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Abstract

The transition between the broken and unbroken phases of massive gauge
theories, namely the rearrangement of longitudinal and Goldstone degrees of
freedom that occurs at high energy, is not manifestly smooth in the stan-
dard formalism. The lack of smoothness concretely shows up as an anomalous
growth with energy of the longitudinal polarization vectors, as they emerge in
Feynman rules both for real on-shell external particles and for virtual particles
from the decomposition of the gauge field propagator. This makes the charac-
terization of Feynman amplitudes in the high-energy limit quite cumbersome,
which in turn poses peculiar challenges in the study of Electroweak processes
at energies much above the Electroweak scale. We develop a Lorentz-covariant
formalism where polarization vectors are well-behaved and, consequently, en-
ergy power-counting is manifest at the level of individual Feynman diagrams.
This allows us to prove the validity of the Effective W Approximation and,
more generally, the factorization of collinear emissions and to compute the cor-
responding splitting functions at the tree-level order. Our formalism applies at
all orders in perturbation theory, for arbitrary gauge groups and generic linear
gauge-fixing functionals. It can be used to simplify Standard Model loop cal-
culations by performing the high-energy expansion directly on the Feynman
diagrams. This is illustrated by computing the radiative corrections to the
decay of the top quark.
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1 Introduction

Studying Electroweak physics in reactions where the available center of mass energy E is
much larger than the Electroweak scale m ∼ mW,Z is of both practical and theoretical
interest.

The practical relevance stems from the fact that the LHC and its high-luminosity
successor will allow us to take a first glance at this new energy regime, which further-
more is a promising one for the search of new physics. Indirect new physics searches by
precise measurement of high-energy Electroweak processes deserve a special mention in
this context because they require accurate Standard Model (SM) predictions. Radiative
Electroweak corrections are enhanced at high energy [1–4], due to peculiar non-canceling
IR effects that produce single or double (Sudakov) logarithms of E2/m2. Therefore, even
if the accuracy of Electroweak LHC measurements above the TeV scale cannot go below
few percent because of the limited statistics, including state-of-the-art calculations (at
one-loop order) for such corrections is compulsory and going beyond the state-of-the-art
would be desirable. The need for refined Electroweak calculations will dramatically in-
crease at future colliders probing even higher energy scales. A particularly striking case
can be made for a hypothetical tens-of-TeV muon collider, where the QCD corrections
have limited impact and the final accuracy of our predictions will be driven by our ability
to deal with Electroweak physics.

High-energy Electroweak interactions are also relevant theoretically, in connection with
the general problem of IR physics in Quantum Field Theory (QFT). In the presence of a
large scale separation E � m, it must be possible to visualise the reaction in terms of a
hard scattering process dressed by soft radiation from the initial and from the final states.
The hard scattering is the component of the process that genuinely takes place at energy
E and therefore it probes physics at the shortest accessible distance 1/E. The radiation
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emerges instead from energies ranging from some upper scale much below E down to the
IR scale m. It is insensitive to the details of the hard scattering process and to short-
distance physics, and it takes a universal form. Conversely, the hard scattering should
be nearly insensitive to the long-distance IR physics at the scale m, which should appear
in that component of the process as a tiny power-like m/E correction. The factorized
picture above is supported by a number of results in QED and QCD, and by decades of
QFT practice. Therefore is must undoubtably hold true for Electroweak physics as well.
However it is not easy to substantiate the picture in the case of Electroweak interactions
and to materialise it in a recipe for concrete calculations. The most challenging aspect
of the problem is arguably the non-applicability [5] of the KLN theorem 1 to Electroweak
interactions, because in “normal” QFT’s this fundamental result is the starting point
for the definition and the physical interpretation of the hard IR-insensitive component
of the reaction. The IR problem for Electroweak physics is, in this respect, even more
challenging than for QCD. But on the other hand it must be much simpler because Elec-
troweak interactions stay perturbative at the IR scale m. Therefore it should be possible
to address the problem in fully rigorous terms and to end up with accurate first-principle
predictions without the need of extra phenomenological input unlike in QCD. High-energy
Electroweak physics is an interesting corner of QFT and its many aspects continuously
stimulate theoretical work (see e.g. [9–22]). Further interest and results are expected in
the future.

In this paper we extensively and conclusively study one peculiar technical aspect of
high-energy Electroweak physics, related to the characterization of the energy behavior
of the Feynman amplitudes. Namely we ask ourselves whether and how this behavior
can be systematically captured by a simple power-counting rule. Power-counting would
not only inform us on the leading high-energy behavior of each process by inspecting its
Feynman diagrams. It would also allow us to isolate the diagrams that give the leading
contribution and to treat the others as perturbations in a well-organized m/E expansion.
Furthermore, controlling the energy behavior is essential in order to separate the short
and long distance components of Feynman amplitudes. This in turn is a prerequisite to
prove even the simplest (tree-level) version of any factorization theorem. Notice that in
order to be useful, especially for the latter type of applications, power-counting should
also hold for diagrams whose external legs are not exactly on the mass-shell of a physical
particle.

Making power-counting manifest for the Electroweak theory requires us to depart
slightly from the standard formalism for massive gauge theories. Indeed power-counting is
notoriously hidden in standard massive gauge theory diagrams because of the anomalous
E/m behavior of the wave-functions associated to longitudinally polarized spin-one par-
ticles. The problem shows up already in the simplest textbook example of a high-energy
Electroweak process, such as the scattering of longitudinal (i.e. helicity h = 0) vectors
V0V0 → V0V0, at the tree-level order. Longitudinal polarization vectors grow with energy
as εh=0

µ ' kµ/m ∼ E/m and since four of them are involved the diagrams containing
gauge self-interaction vertices grow with energy as E4. Diagrams with the Higgs have
two inverse powers of energy from the propagator and grow like E2. The energy growth
cancels when all diagrams are summed up and the final physical amplitude scales like E2

in the energy range (which of course would have existed only if the Higgs was heavy) from
m to the Higgs mass, and as E0 afterwards. Similar cancellations take place in almost all

1The theorem ensures the cancellation of IR divergences (or of IR enhancements, when a physical IR
cutoff is present) in observables that are inclusive on the radiation [6, 7]. A weaker result, specific to soft
singularities, is known as the Bloch-Nordsieck theorem [8] and it is also not applicable in Electroweak
physics.
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high-energy processes involving longitudinal vectors.
Power-counting-violating cancellations are problematic. First of all, they prevent us

from neglecting masses in the amplitude calculation, even if we were interested in the
deep high-energy regime where they are expected to be (and eventually are) negligible
in the final result. Of course modern tree-level calculation technologies easily allow us to
make computations with finite masses, however at higher loop orders dealing with massless
rather than massive integrals could be a crucial simplification. Second, cancellations of
E/m spurious enhancements are problematic because they only occur if the vector bosons
momenta are on-shell, i.e. when their virtuality Q2 = k2 −m2 vanishes. But the vector
bosons are never exactly on-shell in the sub-diagrams that we would like to interpret as
describing the hard scattering in factorization problems. In that case Q is of order or
much larger than m, while still much below the hard scale E. The expansion parameter
that should ensure factorization as the product of a soft splitting of virtuality Q2 times
the hard short-distance reaction with on-shell vector bosons is indeed Q2/E2 � 1, which
does not require Q � m.2 Because of the cancellation, subleading terms in the Q2/E2

expansion of the off-shell amplitude can actually be of order E2/m2 · Q2/E2 = Q2/m2

relative to the on-shell amplitude, i.e. not small at all. The latter terms do eventually get
canceled in the total amplitude by seemingly unrelated diagrams where no low-virtuality
vector boson is propagating in the internal lines, so that factorization holds. An explicit
example of this behavior was discussed in Ref. [23] to illustrate the difficulty of proving the
validity of the Effective W Approximation (EWA) in the standard covariant formulation.

Having elaborated at length on the potential virtues of a formalism where longitudinal
polarization vectors do not grow with energy, we discuss now how to get one by “Gold-
stone Equivalence”. Goldstone Equivalence is the idea that at high energy the longitudinal
degree of freedom of a massive vector gets transferred to the scalar degree of freedom as-
sociated with the excitations of the corresponding Goldstone field. This idea is supported
by the famous Goldstone Boson Equivalence Theorem [24]. The aim of the present work
is to turn Goldstone Equivalence into a rigorous exact reformulation of Feynman rules
for massive gauge theories in which the polarization vectors are well-behaved and power-
counting is manifest. Notice that ours is not quite a “different” formalism. It employs
the exact same gauge-fixed Lagrangian as the standard one so that the Feynman rules for
the vertices are standard, and all the standard calculation technologies straightforwardly
apply. Only the longitudinal polarization vector is modified and acquires, as we will see,
a component in the direction of the Goldstone field. Diagrams with external Goldstone
legs are thus included in the calculation and their contribution is typically (but not al-
ways) leading at high-energy compatibly with the Equivalence Theorem. The standard
longitudinal polarization vectors need to be replaced with well-behaved ones also in off-
shell amplitudes because we need power-counting also for the latter diagrams in order to
approach factorization problems, as we discussed. Moreover the SM vector bosons are un-
stable and therefore they are never exactly on-shell. The polarization vectors for off-shell
and for unstable bosons are technically defined by the decomposition of propagator lines
that connect two otherwise disconnected diagrams. An integral part of our formalism is
thus the decomposition of such propagators in terms of well-behaved polarization vectors.

It is rather intuitive why Goldstone Equivalence allows us to get rid of the energy-
growing polarization vectors. The wave-function factor for scalars is a constant, therefore
by replacing the longitudinal bosons with the Goldstone scalars we should be able to turn
the E/m behavior into a constant one. In Ref. [25] one of us elaborated on this idea
showing that energy growth is avoided by a suitable definition of the state that describes
longitudinal vectors in the enlarged Fock space of the gauge-fixed theory. This differs

2Q is much smaller than m only for decay processes.
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from the standard one by a BRS-exact state so that it belongs to the same element of
the BRS cohomology and consequently it possesses identical physical properties. The
additional BRS-exact state contains one quantum of the Goldstone field, which gives rise
to the previously-mentioned Goldstone component of the longitudinal state wave function.
The BRS-exact state also contains a scalar excitation of the massive vector. Its wave
function, proportional to kµ/m, combines with the one of the ordinary longitudinal state
and cancels the energy growth. Here we proceed in a slightly different way. We employ
the standard representative states for the physical particles in the Fock space and we
get rid of kµ/m at a later stage of the scattering amplitude calculation. We do so by
exploiting the generalized Ward identity that relates amputated amplitudes for the gauge
field, contracted with the external momentum kµ, to Goldstone bosons amplitudes. Our
approach might sound less appealing than the one of Ref. [25], but it is not. Indeed
while adding a Goldstone component to the longitudinal states is in line with the intuitive
picture of Goldstone Equivalence, it should be kept in mind that the specific representative
of the BRS-cohomology element we decide to employ is deprived of any physical meaning.
The present approach brings several advantages. It allows us to deal with a general gauge
theory and in particular with the SM, while Ref. [25] only studied a toy model. It also
allows us to deal with unstable particles, such as the physical W and Z, and with off-
shell vector bosons. Finally, the approach of Ref. [25] requires a specific choice of the
gauge-fixing parameters, unlike ours.

The rest of the paper is organized as follows. In Section 2 we work out our Goldstone
Equivalence formalism for a simple toy model. This will allow us to present the various
steps of the derivation avoiding at first the extra algebraic and notational complications
required to deal with a general spontaneously broken gauge theory, which we study in
Section 3. The result essentially consists of an expression for the longitudinal (zero helicity)
polarization vector E0

M [k], with components M = µ along the gauge fields and a component
M = π along the Goldstone scalars. The gauge component E0

µ[k] does not grow with
energy anymore, but rather it vanishes as m/E. Furthermore it takes a universal theory-
independent form. The scalar component E0

π[k] = E0
π(k2) only depends on k2 and thus it is

constant in energy at fixed vector boson virtuality. It is given by a certain combination of
vacuum polarization amplitudes, to be computed in each theory and for each external
vector boson. One-loop explicit expressions for E0

π(k2) for the SM vector bosons are
computed and reported in Section 4. Section 4.4 and 5 are devoted to applications. In
Section 4.4 we apply our formalism to tree-level longitudinal vector bosons scattering and
to the calculation of radiative corrections to the t → bW top quark decay. This has the
purpose of illustrating the formalism and outlining the advantages of a manifest power-
counting rule, and also of verifying in non-trivial examples that our approach produces
results that are exactly identical to the standard ones. In Section 5 we instead use our
formalism to derive the simplest possible “factorization theorem”. Namely we show that
collinear emissions factorize at tree-level into universal splitting amplitudes times the hard
process amplitude. We saw above that proving this seemingly trivial fact, of which the
EWA is a particular case, requires a formalism like ours where power-counting is manifest.
Finally, we report our conclusions in Section 6.

2 Warm-up: The Higgs–Kibble Model

We begin discussing Goldstone Equivalence within the so-called Higgs–Kibble model (see
e.g., [26,27]), namely a SU(2) gauge theory fully broken by the vacuum expectation value
(VEV) of a scalar doublet H. This will allow us to illustrate the logic of our derivation
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and to explain the result in a simple context, in preparation for the general discussion of
Section 3. Before gauge-fixing, the Lagrangian simply reads

L0 = −1

2
Tr [WµνW

µν ] + (DµH)†DµH − λ
(
|H|2 − µ2

2λ

)2

, (2.1)

where Wµ = Wµ
a σa/2 (a = 1, 2, 3) are the gauge fields and the Higgs doublet is represented

as 3

H =
1√
2

(
−i(π1 − iπ2)
v + h+ iπ3

)
. (2.2)

The parameter v is the Higgs VEV, h is the physical Higgs scalar and πa the “eaten”
Goldstone bosons. Notice that in the present section we consider bare fields, Lagrangians
and parameters. The scalar fields h and πa are defined to have zero VEV, therefore v is
not equal to µ/

√
λ beyond tree-level. The spectrum of the theory consists of 3 massive

vectors and the Higgs scalar, with tree-level masses m2
0 = g2v2/4 and m2

h,0 = 2λv2.
The standard Faddeev–Popov method allows us to turn the Lagrangian L0 into a

concrete recipe for perturbative calculations. One introduces a ghost ωa and an anti-ghost
field ωa for each gauge vector, and a gauge-fixing term Lg.f., producing a Lagrangian

L = L0 + Lg.f. + Lghosts , (2.3)

which is now suited to be studied in perturbation theory. The gauge-fixing term is given
by

Lg.f. = −1

2

∑
a

Fa(x)Fa(x) , (2.4)

where Fa are three real gauge-fixing functionals, one for each local symmetry generator.
The ghost Lagrangian is Lghosts = −ω̄aδωFa, where δω represents an infinitesimal gauge
transformation with ghost parameters. The explicit form of Lghosts will not be relevant in
the following.

Throughout this work we restrict our attention to gauge-fixing functionals that are
linear combination of the 4-divergence of the vector fields and of the scalars in the theory.
In Section 3 we will deal with the most general gauge-fixing in this class, however for the
illustrative purposes of the present section we consider the particular case

Fa = ∂µW
µ
a /
√
ξ −

√
ξ m̃πa , (2.5)

where ξ > 0 and m̃ are free parameters. In particular, m̃ is not necessarily related to the
mass of the vector bosons. The convenience of this gauge-fixing choice stems from the
fact that the Lagrangian L0 in eq. (2.1) enjoys an exact global custodial SU(2)c symmetry
under which Wµ

a and πa transforms as triplets, while h is a singlet. The gauge-fixing
functional in eq. (2.5) preserves custodial symmetry, making its implications manifest in
the gauge-fixed theory.

2.1 Useful Identities

Spontaneously broken (or exact) gauge theories are among the most studied subjects in
theoretical physics. Of this huge body of literature we review here only the results that
are directly relevant for our discussion, starting from the Slavnov-Taylor identities that
control the matrix elements of the gauge-fixing functional operators. We next study the
implications of these identities on the amputated Feynman amplitudes, deriving “general-
ized Ward identities” that are the analog of the familiar QED Ward identities kµAµ = 0

3We also defined Wµν = ∂µWν − ∂νWµ − i g [Wµ,Wν ] and DµH = ∂µH − igWµH.
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. The latter identities will be used in Sections 2.2 and 2.3 to get rid of the growing-with-
energy longitudinal polarization vectors. The Slavnov-Taylor identities are presented for
an arbitrary gauge theory, while their implications are discussed in the particular case of
the Higgs–Kibble model. However the derivations are presented with a logic that allows
for a relatively straightforward generalization.

Slavnov-Taylor Identities

The starting point of our derivation is the set of identities [28]

〈β|T {Fa1(x1) · · · Fan(xn)O} |α〉 ∝
∏

δ(4)(xi − xj) , (2.6)

where |α〉, |β〉 are arbitrary physical in and out states, O is any gauge-invariant operator
and Fa are the gauge-fixing functionals. These are given by eq. (2.5) in the particular case
of the Higgs–Kibble model, but the equation above is of fully general validity. The r.h.s.
of the equation consists of contact terms that do not contribute to connected components
of the correlators in Fourier space. Therefore the equation ensures the cancellation of con-
nected diagrams with any number n ≥ 1 of gauge-fixing operator Fa, for arbitrary physical
particles on the external legs and possibly the insertion of a generic gauge-invariant op-
erator. A particular case of eq. (2.6), for which we will need to know the pre-factor, is

〈0|T {Fa(x)Fb(y)} |0〉 = −iδabδ(4)(x− y) . (2.7)

We will see later the implication of the above relation for the bosonic 2-point correlators.
The identities (2.6) are so important for our work that it is worth justifying their

validity here, on top of relying on the proof in Ref. [28]. Following Ref. [29], we recall that
the Faddeev-Popov method establishes the independence of the path integral of gauge-
invariant operators on the choice of the gauge-fixing functionals. In particular we can
consider a shift Fa → Fa + Ja, with Ja(x) a field-independent local source. Because Ja is
field-independent the ghost action is not affected, so the only change in eq. (2.3) appears
in the gauge-fixing term. Independence of Ja thus implies that any number of functional
derivatives of ∫

D(fields) O ei
∫
d4x[L0+Lghosts− 1

2
(Fa+Ja)2] , (2.8)

with respect to Ja vanishes. It is now a trivial exercise to reproduce eq. (2.7). The more
general form of the identity in eq. (2.6) follows from the non-trivial fact (see e.g., [30])
that any physical particle can be excited from the vacuum by a gauge-invariant operator.

Generalized Ward Identities

The Slavnov-Taylor identities hold for connected amplitudes. Turning them into rela-
tions for the amputated Feynman amplitudes is conceptually straightforward, since the
amputated amplitudes are simply obtained from the connected ones by factoring out the
propagators on the external legs. However taking this step requires us to get some control
on the structure of the propagator (or, more precisely, of the all-orders two-point function),
and to establish some notation.

In a general theory, all the scalar fields can mix with the gauge vectors and the two-
point function we are seeking is a (4NV + NS)-dimensional matrix, where NS and NV

are, respectively, the total number of scalar and of vector fields that are present in the
theory. Clearly Lorentz invariance implies a number of simplifications on the structure
of the matrix, still leaving however a rather complicated structure we will have to deal
with in the next section. The situation is much simpler in the Higgs–Kibble model. The
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custodial SU(2)c symmetry implies that the singlet h does not mix with the W a
µ and πa

triplets, and furthermore the two-point functions in the W/π sector are proportional to
the identity in the custodial indices space. This allows us to treat separately each of the
3 gauge fields together with its corresponding Goldstone and to suppress the custodial
indices altogether. The fields are collected in a 5-components vector

ΦM = (Wµ, π) , (2.9)

where M = {µ, π} runs over the four Lorentz indices µ and on a fifth (Goldstone) com-
ponent M = π. Vectors with upper 5D indices are defined by acting with a 5D metric
ηMN = diag(ηµν , 1). With this notation the two-point function matrix in momentum
space is defined as 4

iGMN [k] ≡
∫
d4x eikµx

µ〈0|T {ΦM (x)ΦN (0)} |0〉 . (2.10)

Notice that from Bose statistics and translation invariance follows that

GMN [−k] = GNM [k] . (2.11)

For a given 4-momentum vector kµ, we introduce in the 5D space a transverse projector
P⊥[k] and two longitudinal vectors Pi[k]. Taking the index i to run over two values i = V, S
denoting “vector” and “scalar”, we define

P⊥MN =

(
ηµν −

kµkν
k2

04×1

01×4 0

)
, (2.12)

P VM =

(
−i kµ

k
, 0

)
,

P SM =

(
01×4, 1

)
,

where k =
√
k2. We have defined P⊥ to be a projector, namely P⊥ L

M P⊥LN = P⊥MN , that
annihilates the longitudinal vectors PiM . The latter are normalized to PiM [k]PMj [−k] =

δij , furthermore we have that P⊥[−k] = P⊥[k]. The completeness relation

P⊥MN [k] +
∑

i= S, V

PiM [k]PiN [−k] = ηMN , (2.13)

also holds. In terms of these objects, exploiting Lorentz invariance, we can parametrize
the two-point function as

GMN [k] = G⊥(k2)P⊥MN [k] + PiM [k]
[
GL(k2)

]
ij
Pj N [−k] , (2.14)

where the sum over i, j = V, S is understood. In eq. (2.14), G⊥(k2) is a scalar form-factor
that parametrizes the transverse component of the propagator, while GL(k2) is a 2 × 2
matrix of form-factors associated to the two “longitudinal” (in a 5D sense) modes V and
S. Notice that GL is a symmetric matrix because of eq. (2.11).

