instead—from a strictly regional perspective—
summarized in the vertical part of θ± (cf. (54)).

In sum, as the symplectic treatment confirms, the often-heard “gauge-turned-physical
at the boundary” narrative is superseded by one in which certain global radiative modes
can only be revealed upon gluing. This is because, due to their nonlocal nature, certain
global radiative modes are not accessible as regional radiative modes within either region
taken alone, but are rather encoded in the mismatch between the two regional radiative
modes at the common interface S. Consistently, upon gluing of these new radiative modes,
we are no longer required to superselect the electric flux f trough S (which was conjugate to
the pure-gauge part of the gauge potential). Indeed, f is reconstructed from the mismatch
of the electric radiative modes (see section 3.6.4 for the discussion on f ’s superselection
and (131) for its reconstruction).

52This is entirely compatible with the standard definition of $, which can be seen by noticing that given
a vector Y ∈ TAA: iYd⊥Ai = Hi, iY$ = Λ, and similarly iYd⊥(±)Ai = h±i , iY$± = λ±.

53The notation used for (131) has been here (slightly) adapted to fit with the notation used in the rest
of this section. We apologize with the reader for the inconvenience.
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4.7 Example: 1-dimensional gluing and the emergence of topological
modes

In this final section we work out a simple example, implementing the gluing of 1-dimensional
intervals. Two cases are given: two closed intervals are glued into a larger interval, and
one interval is glued on itself to form a circle. This second case falls outside the simply-
connected setup we adopted for the rest of the paper. Nonetheless, this case allows us
to easily discuss, without introducing a host of new technologies, the emergence of new
global (or “topological”) degrees of freedom associated to the non trivial cohomology of
the circle.

4.7.1 Gluing into an interval

Let us start by considering two closed intervals I+ = [0, 1] and I− = [−1, 0], that we shall
glue together to form a new closed interval I = [−1, 1]. We shall see that, since on the
interval the gauge potential must be pure gauge, the regional horizontal perturbations
must vanish—a fact consistently encoded by our gluing formula. Although somewhat
trivial, this example helps us set the stage for the gluing into a circle.

We first characterize the 1-dimensional gauge fields and their horizontal perturbations.
One dimensional gauge fields are always locally pure gauge,

A± = g−1
± dg± (144)

for g+(x) = Pexp
∫ x

0 A on I+ and similarly on I−, where we choose g− such that g−(0) = 1
too (x = 0 is where the gluing takes place). Since in one dimension sihi|S = 0 implies
h|S = 0, SdW-horizontal perturbations h± in I±, according to (96) must satisfy the
equations

D±h± = 0 and h±|∂I± = 0, (145)

which can be rewritten in terms of h̃± := g±h
±g−1
± as ∂h̃± = 0 and h̃±|∂I± = 0. Now,

these equations can be solved to give h̃± = 0 and hence

h± = 0. (146)

This is solely an immediate consequence of the pure gauge character of all 1-dimensional
configurations, and therefore all perturbations over topologically trivial regions must be
purely vertical.

Applying these results on the horizontal/vertical decomposition of fields on the interval
to the electric field, we deduce that on the interval all electric fields are purely Coulombic.
As per section 4.4, without any knowledge of regions outside of the interval I+ ≡ R+, this
is entirely characterized by the charge content of the interval and by f at its boundary S.
The latter encodes our ignorance of the outside of the region.

Let us now analyze the gluing. Again, the global horizontal vector is denoted by

H = (h+ + Dξ+)Θ+ + (h− + Dξ−)Θ− = Dξ+Θ+ + Dξ−Θ− (147)

as in (97). The relevant equations for gluing arise as in (105), with a couple of new features:
(i) there is no analogue to the last equation of (105), since hi has only one component
that is transverse to the zero-dimensional gluing surface S; and (ii) we have to add one
equation per global boundary of the interval I = [−1, 1], since the total horizontal vector
has now (two) endpoint boundaries, ∂Σ ≡ ∂I = {−1} ∪ {+1} 6= ∅.
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Thus, 
D2ξ± = 0 in I±

D
(
ξ+ − ξ−

)
= 0 at ∂I+ ∩ ∂I− = {0}

Dξ± = 0 at ∂I = {±1}
(148)

Now, again, by defining ξ̃± := g±ξ
±g−1
± , we can turn the covariant derivatives into ordinary

ones. This allows us to readily solve these equations. In fact, the bulk equations (the first
of (148)) tell us that

ξ̃± = ±Π̃±x+ χ̃±, (149)

where χ̃± are constant functions valued in Lie(G) corresponding to two arbitrary reducibil-
ity parameters of the vanishing configuration Ã± = 0. This is a concrete example of the
discussion in the previous section.

Now, the second equation of (148) sets Π̃+ = −Π̃−, and the third one sets them equal
to zero. Since the χ̃± don’t affect the value of the regional horizontal fields, we hence
conclude that in this case the unique solution to the gluing problem at hand is ξ± = 0
which readily leads to H = 0, consistently with the general regional result (146). This
concludes the gluing of two intervals I± into a larger one I = [−1, 1].

4.7.2 Gluing into a circle

We now move on to the second case, where one interval, I = [−π, π] 3 φ, has its ends
glued to form a unit circle. To keep the two cases notationally distinct, we have denoted
an element of the circle by φ, as opposed to x of the interval in the previous case. This
case requires a little more care.

The idea is to split I into two intervals which overlap around φ = 0, e.g. on the interval
Uε := (−ε, ε). Thus we consider I− = [−π, ε) and I+ = (−ε, π], so that we can glue at
φ = ±π according to the procedures of the above section, while matching the overlap of
charts around φ = 0 to close the interval into a circle.

This allows us to separate the problem of gluing from the problem of covering the
circle. The latter is accomplished by overlapping open charts, with transition functions
which appropriately match the gauge configuration.

Let us start by analyzing the background configuration A± on I±. We assume, as in
the previous sections, that the configurations A± join smoothly at φ = ±π.54

As above, A± are pure gauge, i.e. A± = g−1
± dg± with g+(π) = g−(−π). On the

other hand, on Uε, the configurations A± do not have to be equal; they need only be
related by the action of a gauge transformation κ, the transition function. Since we are in
1-dimension, this does not constitute a restriction; one simply has κ = g−1

− g+.
Now, we move on to consider the horizontal perturbations. We shall find that the

relevant horizontality equations for h± involve boundary conditions only at φ = ±π, and
the one for H does not involve boundary conditions at all. In particular no boundary
conditions are imposed at the open-extrema of the intervals I±. This is not because the
intervals are open, but rather because there are no boundaries from the perspective of the
global H. But let us be more detailed.

We start from the observation that on the overlap region Uε, generic perturbations X±

must be gauge related through X+ = AdκX
−. This means that, using the appropriate

partitions of unity over S1, there is no difficulty, nor ambiguity, in the patching of the
SdW inner products over I+ and I−: we obtain an inner product over S1 between two

54It would be more appropriate to introduce new coordinates to glue at a specific value of the coordi-
nate. We persist in this slightly sloppier, but more compact, language, merely flagging the possibility for
confusion.
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perturbations X± and Y± that satisfy the overlap condition we have just described. Recall-
ing that SdW-horizontality is the requirement of being orthogonal to any purely vertical
vector with respect to the SdW supermetric, we see that the horizontality condition for H
does not involve boundary conditions at the non-glued boundaries of I±, i.e. at φ = ±ε.
Of course, this was an expected result from the closed nature of the manifold on which H
resides.

Focusing now on horizontal perturbations, it is easy to see that this discussion doesn’t
change the fact that h± = 0, since the manifold on which they reside still has boundaries
at φ = ±π. Note moreover that h± = 0 implies that their matching on Uε is automatic.
However, this discussion leads us to a horizontality condition for H that is distinct from
the one found for the gluing into an interval (148). Indeed, in the present case, we find{

D2ξ± = 0 in I±

D
(
ξ+ − ξ−

)
= 0 at φ = ±π

(150)

with no extra conditions at φ = ±ε. Hence, it is readily clear that the solutions for ξ± are
here much less restricted than they were in the closed interval case considered above: in
this case we find that

ξ± = g−1
± (Π̃φ+ χ̃±)g±. (151)

with the same, possibly non-vanishing, Π̃ for both the ± choices. From this we obtain,

H = g−1
± Π̃g±. (152)

As for the background, matching the perturbed configurations in Uε comes at no cost
(since h± = 0).

In summary, we see that the gluing procedure has no unique solution in this case, as a
consequence of the absence of a second “outer” boundary for the interval (which is glued
into a circle). The second outer boundary is instead replaced by the chart matching.55

We thus obtain a one-parameter family of solutions parametrized by an element Π̃ ∈
Lie(G). This element constitutes the perturbation of the Wilson-loop observable around
the circle (Aharonov-Bohm phase), which is precisely the unique physical degree of freedom
present there. The existence of this new topological mode is of course related to the non-
contractibility (π1(S1) = Z 6= 0) of the circle. Also note that in our formalism this
topological mode arises automatically and originates solely from the interplay between
gauge and topology.

Similarly, application of these results to the gluing of the electric field on the circle
leads to the following analogous result: η±—i.e. the homologue of ξ± above—is now
entrusted with the encoding of the global radiative mode of the electric field on the circle,
even if the latter is locally of a pure Coulombic form. Then the analogue of Π̃ in equation
(151) for η± is not free, but fixed by the electric flux f = Es|S . Therefore, only in the
topologically non-trivial case, would f come into its own. That is, only to the extent that
f encodes possible global, i.e. topological, radiative modes which do not correspond to
regional radiative modes. This consideration only partly endorses the attribution of “new

55 The decoupling of chart transitioning and horizontal gluing can be made into a more general feature.
For instance, had we wished to cut up the circle into three segments, we would divide the interval [0, 2π] into
three sets, I1 = [0, 2π/3], I2 = [2π/3, 4π/3], I3 = [4π/3, 2π], with hi ∈ Ii. Then we can cover the circle with
three charts U1,2,3, given in larger, but largely overlapping, domains: D1 = [0, 4π/3], D2 = [π/3, 2π], D3 =
[4π/3, π/3]. Then h1 and h2 glue entirely within the U1 chart domain D1; h2 and h3 similarly glue in D2;
and h3,h1 glue in D3. In this way, one decouples the chart matching from the horizontal gluing; we can
cyclically glue all hi’s first and find the appropriate chart transition later, independently. In that case, it
is the cyclicity of the equations that yields one less condition. This type of concatenating construction can
be extended to higher dimensional manifolds.
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edge mode degrees of freedom” to boundaries [10, 18]. Namely, it grants such status only
to those, finitely many degrees of freedom which encode information about a (global!)
nontrivial first cohomology.56

5 Conclusions

5.1 Summary

Previous work on the functional connection form $ focused on three main themes [5, 16,
25, 26, 37]. Namely: (i) that it provides a regional decomposition of field perturbations
into physical and gauge, (ii) that it identifies gauge-invariant, regional charges without the
need for gauge-fixing, and (iii) that it provides a general and unifying notion of dressing
(see appendix D).

After reviewing the basic technology of the framework, this paper advanced our pre-
vious work in two main directions: (1 ) we introduced and developed in sections 2 and
3 the connection form formalism within the D + 1 formulation of the field dynamics—as
opposed to the Euclidean covariant formulation of [26],—with particular attention to the
properties of the symplectic potential; and (2 ) for the first time, we thoroughly studied the
problem of gluing and derived, in section 4, the explicit formulae dictating its behaviour,
for both the the gauge potential and the electric field. Finally, in appendix D, we proposed
a new argument for the relevance of $ to dressings, through a generalization of Dirac’s
prescription to finite regions and in the non-Abelian setting.

5.1.1 The SdW-connection and symplectic geometry in configuration space

In treating the D+1 properties of the framework, we revived and expanded on the obser-
vations of [30–32,34,35] to argue that the choice of the Singer-DeWitt (SdW) connection
is naturally inherited from the Lagrangian of the theories in question. Most importantly,
and unlike all previous work, we have also encompassed boundaries in our analysis. In
appendix D we complemented this result, by showing that the choice of the SdW con-
nection can also be uniquely fixed by consistency with the Dirac dressing condition for
non-Abelian fields in finite regions.

But, as far as choices of connection go, both the D+1 and the Euclidean picture
have downsides.57 In the Euclidean picture, everything is manifestly covariant, and the
downside is the arbitrariness in the choice of a functional connection where none is canon-
ically given.58 Conversely, in the D+1 case, the downside is the manifest breaking of
Lorentz symmetry: the canonical SdW connection we construct is anchored on a specific
choice of foliation. This tie between gauge and Lorentz symmetry is vaguely reminiscent
of [8, 17, 62]. However, in the finite-region setting, we notice that the choice of corners
as the waist of causal diamonds of “finite observers” explicitly breaks Lorentz covariance.
Whether a restriction of covariance (now understood as a refoliation invariance) to the
causal diamond anchored at ∂R still applies thus seems a natural question to ask, but
further investigations in this direction are left to future work.

56Of course, this distinction and the ensuing identification of finitely many topological modes cannot be
performed at the regional level.