The notation also allows us to express the Slavnov-Taylor identity in a compact form.
We first write down the gauge-fixing (2.5) in momentum space

F [k] = −
∑

i= V, S

fi PMi [−k]ΦM [k] , (2.15)

4In order to avoid confusion we employ square brackets, e.g., “[k]”, to indicate dependence on the full
4-momentum kµ, as opposed to its norm k =

√
k2.
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where f is a 2-vector in the V-S space

fi(k
2) = (k/

√
ξ,
√
ξ m̃) . (2.16)

The general Slavnov-Taylor identity in eq. (2.6) reads(∑
i1

fi1 PM1
i1

[−k1]
)
· · ·
(∑
in

fin PMn
in

[−kn]
)
〈β|ΦM1 [k1] · · ·ΦMn [kn]|α〉c = 0 , (2.17)

with an obvious notation for the connected matrix elements in Fourier space.
We now turn to amputated amplitudes. We denote them as A{Φ, · · · ,Φ} suppressing

for shortness the labels α and β for the external states. The connected amplitudes are
equal to the amputated ones times the propagators on the external legs. In particular for
one external leg we have

〈β|ΦM [−k]|α〉c = iGMN [−k]A{ΦN [k]} . (2.18)

Notice that with this definition the momentum “k” is incoming in the amputated ampli-
tude. By applying eq. (2.17) for n = 1 we obtain(∑

i,j

fi[GL]ijPj M [k]
)
A{ΦM [k]} = 0 . (2.19)

The equation states that the connected amplitude vanishes if contracted with a certain
k-dependent 5D vector constructed from the gauge-fixing parameters (through f) and
involving the longitudinal propagator matrix. For future applications it is convenient to
rescale this vector to have minus one component along PV . Namely, we define

KM [k] ≡ −PVM [k]−
∑

i fi[GL]i S∑
i fi[GL]iV

PSM [k] = (i kµ/k, Kπ) , (2.20)

where Kπ(k2) is the PS component of K. The n=1 Ward identity now reads

KM [k]A{ΦM [k]} = 0 ⇔ i kµA{Wµ[k]} = −kKπ(k2)A{π[k]} , (2.21)

while for generic n we simply have

KM1 [k1] · · · KMn [kn]A{ΦM1 [k1], · · · ,ΦMn [kn]} = 0 . (2.22)

Eq. (2.22) is all we need. Unsurprisingly it is the same fundamental identity that
underlies the proof of the Equivalence Theorem developed in Ref.s [24,31–36] (see [37] for
a review). It is called “generalized Ward identity” because it is the closest generalization we
can get in a massive gauge theory of the QED Ward identity. In the analogy with QED, the
5D vector KM could be interpreted (up to proportionality factors) as the generalization
of the 4-momentum kµ or, more usefully in this context, as the generalization of the
polarization vector for the “scalar” component of the photon. We will see in Section 2.3
that the generalized Ward identity implies that the scalar polarization does not propagate,
in close analogy with the standard QED result.

By looking at the n=1 case in eq. (2.21) we can easily understand how the Ward
identities will allow us to get rid of the growing-with-energy polarization vectors for zero-
helicity (longitudinal) vectors. The energy growth is associated to a component of the
standard longitudinal polarization vectors that is proportional to kµ. Once contracted
with the amputated amplitude the energy-growing term thus takes the form of the l.h.s. of
eq. (2.21), which we can replace with r.h.s. that manifestly does not grow with energy. We

9
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will implement this mechanism systematically by subtracting the scalar polarization vector
KM to the standard longitudinal polarization. Notice that here we are taking for granted
that the high-energy limit is taken at fixed k =

√
k2, such that Kπ is constant because it

only depends on k2 by Lorentz symmetry. This is the only limit worth discussing, and the
only one in which the longitudinal polarization diverges. In concrete applications k2 will
be either m2 for on-shell particles or k2 = Q2 +m2 � E2 for virtual ones.

The Scalar Polarization Vector

The definition of K in eq. (2.20) is rather cumbersome. Before moving forward to the
study of the implications of the generalized Ward identity it is thus worth showing how it
can be expressed in simpler terms, and eventually computed in perturbation theory.

The central object here is the inverse of the two-point function G in eq. (2.14), which
we parametrize for convenience as

G−1
MN = G−1

⊥ P⊥MN [k] + PiM [k][G−1
L ]ijPj N [−k]

≡ Γ⊥P⊥MN [k] + PiM [k][Γ̃− F ]ijPj N [−k] , (2.23)

where F is a 2× 2 matrix constructed out of the gauge-fixing 2-vector f

Fij = fifj =

(
k2/ξ k m̃

k m̃ m̃2ξ

)
. (2.24)

This seemingly obscure definition requires some explanation. The two-point function is
the inverse of the quadratic effective action, namely it is the inverse of the Hessian of the
effective action Γ around the vacuum. When studying gauge theories it is often convenient
to introduce a “tilded” effective action Γ −

∫
dxLg.f. by subtracting and isolating the

tree-level contribution from the gauge-fixing term. This is what we did above, namely
we isolated in the matrix F the contribution from Lg.f. in eq. (2.4), computed using

eq. (2.15). The contribution from the “tilded” effective action appears instead in Γ̃ for the
longitudinal, and in Γ⊥ for the transverse part of the propagator.

We now recall that the two-point function obeys the Slavnov–Taylor identity (2.7),
that gives

~f tGL ~f = −1 , ⇒ ~f tGLF = −~f t , (2.25)

with an obvious vector notation for the gauge-fixing 2-vector ~f = (fV fS)t. Using that
G−1
L = Γ̃− F , this is also equivalent to

~f tGLΓ̃ = ~f tGL(G−1
L + F ) = ~f t − ~f t = ~0 t . (2.26)

The above equation has two components, both of which can be used to simplify the
expression for Kπ in eq. (2.20). Writing them down explicitly we find

Kπ = −
∑

i fi(GL)iS∑
i fi(GL)iV

=
Γ̃V S

Γ̃S S

=
Γ̃V V

Γ̃V S

(2.27)

where we exploited the fact that Γ̃ is symmetric. The second equality entails one relation
among the three elements of Γ̃, namely

Γ̃2
V S = Γ̃S SΓ̃V V . (2.28)

This is equivalent to the “B2=AC” relation among the longitudinal form-factors derived
in [27].

10



SciPost Physics Submission

Having expressed Kπ in terms of the inverse propagator we can easily set up its calcu-
lation in perturbation theory. Working for instance in bare perturbation theory one would
write the inverse propagator in the form

G−1
MN = ∆−1

MN + ΠMN , (2.29)

where ∆ is the bare tree-level propagator (times −i) and Π is the vacuum polarization
amplitude

∆−1 =

((
m2

0 − k2
) (
ηµν − kµkν

k2

)
+
(
m2

0 − k2

ξ

)
kµkν
k2

−i kµ (m0 − m̃)

i kν (m0 − m̃) k2 − m̃2ξ

)
,

Π =

(
ΠT
WW (k2)

(
ηµν − kµkν

k2

)
+ ΠL

WW (k2)
kµkν
k2

−i kµ ΠWπ(k2)

i kν ΠWπ(k2) Πππ(k2)

)
. (2.30)

By comparing with eq. (2.23) we obtain G−1
⊥ = Γ⊥ = m2

0 − k2 + ΠT
WW and

Γ̃ =

(
Γ̃V V Γ̃V S

Γ̃V S Γ̃S S

)
=

(
m2

0 + ΠL
WW k[m0 + ΠWπ]

k[m0 + ΠWπ] k2 + Πππ

)
. (2.31)

We thus express Kπ in terms of vacuum polarization amplitudes as

Kπ(k2) =

√
m2 + ΠL

WW (k2)

k2 + Πππ(k2)
, (2.32)

or in any of the other equivalent forms that can be obtained using eq. (2.28).
Eq. (2.32) could be now used to compute Kπ in perturbation theory, giving operative

meaning to eq. (2.22). The explicit result is not of interest in the toy Higgs–Kibble model.
In the case of the SM we will compute Kπ at one loop using eq. (2.32), or more precisely
using its generalization derived in Section 3.2. A remarkable fact about eq. (2.32) is that
it does not show explicit dependence on the gauge-fixing parameters m̃ and ξ, in spite of
the fact that it descends from the Slavnov–Taylor identities (2.6) where these parameters
do appear. Yet, Kπ implicitly depends on m̃ and ξ through the vacuum polarization
amplitudes. However at tree-level Π = 0 and Kπ is indeed gauge-independent and equal
to m/k.

2.2 On-Shell Stable Vectors

The generalized Ward identities straightforwardly allow us to define a well-behaved longi-
tudinal polarization vector that is fully equivalent to the ordinary one, in the sense that it
gives the exact same results for all physical quantities. We consider here the case in which
the massive vectors are stable external particles and show that the amplitudes computed
using our modified polarization vectors as wave-functions for the external legs are identical
to the standard ones.

We have seen that the Ward identities are conveniently derived and stated with a
notation where the Wµ and the π fields are collected in a single 5-components field ΦM ,
M = (µ, π), as in eq. (2.9). We can incorporate this notation in Feynman diagrams
by a graphical representation of ΦM lines on the external legs. Since ΦM contains both
vector and scalar lines it is natural to represent it with a double line as in Figure 1. The
double line carries a 5D index M , to be contracted with polarization vectors EM that
also live in the 5D space. One might have decided to express in terms of ΦM all the
Feynman rules of the theory, including the propagator (whose 5D form was written down

11
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E0
M [k] ⇥

M, k

= E0
µ[k] ⇥

µ, k

+ E0
⇡[k] ⇥
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⇥ E0

M [k] =

µ, k
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µ[k] +
k

⇥ E0

⇡[k]
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Figure 1: Feynman rules for incoming (top) and outgoing (bottom) external longitudinal states.

in the previous section) and the vertices, in which case only double lines would appear
in any internal or external line of the diagram and all calculations could in principle be
carried on directly in the 5D notation. However the standard Feynman rules are expressed
separately for gauge and Goldstone legs, therefore in order to apply them we must break
down the double lines on the external legs as shown in the figure. This entails that we
need to compute 2 different amputated amplitudes for each external particle, one with a
gauge and one with a Goldstone external leg, and sum them up with coefficients given by
the polarization vector. The total number of amplitudes to be evaluated thus increases
by a factor of two for each external longitudinal vector boson relative to the one that is
needed in the standard formalism. Explicit applications will be shown later in Section 4.4.
The usefulness of the double line notation has been first noticed in Ref. [38] for tree-level
applications of the Equivalence Theorem and emphasized in Ref. [25].

The standard formalism is recovered in this notation by 5D polarization vectors with
vanishing M = π component. For incoming and outgoing particles with 4-momentum kµ

we have, respectively

(Ehst.)M [k] ≡ (εhµ[k], 0) ,

(Ehst.)M [k] ≡ (εhµ[k], 0) , (2.33)

where h = ±, 0 is the helicity and εhµ denote the standard 4D polarization vectors, reported
in Appendix A. The transverse (h = ±) polarizations do not display an anomalous energy
behavior. The longitudinal (h = 0) one is instead

ε0
µ[k] = ε0

µ[k] =

{
|~k|
k
,−k0

k

~k

|~k|

}
k0/k→∞∼

√
k2

0

k0

{
k0

k
,−1

k
~k

}
=

√
k2

0

k0

kµ
k
, (2.34)

with |~k| =
√
k2

0 − k2. Note that we keep k generic in preparation for the next section where

we will consider off-shell vectors, possibly with complex momentum. Clearly k =
√
k2 = m

in the case at hand, and k0 > 0 so that
√
k2

0/k0 = 1. In high-energy reactions where the
particle energy k0 ∼ E is much larger than k = m, ε0

µ diverges and approaches kµ/k. It is
therefore convenient to define

e0
µ[k] ≡ ε0

µ[k]− kµ
k

if <(k0)>0
= − k

k0 + |~k|

{
1,

~k

|~k|

}
. (2.35)

Also in this definition we consider generic complex momentum. We thus specified that k0

must have positive real part (so that
√
k2

0 = k0) for e0
µ[k] to have the simple form on the

right of the equation and a non-singular high energy limit. If it is so, e0
µ[k] ∼ k/k0, i.e.,

m/E for on-shell momentum.

12
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Thanks to the Ward identities in eq. (2.22) we are allowed to shift E0
st.[k] and E0

st.[k]
by any vector proportional to K[k]. The shift will indeed cancel out when the polarization
vector is contracted with the amputated amplitude. More precisely, since the external legs
of amputated amplitudes are labeled by incoming 4-momenta, the polarization vectors for
outgoing states should be shifted by K[−k] because they will have to be contracted to an
amplitude with external leg ΦM [−k]. We see in eq. (2.20) that Kµ[k] = −Kµ[−k] = i kµ/k.
We should thus manage to get rid of the anomalous energy growth by defining

E0
M [k] ≡ (E0

st.)M [k] + iKM [+k] =
(
e0
µ[k], +iKπ(k2)

)
E0
M [k] ≡ (E0

st.)M [k]− iKM [−k] =
(
e0
µ[k], −iKπ(k2)

)
, (2.36)

to be our new polarization vectors.
It is immediate to verify that indeed, when contracted with the appropriate amputated

amplitudes and evaluated on the mass-shell, eq. (2.36) produces the exact same physical
scattering matrix element as the standard polarization vectors. Consider a generic scat-
tering process with “n” external longitudinal vectors and an arbitrary set α and β of
non-longitudinal incoming and outgoing particles. The matrix element computed with
our on-shell polarizations is equal to that evaluated with the standard ones

iM = Z
n/2
W

(
(E0

st.)M1 [k1]± iKM1 [±k1]
)
· · ·
(
(E0

st.)Mn [kn]± iKMn [±kn]
)
A{ΦM1 [±k1], · · · ,ΦMn [±kn]}

= Z
n/2
W (E0

st.)M1 [k1] · · · (E0
st.)Mn [kn]A{ΦM1 [±k1], · · · ,ΦMn [±kn]} . (2.37)

In the equation, ZW denotes the wave-function renormalization factor and the + or − sign
is for incoming or outgoing particles as previously explained. The equality comes from
expanding the product and noticing that in each monomial the amputated amplitude
is contracted with r = 0, · · · , n powers of K, while the remaining n − r external legs
are contracted with the standard polarization vectors. The latter contractions produce
additional particles in the external states α and β, but this is immaterial because the
Ward identity in equation eq. (2.22) holds for arbitrary (possibly longitudinal) physical
states. All terms thus cancel by the Ward identity for “r” legs, apart obviously from the
first term with r = 0 that gives us back the standard matrix element.

Our new polarization vectors (2.36) do not grow with energy. Their Goldstone com-
ponent Eπ stays constant while the gauge component Eµ = e0

µ scales as m/k0 ∼ m/E and
vanishes in the high-energy limit. This produces a suppression factor of the gauge contri-
bution to the amplitude relative to the Goldstone one, which is nothing but the technical
statement of the Goldstone Equivalence Theorem. Notice however that one should not
superficially interpret this result as the dominance of Goldstone diagrams over the gauge
ones. Whether or not the Goldstones dominate depends on the high-energy behavior of the
Goldstone amplitudes relative to the gauge ones in the specific process at hand. Namely,
the m/E suppression of e0

µ is only one of the elements of the power-counting rule. Other
m/E factors might well emerge from the vertices that appear in the Goldstone amplitudes
and compensate the wave-function suppression factor of the gauge diagrams. Explicit
examples are discussed in Section 4.4.1.

Finally, we briefly comment on the relation with Ref. [25], where the modified polar-
ization vectors (2.36) were defined and employed to make power-counting manifest like
we do here. Our result is identical, but more general in that we proved that the modified
polarization vectors are equivalent to the standard ones for an arbitrary choice of the
gauge-fixing parameters ξ and m̃. In the approach of Ref. [25] instead the gauge-fixing pa-
rameters are set by requiring two conditions (mass-degeneracy and dipole cancellation) on
the gauge-fixed theory. This in turn was needed for the extended Fock space of the theory,
including unphysical states, to have a structure compatible with the sought redefinition
of the longitudinal state.

13
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Figure 2: The decomposition of a generic scattering amplitude into resonant and non-resonant
diagrams, for a given intermediate vector boson line with momentum k. Remember that (as, e.g.,
for Dirac fields) the momentum flows from the second towards the first index of the propagators.

2.3 Unstable or Off-Shell Vectors

Our results up to now are of limited practical interest because the SM massive vectors are
not stable asymptotic states. Hence their scattering matrix elements, and in turn their
polarization vectors, cannot be defined through the LSZ reduction formula as we implicitly
did in eq. (2.37). Furthermore in order to study factorization problems we will have to
deal with diagrams where the external vector bosons are off-shell. Namely in that kind of
problems the virtual vector boson k2 is much smaller than the hard scale E2 � m2, but
in general not close to m2.

In order to deal with unstable or with off-shell vectors one needs to start from the
complete scattering amplitude involving only true asymptotic particles on the external
legs. Among the diagrams that contribute to the complete amplitude one isolates the
“resonant” ones containing a vector boson propagator that connects two otherwise discon-
nected components of the diagram as in Figure 2. The momentum “k” flowing into the
propagator should be interpreted as the momentum of a virtual boson, which is created
and annihilated in the left (“creation”, C) and right (“annihilation”, A) components of the
resonant diagram. Therefore we orient k to have positive energy component, or positive
real part of the energy, for complex kinematics

<(k0) > 0 . (2.38)

The creation subprocess corresponds to the production of the virtual vector in association
with other particles, either originating from the two initial particles or from a single one
in the case of an initial state splitting. The annihilation subprocess represents either the
decay of the vector boson or the scattering of the vector boson with a particle in the initial
state. In all cases the virtual vector boson can be uniquely associated to a partition of the
external states into the two sets involved in the production and in the decay. Notice that
diagrams with scalar–scalar and with mixed vector–scalar propagators are included in the
resonant component of the scattering amplitude, therefore the propagator is denoted with
a double line in the figure. The line represents the complete all-orders two-point function
GMN as in eq. (2.14).

The on-shell matrix elements for unstable particles are defined in a perfectly gauge-
invariant fashion in terms of the residue of the complete amplitude at the complex pole
k2 = m2 ∈ C. Clearly this requires studying the amplitude with complex kinematics,
a fact which however does not raise any particular issue because the generalized Ward
identities hold in the entire complex plane by the analyticity properties of the Feynman
amplitudes. The pole originates exclusively from the resonant diagrams, and the residue
of the complete amplitude equals the one of the propagator multiplied by the creation
and annihilation amplitudes evaluated at complex k2 = m2. The Feynman rules for on-
shell unstable particles creation and annihilation thus emerge from the decomposition
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of the propagator at the complex mass pole, as we will readily see. Notice that defining
gauge-invariant on-shell matrix elements for unstable particles is concretely useful because
it allows to simplify the calculation of the complete scattering amplitude (including the
decay) with real kinematics by expanding in the number of resonant poles as in Ref.s [39–
42]. The reason for focusing on the resonant diagrams in the off-shell case stems from
the fact that in a formalism like ours, where power-counting is manifest, the resonant
diagrams are enhanced by E2/k2 relative to the non-resonant ones and thus dominate in
the factorization limit k2/E2 � 1. The propagator decomposition we are about to work
out is thus essential for the proof of collinear factorization in Section 5.

In order to extend our discussion to off-shell and to unstable vectors we should further
study the 2-point function which, using eq. (2.23), reads

GMN [k] = Γ−1
⊥ P⊥MN [k] + PiM [k]

[
GL
]
ij
Pj,N [−k] , (2.39)

where GL = (Γ̃−F )−1. We first notice that the familiar completeness relation for the 4D
polarization vectors allows us to decompose P⊥MN [k], for arbitrary (complex, in general)
kµ in terms of the 5D standard polarization vectors defined in eq. (2.33). We can thus
write

GMN [k] = −Γ−1
⊥

∑
h=±
EhM [k]EhN [k]− Γ−1

⊥ (E0
st.)M [k](E0

st.)N [k] + PiM [k]
[
GL
]
ij
Pj,N [−k] ,

(2.40)
where we suppressed the “st.” subscript from the transverse polarization vectors because
they are well-behaved with energy and thus they do not need to be redefined.

From the propagator decomposition in eq. (2.40) one could immediately recover the
standard definition of the polarization vectors for unstable particles. Indeed in this case
one is exclusively interested in the first two terms of the decomposition because they have
a pole at the physical (complex) mass m. Actually the mass is defined precisely as the
point in the complex plane where Γ⊥ vanishes, i.e. by the relation

Γ⊥(m2) = m2
0 −m2 + ΠT

WW (m2) = 0 . (2.41)

Instead the longitudinal part of the propagator, namely the third term in eq. (2.40), will
not have in general a pole at the same location and it can be ignored in the calculation of
the residue. We thus express the residue as a sum over helicities, and interpret each term
as the product of the polarization vectors to be contracted with the amplitudes at the two
endpoints of the propagator line. The one on the left leg, with index “N”, corresponds
to the creation of a particle, the one on the right, with index “M”, to annihilation. This
leads to the definition of on-shell amplitudes for unstable vectors, as extensively discussed
in the literature (see e.g. Ref. [43]).