57 The covariant and Lorentzian setting gives rise to hyperbolic equations for $ whose interpretation is
less clear than when it is built from elliptic equations, as it is in the Euclidean covariant setting and in the
D+1 framework.

58Having said that, the covariant SdW connection is somewhat natural also in the Euclidean context: it
descends from a field-space supermetric that is uniquely fixed by ultralocality. See e.g. [27–29,33,36].
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In the D+1 framework, we started our discussion of the SdW functional connection $
with its introduction on the space of gauge potentials, A ∈ A; we then argued that $ has a
natural pull-back to phase space (A,E) ∈ Φ ∼= TA. We then showed that on both spaces,
A and Φ, the role of the functional connection is to split physical and pure gauge directions
of the respective tangent bundles, interpreted as the spaces of linear perturbations of the
gauge potential A and of the electric field E. Moreover, within Φ, we employed the SdW
connection to find particularly useful coordinates on phase space, by splitting the electric
field in terms of its “Coulombic” and “radiative” components.

Since both the symplectic potential and the SdW connection are derived from the
Lagrangian of the theory, the symplectic potential inherits this radiative/Coulombic split:
the radiative components of E are conjugated to horizontal components of the gauge
potential, and the Coulombic components of E are conjugated to the vertical—i.e. pure
gauge—components of the gauge potential. We thus split the symplectic potential into a
radiative and a Coulombic component. Conversely, such a split of the symplectic potential
uniquely defines the the SdW connection.

(Often, for notational convenience, we will collectively refer to “horizontal” and “ra-
diative” quantities as “radiative”, and similarly join “pure gauge” and “Coulombic” under
“Coulombic”. When a finer distinction is necessary, we will provide it.)

The radiative components of the symplectic potential represent its fully (perturba-
tively) gauge-fixed (gauge-invariant) content.59 For a region without boundary, the full
symplectic potential is gauge-invariant and purely radiative. For a bounded region R, the
radiative contribution is still gauge invariant and is entirely determined by the intrinsic
content of R, requiring no additional boundary information.

Due to the Gauss constraint, the Coulombic components of the symplectic potential
are entirely encoded at the boundary, where the normal electric flux f is conjugated to
the pure gauge part of the gauge potential (evaluated at the boundary). These symplectic
conjugacy relations prompt an important question: what does it mean for the boundary-
flux f , which contains a host of gauge-invariant information, to be conjugate to a pure-
gauge contribution?

To answer this question, we turn to the Laplace boundary value problem (47) defining
the Coulombic component of the electric field through the Gauss constraint in R. This
equation has two independent inputs: the charge density within R (bulk) and the electric
flux f through S = ∂R (boundary). These two inputs are fully independent60 from the
point of view of the boundary value problem: and whereas the charge density encodes the
matter dof in R, f encodes those dof which influence a region R and yet are independent
of the contents of the region itself: i.e. f is the influence from the outside.

To avoid misunderstandings, a clarification is in order. It is true that, physically,
a change in the distribution of the charge within R, keeping everything unchanged in
the outer region, does modify f . However, this reasoning is unwarranted from a purely
regional perspective: it requires us to know that everything stays unchanged in the outer
region that we have no access to. In fact, at a closer analysis, the situation is even more
serious than this, since—from a purely regional perspective—we cannot tell apart the

59 Here, it is important to notice that “perturbatively” means that the gauge-fixing section in the bundle
is only defined locally in Φ, i.e. “at the level of the tangent spaces”: the non-vanishing SdW curvature of
$ prevents, in the non-Abelian case, the integrability of the horizontal distribution into a globally defined
gauge fixation Moreover, if one wants to interpret $ as yielding a perturbative gauge-fixing, one must keep
in mind that such a gauge-fixing must retain full gauge-covariance with respect to the base-point of the
perturbation (i.e. the perturbed configuration). This is morally similar to the BRST enhancement of a
gauge fixing by a new global symmetry. [26,28,29].

60More precisely, they are independent modulo exceptions that arise at reducible configurations only.
These exceptions are however limited to certain global modes of f on S determined by its smearing against
the regional reducibility parameter χ pulled-back onto S.
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contributions to f from the charges inside and the ones outside of R. Indeed, to compute
these contributions to f , we would need to know the Green functions of the Laplace
operator on the whole Σ, thus requiring global topological and geometrical knowledge
about Σ. In contrast, the boundary value problems that we use to define the regional
Coulombic part of the electric field treats the regional charge destribution and the electric
flux as completely independent and uncorrelated inputs.61 This should clarify why, and in
which sense, we state that—from a purely regional perspective—f is independent of ρ and
summarizes the influence on R coming from the outside. Consistently, both $(δA) and
f are functionally independent from the radiative modes, including the charged matter
content of the region.

With this clarification, we can now make sense of the fact that the physically-meaningful
f is conjugated to the pure-gauge mode of A. In fact, whereas f can be measured from
within one region, mathematically it should be considered as a complementary datum
that defines the physics within R (cf. also [4]) and cannot be independently controlled
from within R. This matches the fact that its conjugate variable is pure-gauge and there-
fore does not correspond to any physical observable, since this means that, in a putative
quasilocal quantum theory, f commutes with all regional observables and is therefore su-
perselected: each value of f defines a separate and independent “branch” of physics within
R.

This picture of the electric flux is corroborated by our treatment of gluing, to which
we now turn.

5.1.2 The gluing of radiative modes and its caveats

In section 4, we considered the problem of “gluing” regional radiative modes into a global
radiative mode. Gluing radiative modes requires an adjustment of each regional radiative
mode, so that the joined field is smooth and itself radiative. Since the adjustment cannot
affect the regional radiative description, the regional adjustments must be along the pure-
gauge/Coulombic direction. The main question is whether these pure-gauge/Coulombic
adjustments exist at all, and if they exist whether they are ambiguous or rather uniquely
defined by the regions’ radiative content.

In this paper we proved that for fiducial boundaries, regional, or quasi-local, radiative
modes contain the necessary and sufficient information for gluing into a global, smooth, and
purely radiative mode. Indeed, assuming the continuity of the resulting global mode, the
appropriate regional adjustments used for gluing are unique; they are given by a formula
exploiting the properties of the Dirichlet-to-Neumann operator (but again, no particular
boundary conditions on the underlying fields is ever imposed). The pure-gauge/Coulombic
adjustments turn out to be explicit functionals of the mismatch between the original
regional radiative at the common boundary.