The standard longitudinal polarization vectors display the usual anomalous energy
behavior (2.34). However we can trade them for the well-behaved objects defined in
eq. (2.36) and write the h = 0 term of the decomposition (2.40) as

(E0
st.)M [k] (E0

st.)N [k] =
(
E0[k]

)
M

(
E0

[k]
)
N

(2.42)

+
(
i E0[k] +

1

2
K[k]

)
M
KN [−k] +KM [k]

(
− i E0

[k] +
1

2
K[−k]

)
N
.

Importantly, the signs in front of the iK terms in eq. (2.36) ensure that no high-energy
growth is present in the modified polarization vectors, as in the on-shell case, because we
chose <(k0) > 0 such that eq. (2.35) applies. Furthermore, having employed K[+k] in the
definition of EM and K[−k] in that of EN ensures that the terms in the second line of eq.
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(2.42) are proportional to K[+k]M and K[−k]N . Because the index M is contracted with
the annihilation sub-amplitude (see Figure 2) where the k momentum is incoming while
N is contracted with the creation one where k is outgoing, these terms do not contribute
to the complete amplitude by the Ward identity in eq. (2.22). We will prove that this is
indeed the case at the end of this section.

Giving for granted that the second line can be dropped, eq. (2.42) is all we need in
order to deal with unstable on-shell vectors. It allows us to express the residue at the
propagator pole, and in turn to define the gauge invariant on-shell matrix elements, in
terms of two transverse and one longitudinal polarization vectors that are well-behaved
with energy. In particular the longitudinal polarization vectors for an unstable on-shell
particle are those in eq. (2.36) for k = m. They are identical to those for a stable particle
up to the fact that the mass m now is complex. The situation is more complicated for
off-shell vectors because also the longitudinal (in the 5D sense) component of eq. (2.40)
now matters. Indeed in the off-shell case we are interested in propagators where k2 −m2

does not vanish exactly, so not only the residue of the pole is relevant. Rather we are
interested in configurations where k =

√
k2 is either of order or much larger than m, but

much smaller than the virtual vector energy and momentum kµ ∼ E. The longitudinal
component of the propagator, in the current form, does not possess a smooth high energy
limit because it contains up to two powers of kµ from the P V vector (see eq. (2.12)). One
extra step is thus needed in order to express the propagator in a form that is suited to
deal with factorization problems.

First, we get rid of any occurrence of P V in the longitudinal propagator by rewriting
it as

PV,M [k] = −KM [k] +
Γ̃V S

Γ̃S S

PS,M [k] , (2.43)

in light of eq.s (2.20) and (2.27). After a straightforward calculation one can check that
the result can be expressed as

Pi,M [k]
[
GL
]
ij
Pj,N [−k] = Γ̃−2

SS PS,M [k]
[
Γ̃ ·GL · Γ̃

]
SS
PS,N [−k] (2.44)

−V[k]MK[−k]N −K[k]MV[−k]N ,

in terms of some vector V. The explicit form of V need not be reported because the second
line of the previous equation will cancel out by the same considerations we made below
eq. (2.42). Finally, we notice that eq. (2.26) implies that FGLΓ̃ = 0, so that

Γ̃ ·GL · Γ̃ =
[
Γ̃− F

]
·GL · Γ̃ = Γ̃ , (2.45)

as GL = [Γ̃ − F ]−1. Summing up eq. (2.44) and eq. (2.42), we rewrite the complete
propagator as

GMN [k] = Geq
MN [k]−KM [k]VN [−k]− VM [k]KN [−k] , (2.46)

where we reabsorbed into “V” the terms on the second line of eq. (2.42) and the “equiva-
lent” propagator Geq is defined to be

Geq
MN [k] ≡ −Γ−1

⊥

∑
h=±,0

EhM [k]EhN [k] + Γ̃−1
SSPS,M [k]PS,N [−k] . (2.47)

We will prove below that this is “equivalent” to G, namely that it can be used in place of G
in resonant propagators. Given this for granted, Geq possesses all the required properties.
Namely it contains no energy growth neither in the h = ±, 0 nor in the scalar part, so
that it will allow us to take the k2/E2 � 1 limit smoothly when studying factorization in
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Section 5. On the physical mass complex pole it straightforwardly leads us to the definition
of the on-shell polarization vectors for unstable particles as previously explained.

We now prove that Geq defined as in eq. (2.47) is indeed “equivalent” to the complete
propagator G thanks to the Ward identity (2.22). More precisely, the statement is that
in a generic scattering amplitude with stable asymptotic particles on the external legs it
is possible to replace resonant propagators G[k] with Geq[k] in all the Feynman diagrams
without affecting the result. In turn, this will imply that the same is true if the external
particles are unstable but on their complex mass-shell. The resonant propagators are
those that connect two otherwise disconnected components of the diagram, propagators
involved in closed loops are thus excluded and cannot be replaced with Geq. Also notice
that the equivalence holds only provided any occurrence of G[k], for a given intermediate
boson momentum k, is replaced in all diagrams. Substituting G[k] with Geq[k] in some
diagram and not in others would be inconsistent. On the other hand, we are not obliged to
replace all propagators at once. Namely one can choose an arbitrary set of intermediate
bosons momenta ki, i = 1, . . . ,m, each corresponding to a given creation/annihilation
subprocess and in turn to the signed sum of a given subset of external particles momenta,
and perform the replacement G[ki] → Geq[ki] only for the corresponding propagators. In
particular high-virtuality internal lines, for which the decomposition (2.47) of Geq is of no
help, need not be replaced.

It is trivial to establish the equivalence when only one propagator has to be replaced.
It suffices to combine Figure 2 with eq. (2.46) and to notice that the shift induced by
the replacement produces two terms with K[−k] and K[+k] contracted with the creation
and annihilation amplitudes, respectively. The latter amplitudes have physical external
states so that they vanish when contracted with K by using eq. (2.22) for n = 1. In order
to deal with the general case we have to employ the diagrammatic relation in Figure 3.
In the figure we consider a generic scattering amplitude with a generic number n ≥ 0 of
additional gauge/scalar external legs, contracted with the 5D scalar polarization vector K.
Each scalar polarization is of course evaluated on the (outgoing) momentum of the cor-
responding external leg. The replacement operation G[ki] → Geq[ki] has been performed
for a generic number m ≥ 1 of propagators and it is indicated as Gi → Geq

i for shortness
in the figure. The replacement of the last propagator affects only the component of the
amplitude that is resonant with respect to the km momentum, producing two terms in
which K[−km] is contracted with the creation sub-amplitude and K[+km] is contracted
with the annihilation one. By recombining the resonant and non-resonant components
we reconstruct the original amplitude with one less propagator replaced, plus additional
terms proportional to the sub-amplitudes with at least one external leg contracted with
K as in the second line of the figure. The sub-amplitudes do not contain G[km] prop-
agators by definition, therefore also in the latter ones only the propagators from G[k1]
to G[km−1] have been replaced. Notice that we cannot trivially conclude that the latter
sub-amplitudes vanish because the Ward identity (2.22) only holds a priori for “normal”
propagators in the internal lines. However they do vanish as indicated in the figure be-
cause we can further apply the diagrammatic relation to each of them, focusing this time
on the G[km−1] propagator, obtaining the same amplitude with m− 2 replaced propaga-
tors plus additional amplitudes with one more external K and, once again, only m − 2
replaced propagators. By repeating the operation one can eliminate all the replacements
and eventually apply the Ward identity (2.22). The terms on the last line of the figure
thus vanish and we conclude that the original amplitude is equal to the one with one less
propagator replaced. By applying this equality to the physical scattering amplitude with
no external K insertions (i.e., n = 0) and “m” propagators replaced one finally concludes
that it is identical to the one with “m − 1” replacements and eventually to the one with
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Figure 3: The relation by which the equivalence of the Geq propagator is established.

no replacement at all, as it had to be proven.

3 General Gauge Theory

We now turn our attention to a generic theory with arbitrary gauge group (G) and field
content. We denote the gauge fields as V a

µ , a = 1, . . . , NV = dim(G), while φã are the
NS scalars, which we take real without loss of generality. The presence of fermionic fields
is irrelevant for the discussion that follows. The gauge-invariant Lagrangian prior to
gauge-fixing is also arbitrary and not necessarily renormalizable. An arbitrary symmetry
breaking pattern G → H, giving mass to some of the vectors and leaving some of the
scalars as physical Higgs bosons, is allowed. We quantize the theory with the standard
Faddeev–Popov method as described in Section 2 for the Higgs–Kibble model obtaining a
Lagrangian as in eq. (2.3). The NV gauge-fixing functionals are chosen to be linear in the
fields, i.e.

Fa =
∑
b

Ξab∂µV
µ
b −

∑
b̃

µ̃ab̃(φb̃ − 〈φb̃〉) , (3.1)

where 〈φb̃〉 denotes the VEV of the scalar fields. The derivation of the Slavnov–Taylor
identities discussed in Section 2.1 is completely general, therefore eq.s (2.6) and (2.7)
straightforwardly apply to the present case as well. Notice in particular that the Slavnov–
Taylor identity obtained by setting n = 1 in eq. (2.6) is the reason why we subtracted
the scalar fields VEV in the definition (3.1) of the gauge-fixing functional. This identity
reads 〈Fa(x)〉 = 0, which is consistent with 〈Aµ〉 = 0 only provided the scalars appearing
in the gauge-fixing functional have vanishing VEV. If we had not subtracted the scalars
VEV, the theory would have developed a non-Poincaré invariant VEV in order to satisfy
the identity, and manifest Poincaré symmetry would have been lost.

The general discussion of Goldstone Equivalence is conceptually identical to the one we
presented in the previous section for the Higgs–Kibble model. It merely requires a slightly
more heavy notation, which we establish in Section 3.1. We then move (in Section 3.2) to
the derivation of the generalized Ward identities and finally present (in Section 3.3) our
well-behaved longitudinal polarization vectors and propagator.

3.1 Notation

We begin by collecting all the bosonic fields of the theory in a single vector ΦM with
4NV + NS real components. The capital index M ranges both over the 4NV Lorentz-
times-gauge pairs (i.e., M = {µ, a}) that label the vector fields and over the NS indices
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of the scalars (i.e., M = ã). Actually it is more convenient to shift the scalars by their
VEVs and to define

ΦM =

(
Vµa for M = {µ, a}
φã − 〈φã〉 for M = ã

)
. (3.2)

The “M” indices are raised by a metric ηMN acting like the 4D Lorentz metric on the
vector components M = {µ, a} and as the identity on the scalar ones M = ã. The need of
collecting all the bosonic fields in a single object stems from the fact that in general there is
no way to associate a particular scalar field combination to each V a

µ vector. Namely there
is no useful notion of the “Goldstone field” associated to the vector. Concretely, the point
is that all scalars in the theory mix a priori with all vectors, hence all bosonic fields have
to be treated together in order to deal with the two-point function and in turn to derive
the Ward identities. In the Higgs–Kibble model it was possible to identify the Goldstones,
and thus to work with a small (5D) ΦM multiplet, merely because of the presence of an
exact custodial symmetry. The only exact symmetry that is necessarily present in the
general case is the one associated with the unbroken gauge group H, which however in
general is insufficient to identify the Goldstones uniquely. We thus work with the large
ΦM multiplet and ignore the possible presence of exact symmetries in the theory. In the
presence of symmetries it is possible to collect the fields in separate subspaces that do not
mix with each other, as we will do in the SM by imposing charge and CP conservation.
All the results that follow apply to each sector separately, provided we identify ΦM with
the short multiplet of each subspace.

We introduce, as in Section 2.1, a number of objects PaM [k], PãM [k] and P⊥; ab
MN [k],

depending on the Lorentz 4-momentum kµ. The former are vectors in the (4NV + NS)-
dimensional space

PaM [k] =

(
−i kµ

k
δaa′ for M = {µ, a′}

0 for M = ã′

)
, PãM [k] =

(
0 for M = {µ, a′}
δãã′ for M = ã′

)
,

(3.3)
that correspond to the NV +NS fields in the theory that are orthogonal to the transverse
gauge fields. We refer to them collectively as “longitudinal”, notice however that they
consist both of the “longitudinal vectors” in the 4D sense and of the scalar components
of ΦM . The longitudinal vectors are further collected into a single object PİM [k] by

introducing a dotted capital index “İ” ranging over the NV vector indices a and over the
NS scalar ones ã. The capital dotted index “İ” ranges over the NV +NS longitudinal fields,
and it should not be confused with the undotted index “M” that labels all the 4NV +NS

bosonic fields. We also define a set of transverse “projectors”

P⊥; ab
MN [k] =

(
(ηµν −

kµkν
k2

)δaa′δbb′ for M = {µ, a′} and N = {ν, b′}
0 otherwise

)
. (3.4)

Notice that the P⊥’s are not projectors in the strict mathematical sense, still they obey
the relation

P⊥; ab L
M P⊥; cd

LN = δbcP⊥; ad
MN . (3.5)

Other useful properties of the P’s include

P⊥; ab L
M PİL = 0 , PİM [k]PM

J̇
[−k] = δİJ̇ , (3.6)

and the completeness relation∑
a

P⊥; aa
MN [k] +

∑
İ

PİM [k]PİN [−k] = ηMN . (3.7)
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Finally, we also have

P⊥; ab
MN [−k] = P⊥; ab

MN [k] , P⊥; ab
NM [k] = P⊥; ba

MN [k] . (3.8)

The above relations are implicitly used below, in particular in order to invert the propa-
gator and to impose Bose symmetry.

We now use our notation to express in compact form the basic objects we will need in
the next section, starting from the gauge-fixing. The Fourier space expression of eq. (3.1)
is, similarly to eq. (2.15) for the Higgs–Kibble model

Fa[k] = −
∑
İ

faİ PİN [−k]ΦM [k] , (3.9)

in terms of an NV × (NV +NS) matrix f with components

faİ = (kΞaa′ , µ̃aã′) , (3.10)

for İ = a′ and İ = ã′, respectively. The parameters Ξ and µ̃ are generic real tensors,
subject however to a consistency condition associated with the fact that the gauge-fixing
functional Fa’s should be sufficient to fix the gauge completely. Namely there should
not exist a family of local gauge transformations that leave all the Fa’s invariant. It is
relatively easy to show that this implies that the matrix f has maximal rank NV up to
isolated singularities in the k2 space. The same condition can also be obtained by imposing
that the ghost kinetic term is non-singular up to isolated poles in k2, that correspond to
the ghost tree-level masses. Taking the matrix Ξ to be invertible is one way to fulfill the
condition. For future convenience we introduce, as in eq. (2.24), the symmetric rank-NV

matrix
FİJ̇(k2) =

∑
a

faİ(k
2)faJ̇(k2) = (f tf)İJ̇ . (3.11)

We now turn to the propagator, defined as in eq. (2.10). Similarly to what we did in
eq. (2.23) for the Higgs–Kibble model, we write its inverse as

G−1
MN [k] = [Γ⊥(k2)]abP⊥; ab

MN [k] + PİM [k][Γ̃(k2)− F (k2)]İJ̇PJ̇N [−k] , (3.12)

where the sums over a, b, İ and J̇ are understood. The main difference compared to
eq. (2.23) is that the transverse component Γ−1

⊥ is now a NV × NV matrix rather than

a single form-factor and the longitudinal component Γ̃ − F , which was 2 × 2, is now
(NV + NS) × (NV + NS). Bose symmetry implies GMN [−k] = GNM [k], hence Γ⊥ and Γ̃
are symmetric matrices. By inverting, we find

GMN [k] = [Γ−1
⊥ ]abP⊥; ab

MN [k] + PİM [k][(Γ̃− F )−1]İJ̇PJ̇N [−k] . (3.13)

We will often denote GL ≡ (Γ̃− F )−1 in what follows.

3.2 Generalized Ward Identities

The derivation follows closely the one for the Higgs–Kibble model. However for brevity
we present it in a slightly different order than the one we followed in Section 2.1. Namely
we start by first working out the implications of the Slavnov–Taylor identities on the
propagator and next we apply the result to the proof of the Ward identity.

The Slavnov–Taylor identity in eq. (2.7) gives, similarly to eq. (2.25)

(fGLf
t)ab = −δab , ⇒ fGLF = −f . (3.14)
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From here we immediately derive the analog of eq. (2.26):

(fGLΓ̃)aİ = 0 . (3.15)

The above equation has NV + NS components for each “a”, labeled by a capital dotted
index İ spanning vector (İ = b) and scalar (İ = ã) indices. We now write down its vector
and scalar components separately by expressing Γ̃ in the block form

Γ̃ =

(
Γ̃VV Γ̃VS

Γ̃ t
VS Γ̃SS

)
, (3.16)

where Γ̃VV is a NV ×NV symmetric matrix, Γ̃SS is symmetric and NS ×NS, and Γ̃VS is a
NV ×NS matrix with components [Γ̃VS]aã. We obtain∑

b

(fGV)a b[Γ̃VV]b c = −
∑
ã

(fGS)a ã[Γ̃VS]c ã ,∑
ã

(fGS)a ã [Γ̃SS]ã b̃ = −
∑
b

(fGV)a b[Γ̃VS]b b̃ , (3.17)

where we introduced a compact notation (fGL)aİ = {(fGV)ab, (fGS)aã} for the vector
and the scalar components of fGL.

We now notice that the matrix fGL has rank NV like f , because GL is invertible up to
isolated poles. The matrix Γ̃SS is also invertible up to isolated poles, from which we can
easily conclude by eq. (3.17) that (fGV) has maximal rank NV. Indeed if

∑
awa(fGV)ab =

0 for some non-vanishing wa, we could contract w with the second line of eq. (3.17) and
prove that also

∑
awa(fGS)a ã = 0, given that Γ̃SS is invertible. Hence

∑
awa(fGL)aİ

would vanish, which cannot be since fGL has maximal rank. Exploiting that (fGV)
has maximal rank and it is invertible, as well as Γ̃SS, eq. (3.17) can be turned into the
generalization of eq. (2.28)

Γ̃VV = Γ̃VSΓ̃−1
SS Γ̃tVS , (3.18)

plus a relation analog to the second equality in eq. (2.27)

(fGV)−1(fGS) = −Γ̃VSΓ̃−1
SS . (3.19)

The reason for considering this particular combination of (fGV) and (fGS) will become
clear in the following paragraph.

We next derive the generalized Ward identities exactly like we did in Section 2.1 for the
Higgs–Kibble model. BeingA{ΦN [k]} the amputated connected amplitude as in eq. (2.18),
by applying the Slavnov–Taylor identity (2.17) for n = 1 we find(∑

İ,J̇

faİ [GL]İJ̇PJ̇M [k]
)
A{ΦM [k]} = 0 . (3.20)

We then define a set of vectors

KaM [k] ≡ −
∑
b

[(fGV)−1]ab
(∑
İ,J̇

faİ [GL]İJ̇PJ̇M [k]
)

(3.21)

= −PaM [k] + [Γ̃VSΓ̃−1
SS ]aãPãM [k],

and write the Ward identity as

KaM [k]A{ΦM [k]} = 0 , ∀ a . (3.22)
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The generalization to an arbitrary number of external Φ legs is straightforward

Ka1M1 [k1] · · · KanMn [kn]A{ΦM1 [k1], · · · ,ΦMn [kn]} = 0 , ∀ a1, . . . , an . (3.23)

Clearly the Ka’s (one for each gauge fields) correspond to the scalar polarization vector
we encountered in the Higgs–Kibble model. The difference is that each of them is now a
vector in the (4NV +NS)-dimensional space spanned by M , namely

KaM [k] =

 i
kµ
k
δa a′ for M = {µ, a′}

[Kπ(k2)]a ã′ ≡ [Γ̃VSΓ̃−1
SS ]a ã′ for M = ã′

 . (3.24)

Notice that Kπ(k2) is now a NV ×NS matrix of form-factors, but it plays here the same
role as in the Higgs–Kibble model. In particular the Ward identity (3.22) can be written
as

i kµA{V µ
a [k]} = −k

∑
ã

[Kπ(k2)]aãA{(φ− 〈φ〉)ã[k]} , (3.25)

showing how Kπ connects the high-energy limit of amplitudes involving longitudinal vec-
tors (whose polarization vector approaches kµ) to amplitudes involving scalars.

Before moving forward and showing how the Ward identities lead to the definition of
well-behaved longitudinal polarization vectors and propagators, it is interesting to outline
some particular aspects of the general results of this section. We first consider a gauge
theory without scalar fields such as QED or QCD. In our formalism we can recover this
case in the limit where some scalars are actually present in the theory, such that Γ̃SS

is non-vanishing and invertible, but they are decoupled. This means in particular that
Γ̃VS vanishes and correspondingly Kπ = Γ̃VSΓ̃−1

SS = 0. Therefore the Ward identities
reduce to the familiar kµAµ = 0 relations. Moreover in this limit eq. (3.18) becomes

Γ̃VV = 0. Recall that Γ̃VV parametrizes (see eq. (3.13) and (3.16)) the contributions to
the longitudinal vector-vector inverse propagator that emerge from radiative corrections
on top of those (equal to −k2Ξ) of the gauge-fixing term. The condition Γ̃VV = 0 thus
means that the longitudinal propagator equals −Ξ−1/k2 to all orders in perturbation
theory, which matches the standard formula where Ξ = ξ−1. Also notice that Γ̃VV is
connected with the transverse inverse propagator matrix Γ⊥ at zero momentum. This
is because the inverse propagator is regular, therefore the −kµkν/k2 singularity of the
transverse projector in eq. (3.13) must be compensated by the kµkν/k2 singularity in the
vector–vector part of the PaMPbN term. Therefore

Γ⊥(k2) = Γ̃VV(0) + k2 Γ′⊥(0) +O(k4) . (3.26)

Since Γ̃VV vanishes, we have proven that all components of the transverse propagator Γ−1
⊥

have a pole at k2 = 0 and all the vectors are massless at all orders, as they should in an
unbroken theory.