This uniqueness result comes with two, physically significant, caveats.
The first caveat arises if the process of gluing generates new cohomological 1-cycles that

were not present in either subregion. In such cases, the gluing formula still formally applies
but—due to the presence of kernels in the Laplacian—its result is not unique. Here we
must distinguish the effects for the gauge potentials and for the electric field: (a) On a non-
simply connected manifold, the global horizontal mode of the gauge potentials is not fully
fixed by the regional horizontal modes, due to the emergence of global Aharonov-Bohm
phases that leave no imprint in the regional physics. (b) The situation is slightly different
for the gluing of the electric field, since the flux f across the gluing interface contains
relevant information to fix the ambiguity. Although we did not analyze this situation

61Cf. the previous footnote.
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in general detail, we worked out an explicit example in 1+1 dimensions that showcases
these topological effects without introducing other complications. We will return to the
topological ambiguity at the end of section 5.1.3.

The second caveat is an ambiguity which arises from the presence of stabilizers of the
fields, i.e. it arises when the underlying background fields are invariant under a finite
subgroup of gauge transformations, also called the reducibility parameters “stabilzers”, of
the reducible field configurations. In the presence of matter, the stabilizers give rise to
a well-defined notion of (conserved) charges [24, 27]—see also section 3.8—to which this
ambiguity is strictly related. Indeed, this ambiguity is irrelevant in the absence of matter,
and is independent of the topology; we studied it in section 4.3.2.

This relation between conserved charges and the ambiguities of gluing—both occur-
ring in the joint presence of matter and of stabilizers—elicit a new take on the following
conceptual question, much discussed in the literature on the foundations of gauge the-
ory: do gauge symmetries possess “direct empirical significance”? Symmetries with direct
empirical significance [60, 61] are transformations of the universe which are not globally
gauge, but which, when restricted to certain subregions, are regional gauge transforma-
tions. Our results link this notion of “direct empirical significance” to the conservation of
charges—usually considered an indirect empirical significance of gauge. That is because
gluing employs regional gauge transformations as adjustments, and yet, when the two
adjustments are ambiguous in ways that do not match at the boundary, they can produce
different global physical states—as we showed in section 4.3.2.

5.1.3 Gluing and the role of the electric flux

Interesting features of this work emerge when one considers the gluing properties of the
radiative and Coulombic components of the electric field, a topic investigated in section
4.4.

In the gluing process of a bipartite system, we consider a complete set of data,
(δ⊥A,$(δA), Ȧ⊥, f, ψ, ψ), for each region. Of these, there are precisely two components
which are superfluous for gluing and reconstructing the global physics: the pure gauge
part of δA in each region (i.e. $(δA)), and the electric flux at the interface, f . Therefore,
in possession of the radiative components of both regions, we can fully recover the entire
physical content of the theory: there is no need for f when we have all the radiative
components.

As previously emphasized, from a strictly regional perspective, f is a “given function”,
a naturally superselected quantity when viewed from within the region alone. The results
on gluing are compatible with this view of f : indeed f turns out to be entirely redundant
when (radiative) information from the both regions becomes available. Moreover, f also
turns out to be entirely fixed as a function of the regional radiative modes—and thus no
longer needs to be superselected from the global perspective.

Even if the radiative components are intrinsic and accessible from within each region,
their nonlocal nature confers them holistic properties: generically, the global radiative field
is not the direct sum of the regional radiative fields. A possible mismatch of the regional
radiative field components at the interface between the regions will require a Coulombic
readjustment on each region. The physical nature of the Coulombic readjustments bears
more interesting consequences than the vertical readjustments of the gauge potential,
which are pure-gauge.

For example, it turns out that the energy carried by the glued radiative electric field
is always larger than the sum of the energies carried by the regional radiative electric
field within each region before gluing. The exact opposite applies for the energy carried
by the Coulombic component of the electric field. Indeed, as we showed in section 4.5,
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energy is transferred upon gluing from the Coulombic to the radiative sector of the electric
field (since the readjustment of A is pure-gauge, the amount of energy contained in the
magnetic field is not affected). From this we conclude that the act of gluing partly converts
regional Coulombic dof of E into global radiative dof of E. The conversion arises due to
the existence of global radiative modes which cannot be encoded in either region: indeed,
the conversion is a function of the mismatch of the values of the regional radiative modes
at the interface between the two regions.

We had to consider both the readjustments of the gauge potential and of the electric
field in order to describe the regional decomposition of the symplectic potential, as we
saw in section 4.6. In complete parallel to the findings for the field components and their
energies, as described above, the global symplectic potential decomposes into regional
radiative symplectic potentials plus an interface term, which depends functionally on the
mismatch of the regional radiative fields there.

However, as briefly discussed in section 5.1.2, the normal electric flux is irrelevant for
recovering global physics only when the topology of the underlying manifold Σ is trivial.
For a non-simply connected manifold, the boundary flux of the electric field incorporates
a finite number of “independent degrees of freedom”. Namely, it is in these cases that the
regional information consisting of radiative modes and charge content fails to determine
the full regional and global information about the field: since global degrees of freedom
supported by the cohomology of Σ exist, the horizontal regional information must be
supplemented by the normal electric flux f and its conjugated variables—the Aharonov-
Bohm phase around the nontrivial cycles. These quantities cannot be retrieved at the
regional level.

In section 4.7, we studied these matters in the simple case of one-dimensional mani-
folds taken in two different topologies: the line and the circle. For the line, no radiative
modes survive: as expected, all configurations are pure gauge. However, upon gluing two
segments into a circle, we explicitly found that the gluing procedure is ambiguous, i.e. its
solution is non-unique. For what concerns the electric field, this ambiguity is fixed by con-
sidering the boundary Coulombic information (i.e. the flux f), which is thus “converted”
into a global radiative mode of the electric field; for what concerns the modes of the gauge
potential, on the other hand, the ambiguity cannot be resolved, since the Aharonov-Bohm
phase is necessarily left undetermined by the regional information.

5.2 Outlook

We conclude this article by mentioning a couple of physically relevant questions that we
expect our quasilocal framework will address and clarify.

Superselection Sectors and the Asymptotic Limit We start by discussing the
superselection of the electric flux f that, in the asymptotic limit ∂R→∞, has been argued
to have highly nontrivial and somewhat puzzling consequences such as the spontaneous
breaking of Lorentz symmetry [8, 17, 62, 63]. In this context, we expect the following
remark to be of interest. Following the considerations of section 3.6 (also summarized
in 5.1.1), the superselection of f is found to hold for all quasilocal boundaries on the
basis of an assumption of ignorance of the physics outside of R: indeed, as we argued
at length, from our quasilocal perspective f summarizes the influence on R of the dof
not present in R; an influence enacted through the Gauss law. That is, in our case f
is superselected, has influence in the bulk of R, but—encoding information from beyond
R—it is not used to deduce properties of matter within R. This should be contrasted
with the considerations of [8,17,62,63]. There, f and its superselection are used to deduce
properties of matter within R. This deduction is essentially based on an assumption
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of knowledge of the physics beyond ∂R → ∞: i.e. that there can be nothing “beyond
infinity”.62 Such marked difference therefore tempts us to speculate that the conclusions
of [8,62,63] might have to be revisited at the light of the tension between a mathematical
construction, i.e. the limit ∂R→∞, and the physical assumptions on which it is based, i.e.
the introduction of infinity as a way to describe in an idealized manner an isolated system
within the universe—rather than the universe as a whole. In this regard, it would be crucial
to properly understand the role boundary (and fall-off) conditions for the (asymptotic)
fields play in our arguments (e.g. [4, 9]). This work begun in [5], where null-infinity was
analyzed, but we leave a more detailed analysis of these ideas to future work.

Entanglement Entropy Another question that we expect our formalism can help clar-
ify concerns the nonstandard properties of entanglement entropy of gauge systems [64].
In gauge theories, the entanglement entropy turns out to quantify not only the standard,
“distillable”, (quantum and classical) correlations between local excitations, but also a
more exotic “edge” (or “contact”) component. The latter component is classical, and
descends from the probability distribution for finding the super-selected flux f in a cer-
tain configuration [1, 2, 18–20]. Given our understanding of the interplay between gauge,
fiducial interfaces,63 and gauge symmetry, it is clear that the present formalism will shed
light on the interpretation and computation of the edge component to the entanglement
entropy.

In this regard, we notice that our formalism is well-suited not only for a broad gen-
eralization of the ideas of [65] on the computation and interpretation of the contact term
of the (3d Abelian) Yang-Mills theory, but also for inscribing them in a larger and firmer
theoretical landscape.

In [65], the computation of the contact term is set up in terms of the comparison
between a globally gauge-fixed path integral and its regional counterparts. The main
ingredient of this the computation is the Forman-BFK formula for the factorization of
(zeta-regularized, Faddeev-Popov) functional determinants of Laplacians [59, 66, 67] (the
relevance of this ingredient to calculations of black-hole entropy was already identified64

by Carlip [69]). This formula features precisely the Abelian analogue of the operator
(R−1

+ +R−1
− ) that is central to our gluing formula. Indeed, interpreting horizontal modes

as corresponding to the perturbatively gauge fixed ones, our gluing formula gives a precise
non-degenerate65 Jacobian for the transformation of the global radiatives to the regional
radiatives, whose determinant yields the relevant factor in the factorization of the path
integrals.

Corners and Gluing So far we have considered only gluing patterns in which two re-
gions are glued along their whole boundaries. More generally, one should consider cases
in which the gluing happens on portions of the boundaries bounded by corner surfaces,
and the boundary of those, and so on. In particular, these more general gluing patterns

62Of course, in these works the asymptotic superselection of f is not assumed, but derived. Roughly, its
derivation is based on the observation that the observable associated to f at infinity is spacelike separated
from, and hence commutes with, all the local operators of the theory (since they must have a finite support):
hence, commuting with all other operators, f at infinity is superselected. Notice how the idealization of
“infinity” is given a central role in these arguments.

63Fiducial interfaces—i.e. interfaces at which no boundary condition is imposed—are crucial to the
generic definition of entanglement entropy, but for gauge theories they are not easily implementable in
previous set-ups (see e.g. the “brick wall” of [18, 20]).

64See also [68] for an even earlier application of Forman’s results to the gluing, or “sewing”, of string
amplitudes.

65However, subtleties are expected to arise for non-simply-connected manifolds and at reducible back-
ground configurations.
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are necessary to build arbitrary manifolds from topologically trivial building blocks. This
is therefore an important topic that deserves deeper study. In section 4.2, we noticed
that the continuity condition parallel to the interface S takes the form of a verticality
condition in the space of boundary fields for the difference of the pullbacks of the regional
horizontals on S. In this scenario, it seems that a chain of descent could apply for horizon-
tal/vertical decomposition at boundaries of boundaries, etc. with analogies to the nested
structures featured in the BV-BFV formalism (when interfaces of multiple codimensions
are considered) [21–23].

Further Directions We conclude by mentioning a few other topics that we leave to
future work: a complete study of the descent chain and of the gluing into topologically
nontrivial domains; the generalization of this work to general relativity and diffeomorphism
symmetry (see [4,12,14,37,57]), as well as to other types of gauge theories such as Chern-
Simons and BF theories.
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A Time dependent gauge transformations

(Note: all manipulations in this section are independent of the choice $ = $SdW and hold
for any connection form on Φ.)

Given an evolution flow d
dt in configuration space, the function Ȧi is understood to be

the total derivative of Ai (understood as a coordinate function on A) along this flow:

Ȧi :=
d

dt
Ai. (153)

This function, constitutes the components of the configuration-space “velocity” field

Ȧ =

∫
√
g
( d

dt
Aαi

)
(x)

δ

δAαi (x)
∈ TA (154)

where (hereafter, Ȧ(ξ) ≡ iȦdξ etc.)

ξ̇ := ∂tξ + Ȧ(ξ) (155)
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With this, it is immediate to compute

δξȦi := Lξ]
d

dt
Ai =

d

dt
(Diξ) = ∂iξ̇ + [Ȧi, ξ] + [Ai, ξ̇] = Diξ̇ + [Ȧi, ξ]. (156)

Notice that this the derivative along ξ] of the function Ȧi, and not the component of66

Lξ]Ȧ ≡ Jξ], ȦK, which instead is equal to

Jξ], ȦK =

∫
√
g
(
ξ](Ȧαi )− Ȧ(Diξ)

α
)

(x)
δ

δAαi (x)
= (ξ̇)] − Ȧ(ξ)], (157)

where we used (156) for ξ](Ȧi) = δξȦi, as well as

Ȧ(Diξ) = Ȧ(∂iξ + [Ai, ξ]) = [Ȧi, ξ] + DiȦ(ξ). (158)

Hence, from the defining properties (5) of $—i.e. $(ξ]) = ξ and Lξ]$ = [$, ξ]+dξ,—
as well as the above identities, it follows that

Lξ]($(Ȧ)) = (Lξ]$)(Ȧ) +$(Jξ], ȦK)

= [$(Ȧ), ξ] + Ȧ(ξ) +$((ξ̇)] − Ȧ(ξ)])

= [$(Ȧ), ξ] + ξ̇. (159)

Therefore, we showed that $(Ȧ) has the same transformation properties of A0.
Now, combing this equation with the definition (20) of A0 and the covariance of ϕ

(required by construction),

A0 := −ϕ+$(Ȧ) and Lξ]ϕ = [ϕ, ξ], (160)

it readily follows that

δξA0 ≡ Lξ]A0 = −Lξ]ϕ+ Lξ]$(Ȧ) = [−ϕ+$(Ȧ), ξ] + ξ̇ = [A0, ξ] + ξ̇ = D0ξ. (161)