In a general gauge theory, eq. (3.26) should be supplemented with another regularity
condition (note that here ′ indicates d/dk, rather than d/dk2)

Γ̃VS(k) = k [Γ̃′VS(0) +O(k2)] , (3.27)

as it follows from the need of canceling the singularity in the vector-scalar propagator
that emerges from the kµ/k term in PaM . Eq. (3.18) thus implies that Γ̃VV(0) can be
non-vanishing, and in turn Γ⊥(0) 6= 0 so that some of the vectors can acquire a mass, only
provided Γ̃−1

SS has a massless pole. More precisely we see that the rank of Γ⊥(0), i.e. the

number of massive vectors, is smaller or equal than the rank of k2Γ̃−1
SS at k2 = 0, which is

nothing but the standard Higgs mechanism.
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3.3 Equivalent Propagator and Longitudinal Vectors

The discussion of the present section follows very closely the one in Section 2.3 for the
Higgs–Kibble model. Actually several derivations are identical and will not be repeated
here. The goal is to define longitudinal polarization vectors that are well behaved in
energy and derive an equivalent form of the propagator, which decomposes in terms of
these vectors and is thus also well-behaved. We start by defining the polarization vectors
as an obvious generalization of eq. (2.36)

(E0
a [k])M ≡ (E0

st.,a[k] + iKa[+k])M
if <(k0)>0

=

(
e0
µ[k]δa a′ forM ={µ, a′}

+i [Kπ(k2)]a ã′ forM = ã′

)
,

(E0
a[k])M ≡ (E0

st.,a[k]− iKa[−k])M
if <(k0)>0

=

(
e0
µ[k]δa a′ forM={µ, a′}
−i [Kπ(k2)]a ã′ forM= ã′

)
, (3.28)

where e0
µ[k] was introduced in eq. (2.35). The standard longitudinal polarization vectors

E0
st.,a and E0

st.,a that appear in the equation above, and the transverse ones that will appear

later, are simply equal to the 4D vectors εhµ (see e.g. eq. (2.34)) times δa a′ for M = {µ, a′}
and they vanish for M = ã. The polarization vectors will be evaluated on virtual particle
momentum kµ whose energy component has positive real part as in Section 2.3.

It is straightforward to decompose the propagator in terms of the new polarization
vectors. By the standard 4D completeness relation we have

P⊥; ab
MN [k] = −

∑
h=±,0

(Ehst.,a[k])M (Ehst.,b[k])N , (3.29)

which allows us to decompose the transverse part of the propagator (3.13). We further
rewrite the longitudinal term similarly to eq. (2.42), obtaining

GMN [k] = −
∑
h=±,0

EhaM [k][Γ−1
⊥ ]abEhbN [k] + PİM [k][(Γ̃− F )−1]İJ̇PJ̇N [−k] (3.30)

−
(
i E0

a [k] +
1

2
Ka[k]

)
M

[Γ−1
⊥ ]ab(Kb[−k])N − (Ka[k])M [Γ−1

⊥ ]ab
(
− i E0

b [k] +
1

2
Kb[−k]

)
N
.

Finally we get rid of the residual anomalous energy growth by eliminating the gauge (i.e.,
İ = a) PİM ’s vectors in favor of the KaM ’s and we follow the exact same steps that led
us to eq. (2.47) in the Higgs–Kibble model. We obtain (the sum over repeated indices is
understood)

GMN [k] = Geq
MN [k]−KaM [k]VaN [−k]− VaM [k]KaN [−k] , (3.31)

in terms of some vectors Va and with

Geq
MN [k] ≡ −

∑
h=±,0

EhaM [k][Γ−1
⊥ ]abEhbN [k] + PãM [k][Γ̃−1

SS ]ãb̃Pb̃N [−k] . (3.32)

Notice that eq. (2.45), which is readily seen to apply also for a general gauge theory,
needs to be used in order to obtain this result. The final step consists in proving that
Geq can be used in place of G in resonant processes. The proof relies on the generalized
Ward identities in eq. (3.23) and is completely identical to the one presented at the end
of Section 2.3 for the Higgs–Kibble model.
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On-Shell Vectors

In preparation for the study of the SM in the next section, we now discuss the structure
of the propagator around its poles k2 = M2

V associated to spin-one particles and derive
the corresponding Feynman rules. The mass MV is complex for an unstable particle, but
on-shell scattering amplitudes and the associated Feynman rules can still be defined in
terms of the pole residue as explained in Section 2.3.

We start from massive vectors, MV 6= 0. Barring the peculiar situation where a scalar
resonance happens to have the exact same mass, the scalar part of the propagator in
eq. (3.32) does not contribute to the pole, which entirely emerges from Γ−1

⊥ . Assuming
furthermore for notational simplicity that no vectors are degenerate in mass,5 we have

lim
k2→M2

V

(k2 −M2
V )(Γ−1

⊥ )ab = −
√
ZV a

√
ZV b , (3.33)

namely the residue of Γ−1
⊥ has unit rank and can be expressed as the matrix product of a

wave-function vector
√
ZV a. We thus arrive at

lim
k2→M2

V

{
(k2 −M2

V )Geq
MN [k]

}
=
∑
h=±,0

√
ZV aEhaM [k]

∣∣∣
k2=M2

V

√
ZV b EhbN [k]

∣∣∣
k2=M2

V

, (3.34)

where the sum over “a” and “b” is understood. We can now define the amplitude for
the creation/annihilation of a massive vector resonance with on-shell momentum k (i.e.,
k2 = M2

V , <(k0) > 0), and helicity h = ±, 0, as

iM(α→ β + Vh[k]) ≡
∑
a

√
ZV a EhaM [k]A

{
ΦM [−k]

}
, (3.35)

iM(α+ Vh[k]→ β) ≡
∑
a

√
ZV a A

{
ΦM [k]

}
EhaM [k] , (3.36)

where A denotes the amputated amplitude. If the vectors are stable asymptotic particles,
the above Feynman rules can also be derived by the LSZ reduction formula.

Notice that the vector index “a” is summed over in eq.s (3.35) and (3.36). This is a
consequence of the fact that the resonance is in general interpolated by several fields as
in the standard formalism. What is different in our formalism is that the polarization
vectors (3.28) have components M = ã along the scalar fields and that these components
are not universal and theory-independent but rather they are theory-specific since they
are proportional to [Kπ]a ã evaluated at k2 = M2

V . In the standard formalism one can work
in the “pole scheme”, namely reabsorb

√
ZV a in a redefinition of the vector fields such

that a single one interpolates for the resonance and no summation over “a” appears in the
Feynman rules. We may do the same in our formalism by reabsorbing also

√
ZV ·Kπ(M2

V )
in the scalar fields, however taking this step would bring no practical advantage in the
applications that follow.

For massless vectors, MV = 0, the Feynman rules are the standard ones. We could
establish this fact by just working with the standard “G” propagator, never use eq. (3.31)
to turn it into Geq, and going through the standard textbook discussion. It is however an
interesting consistency cross-check to verify the result by starting directly from eq. (3.32).
We work for simplicity under the assumption that all the scalars involved in eq. (3.32) are
associated to massless would-be Goldstone bosons, eaten by the massive vectors. More
precisely we assume that

Γ̃SS(k2) = k2Γ̃′SS(0)[1 +O(k2)] , (3.37)

5Degeneracies due to symmetry can be easily dealt with like in the Higgs–Kibble model.
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and that Γ̃VV(0) has rank NS (that implies NS ≤ NV). Since Γ̃VV(0) = Γ⊥(0) is the
vector bosons mass-matrix (see eq. (3.26)), this is just the statement that the theory has
NS massive and NV −NS massless vectors. The above assumption is realized in the SM.

The transverse “h = ±1” terms in eq. (3.32) possess a pole at k2 = 0 that is identical
to the one of the standard propagator and thus produces the standard Feynman rules for
massless vectors. We simply have to check that the “rest” of the propagator

RMN [k] ≡ −E0
aM [k][Γ−1

⊥ ]abE0
bN [k] + PãM [k][Γ̃−1

SS ]ãb̃Pb̃N [−k] , (3.38)

is regular at k2 = 0. Recalling the explicit expression of E0
aM [k] given in eq. (3.28)

we see that R contains a vector–vector component e0Γ−1
⊥ e0, a vector–scalar component

−ie0(Γ−1
⊥ )Kπ and a scalar–scalar component RSS = Γ̃−1

SS −KπtΓ−1
⊥ Kπ. The vector–vector

part is manifestly regular because e0 ∝ k and Γ−1
⊥ . k−2. In order to deal with the other

terms we recall the k2 → 0 behavior of the form-factor matrices in eq.s (3.26), (3.27) and
(3.37) and that

Γ̃VV(0) + k2Γ′⊥(0) = [Γ̃′VS(0)][Γ̃′SS(0)]−1[Γ̃′VS(0)]t + k2Γ′⊥(0) . (3.39)

by eq. (3.18). The relation above implies in particular that under our hypotheses (that
Γ̃VV(0) and Γ̃′SS(0) have rank NS) the mixing matrix Γ̃′VS(0) has rank NS, therefore it can
be written as

Γ̃′VS(0) = Θ

(
0(NV−NS)×NS

Γ
′
VS

)
, (3.40)

by a suited orthogonal NV×NV matrix Θ, where Γ
′
VS is invertible and NS×NS. Physically,

the rotation Θ brings the vector fields into a basis in which the first NV−NS vectors do
not mix with the scalars and therefore they interpolate for the massless particles. It is not
unique because rotations of the massless modes would leave that relation unchanged, but
this ambiguity has no effect in our discussion. By employing eq.s (3.26) and (3.39) we see
that, in the new basis, Γ⊥ is proportional to k2 in the upper left (NV−NS)–dimensional
block while it is finite in the others, leading to

Γ−1
⊥ (k) = Θ

(O(k−2) O(1)

O(1) [Γ
′ t
VS]−1[Γ̃′SS(0)][Γ

′
VS]−1 +O(k2)

)
Θt . (3.41)

Finally from the definition of Kπ in eq. (3.24) we find

Kπ(k) = k−1Γ̃′VS(0)[Γ̃′SS(0)]−1 +O(k) = Θ

(
0(NV−NS)×NS

+O(k)

k−1 Γ
′
VSΓ̃′SS(0) +O(k)

)
, (3.42)

and we can straightforwardly conclude that also the vector–scalar and scalar-scalar com-
ponents of R are of order k0. This is because the vector–scalar term is proportional to e0,
of O(k), times Γ−1

⊥ · Kπ, which does not pick up the O(k−2) pole in Γ−1
⊥ and is of O(k−1).

The scalar–scalar component RSS = Γ̃−1
SS − KπtΓ−1

⊥ Kπ is also seen to be finite by direct
substitution.

3.4 Renormalization Scheme (In-)Dependence

Nowhere in the present section we had to specify whether we have been working with
bare or renormalized fields and parameters. All that matters for our derivations to apply
is that the gauge-fixing functionals Fa, as they are written down in eq. (3.1), are the
“bare” gauge-fixing functionals by which the Faddeev-Popov quantization is carried on.
Otherwise the Slavnov-Taylor identities and in particular eq. (2.7) would not hold true.
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Therefore if the fields Vµ and φ are bare, the gauge-fixing parameters Ξ and µ̃ are the
bare ones, while if the fields are renormalized, the gauge-fixing parameters have to be
renormalized accordingly to preserve eq. (3.1). More precisely the point is that the gauge-
fixing parameters Ξ and µ̃ appearing (through the matrix F ) in the definition (3.13) of Γ̃
for renormalized fields are necessarily the ones renormalized with the above prescription.
If this is the case all the results of the previous section hold in any field basis, in particular
the polarization vectors are given by eq. (3.28) with

Kπ = Γ̃VSΓ̃−1
SS , (3.43)

provided of course the form-factors are correctly interpreted as those of the corresponding
fields. Any other gauge-fixing renormalization prescription can of course be adopted, but
the definition of Γ̃ in eq. (3.13) must be modified accordingly.

It is easy to relate the Kπ matrices in two different field bases. For instance if the
relation between bare “ (b)” and renormalized “ (r)” fields takes the form

V (b)
aµ = [ZVV]abV

(r)
b µ , (3.44)

φ
(b)
ã = [ZSS]ãb̃φ

(r)

b̃
,

the renormalized K(r)
π , to be employed in our polarization vectors for renormalized fields

connected amplitudes, is related to the bare one as

K(r)
π = ZtVVK(b)

π (ZtSS)−1 . (3.45)

In particular this implies, since K(b)
π is independent of the scale “µ” employed for renor-

malization, the Callan-Symanzik equation

µ
∂

∂µ
K(r)
π +

∑
C(r)

βC(r)

∂

∂C(r)
K(r)
π − γtVVK(r)

π +K(r)
π γtSS = 0 , (3.46)

where by C(r) we denote all renormalized parameters of the theory (and βC(r) ≡ (µd/dµ)C(r)),
and γVV, SS are the anomalous dimension matrices

µ
d

dµ
ZVV = ZVV γVV , (3.47)

µ
d

dµ
ZSS = ZSS γSS .

Eq. (3.46) may be practically relevant when performing precise calculations of high en-
ergy processes, where the resummation of large logs lnµ2/M2

V due to RG running might
become necessary. Clearly for a successful resummation one should also run the wave-
function “

√
Z” factors in front of the scattering amplitude in eq.s (3.35) and (3.36). The

corresponding Callan-Symanzik equations are the standard ones and need not be discussed
here.

4 The Standard Model

We are now ready to discuss Goldstone Equivalence in the Standard Model (SM) theory.
We start, in Section 4.1, by setting up our notation and specifying the renormalization
scheme. We next (in Section 4.2) specialize the general results of the previous section to
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the SM and express the relevant form-factor matrices in terms of 1PI vacuum polarization
amplitudes for the charged and neutral SM bosonic fields. The Kπ form-factors are com-
puted explicitly at one-loop order in Section 4.3. Finally, we apply our formalism to the
calculation of W+W− → W+W− at tree-level (Section 4.4.1) and of the O(y2

t ) radiative
corrections to the t→Wb decay (Section 4.4.2). These simple processes are selected with
the purpose of illustrating how concrete calculations are performed in our formalism and
to provide a cross-check that the latter correctly reproduces standard results.

4.1 Setup

We work in renormalized perturbation theory, with a gauge-fixed Lagrangian

L = L0 + Lg.f. + Lghosts + Lc.t. , (4.1)

where Lc.t. contains the divergent counterterms.
The bosonic part of L0 reads 6

Lbos.
0 = −1

2
Tr [WµνW

µν ]− 1

4
BµνB

µν + (DµH)†DµH − λ
(
|H|2 − v2

2

)2

, (4.2)

where Wµ = W a
µσ

a/2 and Bµ denote the renormalized SU(2)L×U(1) gauge fields. The
associated field strength tensors are defined in the standard way, as well as the charge-
and mass-eigenstates

W±µ =
(
W 1
µ ∓ iW 2

µ

)
/
√

2 ,

Zµ = cwW
3
µ − swBµ ,

Aµ = swW
3
µ + cwBµ . (4.3)

The fields W±, Z and A diagonalize the mass-matrix of the renormalized Lagrangian L0,
with “tree-level” masses m2

W = g2v2/4 and m2
Z = m2

W /c
2
w. The sine and the cosine of the

Weak angle, sw and cw, are defined as sw/cw = g′/g in terms of the renormalized gauge
couplings g and g′. The actual complex masses of the W and Z bosons will be denoted
with capital letter, i.e. M2

W,Z ∈ C.
The Higgs is a doublet with Hypercharge +1/2, which we parameterize as

H =
1√
2

(
−i
√

2π+

v + h+ iπ0

)
, (4.4)

in terms of the physical Higgs h and of the Goldstone bosons π0 and π+ = π†−. This
parametrization (see eq. (2.2)) makes the implications of the custodial SU(2)c approxi-
mate symmetry more transparent resulting in simpler tree-level formulas. Under the CP
symmetry, π0 is odd like the Z and the photon, while π+ → −π− similarly to the W ’s.
The physical Higgs field h is CP-even and its “tree-level” mass is m2

H = 2λv2.
The gauge-fixing Lagrangian is taken to preserve Lorentz, charge and CP symmetry,

namely

Lg.f. = −F+F− −
1

2
F2
A −

1

2
F2
Z , (4.5)

with linear gauge-fixings functionals of the form

F− = ∂µW
µ
−/
√
ξ −

√
ξ m̃Wπ− = F†+ ,

FA = (∂µA
µ + θZ∂µZ

µ)/
√
α−√α m̃AπZ ,

FZ = (∂µZ
µ + θA∂µA

µ)/
√
η −√η m̃ZπZ . (4.6)

6Matter fermions and QCD interactions, included in L0, need not be discussed explicitly.
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The associated ghost Lagrangian is Lghosts=−ωAδωFA−ωZδωFZ−ω+δωF−−ω−δωF+, where
δω is an infinitesimal gauge transformation with ghost parameters. Its explicit form need
not be reported here. The results of Section 4.2 will hold for any gauge-fixing in this class.
Explicit calculations will be performed in the Feynman—t’ Hooft gauge ξ= α= η= 1,
m̃W/Z=mW/Z and θA,Z=0.

The counterterms are obtained from the bare version of the Lagrangian by intro-
ducing multiplicative renormalization constants for the bare parameters g0, g′0, λ0 and
v0 ≡ µ0/

√
λ0, plus wave-function renormalizations for the W0, B0 and H0 fields and an

independent shift for the bare physical Higgs field h0. The ghosts and the matter fermion
fields are also renormalized, as well as the Yukawa couplings. The bare gauge-fixing pa-
rameters are renormalized in order to compensate for the wave-function renormalization
of the fields, such as to ensure that the renormalized F ’s in eq. (4.6) are equal to the bare
F ’s through which Faddeev–Popov quantization is carried on. This is important because
the Γ̃ form-factors are defined in eq. (3.12) by subtracting the contribution of the complete
bare gauge-fixing Lagrangian to the inverse propagator (see also Section 3.4).

Loops are evaluated in Dimensional Regularization and the counterterms are fixed with
the MS prescription. A conceptually and practically convenient alternative (e.g. [44]) is
to require complete cancellation of the Higgs field tadpole, including its finite part.7 Or,
which is the same, to require that the renormalized h field has exactly zero VEV. Both
options will be considered in what follows.

4.2 The Goldstone-Equivalent Standard Model

We now apply to the SM the general results of Section 3. The bosonic fields consist of 4
vectors and 4 scalars, however thanks to symmetries we do not need to study all of them
simultaneously. Charge conservation forbids mixings between the charged (W± and π±)
and the neutral (Z, A, π0 and h) fields, allowing us to treat the charged and the neutral
sectors separately. One further simplification emerges in the neutral sector because of the
CP symmetry. CP is broken in the SM, but CP-breaking h mixings with Z, A or π0 are
suppressed by the Jarlskog invariant, of order 10−5, and furthermore first emerge at 3
loops. Since the effect is very small we can safely neglect it in all practical purposes, and
consider a restricted neutral sector consisting of the Z, A and π0 fields. Notice however
that our general formalism would allow to take h mixing into account, and that this might
be relevant in extensions of the SM with larger CP-breaking effects. Also note that here
we are exploiting the implications of symmetries on gauge-dependent quantities such as
the 2-point functions. It is thus essential that the gauge-fixing respects the symmetries as
we assumed in eq. (4.6).

Charged Sector

The relevant degrees of freedom are encoded in one complex vector with NS = NV = 1

ΦM
± =

(
Wµ
±

π±

)
. (4.7)

In Section 3 we parametrized all the degrees of freedom in terms of real fields, however
it is straightforward to adapt the results to the complex notation by regarding the real
and imaginary parts of Φ± as a doublet of the electromagnetic U(1) symmetry. The CP
symmetry, which is an excellent approximation in the present context as discussed above,

7Specifically, we add a counterterm proportional to the Higgs doublet mass-term, |H|2, with a finite
coefficient set by requiring tadpole cancellation.
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Figure 4: Diagrammatic definition of the 1PI amplitudes. The arrow denotes momentum flow.

also needs to be employed for the results that follow. In particular it ensures that the Γ̃
matrix is symmetric as in eq. (4.9).