Of course this formula implies the covariance of Ei = Ȧi −DiA0,

δξEi = Lξ]Ei =
d

dt
(Diξ)−

(
[δξAi, A0] + Di([A0, ξ] + ξ̇)

)
=
(

Diξ̇ + [Ȧi, ξ]
)
−
(

[Diξ, A0] + Di[A0, ξ] + Diξ̇
)

= [Ȧi, ξ]− [DiA0, ξ] = [Ei, ξ], (162)

whereas a completely analogous computation, obtained by replacing A0 with $(Ȧ) shows
the covariance of Ȧ⊥:

δξȦ
⊥
i ≡ Lξ]Ȧ

⊥
i = [Ȧ⊥, ξ] (163)

To avoid confusions, we re-iterate that δξEi = Lξ]Ei is (very!) different from Lξ]E =

Jξ],EK. Indeed, a short computation shows that Jξ],EK = −E(ξ)], where E(ξ) stands for
the functional derivative of ξ along E. Both Lξ]Ei and Jξ],EK are Lie-derivative along ξ],
but the first is the Lie derivative of a function on Φ, while the second is the Lie derivative
of a vector field on TΦ.

We conclude this appendix by noticing that equation (161) shows the announced re-
sult that A0 has automatically the correct transformation properties once we assume that
ϕ transforms in the adjoint representation: the burden of instilling A0 with its typical
non-homogenous transformation property under time- (and field-)dependent gauge trans-
foramtions is fully carried by the term built out of $.

66Here, J·, ·K denotes the Lie bracket between vector fields in TA (or TΦ, depending on the context).
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B Computation of the symplectic form

In this appendix we prove the expression for the symplectic form given in (58).
First, we notice the following identities,

d⊥d⊥Ai = −DFi and d⊥d⊥ψ = Fψ, (164)

which follow from the general definition of the horizontal differential for horizontal and
equivariant field-space forms. That is, for any p-form λ ∈ Λp(Σ,W ) valued in a represen-
tation (W,ρ) of G such that iξ]λ = 0 and Lξ]λ = ρ(ξ)λ (see [37]), we define

d⊥λ := dλ− ρ($)λ, (165)

which is a horizontal and equivariant field-space (p+ 1)-form (see [37]).
Second, we notice that the identity (·• stands for ·YM or ·Dirac)

d⊥θ
⊥
• = dθ⊥• , (166)

follows from the above definition and the θ⊥YM and θ⊥Dirac being gauge invariant, i.e. Lξ]θ
⊥
• =

0. Hence,
Ω• = dθ• = d(θ⊥• + θV• ) = d⊥θ

⊥
• + dθV• = Ω⊥• + Ωrest

• . (167)

Now, we are ready to compute Ω•. We start from the horizontal contributions. The
YM one gives

Ω⊥YM = d⊥θ
⊥
YM =

∫
√
g gijTr(Ȧ⊥i d⊥Aj) =

∫
√
g gijTr(d⊥Ȧ

⊥
i f d⊥Aj), (168)

where we used (164) and the fact that G(Ȧ⊥,F]) ≡ 0. Similarly, the matter one gives

Ω⊥Dirac = d⊥θ
⊥
Dirac = −d⊥

∫
√
g (ψγ0d⊥ψ) = −

∫
√
g (d⊥ψ f γ

0d⊥ψ + Tr(ρF)). (169)

We then focus on the differential of the vertical contributions to the symplectic poten-
tial. Once again, we start from the YM one, which reads

Ωrest
YM = d

∫
√
g gijTr(DiϕDj$) = −d

∫
√
gTr($D2ϕ) + d

∮ √
hTr(f $)

= −
∫
√
g dTr(D2ϕ$) +

∮ √
hTr(d⊥f $ + f F). (170)

where we used the defining relations df = d⊥f + [f,$] and d$ = F − 1
2 [$ f, $]. The

Dirac part gives on the other hand:

Ωrest
Dirac =

∫
√
g (ψγ0$ψ) = d

∫
√
g dTr(ρ$). (171)

Combining all the terms, we obtain:

Ω =

∫
√
g gijTr

(
d⊥Ȧ

⊥
i f d⊥Aj

)
︸ ︷︷ ︸

=Ω⊥YM

+

∫
√
g
(
− d⊥ψ f γ

0d⊥ψ − Tr(ρF)
)

︸ ︷︷ ︸
=Ω⊥Dirac

+

+

∫
√
g dTr

(
(ρ−D2ϕ)︸ ︷︷ ︸

≈0

$
)

+

∮ √
hTr(d⊥f $ + f F)

︸ ︷︷ ︸
=Ω∂

. (172)
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C Proof of equation (60)

(Note: manipulations in this section do depend of the choice $ = $SdW, unless stated
otherwise.)

In this appendix we prove (60), in its more complete form:

Ξrad =

∫
√
gTr

(
gij( d

dtd⊥Ai + [A0, d⊥Ai])f d⊥Aj + (D2ϕ− ρ)F
)
, (173)

under the hypothesis that ∂tgij = 0 in R.
We start by the definition (59),

Ξrad :=

∫
√
gTr

(
gijd⊥Ȧ

⊥
i f d⊥Aj − ρF

)
+

∮ √
hTr

(
f F
)
, (174)

and observe that, on-shell of the (source-free) Gauss constraint (47), the last two terms
can written as∫

√
gTr(−ρF) +

∮ √
hTr(f F) =

∫
√
gTr

(
(D2ϕ− ρ)F + DiϕDiF

)
=

∫
√
gTr

(
(D2ϕ− ρ)F− ϕgij [d⊥Ai f, d⊥Aj ]

)
, (175)

where in the first step we used the defining equation Dsϕ = f (47) as well as the divergence
theorem; the second step follows from an integration by parts and the properties (38) of
the SdW-curvature F.

Hence, (59) ca be put into the form

Ξrad =

∫
√
gTr

(
gij(d⊥Ȧ

⊥
i − [ϕ, d⊥Ai])f d⊥Aj + (D2ϕ− ρ)F

)
, (176)

Next, we prove that

d⊥(Ȧ⊥i ) = d
dtd⊥A+ [$(Ȧ), d⊥A] + DiȦF. (177)

As the proof shows, this formulae holds for any connection form satisfying (5) provided
∂t$ = 0 (which in turn follows from ∂tgij = 0 in R). This goes as follows:

d
dtd⊥Ai = d

dt(dAi −Di$) = d(Ȧi)−Di
d
dt$ − [Ȧi, $]

= dȦi −DiLȦ$ − [Ȧi, $]

= d(Ȧ⊥i + Di$(Ȧ))−Did$(Ȧ)−DiiȦd$ − [Ȧi, $]

= d(Ȧ⊥i ) + [dAi, $(Ȧ)]−Di

(
iȦF− [$(Ȧ), $]

)
− [Ȧi, $]

= d(Ȧ⊥i ) + [d⊥Ai, $(Ȧ)]− [Ȧ⊥i , $]−DiiȦF

= d⊥(Ȧ⊥i ) + [d⊥Ai, $(Ȧ)]−DiiȦF. (178)

In the first line, we used the definition of d⊥Ai = dAi − Di$ and the Leibniz rule; in
the second, we used the identity LȦ$ ≡

d
dt$ which follows from the fact that $ only

depends on t though its functional dependence on A; in the third, we used the definition
of Ȧ⊥i = Ȧi − Di$(Ȧ) and Cartan’s formula LX = diX + iXd; in the fourth, we used
the Leibniz rule for the functional differential as well as the definition of the functional
curvature F = d$ + 1

2 [$ f, $]; in the fifth, we distributed Di and recollected terms

53



SciPost Physics Submission

according the definitions of d⊥Ai and Ȧ⊥i ; finally, in the sixth line, we simply recognized
(cf. (18) or (163) of appendix A)

d⊥(Ȧ⊥i ) = dȦ⊥i − [Ȧ⊥i , $]. (179)

Combining equation (177) and (176) with the relation A0 = −ϕ + $(Ȧ) (equation
(20)) gives the sought result, equation (173). The term involving DiȦF cancels because it
involves the integration (i.e. the G-inner product) of a pure gauge-covariant gradient (i.e.
of a purely-vertical object) against the SdW-horizontal differential d⊥Ai.

Note that (177) can be used to show that

Ω⊥YM =

∫
√
g gijTr

(
( d

dtd⊥Ai)f d⊥Aj + [$(Ȧ), d⊥Ai]
)
. (180)

This expression is also manifestly gauge-invariant, even under time-dependent gauge trans-
formations (see (19)).

D The SdW connection from the Dirac dressing

In this appendix, we revisit Dirac’s construction for the dressing of the electron [40], and
provide considerations about its generalizability (or lack thereof) to the non-Abelian case.
This discussion also offers an independent route to the introduction of the SdW connection
$.

Dirac’s dressing construction can be motivated by the need to define a physical electron
field that is meant to create not only the “bare” electron but its Coulombic electric field
as well, so that the Gauss law is automatically satisfied. With the purport of being
physical, this dressed field is expected to be, and indeed is, gauge invariant. However,
the dressed field describes a charged electron, and therefore also carries electric charge.
This means the electric charge Poisson-generates a global shift in the phase of the dressed
electron field, which might seem in contrast with the posited gauge invariance of the
dressed field. However, as we saw in section 3.8, these requirements are not mathematically
in conflict [70]: constant “gauge transformations” associated to the electric charge do have
a different (geometric) status in ΦEM with respect to generic (local) gauge transformations
(see last paragraph of section 3.8.2).

Starting from these ideas, we will now revisit Dirac’s construction. We will work in
finite regions and in the non-Abelian setting, for generality.

Denoting the dressed field with a hat, ψ̂, the classical condition corresponding to the
demand that the corresponding quantum field creates an electron at x together with its
electrostatic field is

{Eβj (y), ψ̂(x)} = −
(
DjGα,x

)
β(y)ταψ̂(x) (181)

where {·, ·} denotes the Poisson bracket and67 Gα,x ∈ Λ0(R,Lie(G)) is the Lie(G)-valued
Green’s function defined by (here, δx(y) = δD(x, y) is Dirac’s delta distribution){

D2Gα,x(y) = ταδx(y) in R,

DsGα,x(y) = 0 at ∂R.
(182)

Although at this level any other choice of boundary conditions would have worked, the
(covariant) Neumann boundary condition is chosen here for future convenience. Physically,

67Here (α, x) are seen as labels of the Green’s function, not indices in Lie(G). Note that {ταδx}(α,x)
provides a basis of Lie(G), since a generic ξ ∈ Lie(G) can be written ξ(x) =

∫
R

dDy ξα(y)ταδx(y).
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this choice corresponds to the demand that the dressed particle created at x does not
contribute to the flux f at ∂R. A posteriori, with the knowledge acquired from the
construction of the SdW connection, it is possible to see that these boundary conditions are
moreover the only ones that make ψ̂ gauge invariant with respect to gauge transformations
whose support is not limited to the interior of R, extending also to its boundary ∂R.

As familiar from EM, at reducible configurations Ã, the above choice of boundary
conditions is inconsistent and should be amended, e.g. by demanding that it creates
a constant flux compatible with the integrated Gauss law.68 However, notice that, at
(generic!) non-Abelian configurations that are not reducible, there is no integrated Gauss
law that the Green’s function should respect. Indeed, the extension of the Gauss law,∫
ρ =

∫
∂iEi =

∮
f , to the non-Abelian context would be∫
Tr(ταρ) =

∫
Tr(ταDiEi) = −

∫
Tr(EiDiτα) +

∮
Tr(ταf), (183)

but the bulk term on the rightmost side vanishes only if A is reducible and τα is replaced
by a reducibility parameter. Therefore, at a generic configuration of a non-Abelian YM
theory, there is no (integrated) Gauss law relating total charges and (integrated) electric
fluxes.69

With definition (182) at hand, using the following non-Abelian extension of Green’s
theorem (e.g. [71])∫

R

√
gTr(φD2ψ − ψD2φ) =

∮
∂R

√
hTr(φDsψ − ψDsφ) ∀φ, ψ ∈ Λ0(R,Lie(G)), (184)

one can choose ψ = Gα,x and φ = ϕ, to obtain the Coulombic component of the electric
field in terms of the charge density ρ and the flux f :

ϕα(x) =

∫
R

√
g(y) Tr

(
Gα,x(y)D2ϕ(y)

)
−
∮
∂R

√
h(y) Tr

(
Gα,x(y)Dsϕ(y)

)
≈
∫
R

√
g(y) Tr

(
Gα,x(y)ρ(y)

)
−
∮
∂R

√
h(y) Tr

(
Gα,x(y)f(y)

)
. (185)

At reducible configurations, this formula must again be amended by the addition of con-
stant offsets due to the modified boundary condition. The addition of such offsets is
possible thanks to the freedom of redefining Gα,x by some combination of the reducibility
parameters, since they lie in the kernel of (182).