The form factors Γ⊥ and Γ̃ are defined in eq. (3.12) and consist of a tree-level con-
tribution plus vacuum polarization terms “Π(k2)” due to radiative corrections. The Π’s
parametrize the amputated 1PI 2-point functions as shown in Figure 4. With this notation
the transverse form factor Γ⊥ reads

Γ⊥ = m2
W − k2 + ΠT

WW , (4.8)

whereas the longitudinal form factor matrix Γ̃ is given by

Γ̃ =

(
Γ̃VV Γ̃VS

Γ̃VS Γ̃SS

)
=

(
m2
W kmW

kmW k2

)
+

(
ΠL
WW kΠWπ

kΠWπ Πππ

)
. (4.9)

Notice that the tree-level contribution of the gauge-fixing term, encapsulated in the “F”
matrix in eq. (3.12), has been duly subtracted from the definition of Γ̃. The constraint in
eq. (3.18) among the longitudinal form factors, as dictated by the Slavnov–Taylor identity,
translates into the relation

det Γ̃ = [m2
W + ΠL

WW ][k2 + Πππ]− k2[mW + ΠWπ]2 = 0 , (4.10)

among the longitudinal Π’s.
The expressions of the form-factor in terms of the 1PI amplitudes, to be computed

at each order in perturbation theory, give operative meaning to the results of Section 3.
Namely we could now evaluate explicitly the equivalent W propagator in eq. (3.32) and
the well-behaved longitudinal polarization vectors in eq. (3.28). For this we need the Kπ
matrix defined in eq. (3.24), which in the charged sector reduces to a single form factor

[Kπ]Wπ =
k[mW + ΠWπ]

k2 + Πππ
=

√
m2
W + ΠL

WW

k2 + Πππ
=
mW

k
+O(loop) , (4.11)

which we wrote in two different but equivalent forms by the constraint in eq. (4.10). Finally,
the Equivalent Feynman rules for longitudinal W bosons external states are obtained as
a straightforward application of eq.s (3.35) and (3.36)

iM(α→ β +W±h=0(k)) =
√
ZWW

[
E0

W±M [k]A
{

ΦM
± [−k]

}]
k2=M2

W

=
√
ZWW

[
e0
µ[k]A

{
Wµ
±[−k]

}
− i[Kπ]WπA{π±[−k]}

]
k2=M2

W

,

iM(α+W±h=0(k)→ β) =
√
ZWW

[
E0

W±M [k]A
{

ΦM
± [k]

}]
k2=M2

W

=
√
ZWW

[
e0
µ[k]A

{
Wµ
±[k]

}
+ i[Kπ]WπA{π±[k]}

]
k2=M2

W

.(4.12)
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As in the standard Feynman rules, M2
W is defined by the condition Γ⊥(M2

W ) = 0 and
ZWW is the wave-function factor ZWW

−1 = limk2→M2
W

[(M2
W − k2) Γ⊥]. Not surprisingly,

all these results are identical in form to the ones we obtained for the Higgs–Kibble model
in Section 2.

Neutral Sector

The neutral sector fields form a real multiplet

ΦM
0 =

AµZµ
π0

 . (4.13)

with NV = 2, NS = 1. Notice that CP invariance enforces 〈π0〉 = 0. This allows π0

to appear in the gauge-fixing functionals as in eq. (4.6) and makes our definition of ΦM
0

comply with eq. (3.2). By parametrizing the 1PI neutral 2-point functions in terms of tree-
level contribution plus vacuum polarization terms, the Γ⊥ and Γ̃ form-factor matrix are
immediately obtained by comparing with the general definition in eq. (3.12) to Figure 4.
The transverse Γ⊥ is a 2× 2 matrix

Γ⊥ =

(
ΠT
AA − k2 ΠT

ZA

ΠT
ZA m2

Z − k2 + ΠT
ZZ

)
, (4.14)

that includes the mixing between Z and A due to radiative corrections. The longitudinal
Γ̃ reads

Γ̃ =

(
Γ̃VV Γ̃VS

Γ̃ t
VS Γ̃SS

)
=

0 0 0
0 m2

Z kmZ

0 kmZ k2

+

ΠL
AA ΠL

ZA kΠAπ

ΠL
ZA ΠL

ZZ kΠZπ

kΠAπ kΠZπ Πππ

 . (4.15)

The matrices Γ̃VV, Γ̃VS, and Γ̃SS are defined in general in eq. (3.16). In the particular case
at hand they are 2×2, 2×1 and 1×1 (i.e., a single number), respectively. The constraint
in eq. (3.18) translates into three independent relations among the six Π’s

ΠL
AA[k2 + Πππ] = k2Π2

Aπ ,

[m2
Z + ΠL

ZZ ][k2 + Πππ] = k2[mZ + ΠZπ]2 ,

ΠL
ZA[k2 + Πππ] = k2[mZ + ΠZπ]ΠAπ . (4.16)

From eq. (3.24) we obtain Kπ, which is a 2-vector(
[Kπ]Aπ

[Kπ]Zπ

)
=


kΠAπ

k2 + Πππ

k[mZ + ΠZπ]

k2 + Πππ

 =

 0 +O(loop)

mZ

k
+O(loop)

 . (4.17)

Eq.s (3.35) and (3.36) gives us the longitudinal Z boson Feynman rule

iM(α→ β + Zh=0(k)) =
[√

ZZA E0
AM [k]A

{
ΦM [−k]

}
+
√
ZZZ E0

ZM [k]A
{

ΦM [−k]
}]

k2=M2
Z

=
[√

ZZA e0
µ[k]A{Aµ[−k]}+

√
ZZZ e0

µ[k]A{Zµ[−k]}

− i
(√

ZZA [Kπ]Aπ +
√
ZZZ [Kπ]Zπ

)
A{π0[−k]}

]
k2=M2

Z

,

iM(α+ Zh=0(k)→ β) =
[√

ZZA E0
AM [k]A

{
ΦM [k]

}
+
√
ZZZ E0

ZM [k]A
{

ΦM [k]
}]

k2=M2
Z

=
[√

ZZA e0
µ[k]A{Aµ[k]}+

√
ZZZ e0

µ[k]A{Zµ[k]}

+ i
(√

ZZA [Kπ]Aπ +
√
ZZZ [Kπ]Zπ

)
A{π0[k]}

]
k2=M2

Z

. (4.18)
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The wave function factors
√
ZZZ ,

√
ZZA are obtained from the decomposition of the prop-

agator residue at the pole as in eq. (3.33). These are the same wave functions factors that
appear in the standard Feynman rules. Feynman rules for transversely polarized Z parti-
cles are the standard ones also in our formalism.

The Feynman rules for the photon are also standard, as we extensively discussed in
Section 3.3. It is nevertheless interesting to show explicitly that the general results derived
there hold in the context of the SM. We notice that eq. (4.16) implies

det Γ̃VV = ΠL
AA[m2

Z + ΠL
ZZ ]− (ΠL

ZA)2 = 0 . (4.19)

Since Γ̃VV(0) = Γ⊥(0), this means that the transverse propagator possesses an exactly
massless photon pole at all orders in perturbation theory. The existence of such pole was
one of the conditions we relied on in the study of massless vectors presented in Section 3.3.
The second condition we used there (see eq. (3.37)) was that Γ̃SS = k2 + Πππ vanishes as
k2. This is ensured by the second line of eq. (4.16). We thus confirm that the result of
Section 3.3 applies.

4.3 Kπ at One Loop

We evaluated, using the FeynArts/FormCalc package [45], the one-loop expressions of the
vacuum polarization amplitudes described in the previous section and we cross-checked
the Slavnov–Taylor relations in eq.s (4.10) and (4.16). Notice in particular that the first
line of eq. (4.16) implies that ΠL

AA vanishes at one-loop, compatibly with what we find.
From the Π’s we computed the form factors [Kπ]Wπ, [Kπ]Zπ and [Kπ]Aπ which appear in
the Feynman rules in eq.s (4.12) and (4.18).8 In the Feynman-t’Hooft gauge and in the
MS scheme they are given by

[Kπ]Wπ

(
k2
)

=
mW

k

(
1 +

g2

32π2
(δW + δ)

)
,

[Kπ]Zπ
(
k2
)

=
mZ

k

(
1 +

g2

32π2
(δZ + δ)

)
,

[Kπ]Aπ
(
k2
)

=
mZ

k

(
0 +

g2

32π2
δA

)
, (4.20)

where

δW = 2(1− c2
w)B0

(
k2, 0,m2

W

)
+

4c4
w + 3c2

w − 1

2c2
w

B0

(
k2,m2

W ,m
2
Z

)
− 1

2
B0

(
k2,m2

h,m
2
W

)
,

δZ =
(
4c2

w − 1
)
B0

(
k2,m2

W ,m
2
W

)
− 1

2c2
w

B0

(
k2,m2

h,m
2
Z

)
, (4.21)

δA = −4swcwB0

(
k2,m2

W ,m
2
W

)
,

δ =
1

2

[
1− log

m2
W

µ2

]
+

1

4c2
w

[
1− log

m2
Z

µ2

]
+

3m2
h

4m2
W

[
1− log

m2
h

µ2

]
+

m2
W

m2
h

{
3

[
1− log

m2
W

µ2

]
+

3

2c4
w

[
1− log

m2
Z

µ2

]
− 2

∑
f

m4
f

m4
W

[
1− log

m2
f

µ2

]
− 1 + 2c4

w

c4
w

}
.

In the above equations, µ is the renormalization scale,
∑

f =
∑

l +Nc
∑

q denotes the sum
over all SM leptons (l) and quarks (q, with Nc = 3), and B0 stands for the scalar two-point
integral

B0

(
k2,m2

1,m
2
2

)
= −

∫ 1

0
dx log

(−x(1− x)k2 + (1− x)m2
1 + xm2

2

µ2

)
. (4.22)

8Actually only [Kπ]Aπ contributes at the two-loops order in eq. (4.18) because it is multiplied by
√
ZZA.
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We note that the most involved term in eqs. (4.20), δ, emerges from the Higgs tadpole
diagrams, which do not cancel out in the pure MS scheme. In the modified MS scheme
where the Higgs tadpole is canceled, δ = 0 and the expressions for the Kπ’s are simpler.

4.4 Applications

In this section we apply the Goldstone Equivalence formalism to two simple calculations.
The first one, tree-level WW scattering, illustrates the concrete advantages of manifest
power-counting. The second one, the O(y2

t ) radiative corrections to top decay, provides a
cross-check of our results beyond the tree-level approximation.

4.4.1 Power-Counting in WW Scattering

Consider the tree-level amplitude M(W+
0 W

−
0 → W+

0 W
−
0 ) for the scattering of four lon-

gitudinal W bosons in the center of mass frame. We are interested in the fully hard
kinematical regime where the transverse momentum kT of the final particles is large,
much above the Electroweak scale m ∼ 100 GeV. This is the configuration where the W
bosons energy E =

√
s/2 is much larger than m and the scattering angle θ is central so

that kT ∼E�m. In this regime the amplitudeM is well approximated by a power series
in m2/E2.9 To the second non-trivial order

M =M0 +M1 +O
(
m4

E4

)
, (4.23)

where the amplitude coefficients M0 and M1 are of O(1) and O(m2/E2), respectively.
Computing M0 and M1 is not straightforward in the standard formalism because

the longitudinal polarization vector (2.34) grows with the vector boson energy as ε0
µ ∼

E/mW ∼ E/m. As a consequence, individual non-gauge invariant Feynman diagrams dis-
play an unphysical growth with energy that cancels out only when summing them together.
In particular the pure gauge diagrams scale as (E/m)4 individually. However when the
contact diagrams are summed to those with a virtual vector one finds a remarkable cancel-
lation and a milder behavior with the energy Mgauge∼(E/m)2. Similarly, diagrams with
Higgs exchange grow asMHiggs∼(E/m)2. It is only after combining them with the gauge
contribution that the final resultM=Mgauge+MHiggs scales like (E/m)0 as it must since
no power-like growth with energy is possible in a renormalizable theory such as the SM.
These cancellations would make computing M0 and M1 from the expansion of Feynman
diagrams a painful exercise. Since 2 powers of (E/m)2 will cancel, the gauge diagrams
should be Laurent-expanded in (m/E)2 up to the third order (and the Higgs one up to the
second order) just to get the leading termM0. One more order would be needed forM1.
This is as involved as first computing the exact amplitude and subsequently expanding it,
obtaining

M0 = −4λ+ g2 1

4c2
w

(
3 + c2

θ

1− cθ

)
,

M1 =
λ

2

m2
H

E2

(
1 + cθ
1− cθ

)
+ 2λ

m2
W

E2

(
1 + cθ
1− cθ

)
+ g2m

2
W

E2

1 + cθ
(1− cθ)2

[−9 + 10cθ − 5c2
θ

4
+

3− cθ
2c2

w

+
−6 + 3cθ − c2

θ

16c4
w

]
, (4.24)

where cθ = cos θ. The final result also displays another shortcoming of the standard
formalism. The spurious E/mW factors from the polarization vectors hide the dependence

9No odd powers of m/E can appear because of a spurionic symmetry discussed below.
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of the final result not only on the energy, but also on the couplings. For example, the term
of order λ in M0 does not emerge from any of the vertices involved in the calculation.
Rather it appears, from a term of order g2m2

H/m
2
W , as a reminder of the cancellation

between gauge and Higgs diagrams expanding the Higgs propagator for E � mH . More
generally, the problem is that the negative powers of mW ∝ g v from the polarization
vectors can cancel positive powers of g from the vertices and modify the dependence of
the final result on the couplings.

The situation is radically different in our Goldstone-Equivalent formalism. The exter-
nal longitudinal W bosons are represented with double lines as in Figure 1, indicating that
amplitudes both with an external vector and with an external Goldstone line should be
included for each external W particle. The precise recipe by which these amplitudes have
to be combined is provided by eq. (4.12). Goldstone amplitudes are multiplied, since we
are at tree-level and the W ’s are on-shell, by ±i [Kπ]Wπ = ±i, which is constant in energy.
Vector amplitudes are multiplied by e0

µ[k] (see eq. (2.35)), with k2 = m2
W , that scales like

mW /E. Clearly our formalism does not bring any advantage if the aim is to compute the
exact amplitude M,10 but it greatly simplifies the calculation in the high-energy limit.
Because there are no unphysical energy growths of the polarization vectors, in this formal-
ism one can straightforwardly isolate which contributions are needed at any given order in
m/E. Furthermore, the dependence on the couplings of each Feynman diagram directly
translates into the one of the final result. Ignoring for simplicity the dependence on the
weak angle, trilinear vertices with one vector and two scalars, or with three vectors, scale
like g E. Vertices with two vectors and a physical Higgs are of order gmW while quartics
involving vectors and scalars are of order g2. Quartics with only scalars are instead of
order λ and scalar trilinears scale like λ v. Finally, the scalar and vector propagators scale
like 1/E2. Notice that we are working in the Feynman–’t Hooft gauge where there is no
mixed scalar/vector propagator.

These simple power-counting rules allow us to identify the diagrams contributing to
M0 and M1, as schematically reported in Figure 5. Because each e0

µ carries a ∼ mW /E
suppression, the dominant contribution comes from diagrams with only Goldstones on the
external legs, evaluated with massless vector bosons momenta and massless propagators.
These consistently match M0 in eq. (4.24). The terms of order g2 and λ directly emerge
from the Goldstone-vector vertices and from the Goldstone quartic coupling, respectively.
Computing the next order term M1 is also straightforward. The first term in M1 comes
from the diagrams with scalar trilinear vertices, of order (λv)2/E2 ∼ λm2

H/E
2. The

second one originates from diagrams with one vector (which comes with one mW /E factor
from e0

µ) and tree Goldstone external lines, one scalar trilinear and one Goldstone-vector
vertex, which is of order mW · λ v · g/E2 ∼ λm2

W /E
2. The last one, of order g2m2

W /E
2,

comes from diagrams with two external vectors and two external Goldstones, plus the
contribution of the leading order diagrams with one insertion of the vector boson mass
term (denoted by ⊗ in the figure) from the expansion of the propagator.

The above discussion also illustrates the connection between our Goldstone-Equivalent
formalism and the standard Equivalence Theorem. The Equivalence Theorem, in our
formalism, is merely the statement that diagrams with vector external legs are suppressed
by e0

µ ∼ m/E relative to the Goldstone ones, as in Figure 1. This in itself does not mean
that scattering amplitudes for external longitudinal bosons are dominated by Goldstone
diagrams, as a naive formulation of the Equivalence Theorem would suggest. Indeed we
saw that the suppression from e0

µ is only one of the elements of the power-counting rule,
to be combined with all the other factors from the vertices and the propagators. These
factors were such that the naive Equivalence Theorem holds in our example, therefore

10But it allows to do so. We cross-checked that it produces the same result as the standard formalism.
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Figure 5: Summary of the leading contributions to M(W0W0 → W0W0) and their scaling with
m/E and g2, λ. The column O(m/E) is empty according to the selection rule in eq. (4.25).

M0 could have also been guessed naively. Clearly there would be no way to obtain M1

without our formalism. In fact we saw that M1 emerges also from diagrams with vector
external legs. Yet, a naive application of the Equivalence Theorem can produce wrong
results even at the leading order in the m/E expansion. Consider for instance the process
W+
±W

−
± → W+

±W
−
0 . It so happens (see below) that the amputated Feynman diagrams

with one external Goldstone and three vector legs are of order g2mW /E. The diagrams
with four vector legs are instead of order g2. Taking into account the polarization vectors
and their energy scaling, both classes of diagrams contribute to the leading order scattering
amplitude and should be retained.

When studying the high-energy limit of SM scattering amplitudes it is useful to keep
in mind the following spurionic symmetry. Consider the Z2 transformation H → −H and
ψL → −ψL, that changes sign to the Higgs and to the fermion doublets. This operation
is part of the SU(2)L gauge group and thus it is a symmetry of the Lagrangian before
gauge-fixing. The symmetry acts as h → −h and π → −π on the physical Higgs and
on the Goldstones, plus the parameter transformation v → −v. The Higgs VEV v is
interpreted as a spurion of the Z2 symmetry. The gauge-fixings in eq. (4.6) further break
the symmetry and introduces three more spurions m̃W,A,Z → −m̃W,A,Z . If we collectively
denote as “m” the gauge-fixing masses and the masses of all the (bosonic and fermionic)
fields in the theory, and we trade “v” for one of these masses, the Z2 symmetry acts as

(h, π, Vµ, ψL, ψR, m)→ (−h, −π, Vµ, −ψL, ψR, −m) . (4.25)

By this symmetry we can understand better the energy dependence of the WW scattering
amplitudes discussed above. The amputated Feynman amplitude with 3 vectors and 1
Goldstone leg involves an odd number of external scalars. Therefore it is Z2-odd and
must scale like (m/E)2n+1 (with n ≥ 0, since the theory is renormalizable). In the
absence of accidental cancellations the leading term is of order (m/E)1, and this is what
is found. Amplitudes with 4 vector legs are instead even and they scale as (m/E)0 barring
cancellations. It is also straightforward to draw the implications of the Z2 symmetry
directly on the scattering amplitudes, in spite of the fact that our formalism mixes up
amputated amplitudes with external vector and Goldstone fields (see Figure 5), which have
opposite Z2 parity. Indeed, e0

µ is manifestly odd and compensates for the different parities.
In particular we can conclude that M(W0W0 →W0W0) is even, therefore its high-energy
expansion can only contain even powers of m/E as anticipated above eq. (4.23).
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4.4.2 Radiative Corrections to Top Decay

At the leading order in the mW /mt � 1 expansion the dominant decay mode of the top
is t → W+

0 b, with longitudinally polarized W . This well-known result is immediately
recovered in our formalism (or using the standard Equivalence Theorem) by noticing that
the charged Goldstone couples to t and b with strength yt, where yt =

√
2mt/v is the

top Yukawa coupling. The coupling with the charged vector is instead the gauge coupling
g. Since yt � g in the heavy-top limit, the decay to longitudinal W is enhanced relative
to the one to transverse by the diagram with the Goldstone on the external leg. In this
section we consider radiative corrections to the M(t → W+

0 b) decay amplitude, focusing
in particular on the leading ones, of order y2

t /16π2 (and y4
t /λ/16π2, see below) relative to

the tree-level. The calculation will be performed in our Goldstone-Equivalent formalism
and compared with standard results (see e.g. [46–49]).

Before proceeding, few technical remarks are in order. We compute the proper gauge-
invariant decay amplitude, with the momentum of the external top on the complex mass-
shell k2

t = M2
t ∈ C. This is conceptually important because our formalism is equivalent to

the standard one only for gauge-invariant (hence physical) quantities. We should proceed
in the same way for the final-state W , however the W is stable (i.e., MW ∈ R) at the order
we are interested in. The b quark is taken massless and stable. We work in the Feynman-
’t Hooft gauge and in the MS scheme, but we also show the result in the modified MS
scheme discussed at the end of Section 4.1. The anomalously large O(y4

t /λ) corrections are
an artifact of MS due to the Higgs tadpole contribution and they disappear in the modified
MS scheme as noticed in Ref. [44]. Calculations are performed with the Mathematica

package FeynArts/FormCalc [45].
Let us first summarize the standard calculation. The tree-level diagram, evaluated with

all-orders kinematics k2
t,W = M2

t,W , and taking in to account the wave-function factors,
gives√

ZLt Z
L
b ZW

g√
2

(ubγ
µPLut) ε

0
µ =

√
ZLt Z

L
b ZW

g√
2

Mt

MW
ubPRut , ⇒ M(tree) = ytubPRut ,

(4.26)
with the standard longitudinal polarization vector ε0 as given in eq. (2.34). In the above
equation we exploited momentum conservation and the Dirac equation (with mb = 0) for
the spinors. Notice that we did not exploit the mW /mt � 1 condition. Namely eq. (4.26),
and in particular the resulting tree-level result M(tree), is exact at all orders in mW /mt.
The one-loop correction to the amplitude,M(1), receives three kinds of contributions. First
we have the corrections to the wave-function factors in the tree diagram, ZLt,b = 1 + δZLt,b
and ZW = 1 + δZW . To order O(y2

t , y
4
t /λ) we have δZW = 0 so the latter will be ignored.

Second we have corrections to the masses M2
W = m2

W + δM2
W and M2

t = m2
t + δM2

t .
Finally, we have the genuine one-loop vertex corrections to the amputated amplitude
which emerges at this order from Goldstone and Higgs loops. The final result reads

M(1) =M(0)

[
1 + δvert +

1

2

(
δZLb + δZLt

)
+

1

2

δM2
t

m2
t

− 1

2

δM2
W

m2
W

]
, (4.27)

where the vertex correction δvert is

δvert =
g2m2

t

64π2m2
W

[
2B0(m2

t , 0,m
2
t ) + log

m2
t

µ2
− 1

]
, (4.28)

with B0 as in eq. (4.22). Notice that the W and the Higgs mass have been neglected
compared to mt in the vertex correction. This is legitimate at O(y2

t ).
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Figure 6: One-loop corrections to the top wave-functions to O(y2t ).

Let us now compute M(1) with our formalism. A quick inspection of the vertex
correction diagrams immediately reveals that there is none contributing to our order.
The one with the Goldstone on the external leg and the Goldstone/Higgs trilinear vertex
is of order λ relative to the tree-level, the one with the Goldstone/Goldstone/vector vertex
is of order g2 and the others are even smaller. Diagrams with a vector external leg, such
as the one contributing in the standard formalism, are suppressed by the polarization
vector factor e0

µ ∼ mW /E ∼ mW /mt. Therefore in the Goldstone-Equivalent formalism
there are no vertex corrections and the result entirely comes from the tree-level decay
diagrams. Furthermore it so happens that the tree-level diagram with external vector
exactly vanishes and we are left with only the Goldstone leg, that gives

Kπ
√
ZRt Z

L
b ZW ytubPRut , (4.29)

with Kπ = [Kπ]Wπ = 1 + δKπ as in eq. (4.20). The standard formalism result for the
tree-level amplitude M0 is immediately recovered. The full one-loop amplitude in the
Goldstone Equivalent formalism reads

M(1)
GE =M(0)

{
1 +

1

2

(
δZLb + δZRt

)
+ δKπ

}
, (4.30)

which looks different from eq. (4.27) in several respects. We do not have vertex corrections,
nor corrections due to the masses. Instead, we have the correction δKπ from the Goldstone
component of the longitudinal polarization vector. Moreover, we have wave-function δZRt
corrections to the right-handed top quark field rather than to the left-handed one as in
eq. (4.27). This is because the gauge coupling involves the left-handed top, while the
Goldstone coupling which is relevant in our formalism involves the right-handed field. We

get M(1)
GE =M(1) only provided

1

2

δM2
t

m2
t

?
= −δvert +

1

2

(
δZRt − δZLt

)
+

(
1

2

δM2
W

m2
W

+ δKπ
)
. (4.31)

In order to check eq. (4.31) we use eq. (4.20), duly evaluated at k2
W = M2

W , obtaining

δKπ =
mW

MW

(
1 +

g2

32π2
(δW + δ)

)
− 1

' −1

2

δM2
W

m2
W

+

(
−6

g2

32π2

m4
t

m2
Wm

2
h

(
1− log

m2
t

µ2

))
, (4.32)

where in the last line we retained only terms up to O(y4
t /λ, y

2
t ). Those come entirely

from δ, which in turn originates from the tadpole contribution. The term in brackets on
the second line of eq. (4.32) would thus be absent in the modified MS scheme. We also
compute explicitly the diagrams in Figure 6, obtaining

δZRt = δZLt −
g2m2

t

64π2m2
W

B0

(
m2
t , 0, 0

)
, (4.33)
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at O(y4
t /λ, y

2
t ). Plugging into eq. (4.31), using also eq.s (4.32) and (4.28), we obtain that

M(1)
GE is equal to M(1) if

1

2

δM2
t

m2
t

?
= − g2m2

t

64π2m2
W

[
2B0(m2

t , 0,m
2
t ) +

1

2
B0

(
m2
t , 0, 0

)
log

m2
t

µ2
− 1

]
+

(
−6

g2

32π2

m4
t

m2
Wm

2
h

(
1− log

m2
t

µ2

))
. (4.34)

This is precisely the relation between the pole and MS top masses at O(y2
t , y

4
t /λ), given for

instance in Ref. [50]. The term in parentheses on the second line, of O(y4
t /λ), is absent in

the modified MS scheme and consistently disappears from the top mass formula as shown
in Ref. [44]. Notice that O(y4

t /λ) corrections also disappear from the decay amplitude in
the modified MS scheme. This is because no such term is present (in any scheme) in the
wave-function corrections and the one in eq. (4.32) drops.

We have thus confirmed that M(1)
GE =M(1) at the order of interest. This constitutes

a non-trivial check of our formalism and of the one-loop calculation of Kπ in Section 4.3.

5 Collinear Factorization and Splitting Functions

We saw that manifest power-counting makes the Goldstone Equivalent formalism simpler
and more transparent for explicit calculations of specific processes in the high energy
limit. For the sake of proving general properties of the high-energy amplitudes, where
manifest power-counting is essential, our formalism is instead not only a simplification,
but an absolute need. This point is illustrated in the present Section, where we prove
the factorization of collinear splittings at the tree-level order and compute the splitting
functions in the SM.

Let us first state collinear factorization for the SM, in the form we will prove it. We
start from initial-state splitting topologies depicted on the left panel of Figure 7. Consider
a scattering process of the type AX → BY , with A,B two arbitrary particles and X,Y
unspecified (multi-particle, in the case of Y ) states. Assume that there exist a virtual
particle C∗ that can be emitted from A by the A → BC∗ splitting, and absorbed by X
producing Y through the C∗X → Y reaction. If the hardness “E” of the C∗X → Y
process is much larger than the Electroweak scale m = 100 GeV and if the A → BC∗

splitting is collinear, up to small corrections “δ” the amplitude factorizes

iM(AX → BY ) =
∑
C

iMhard(CX → Y )
i

Q2
iMsplit(A→ BC∗) [1 +O(δ)] , (5.1)

as the product of the matrix element for the “hard” CX → Y process (with on-shell C
particle) times a “splitting amplitude” Msplit.

The kinematical regime where eq. (5.1) holds and the size of the corrections will be
discussed in detail in the rest of this section (see also Ref. [23]). The corrections are
controlled by the expansion parameters δm ≡ m/E � 1 and δ⊥ ≡ |k⊥|/E � 1, where k⊥
denotes the momentum of B transverse to the direction of A. The former condition ensures
that the characteristic scale of the hard process is indeed much above the Electroweak
scale. Adding the latter guarantees that k2 = (kA − kB)2 � E2 is small, such that the
A → BC∗ splitting is instead a low-scale process.11 Since mC . m, for any SM particle

11We further need to ensure that the splitting is collinear and not soft. This is achieved by taking the
momentum fraction “x” (see eq. (5.16)) away from the extremes.
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Figure 7: Pictorial representation of the leading contributions in the factorizable AX → BY and
X → BCY processes. The dashed blob represents the hard reaction.

C, the two conditions also imply that the virtuality of C∗ , i.e. Q2 ≡ k2 − m2
C that

appears in the denominator of eq. (5.1), is much smaller than E2. Notice that δm and δ⊥
are independent expansion parameters and their relative magnitude is arbitrary, a priori.
We will see that the most interesting configurations are δm ∼ δ⊥ and δm � δ⊥. In the
first case the virtuality Q2 is of the order of the Electroweak scale m. In the second one,
Q2 � m2 and the splitting is itself a high-energy process relative to the Electroweak scale.
The relative corrections to the factorized expression for the amplitude in eq. (5.1) are of
order δ = Max[δ⊥, δm] or smaller. The regime where δm � δ⊥ will be discussed later.

Similar considerations hold for final-state splittings, as on the right panel of Figure 7.
The process is X → BCY , with X a two-particle and Y a single or multi-particle state.
The factorization formula reads

iM(X → BCY ) =
∑
A

iMhard(X → AY )
i

Q2
iMsplit(A∗ → BC) [1 +O(δ)] , (5.2)

and the expansion parameters are again δm ≡ m/E and δ⊥ ≡ |k⊥|/E, where k⊥ still
denotes the momentum of B transverse to A. For final-state splittings, unlike the previous
case, kinematical configurations exist where Q2 ≡ k2 −m2

A = (kB + kC)2 −m2
A is much

smaller that |k⊥|2 and m2. For instance if A is unstable and BC are its decay products,
one might consider the exactly resonant configuration where Q2 = 0. For such resonant
configurations, which we exclude from our discussion, the corrections to the factorized
approximation are smaller.

The applicability and the implications of the factorization formulas in eq.s (5.1) and
(5.2) need to be further clarified. We stated factorization assuming that neither the hard
nor the splitting amplitudes are power-like suppressed with energy. Or, better said, that
this holds for at least one of the virtual particles C∗ and A∗ (with given helicities) in the
sums. For the hard reaction, the assumption means

Mhard ∼ E4−L , (5.3)

where “L” is the number of external legs so that 4 − L is the energy dimension of the
amplitude. Power suppressions in m/E, due for instance to the mass-parity symmetry
in eq. (4.25), are excluded. The splitting amplitudes, of energy dimension 1, are instead
assumed to scale as E0 and be either of order |k⊥| or of order m. This is the maximum
allowed energy scaling, as it is easy to show by exploiting Lorentz invariance. Which one
of the two options Msplit∼ |k⊥| or Msplit∼ m is realized is determined by selection rules
and confirmed by explicit calculations on a case-by-case basis. Similarly one can show
that Msplit may be further suppressed by powers of m/E or |k⊥|/E in some splitting
configurations, which we are excluding with our assumptions. If the assumptions hold,
and if we momentarily restrict to the δm ∼ δ⊥ regime for simplicity, Msplit∼ δm,⊥E and
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the factorized contributions to the amplitudes in eq.s (5.1) and (5.2) scale like

M∼ 1

δm,⊥
E3−L . (5.4)

The complete scattering process has one external leg more than the hard reaction, therefore
its amplitude has energy dimension 3−L and would scale naively as E3−L. The factorized
contribution is enhanced by an IR effect (i.e., the collinear splitting) and is larger by a
factor of 1/δm,⊥.

If instead the hard or the splitting amplitudes are power-like suppressed in m/E or
|k⊥|/E, eq.s (5.1) and (5.2) should be interpreted with care. They still correctly estimate,
as we will see, the magnitude of the contribution of the resonant diagrams to the complete
amplitude, allowing us to conclude that no 1/δm,⊥ IR enhancement is present. On the
other hand they cannot be used to compute the complete scattering amplitude since non-
resonant contributions can be equally important. In short, the factorization formulas in
eq.s (5.1) and (5.2) only capture the 1/δm,⊥ IR-enhanced contribution to the amplitude,
when present. Similar considerations obviously apply if the hard or the splitting ampli-
tudes are suppressed not by m/E, but by small coupling constants. The factorization
formulas would not give a good approximation if the complete reaction can be mediated
also by different topologies that do not involve splittings but benefit from much larger
couplings.

The rest of this section is organized as follows. In Section 5.1 we show how the
factorization of the amplitude as in eq.s (5.1) and (5.2) is straightforwardly proved in
the Goldstone Equivalent formalism. Manifest power-counting is a key element of the
derivation, but the equivalent propagator introduced in Sections 2.3 and 3.3 also plays a
major role. In particular it will allow us to deal with splittings involving off-shell massive
vectors. In Section 5.2 we describe the calculation of the splitting amplitudes (listed in
Appendix B) and of the splitting probabilities. We also apply our results concretely to
the emission of a collinear vector V = W, Z , γ from the initial state, proving the validity
of the so-called “Effective Vector Approximation” (EVA) [51–54].

5.1 Amplitude Factorization

Collinear factorization is a statement about contributions to scattering amplitudes that are
enhanced, relative to the naive scaling with energy, in the collinear limit. In a formalism
like ours where power-counting is manifest at the level of individual Feynman diagrams it
is obvious that such enhancements can only emerge from “resonant” diagrams where the
real particles involved in the splitting are connected to the rest of the diagram by a single
propagator. Namely we can interpret the pictorial representation in Figure 7 of the virtual
particles emission/absorption as a quantitative representation of the dominant Feynman
diagrams.12 This is so because enhancements can only emerge from low-virtuality prop-
agators, while in diagrams that are not of the resonant type all the internal lines have
high virtuality. The scaling with energy of the non-resonant diagrams contribution to the
process (AX → BY or XC → BCY , for initial or final state splitting) is thus the naive
one or less

Mn.r. . E3−L , (5.5)

12Notice that the dominance of the resonant topology diagrams does not hold for massive gauge theories
in the standard covariant formalism, due to the lack of manifest power-counting, as discussed in detail in
Ref. [23]. This is the reason why collinear factorization in the SM has been studied until now [21, 23, 55]
only in non-covariant (axial) gauges.
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where L is the number of legs of the hard scattering subprocess as previously defined.
Eq. (5.5) provides an upper bound on the non-resonant contribution, additional suppres-
sions can emerge from the mass-parity selection rule. We will return to this point below.

In order to prove factorization we can thus focus on the resonant Feynman amplitudes
and expand them for δm = m/E � 1 and δ⊥ = |k⊥|/E � 1. We will work out the
expansion explicitly only in the case of vector resonant propagator, which we denote with
the habitual double line as in Figure 7. The discussion is fully analogous, but simpler, if
the resonant propagator is a fermion or a Higgs propagator. The additional complication
in the case of a vector stems from the fact that the standard propagator is not well-behaved
in the limit where its 4-momentum components kµ are large compared to k. This problem
was solved in Sections 2.3 and 3.3 by introducing the equivalent propagator Geq, which
is well-behaved, and by showing that it can be used in place of the standard propagator
in the resonant lines. We showed that the standard propagator can be replaced by Geq

also in multiple resonant lines that arise in the same process. Hence the discussion that
follows straightforwardly generalizes to multiple splittings.

We focus for definiteness on the case of a single vector W of mass m and a single
Goldstone scalar π, which we embed as usual in the ΦM = (Wµ, π) multiplet. Strictly
speaking this only covers the charged vector sector of the SM, however adapting the
derivation to the neutral sector poses no additional challenges. The only difference is
that the final result for the amplitude will contain a coherent sum over Z, photon and
(possibly) Higgs intermediate states, producing interference effects to be duly taken into
account in the amplitude squared as we will see in Section 5.2.

In the single-vector case, eq. (3.32) (supplemented by the tree-level expression for the
form factors in Section 4.2) allows us to write the resonant contribution to the amplitude
as

Mres = AA
{

ΦM [k]
}
Geq
MN [k]AC

{
ΦN [−k]

}
,

= AA
{

ΦM [k]
} 1

Q2

∑
h=0,±

EhM [k]EhN [k] +
1

k2
PSMPSN

AC
{

ΦN [−k]
}
. (5.6)

The propagator momentum kµ is oriented to have positive energy component, hence it
can be interpreted as the momentum of the virtual vector. The annihilation and creation
amplitudes AA

{
ΦM [k]

}
and AC

{
ΦM [−k]

}
correspond to the portions of the resonant

Feynman diagrams where the virtual vector is annihilated and created, respectively, as
in Figure 2. For the initial-state splitting, AA is the amputated amplitude of the hard
process XC → Y (with C the vector) and AC corresponds to the A→ BC∗ splitting. The
interpretation is reversed for final-state splitting. The polarization vectors, at tree-level,
are simply

E0
M [k] =

(
e0
µ[k], +i

m

k

)
,

E0
M [k] =

(
e0
µ[k], −im

k

)
, (5.7)

with e0
µ as in eq. (2.35).

In the kinematical configuration we are interested in the virtual vector 3-momentum
~k is large, |~k| ∼ E, while its virtuality Q2 is small, either of order |k⊥|2 or of order m2

depending on which one of the two is larger (see eq. (5.20)). We can thus approximate kµ

by an on-shell momentum kµon, with k2
on = m2. The precise definition of kµon is ambiguous

within the uncertainties introduced by the factorized approximation. We momentarily
take kµon to have the exact same 3-momentum component as kµ, and the energy component
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dictated by the on-shell condition. With this choice

E±M [k] = E±M [kon] ,

E0
M [k] =

(
k/m

[
1 +O(δ2

m,⊥)
]
δνµ 04×1

01×4 m/k

) N

M

E0
N [kon] , (5.8)

and similarly for the outgoing polarizations. The resonant amplitude thus becomes

Mres =M(pole)
res

[
1 +O(δ2

m,⊥)
]

+M(local)
res

[
1 +O(δ2

m,⊥)
]
, (5.9)

where M(pole)
res and M(local)

res are

M(pole)
res = AA

{
ΦM [k]

} 1

Q2

∑
h=0,±

EhM [kon]EhN [kon]

AC
{

ΦN [−k]
}
, (5.10)

M(local)
res = AA {Wµ[k]}

[
1

m2
e0
µ[kon]e0

ν [kon]

]
AC {W ν [−k]} . (5.11)

The “pole” term M(pole)
res is readily seen to produce the factorized expressions in

eq.s (5.1) and (5.2) by taking the on-shell limit kµ → kµon in the amputated amplitude
that corresponds to the hard process. This is AA in the case of initial-state and AC in the
case of final-state splitting{

iMhard(XWh → Y ) = AA
{

ΦM [kon]
}
EhM [kon] for initial−state splitting,

iMhard(X → YWh) = EhM [kon]AC
{

ΦM [−kon]
}

for final−state splitting.
(5.12)

The amplitude that corresponds to the splitting process is instead{
iMsplit(A→ BW ∗h ) = EhN [kon]AC

{
ΦN [−k]

}
for initial−state splitting,

iMsplit(W ∗h → BC) = AA
{

ΦN [k]
}
EhN [kon] for final−state splitting.

(5.13)

The corrections introduced by the on-shell approximation kµ → kµon in the hard amplitude,
as well as the ones in eq. (5.9), are quadratic in the expansion parameters δm and δ⊥.13

They can be safely ignored since comparable or larger (linear) corrections will emerge
from other sources. Also notice that the on-shell hard amplitudes are physical gauge-
independent quantities and do not necessarily need to be computed in the Goldstone
Equivalent formalism. The splitting amplitudes are also gauge-independent, because of
the gauge-independence of the complete scattering amplitude. However they are defined
and should be computed in our formalism.

Let us now turn to the estimate of the corrections to the factorized formula. They
emerge from the non-resonant diagrams contribution Mn.r. and from the “local” term

M(local)
res in eq. (5.11). The second one happens to be either of the same order or smaller

than the first one. In order to see this, we start by giving a slightly more refined estimate
of Mn.r., by exploiting the mass-parity symmetry in eq. (4.25). The complete scattering
process AX → BY or X → BCY can be even or odd. In the latter case, the symmetry
implies that all diagrams contributing to the process, and in particular the resonant ones,
are proportional to at least one power of m. The non-resonant amplitude thus scales as

M+
n.r. ∼ E3−L , M−n.r. ∼ mE2−L , (5.14)

13When sending kµ → kµon, the other external momenta of the hard process must also be readjusted to
ensure energy conservation. This can be done without introducing linear corrections.
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for even and odd amplitudes, respectively. The mass-parity symmetry also tells us about

the two amputated amplitudes that appear in the local term M(local)
res . If the complete

process is even, the two amplitudes must have the same parity. When they are both even

we obtain M(local)
res ∼ E3−L precisely like the non-resonant amplitude M+

n.r., since the
two powers of m in the denominator of eq. (5.11) cancel the “m” factors in e0

µ[kon] (see

eq. (2.35)). On the other hand, if both amplitudes are odd, M(local)
res is further suppressed

compared toM+
n.r.. In the case the complete scattering amplitude is odd under the mass-

parity symmetry, the creation and annihilation amplitudes in eq. (5.11) must instead have

opposite parity. One of the two brings one power of m, thereforeM(local)
res ∼mE2−L, again

like the non-resonant amplitude M−n.r.. We conclude that Mn.r. provides a conservative
estimate of the corrections to factorization, including the effect of the local term.

The corrections are controlled by two separate expansion parameters, δm and δ⊥, and
hierarchies are possible between them. We discuss the various options in turn.

I) δm ∼ δ⊥
As already anticipated in eq. (5.4), the factorized component of the amplitude scales
like E3−L/δm,⊥ in this case. This follows from our assumption that power-like energy
suppressions are absent in both the hard amplitude, that scales as in eq. (5.3), and in the
splitting one, that is of orderMsplit∼δm,⊥E. The factorized term is thus larger thanMn.r.

by a factor of 1/δm,⊥ if the amplitude is even, and by a factor 1/δ2
m,⊥ if it is odd. The

relative correction in eq.s (5.1) and (5.2) are thus of order δ = δm,⊥ for an even process,
δ = δ2

m,⊥ for an odd one.

II) δm � δ⊥
In order to deal with this case one has to notice that the hard scattering amplitude
must be even under mass-parity not to experience an energy suppression. This implies
that the splitting amplitude has the same parity as the complete scattering process and
consequently it is Msplit∼m if the process is odd and Msplit∼ |k⊥| if it is even. The
virtuality Q2 in the denominators of eq.s (5.1) and (5.2) is of order |k⊥|2, therefore the
factorized amplitude is of order E3−L/δ⊥ if the amplitude is even and of order mE2−L/δ2

⊥
if it is odd. The corrections to factorizations therefore are δ = δ⊥ or δ = δ2

⊥ if the
amplitude is even or odd, respectively.

III) δm � δ⊥
The virtuality is Q2 ∼ m2, therefore for odd amplitudes the resonant component scales
like E3−L/δm and the corrections to factorization are δ = δ2

m. The situation is different
if the amplitude is even. The splitting amplitude is of order |k⊥| and thus the resonant
component scales as E3−Lδ⊥/δ

2
m. The corrections are δ = δ2

m/δ⊥.