Going back to the definition of the dressed matter field, and working formally, we
consider the ansatz

ψ̂(x) ≡ eF [A](x)ψ(x) with F [A] ∈ Lie(G), (186)

from which, via substitution into the requirement (181), we get the condition:

1
√
g

δ

δA
F = {E,F} = −DG, (187)

68In EM one possible natural boundary condition is ∂sG = 1/Vol(∂R) with Vol(∂R) the volume of
the region’s boundary ∂R, whereas in YM at a Ã with a single reducibility parameter χ, the following
y-constant boundary condition plays a similar role DsGα,x = Tr(χ(x)τα)/||χ||2∂R.

69 The issue is formally the same as the difficulties present in defining quasi-local conserved quantities
in general relativity. Also, notice that bringing the gauge field contribution on the left-hand side of (183)
to make the ensuing “integrated Gauss law” satisfied identically is a trick with no bearing on the dressing
problem and the definition of the Green’s functions for the matter field. Cf. the discussion in section 3.8.
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or, in full detail,

gji(y)√
g(y)

δ

δAβi (y)
Fα[A](x) = {Eβj (y), Fα(x)} = −

(
DjGα,x

)
β(y), (188)

where we used Ω( δ

δAβi (y)
) = −

√
g(y) gij(y)δEβj (y) to individuate the Hamiltonian vec-

tor field associated to Eβj (y) (notice that this expression is valid also in the presence of
boundaries).

Equation (181) can then be formally solved through a line integral in configuration

space A, that we denote
∫∫ A

:

F [A]α(x) = −
∫∫ A ∫

R
dDy

√
g(y) gij

∑
β

(
DiGα,x

)
β(y) dAβj (y) (189)

Using a more compact notation, this can be written

F [A](x) = −
∫∫ A ∫

R

√
gTr

(
DiGα,x dAβi

)
τα. (190)

Integrating by parts, one obtains

F [A](x) = −
∫∫ A(

−
∫
R

√
gTr

(
Gx,αDjdAj

)
τα +

∮
∂R

√
hTr

(
Gx,αdAs

)
τα

)
(191)

Now, to be able to use Green’s theorem and simplify this expression, it is natural to
introduce

$ ∈ Λ1(R,Lie(G)) (192)

defined by (5) {
D2$ = DidAi in R,

Ds$ = dAs at ∂R.
(193)

Hence, using this definition and Green’s theorem (184) for ψ = Gα,x and φ = $, we obtain
the formal solution

F [A](x) =

∫∫ A

$(x) (194)

and ψ̂ = exp
(∫∫ A

$
)
ψ is the formal general solution to the demands imposed by Dirac’s

dressing.
This construction provides an independent motivation for the introduction of the SdW

connection form $—even though at this level, its connection-form properties (5), and in
particular its covariance property, are not manifest.

But with hindsight knowledge of the connection-form nature of $, we introduce the
following gauge-covariant expression (i.e. even under field-dependent gauge transforma-
tions) involving a field-space Wilson-line: we call this the dressing factor (see [26, Sec. 9]
for details and crucial subtleties regarding its gauge-covariance):70

ψ̂(x) = Pexp

(∫∫ A

$(x)

)
︸ ︷︷ ︸

=:dressing factor eF

ψ(x). (195)

70This is a 1-dimensional integral along a curve embedded in an infinite dimensional space. It is the
latter property that the doublestruck-face of the symbol Pexp

∫∫
is meant to emphasize. Cf. equation (126),

where a Wilson line in space—rather than in configuration space—is considered.
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In EM, the SdW connection is Abelian and flat. Therefore, both the path ordering
and the choice of path in A are inessential. In particular, one can choose the trivial
configuration A? = 0 as a starting point for the field-space line integral so that the resulting
expression (seemingly) depends only on the final configuration A. Indeed, using the fact
that in EM the Green’s function G does not depend on A, we can perform the integral
explicitly and readily find—cf. (189):

ψ̂(x) := ei
∫
R

√
g(y)G(x,y)∂iAi(y)ψ(x). (196)

This provides a generalization to finite and bounded regions of the Dirac dressing, which
in RD=3 reads (see [40]):

ψ̂(x) := e
i
∫ d3y

4π

∂iAi(y)

|x−y| ψ(x). (197)

In the non-Abelian setting, we first proposed the expression (195) (without reference
to the derivation presented here) in [26]. There, this formula was framed in relation
to the work on dressings by Lavelle and McMullan [41–44], and also to the Gribov-
Zwanziger framework [72, 73] (see [74] for a review and relation to confinement), and,
finally, to the geometric approach to the quantum effective action by Vilkovisky and De-
Witt [27,46–50]. In particular, in [26], we studied in detail the properties and limitations
of (195) and we related the limitations to certain obstructions appearing in the previous
works [27,44,46–48,72,73]. More specifically, we showed that: the obstructions found pre-
viously come from the curvature of the connection form, which induces a path-dependence
ambiguity in the dressing; that this ambiguity can be fixed in a neighbourhood of a given
reference configuration A? (using field-space geodesics with respect to the so-called Vilko-
visky connection [27,47,48]); and that, nonetheless, all expressions will still depend on the
(gauge-dependent) choice of the reference configuration A? ∈ A [49,50]. Finally, note that
global existence and uniqueness of the Vilkovisky geodesics from A? = 0 to a generic A, a
question related to the non-perturbative existence and uniqueness of the dressing factor,
is expected to fail in view of the Gribov problem. We restrain from dissecting these topics
here, and refer to [26, Sec. 9] for a thorough discussion.

Instead, we limit ourselves to the following observations: although the notion of a
full-blown nonperturbative dressing is not viable in YM due to the involved geometry of
A, an infinitesimal version thereof is precisely provided by the SdW horizontal differential.
Indeed, formally, the total differential of the (gauge invariant) dressed matter field, dψ̂ is
directly related to the SdW horizontal differential of the bare matter field, modulo the
dressing factor:

dψ̂ = eF (dψ +$ψ) = eF d⊥ψ. (198)

Since the SdW-horizontal differential has a natural place in any Abelian as well as non-
Abelian YM theory, it follows that, in this sense, the SdW horizontal differential constitutes
the closest analogue to the Dirac dressing that generalizes to the non-Abelian YM theory.
In particular, the discussion of symmetry charges of section 3.8 shows that the dressed
fields (or better, their differentials) do carry charges despite being fully gauge invariant
(resp. horizontal covariant) objects.

Although uncharged, the photon can also be made gauge invariant by dressing it with
the same dressing factor. Not surprisingly this gives rise to the transverse photon. In
the non-Abelian setting a dressed, covariantly-transverse, gluon can be defined with the
same caveats as for the dressed quark and with a completely analogous relation to the
horizontal differentials.

We conclude by directing the reader to [75, 76] for a more algebraic take on dressings
and their consequences e.g. for the interpretation of spontaneous symmetry breaking (aka
the Higgs mechanism).
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