We thus conclude that for any hierarchy between δm and δ⊥, the corrections in eq.s (5.1)
and (5.2) are always quadratic, namely δ = Max[δ2

m, δ
2
⊥], if the amplitude is odd. For even

amplitudes the final estimate for δ is instead less favorable and reads

δ = Max[δm, δ⊥, δ
2
m/δ⊥] , (5.15)

compatibly with what found in Ref. [23]. The result implies in particular that even if
δm and δ⊥ are small, factorization does not hold when the hierarchy between them is
such that δ2

m/δ⊥ & 1. This is not surprising. Factorization has to capture IR-enhanced
contributions to the amplitude, and we just saw that there is no enhancement in this
configuration. Notice that this peculiar violation of factorization has limited practical
relevance because the kinematical regime where |k⊥| is much smaller than m (such that
δ⊥/δm → 0) is a small region of the phase space where the amplitude is not enhanced.
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In the previous discussion we had in mind splittings with a virtual massive vector
boson. However our considerations and results hold for an arbitrary splitting, barring the
case in which all the particles involved are much lighter than the Electroweak scale m. If
for instance they are exactly massless, we have that Q2 ∼ |k⊥|2 independently of m. The
corrections due to the on-shell approximation kµ → kµon, which only depend on Q2, are
also independent of m and of order δ2

⊥. The corrections to factorization are thus δ = δ⊥ or
δ = δ2

⊥ for even and odd amplitudes respectively, regardless of the hierarchy between δ⊥
and δm. Factorization for massless splittings holds also in the E . m regime that we are
excluding from our analysis. The standard treatment of factorization for photons, gluons
and light quarks and leptons, in QED and QCD, applies in that case.

5.2 Splitting Amplitudes and Splitting Functions

The splitting amplitudes may now be evaluated as a straightforward application of eq. (5.13),
plus the obvious generalization for the splitting of a virtual fermion or scalar. However
few more manipulations and approximations are needed in order to cast the result in a
simple and synthetic format. In particular, since factorization only holds in the collinear
limit δm,⊥ � 1, we are allowed to expand eq. (5.13) in δm,⊥ and retain only the leading
term. We start by considering the splitting of a particle “A” moving along the z axis
in the positive direction. The 3-momenta of the particles involved in the splitting are
parameterized as

~kA =
(

0, 0, |~kA|
)
,

~kB =
(
|k⊥| cosφ, |k⊥| sinφ, (1− x)|~kA|

)
,

~kC =
(
−|k⊥| cosφ, −|k⊥| sinφ, x |~kA|

)
, (5.16)

where |~kA| is large, of order E, and |k⊥| � E. Since we are interested in collinear splittings,
and not in soft ones, the longitudinal momentum fraction x ranges from 0 to 1 and it is
far from the extremes.14 Both for initial-state (A → BC∗) and final-state (A∗ → BC)
splittings, Msplit in eq. (5.13) is given by the 3-point amputated tree-level amplitude of
the fields that interpolate for the A, B, C particles, times the corresponding polarization
vectors (or spinor wave-functions) evaluated with on-shell 4-momenta. Notice that the
virtual particle momentum kµ is carried on-shell (sending kµ → kµon in the polarization
vector as discussed above eq. (5.9)) by preserving its 3-momentum. Therefore if we adopt
the same 3-momenta parametrization in eq. (5.16) for the A→ BC∗ and for the A∗ → BC
splittings, the on-shell momenta of the three particles is the same both for initial- and
for final-state splitting amplitudes. The difference between initial- and final-state only
emerges from the amputated amplitude, which is evaluated with on-shell kµA,B and off-

shell kµC = (kA − kB)µ, or with on-shell kµB,C and off-shell kµA = (kB + kC)µ, respectively.
However it is not difficult to prove (or to verify by direct calculation) that the result is the
same at the leading order in δm,⊥ and that differences only appear in the second order of the
splitting amplitude expansion, i.e. at O(δ2

m,⊥). Order δ2
m,⊥ corrections to the factorization

formulas (5.1) and (5.2) are present in any case. Therefore we can employ leading-order
splitting amplitudes Msplit(A → BC), that take the same form for initial-state and for
final-state splittings, without degrading the accuracy of the approximation.

The complete list of SM splitting amplitudes is reported in Appendix B. Depending
on the amount of helicity violation (∆h = hB +hC −hA) that occurs in the splitting, they

14Namely, x and 1−x should not be much smaller than one. This was implicitly assumed in the estimates
of Section 5.1.
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take the form

Msplit(A→ BC) =


∑

pmp f
(p)
ABC(x) for ∆h = 0 ,

e∓iφ|k⊥| fABC(x) for ∆h = ±1 ,

. O(|k⊥|δ⊥) for |∆h| ≥ 2 ,

(5.17)

where the sum on the first line runs over the particles p = A,B,C involved in the splitting.
Splitting amplitudes with ∆h = 0 are independent of φ and of k⊥. They are proportional
to the masses mA,B,C and they vanish in the massless case. Splittings of this type, dubbed
“ultra-collinear” in Ref. [21], are peculiar of the SM. They give rise to interesting phenom-
ena such as the emission of a longitudinal vector boson from a massless fermion. Notice
that the ∆h = 0 splittings, since their amplitude is proportional to the masses, are odd
under the mass-parity symmetry. For ∆h = ±1 we recover instead the structure of the
standard massless QED and QCD splittings. The dependence of the splitting amplitudes
on φ and on k⊥ is dictated by rotational symmetry, as we will briefly review in Appendix B.
In particular rotational symmetry implies that |∆h| ≥ 2 amplitudes are proportional to at
least two powers of k⊥, hence they are at most of O(|k⊥|δ⊥). They are suppressed with
energy and thus can be ignored as we discussed.

We now turn to the generic configuration where the particle “A” moves in an arbitrary
direction. Denoting as Θ ∈ [0, π] and Φ ∈ [0, 2π) the polar and azimuthal angles of ~kA (as
in eq. (A.1)), we can define a standard “Jacob–Wick” rotation

RJW(Θ,Φ) ≡ REul.(Φ,Θ,−Φ) = e−iΦJze−iΘJye+iΦJz , (5.18)

where REul.(α, β, γ) denotes the generic Euler rotation. The inverse of RJW brings ~kA
along the positive z axis, therefore we can parametrize the momenta as the RJW rotation
acting on eq. (5.16). Namely, we define the variables φ, |k⊥|, and x that characterize the
splitting as

~kA = RJW(Θ,Φ) ·
(

0, 0, |~kA|
)
,

~kB = RJW(Θ,Φ) ·
(
|k⊥| cosφ, |k⊥| sinφ, (1− x)|~kA|

)
, (5.19)

~kC = RJW(Θ,Φ) ·
(
−|k⊥| cosφ,−|k⊥| sinφ, x|~kA|

)
.

Geometrically, φ−Φ is the angle between the oriented plane formed by the z axis and ~kA,
and the plane of the splitting oriented from ~kA to ~kB. Of course |k⊥| and x are nothing
but the transverse momentum and the longitudinal momentum fraction of ~kC relative to
~kA, respectively. With these definitions the splitting amplitudes are identical in form to
the ones (previously discussed and reported in Appendix B) obtained for the kinematical
configuration in eq. (5.16) only up to phase factors. However we will show in the Appendix
that these phases do not play any role and can be safely ignored in the discussion that
follows.

It is important to remark that unlike the ordinary splitting functions, the explicit form
of the splitting amplitudes does depend on the conventions adopted for the polarization
vectors and the spinor wave-functions. Once one convention is chosen for the splitting
amplitudes, the exact same one must be employed in the evaluation of the hard scattering
amplitude in order for eq.s (5.1) and (5.2) to apply. Our conventions follow from the
original Jacob–Wick [56] definition of helicity eigenstates and are reported in Appendix A.

Splitting Functions

The factorization formulas for the amplitudes in eq.s (5.1) and (5.2) contain all the infor-
mation about the complete scattering processes AX → BY or X → BCY in the collinear
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limit. By employing the approximate (to O(δ2
⊥,m)) expressions 15

Q2 =


(kA − kB)2 −m2

C = − 1

1− xk̃
2
⊥ for initial−state splitting (A→ BC∗) ,

(kB + kC)2 −m2
A = +

1

x(1− x)
k̃2
⊥ for final−state splitting (A∗ → BC) ,

(5.20)
for the virtuality Q2, by squaring the amplitude and multiplying it by the appropriate
phase-space factors, one easily derives factorized expressions for the fully-differential scat-
tering cross-sections. The factorised amplitude is in general the sum of the contribution
of several virtual particles with different helicities. The resulting factorized cross-section
thus contains interference terms and must be expressed (see e.g. [57–59]) in the language
of density matrices as

dσ = Tr[dρsplit · dρhard] , (5.21)

where the trace runs over the possible virtual intermediate particles species and helicities.
The splitting density matrix dρsplit, differential in the variables φ, |k⊥| and x that char-
acterise the splitting is the generalization, to include interference effects, of the ordinary
splitting functions. The differential information on the hard process is encapsulated in the
hard density matrix dρhard. Explicitly, for the initial-state splitting process AX → BY
we find

dρsplit
Ch C

′
h′

=
x(1− x)

16π2

Msplit(A→ BCh)[Msplit(A→ BC ′h′)]
∗

k̃2
⊥(mA,mB,mC) k̃2

⊥(mA,mB,mC′)
dx d|k⊥|2dφ ,

dρhard
Ch C

′
h′

=
Mhard(ChX → Y )[Mhard(C ′h′X → Y )]∗

4EXEC |vC − vX |
dΦY , (5.22)

where dΦY is the phase-space factor of the hard final state Y , including (2π)4 times the
energy-momentum conservation delta function. For final-state splitting processes X →
BCY , instead

dρsplit
Ah A

′
h′

=
x(1− x)

16π2

Msplit(Ah → BC)[Msplit(A′h′ → BC)]∗

k̃2
⊥(mA,mB,mC) k̃2

⊥(mA′ ,mB,mC)
dx d|k⊥|2dφ ,

dρhard
Ah A

′
h′

=
Mhard(X → AhY )[Mhard(X → A′h′Y )]∗

4EX1EX2 |vX1 − vX2 |
dΦAY . (5.23)

The derivations that lead to eq.s (5.22) and (5.23) are straightforward and need not
be reported here. The only aspect that requires clarification is related with the on-shell
momentum kon for the “C” particle in the initial-state splitting A→ BC∗. In Section 5.1
we took the on-shell limit by preserving the virtual particle 3-momentum. Namely the spa-
tial components of the momentum kon the hard amplitude is evaluated on (see eq. (5.12))
should match the exact splitting kinematics in eq. (5.19). Since ~kC depends on φ and |k⊥|
in our parametrisation, this introduces an inconvenient dependence of the hard amplitude
on the details of the splitting kinematics. However we saw that amplitude factorisation
only holds up O(δ⊥) corrections, barring special circumstances where the corrections are
smaller. Up to corrections of the same order we can further approximate kC,on by taking
the collinear limit 16

kµC,on → kµC,coll =

{√
x2|~kA|2 +m2

C , RJW(Θ,Φ) ·
(

0, 0, x|~kA|
)}

. (5.24)

15We define k̃2⊥(mA,mB ,mC) = |k⊥|2 − x(1− x)m2
A + xm2

B + (1− x)m2
C .

16Initial-state splitting often emerge from an incoming particle A moving along the z axis, for which
the azimuthal angle φ is conventionally set to zero. The Jacob–Wick rotation RJW in the equation that
follows is then equal to plus or minus the identity when A is parallel or anti-parallel to z, respectively.

45



SciPost Physics Submission

The hard amplitude evaluated on kC,coll, and in turn dρsplit in eq. (5.22), is now indepen-
dent of φ and |k⊥| and it only depends on the momentum fraction x of the particle that
participates to the hard scattering. For final state splittings instead, dρsplit is completely
independent of the splitting variables in our parametrization.

Since the hard component of eq. (5.21) is independent of φ and |k⊥|, the factorized
cross-section inclusive on these variables can be expressed in terms of an integrated split-
ting density matrix. It is customary to integrate at least over φ because the azimuthal
structure of the radiation is often of limited phenomenological importance and because
the density matrix becomes diagonal in the helicity after the φ integration. This latter
property, namely the cancellation of the interference between the contributions of inter-
mediate particles of different helicity upon φ integration, follows from the dependence of
the splitting amplitudes on φ as in eq. (5.17). In QED (and in QCD, after summing over
color), the splitting density matrix collapses to a single number (one for each intermediate
particle helicity) after φ integration because no interference is possible between particles of
different species. One can thus abandon the density matrix formalism and state the result
in terms of ordinary splitting functions, to be interpreted as splitting probabilities or as
parton distribution functions. In the SM instead, for neutral vector bosons splittings, the
interference between the Z and the photon persists and the density matrix formalism is
needed even after the integral over φ. In some cases, e.g. for the emission of a collinear
top-anti-top pair, interference with the Higgs boson exchange should also be taken into
account.

A curious fact about φ-integrated collinear splittings is that the corrections to factor-
ization are smaller than for the fully-differential cross-section. In the latter, corrections
of O(δ⊥,m) are generically present. However it can be shown that the linear O(δ⊥,m)
corrections are canceled by the integration, and one is left with O(δ2

⊥,m). This fact was
pointed out in Ref. [23] in the context of the Effective W Approximation, but the result
is of general validity and applies to arbitrary splitting configurations.

Application: Effective Vector Approximation

Before concluding, we apply our general results to the proof of the validity of the Effective
Vector Approximation (EVA) formula [23,54,55], namely the collinear approximation for
the emission of a charged or neutral collinear vector boson from a massless fermion in the
initial state. The relevant splitting amplitudes are found in Appendix B and read

Msplit(fL/R → f ′L/RVh) = CV(fL/R)× S(h)
L/R , (5.25)

where L and R denote the fermion helicity and we defined

S(h)
L =



+
√

2|k⊥|e−iφ
√

1− x
x

for h = + ,

−
√

2|k⊥|e+iφ 1

x
√

1− x for h = − ,

−2mV

√
1− x
x

for h = 0 ,

S(h)
R =



+
√

2|k⊥|e+iφ 1

x
√

1− x for h = + ,

−
√

2|k⊥|e−iφ
√

1− x
x

for h = − ,

−2mV

√
1− x
x

for h = 0 .

(5.26)
The splitting amplitude is proportional to the vector-fermion gauge coupling CV

CV (fL) =



g

2
√

2
Vff ′ for V = W± ,

qfe for V = γ ,

g

cw

(
T 3
f − s2

wqf
)

for V = Z ,

CV (fR) =


0 for V = W± ,

qfe for V = γ ,

−g s
2
w

cw
qf for V = Z ,

(5.27)
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where qf and T 3
f denote, respectively, the electric charge and the value of the third SU(2)L

generator for the fermion. The appropriate element of the CKM matrix, in the case of
splitting from quarks, is denoted as Vff ′ .

When the splitting is charged, i.e. f 6= f ′, only the charged V = W± vector boson
can mediate the reaction. After integrating over φ the density matrix thus reduces to the
splitting functions

dρsplit
h=±1,0

dx d|k⊥|2
= C2

W

∣∣∣S(h)
L

∣∣∣2 x(1− x)

16π2k̃4
⊥
, (5.28)

where k̃2
⊥ = k2

⊥ + (1 − x)m2
W . Upon integrating over |k⊥|, these expressions can be

interpreted as the probability to find a W of a given helicity and energy fraction inside
the fermion. When the splitting is neutral, i.e. f = f ′, both V = Z and V = γ can be
exchanged. We thus obtain a non-diagonal density matrix (here, k̃2

⊥ = k2
⊥ + (1− x)m2

Z)

dρsplit
h=±1

dx d|k⊥|2
=


C2
γ CγCZ

|k⊥|2
k̃2
⊥

CZCγ
|k⊥|2
k̃2
⊥

C2
Z

|k⊥|4
k̃4
⊥


∣∣∣S(h)
L/R

∣∣∣2 x(1− x)

16π2|k⊥|4
, (5.29)

when the intermediate vector boson helicity has h = ±1. If the intermediate vector boson
is longitudinal, only the Z contributes and we obtain

dρsplit
h=0

dx d|k⊥|2
= C2

Z

∣∣∣S(0)
L/R

∣∣∣2 x(1− x)

16π2k̃4
⊥
. (5.30)

6 Conclusions and Outlook

In this paper we formalized the notion of “Goldstone Equivalence” and we started exploring
its implications in the study of high-energy Electroweak physics. Namely we upgraded the
Goldstone Boson Equivalence Theorem to a formalism in which energy and couplings
power-counting is manifest at the level of individual Feynman diagrams, and we outlined
its possible applications in two distinct directions. The first direction, more pragmatic,
is to simplify explicit calculations in the high-energy regime. The second direction, more
conceptual, is to establish general properties of the high-energy cross-sections related with
factorization. Let us discuss them in turn.

Manifest power-counting allows to isolate the (manifestly gauge-invariant) combination
of Feynman diagrams that is relevant at a given order in the energy and in the couplings
expansion. This was illustrated in Section 4.4.1, for tree-level WW scattering, and in
Section 4.4.2, where we computed O(y2

t /16π2) corrections to the top decay amplitude.
Notice that energy and couplings (i.e., in particular, loop) expansions can be carried out
independently in our formalism. Indeed in our example we could include the exact tree-
level amplitude, to all orders in the mW /mt expansion, while only retaining the first order
in the one-loop contribution. Another advantage of our formalism is that the relevant
diagrams can be computed, at the leading order in the energy expansion, with massless
internal line propagators. Higher order terms can be included by treating the mass as a
perturbation. Since massless integrals are often easier to compute than massive ones, this
could be a crucial advantage for calculations at very high order. One caveat in this program
is that the massless limit should be taken with care in diagrams affected by IR divergences
(or enhancements, if the divergence is regulated by the finite mass of the vector bosons).
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One must first isolate and subtract the IR singularities and next take the massless limit.
Subtracting IR singularities is a standard problem in QED and QCD calculations, therefore
we expect that the issue could be addressed by the powerful techniques developed in those
contexts. However the more general structure of the Electroweak vertices compared with
the ones of QED and QCD might pose additional challenges.

Manifest energy power-counting is essential to understand the structure of Feynman
diagrams in the presence of multiple largely separated energy scales. Our formalism thus
finds a natural application to the study of the Electroweak IR problem. We outlined this
aspect in Section 5, where we proved collinear factorization at the tree-level order. While
the study of tree-level factorization (which includes in particular the Effective Vector Ap-
proximation) is of practical interest, it is definitely of limited scope in the context of the
general IR problem. However the two key aspects that appear in the derivation are gen-
eral properties of our formalism that could be useful also in more ambitious problems.
The first one is once again that manifest power-counting allows to isolate the relevant
diagram topologies. In the collinear limit those are the splitting topologies enhanced by a
low-virtuality “nearly-resonant” propagator. The second aspect is that the resonant prop-
agator can be cast in an equivalent form which is well-behaved in the limit of high energy
and finite virtuality. One can thus identify the nearly on-shell degrees of freedom and take
the on-shell limit smoothly. Manifest power-counting and well-behaved propagators are
all-order properties of our formalism, which could be used to extend the study of factoriza-
tion beyond the tree-level. A reasonable first step in this direction would probably be to
include the soft region and the one-loop corrections to derive fixed-order α log and α log2

results. It remains to be seen whether and how our formalism can contribute addressing
the problem of IR logs resummation.
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A Single-Particle States and Wave Functions

We define particles in the helicity basis following Ref. [56]. One-particle states of mass m,
helicity h, and 3-momentum

~k = (kx, ky, ky) = |~k| (sin Θ cos Φ, sin Θ sin Φ, cos Θ) , (A.1)

are obtained acting on a reference state |~kref , h〉 (to be specified below) with the standard
Lorentz transformation Λ~k = RJW(Θ,Φ) e+iηKz

|~k, h〉 ≡ U(Λ~k)|~kref , h〉 , (A.2)

where RJW(Θ,Φ) is defined in eq. (5.18), and Kz is the generator of boosts along the
z axis. The reference state |~kref , h〉 and the value of the rapidity η in eq. (A.2) depend
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on whether the associated particle is massless or massive. If m = 0 the reference state
has 3-momentum ~kref = +|~kref |~z along the positive z direction and definite helicity h =
Jz. The standard Lorentz transformation Λ~k must be such that kµ = [Λ~kkref ]

µ, which

requires ln η = |~k|/|~kref |. When m 6= 0 the reference state |~kref , h〉 has vanishing 3-
momentum, kµref = (m,~0), and again h = Jz. In the massive case one finds tanh η =

|~k|/
√
~k2 +m2. Eq. (A.2) uniquely defines all states within the domain Θ ∈ [0, π) and

Φ ∈ [0, 2π). However, particles moving along the negative z axis, i.e. those with Θ = π,
are only defined up to a phase because their azimuthal angle Φ (appearing in the standard
rotation in eq. (A.2)) is not uniquely determined. We conventionally set Φ = 0 at Θ = π,
which is equivalent to define the state as

|−|~k|~z, h〉 ≡ U(RJW(π, 0) e+iηKz)|~kref , h〉 (A.3)

= U(RJW(π, 0))|+|~k|~z, h〉 .

From the above definitions we can determine the polarization vectors for spin-1 parti-
cles and the spinor wave functions completely, up to an irrelevant constant phase. Con-
sider a spin-1 particle of mass m, helicity h, 3-momentum as in eq. (A.1) and energy

k0 =
√
~k2 +m2. The polarization vectors for h = +1,−1, 0 read

ε+
µ [k] =

1√
2

1

|~k|(|~k|+ kz)


0

|~k|(|~k|+ kz)− kx(kx + iky)

i|~k|(|~k|+ kz)− ky(kx + iky)

−(|~k|+ kz)(kx + iky)

 = −e
iΦ

√
2


0

− cos Θ cos Φ + i sin Φ
−i cos Φ− cos Θ sin Φ

sin Θ

 ,

ε−µ [k] =
1√
2

1

|~k|(|~k|+ kz)


0

−|~k|(|~k|+ kz) + kx(kx − iky)
i|~k|(|~k|+ kz) + ky(kx − iky)

(|~k|+ kz)(kx − iky)

 =
e−iΦ√

2


0

− cos Θ cos Φ− i sin Φ
i cos Φ− cos Θ sin Φ

sin Θ

 ,

ε0
µ[k] =

k0

m


|~k|
k0
−kx
|~k|
− ky

|~k|
− kz
|~k|

 =
k0

m


|~k|
k0

− sin Θ cos Φ
− sin Θ sin Φ
− cos Θ

 . (A.4)

As dictated by eq. (A.3), the polarization vectors for particles in the backward limit
~k → (0, 0,−|~k|) are defined taking kx → 0+ with ky/kx → 0, and of course kz → −|~k|.
With this prescription the expressions of the polarization vectors εhµ[k] are regular and
single-valued. While the polarization vectors are defined for physical particles with real
momentum, the above definitions of εhµ[k] can be extended to complex k momentum by

analytic continuation (taking |~k| =
√
~k2).

It is useful to introduce the “conjugate” polarizations εhµ[k], which appear in the matrix
elements with final-state external vectors as well as the completeness relation (3.29). For
arbitrary (complex) momenta they are defined as

εhµ[k] ≡ (−1)hε−hµ [k] . (A.5)

Note that for real momenta ε is the complex conjugate of ε.
Dirac spinors for particles or anti-particles of helicity h = ±1/2 are given by

uh[k] =

(
ω−h[k]χh(~k)

ωh[k]χh(~k)

)
, vh[k] =

(
2hωh[k]χ−h(~k)

−2hω−h[k]χ−h(~k)

)
, (A.6)
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where ωh[k] =

√
k0 + 2h|~k| and

χ1/2(~k) =
1[

2|~k|
(
|~k|+ kz

)]1/2

(
|~k|+ kz
kx + iky

)
=

(
cos Θ/2

eiΦ sin Θ/2

)
, (A.7)

χ−1/2(~k) =
1[

2|~k|
(
|~k|+ kz

)]1/2

(−kx + iky
|~k|+ kz

)
=

(
−e−iΦ sin Θ/2

cos Θ/2

)
. (A.8)

Similarly to the polarizations for vector particles, the wavefunction for an h = ±1/2 state
with |~k|+ kz → 0+ is unambiguously obtained taking the limit kx → 0+ with ky/kx → 0.

The “conjugate” spinors are defined as

uh[k] = vth[k](iγ0γ2) (A.9)

vh[k] = uth[k](iγ0γ2) ,

where the γµ matrices are understood to be in the Weyl representation. The completeness
are the standard ones, namely

∑
h uh[k]uh[k] = /k+

√
k2 and

∑
h vh[k]vh[k] = /k−

√
k2, for

arbitrary complex kµ. Notice that for real momentum the “conjugate” spinors in eq. (A.9)

reduce to the standard uh = u†hγ
0 and vh = v†hγ

0.

B Splitting in the Standard Model

In this appendix we derive explicit expressions for the splitting amplitudes defined in
eq. (5.13). These depend on the definition of single particle states, which themselves
determine the form of the polarization vectors and spinor wave functions as in Appendix A.
We also discuss a few key properties of the splitting amplitudes and derive the identities
(B.1) and (B.2) that may be used by the reader to calculate the splitting amplitudes we
do not report explicitly.

Properties of the Splitting Amplitudes

We begin discussing the collinear splitting amplitudesMsplit(A→ BC) defined in eq. (5.13)
for the standard 3-kinematics specified in eq. (5.16), where A moves exactly in the positive
direction of the z axis. Despite not being S-matrix elements, Msplit(A→ BC) transform
under all symmetries as physical amplitudes. Their structure is in fact determined by
dimensional analysis and angular momentum considerations. From Lorentz invariance
follows that these quantities must be proportional to the soft scales |k⊥|,mA,B,C , up to
negligible corrections O(δ2

m,⊥). Conservation of the angular momentum further fixes the
dependence on the azimuthal angle φ introduced in eq. (5.16). Indeed, in the helicity
basis defined in eq. (A.2) one finds that under rotations Rz(φ

′) = exp[−iφ′Jz] around the
z axis the 1-particle states transform with a simple phase factor

U(Rz(φ
′))|~k, h〉 = e−iφ

′h|Rz(φ′)~k, h〉 ,

for arbitrary momentum ~k. Invariance under rotations then implies

Msplit(Rz(φ
′)k⊥) = e−iφ

′∆hMsplit(k⊥) ,

with ∆h = hB + hC − hA the total change in helicity. The latter condition is solved
considering the projections of k⊥ onto the eigenvectors of Jz, namely k1

⊥±ik2
⊥ = e±iφ|k⊥|.
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Under Rz(φ
′), e±iφ|k⊥| → e±i(φ+φ′)|k⊥|, and since Msplit is analytic in k⊥ we conclude

that it must have the structure

Msplit(A→ BC) ∝ |k⊥||∆h|e−iφ∆h ,

as shown in eq. (5.17). For ∆h = 0 there is no dependence on |k⊥| and the amplitude is
proportional to the masses by dimensional analysis.

The Msplit’s satisfy two additional useful relations. First, from eq. (5.16) it follows
that

Msplit(AhA → ChCBhB ) = Msplit(AhA → BhBChC )
∣∣∣
φ→φ+π, x→1−x, mB→mC , mC→mB

.(B.1)

Moreover, the accidental CP invariance of the tree-level amplitudes introduces another
important constraint. Actually, rather than using parity (P) itself, defined as the inversion
of the 3 spacial coordinates, it is more convenient to consider the reflection with respect to
the xz plane, i.e. the inversion of the y coordinate only. This operation corresponds to the
combined action of P and a π-rotation along the y-axis, i.e. Py = RJW(π, 0) · P. The CPy
operator acts on a state |~k, h,A〉 describing a particle A of momentum ~k and helicity h as
CPy|~k, h,A〉 = (−1)j−h η̄ |Py~k,−h,A〉 whereas as CPy|~k, h,A〉 = (−1)j−h η̄∗ |Py~k,−h,A〉
on anti-particles, where η̄ are phases (or unitary matrices when different particle species
can mix) appearing in the field transformations. 17 In the SM the Higgs and the fermionic
phases may be absorbed in the Yukawa couplings using chiral rotations and hyper-charge
transformations so that we can set η̄φ = η̄ψ = 1. Also, for the vectors η̄V = 1. Since

Py~k = |~k| (sin Θ cos Φ,− sin Θ sin Φ, cos Θ) is equivalent to an inversion of the azimuthal
angle, we obtain

Msplit(A−hA → B−hBC−hC ) =
∏

k=A,B,C

(−1)jk−hk Msplit(AhA → BhBChC )
∣∣∣
φ→−φ

. (B.2)

Splitting in an arbitrary direction

In this subsection we demonstrate that the very same Msplit(A → BC) obtained with
the standard 3-momentum given in eq. (5.16) can be employed for the calculation of the
factorized amplitudes in eq.s (5.1) and (5.2)) even if A moves along an arbitrary direction.
We parametrize the general splitting kinematic configuration by rotating the standard
~kstd
A,B,C in eq. (5.16) with a common matrix

~kA,B,C = RJW(ΘA,ΦA)~kstd
A,B,C , (B.3)

as in eq. (5.19). The action of a Jacob-Wick rotation on one-particle states reads

U(RJW(ΘA,ΦA))|~kstd
A , hA〉 = |~kA, hA〉 ,

U(RJW(ΘA,ΦA))|~kstd
B , hB〉 = eiΨB |~kB, hB〉 ,

U(RJW(ΘA,ΦA))|~kstd
C , hC〉 = eiΨC |~kC , hC〉 . (B.4)

There is no phase associated to A because, according to the definition in eq. (A.2), the
RJW(ΘA,ΦA) rotation acting on a state A moving in the positive z direction precisely gen-
erates a state with rotated 3-momentum. The phases show up in the splitting amplitudes,
which are related to those evaluated with the standard momenta (5.16) by

Msplit(A~kA → B~kBC~kC ) = ei(ΨB+ΨC)Msplit(A~kstdA
→ B~kstdB

C~kstdC
) (B.5)

17The scalar φ(x), Dirac fermion ψ(x), and vector Vµ(x) = V aµ (x)T a transform respectively as
(CPy)φ(x)(CPy)†=η̄∗φφ

†(x′), (CPy)ψ(x)(CPy)† = η̄∗ψγ
5ψ†(x′), (CPy)Vµ(x)(CPy)† = −(Py)νµV

∗
ν (x′), with

x′ = Pyx and Py = diag(1, 1,−1, 1).
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The phases in eq. (B.5) that are associated to exactly on-shell particles are obviously
unphysical because they disappear from the squared amplitude. Only the phase of the
virtual state can potentially be relevant in the calculation of the factorized amplitude. In
the case of splitting in the final state A∗ → BC the only relevant phase would thus be
the one associated to A, but this vanishes by construction. As a result, in the analysis of
an arbitrary (single and multiple) final state splitting we can safely use in eq. (5.2) the
splitting functions Msplit(A → BC) calculated with the standard 3-kinematics specified
in eq. (5.16).

Consider next an initial-state splitting A → BC∗. Here B is on-shell, and so eiΨB is
again unphysical, but eiΨC can play a role. The case of a single splitting in the initial
state, when A moves exactly along the positive z axis, corresponds to the reference kine-
matics. However if multiple splittings occur, some of the initial state particles are slightly
tilted from the z axis. These are thus associated to initial state splittings in which the
corresponding A state is rotated by a small ΘA, far from ΘA = π. An explicit computa-
tion shows that ΨC = O(δ⊥) in such a situation. This guarantees that, when considering
multiple splittings from an initial state moving along the positive z axis, the phase in
eq. (B.5) at most affects the subleading term in eq. (5.1).

Because of the ambiguity in the definition of backward-moving particles (see the discus-
sion around eq. (A.3)), the situation is a bit more involved when the initial state splitting
takes place from an original particle A moving opposite to the z axis. Here we consider a
~kA that is nearly but not exactly parallel to the negative z axis (i.e., π − ΘA . O(δ⊥)).
However the discussion also covers the case ΘA = π (for which ΦA = 0 by convention).
The phase eiΨC in eq. (B.5) becomes of order in unity in this case, and superficially might
invalidate our claim. Fortunately, though, the O(1) contribution to ΨC gets compen-
sated by an analogous and opposite phase showing up in the hard process when taking
the collinear limit, leaving in the end a negligible correction of O(δ⊥) to the factorized
amplitude, similarly to the previous case. To see this recall that in eq. (5.1) the split-
ting amplitude is multiplied by the hard matrix element Mhard(CX → Y ) calculated for
an on-shell C moving along ~kC = RJW(ΘA,ΦA)~kstd

C , which is not exactly parallel to ~kA.

Even if ~kC gets parallel to ~kA in the collinear limit (i.e., ~kC → ~kC,coll = ~kA |~kC |/|~kA| as in
eq. (5.24)), the state that describes the C particle approaches the backward-moving state
defined in eq. (A.3) only up to a phase. Correspondingly the C-particle wave function
and in turn the hard matrix element approaches the one computed for exactly collinear C
only up to a phase.

In order to show that the latter phase cancels the eiΨC factor in the splitting amplitude,
let us reabsorb the eiΨC phase into the definition of a non-standard state

|~kC , hC〉Ψ ≡ eiΨC |~kC , hC〉 = U(RJW(ΘA,ΦA))|~kstd
C , hC〉 , (B.6)

using eq. (B.4). For this state, obviously, the large ΨC phase appears in the hard matrix
element

Mhard(CΨ
~kC
X → Y ) = eiΨCMhard(C~kCX → Y ) . (B.7)

It turns out the non-standard state |~kC , hC〉Ψ smoothly approaches the conventional
Jacob–Wick state for collinear momentum ~kC,coll in the limit δ⊥ → 0. Indeed, the standard

state |~kstd
C , hC〉 approaches ||~kC |ẑ, hC〉 without phases and thus

lim
δ⊥→0

|~kC , hC〉Ψ = U(RJW(ΘA,ΦA))||~kC |~z, hC〉 = |~kC,coll, hC〉 . (B.8)

Correspondingly, the wave function and in turn the hard amplitude (B.7) for the non-
standard state smoothly approaches the one evaluated with collinear C without extra
phases.
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Splitting Amplitudes for a General Gauge Theory

We now present the Feynman rules relevant for the evaluation of the splitting functions in
the tree approximation, namely those associated to 3-particle vertices. We parametrize the
couplings in terms of generic functions CABC so that our results can be straightforwardly
applied to general renormalizable gauge theories. An explicit expression for CABC is
presented in the case of the SM. We subsequently collect all the independent splitting
amplitudes arising from the Feynman rules. The unlisted amplitudes can be obtained
from (B.1) and (B.2).

Relevant Feynman Rules

• Fermionic Vertices

The interaction vertices between two fermions fa, f b of masses ma,b and a vector V or
a scalar h are defined below in terms of general couplings CL,R, yf , and PL = (1− γ5)/2,
PR = (1 + γ5)/2 denoting the chirality projectors.

In the SM the Yukawa coupling yf is diagonal in fermion flavor and related to the
fermion mass mf = ma = mb through the Higgs VEV as yf =

√
2mf/v, whereas the

parameters CL,R are collected in this table

V W− (fa = d, f b = u) Z (fa = f b) γ (fa = f b) G (fa = f b)

CL
gVud√

2

g
cw

(T 3 − s2
wqf ) eqf gst

α
ibia

CR 0 g
cw

(−s2
wqf ) eqf gst

α
ibia

Here Vud is an element of the CKM matrix, TA are the weak SU(2) and tα the color SU(3)
generators in the fundamental representation, e = gsw (gs) is the QED (QCD) coupling
and finally qf is the electric charge.

The Feynman rule for the coupling between two fermions and a Goldstone boson π,
when present, may be derived from the faf bV vertex using the tree-level version of the
generalized Ward identity in eq. (3.23), ikµA{Vµ[k]} = −mVA{π[k]}, and the Dirac
equation. Note that mV is the mass of the vector associated to the Goldstone boson.
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• Bosonic Scalar Vertices

We now move to purely bosonic vertices involving at least a scalar particle. The
Feynman rule for the cubic scalar coupling is defined as −i6λv. In the SM λ is the quartic
Higgs coupling and v its VEV. In the case of general scalar theories one just replaces 6λv
with the appropriate trilinear. Vertices with two scalars and one Goldstone are forbidden.
On the other hand, vertices of the type hπaπb are related to the hV aV b vertex via (3.23).

Renormalizable hV aV b vertices, with a scalar boson and two massive vectors, are
parametrized in general in terms of a dimensionful coupling C

√
mVamVb . In the Standard

model this is given by:

V aV b W−W+ ZZ γγ GG

C
√
mamb gmW

g
cw
mZ 0 0

Similarly to the fermionic couplings to Goldstone bosons and hπaπb, the vertex hπaV b

written below can be shown to be related to hV aV b via the generalized Ward identity.
A vertex with two scalars and a transverse vector should also be included in general,

though it is absent in the SM. Without loss of generality we assume the very same Feynman
rule as hπaV b, and the associated splitting amplitudes are shown at the very end of our
list with π → h′.
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• Vector and Goldstone Vertices

Finally, we present the Feynman rules for three vector and Goldstone bosons. The
most general (renormalizable) vertex involving three vectors depends on a coupling Cabc
fully antisymmetric in the three indices a, b, c. In the SM

V aV bV c W−W+γ W−W+Z GαGβGγ

Cabc e gcw −igsfαβγ

with fαβγ denoting the SU(3) structure constants. The corresponding vertices with one or
two Goldstone bosons, when present, are related to the three-vector vertex via the gener-
alized Ward identity in eq. (3.23). No three-Goldstone vertex can arise from spontaneous
breaking. This can also be explicitly confirmed using eq. (3.23).
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Splitting Amplitudes

• Fermions and Vectors

→ f b−1/2 + V1 f b−1/2 + V−1

fa−1/2

√
2CL

√
1−x
x |k⊥|e−iφ −

√
2CL|k⊥| eiφ

x
√

1−x

fa1/2
√

2CR
mb√
1−x −

√
2CLma

√
1− x 0

→ f b1/2 + V1 f b1/2 + V−1

fa−1/2 0
√

2CL
mb√
1−x −

√
2CRma

√
1− x

fa1/2
√

2CR|k⊥| e
−iφ

x
√

1−x −
√

2CR
√

1−x
x |k⊥|eiφ

→ f̄ b−1/2 + fa−1/2 f̄ b1/2 + fa−1/2 f̄ b−1/2 + fa1/2 f̄ b1/2 + fa1/2

V1 0 −
√

2CL

√
1−x
x |k⊥|eiφ

√
2CR

√
x

1−x |k⊥|eiφ −
√

2
(
CLma

√
1−x
x + CRmb

√
x

1−x

)

→ f b−1/2 + V0 f b1/2 + V0

fa−1/2 CL

[
m2
a(1−x)−m2

b

mV
√

1−x − 2mV
√

1−x
x

]
+ CR

mambx
mV
√

1−x

(
ma
mV

CR − mb
mV

CL

)
|k⊥| e

−iφ
√

1−x

fa1/2

(
mb
mV

CR − ma
mV

CL

)
|k⊥| eiφ√

1−x CR

[
m2
a(1−x)−m2

b

mV
√

1−x − 2mV
√

1−x
x

]
+ CL

mambx
mV
√

1−x

→ f̄ b−1/2 + fa−1/2 f̄ b1/2 + fa−1/2

V0

(
ma
mV

CR − mb
mV

CL

)
|k⊥| eiφ√

x(1−x)
CL

(1−x)m2
a+xm2

b−2m2
V x(1−x)

mV
√
x(1−x)

− CR mamb
mV
√
x(1−x)
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• Fermions and Scalars

→ f b−1/2 + h f b1/2 + h

fa−1/2 − yf√
2

mb+ma(1−x)√
1−x − yf√

2
|k⊥| e

−iφ
√

1−x

fa1/2
yf√

2
|k⊥| eiφ√

1−x − yf√
2

mb+ma(1−x)√
1−x

→ f̄a−1/2 + f b−1/2 f̄a1/2 + f b−1/2

h − yf√
2
|k⊥| eiφ√

x(1−x)
− yf√

2

mb(1−x)−max√
x(1−x)

• Triple Scalar and Scalar-Vector Splittings

→ h+ h V b
0 + V a

0

h −3
2g

m2
h

mW
C
2

[
m2
h√

mamb
−ma

√
ma
mb

2−x
x −mb

√
mb
ma

1+x
1−x

]

→ V b
1 + V a

1 V b
1 + V a

−1 V b
1 + V a

0

h 0 C
√
mamb −C

√
mb
ma
|k⊥| e−iφ√

2(1−x)

→ h+ V b
1 h+ V b

−1 h+ V b
0

V a
1 −C√mamb 0 −C

√
ma
mb
|k⊥| e

iφ
√

2

→ h+ V b
1 h+ V b

−1 h+ V b
0

V a
0 C

√
mb
ma
|k⊥| e

−iφ
√

2x
−C
√

mb
ma
|k⊥| e

iφ
√

2x
C
2

[
− m2

h√
mamb

+ma

√
ma
mb

(1− 2x)−mb

√
mb
ma

2−x
x

]
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• Triple Vector Splittings

→ V b
1 + V c

1 V b
1 + V c

−1 V b
−1 + V c

1 V b
−1 + V c

−1

V a
1 −

√
2Cabc|k⊥| e

−iφ

x(1−x)

√
2Cabc

(1−x)
x |k⊥|eiφ

√
2Cabc

x
1−x |k⊥|eiφ 0

V a
0 0 Cabc

m3
c−m2

b+(1−2x)m2
a

m1
Cabc

m3
c−m2

b+(1−2x)m2
a

m1
0

→ V b
1 + V c

0 V b
−1 + V c

0 V b
0 + V c

0

V a
1 Cabc

[
m2
b−m

2
a

mc
+mc

(2−x)
x

]
0 −Cabc√

2

m2
b+m

2
c−m2

a

mbmc
|k⊥|eiφ

→ V b
1 + V c

0 V b
−1 + V c

0

V a
0 −Cabc√

2

m1
a+m2

c−m2
b

mamc(1−x) |k⊥|e−iφ
Cabc√

2

m1
a+m2

c−m2
b

mamc(1−x) |k⊥|eiφ

→ V b
0 + V c

0

V a
0

Cabc
2mambmc

[
m2
a(m

2
b +m2

c −m2
a)(1− 2x)−m2

b(m
2
a +m2

c −m2
b)

1+x
1−x +m2

c(m
2
a +m2

b −m2
c)

2−x
x

]
• Scalars and Transverse Vector (absent in the SM)

→ h+ V+1

h′ C√
2
|k⊥| e

−iφ

x

→ h′ + h

V+1 − C√
2
|k⊥|eiφ
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