Honeycomb rare-earth magnets with anisotropic exchange interactions
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We study the rare-earth magnets on a honeycomb lattice, and are particularly interested in the
experimental consequences of the highly anisotropic spin interaction due to the spin-orbit entan-
glement. We perform a high-temperature series expansion using a generic nearest-neighbor Hamil-
tonian with anisotropic interactions, and obtain the heat capacity, the parallel and perpendicular
spin susceptibilities, and the magnetic torque coefficients. We further examine the electron spin
resonance linewidth as an important signature of the anisotropic spin interactions. Due to the
small interaction energy scale of the rare-earth moments, it is experimentally feasible to realize
the strong-field regime. Therefore, we perform the spin-wave analysis and study the possibility of
topological magnons when a strong field is applied to the system. The application and relevance to

the rare-earth Kitaev materials are discussed.
I. INTRODUCTION

Spin liquid candidates are often being searched among
geometrically frustrated systems, such as triangularl,
kagomé? or pyrochlore® lattices. This is quite reasonable
as the geometrical frustration could lead to a large num-
ber of degenerate or nearly-degenerate classical ground
states for commonly studied Heisenberg models and thus
enhance quantum fluctuations when the quantum effects
are included. However, the destabilization of simple mag-
netically ordered states and driving a disordered one can
happen even on unfrustrated lattices, by exploiting the
power of anisotropic interactions?; the Kitaev honeycomb
model? is a representative example of the latter. Besides
being an academic interest, anisotropic spin interactions
are also inevitable in realistic magnetic materials, espe-
cially those with heavy atoms. A large number of spin lig-
uid candidates are known experimentally to possess a sig-
nificant spin-orbit coupling, leading to rather anisotropic
spin interactions® Y. Beyond the current interest in the
spin liquid physics, understanding the relationship be-
tween the magnetic properties and the anisotropic spin
interactions is a frontier topic in the field of quantum
magnetism.

The most commonly studied anisotropic magnets on
unfrustrated lattices are the 4d/5d magnets™ " that in-
clude the honeycomb iridates and RuCls. Due to the pos-
sible proximity to Kitaev physics, these materials were re-
ferred as Kitaev materials. Due to the spatial extension
of the 4d/5d electron wavefunctions, the exchange inter-
actions between the local moments are usually beyond
the nearest neighbors. Moreover, the iridates often suffer
from a strong neutron absorption such that the data-rich
neutron scattering measurement can be difficult. In com-
parison, the rare-earth family has the advantages of much
stronger spin-orbit couplings and much more localized 4 f
orbitals’®2 and the exchange interactions often restrict
to first neighbors. This makes the understanding of the

modeling Hamiltonian more accessible. In addition, the
rare-earth magnets do not have the neutron absorption
issue that prevails in iridates. Furthermore, their smaller
energy scales allow for the possibility to quantitatively
understand their Hamiltonian through the external mag-
netic fields. However, rare-earth materials have only been
well-investigated on frustrated lattices?10.

In this paper, we will study the rare-earth mag-
nets on the unfrustrated honeycomb lattice, and pur-
sue an understanding of the experimental consequence of
the spin-orbital entanglement on the honeycomb struc-
ture. We start by exploring the thermodynamic prop-
erties of a generic model with the nearest neighbor in-
teractions. It is well-known that the anisotropic ex-
change couplings could appear in the temperature de-
pendence of the thermodynamic quantities such as the
specific heat, spin susceptibilityl? and magnetotropic
coefficients!®1?,  Especially for the spin susceptibility
and magnetic torque, magnetic fields along different di-
rections induce magnetization of different magnitudes,
leading to the anisotropic spin susceptibility?¥ 2% and the
angular dependence of the magnetic torque?829 and pro-
viding a natural detection of the intrinsic spin anisotropy
in the system. To go beyond the thermodynamic prop-
erties, we further consider the electron spin resonance
(ESR) measurement%3L of the system. The ESR mea-
surement turns out to be a very sensitive probe of the
magnetic anisotropy and is especially useful for the study
of the strong spin-orbit-coupled quantum materials, and
we compute the ESR linewidth to reveal the intrinsic spin
anisotropy of the spin interactions.

Due to the small energy scale of the interaction be-
tween the rare-earth local moment, it is ready to ap-
ply a small magnetic field in the laboratory to change
the magnetic state into a fully polarized one. For such
a simple product state, the magnetic excitation can be
readily worked out from the linear spin wave theory.
We further consider the spin wave spectrum and explore



the possibility of topological magnons3232, We find the
magnon spectrum supports non-trivial topological band
structure. This feature can be manifested in thermal Hall
transport measurements.

The remaining parts of the paper are organized as fol-
lows. In Sec. [T} we introduce the nearest-neighbor spin
Hamiltonian, followed by the high-temperature analysis
of heat capacity, spin susceptibilities and magnetic torque
coefficient in Sec[[IIl Then we consider the ESR and cal-
culate the influence of anisotropy on the ESR linewidth
in Sec. [[V] Next the linear spin wave theory of the sys-
tem is exploited under strong external fields in Sec.[V]and
the aspect of topological magnons is discussed. Finally
in Sec. [VI]we comment on a possible material YbCls and
its potential realization of the Kitaev honeycomb model.

II. MODEL

We begin with the following microscopic spin model,
that is the most general nearest neighbor Hamiltonian on
a honeycomb lattice with the (usual) Kramers doublet
effective spin-1/2 local momentg® 101540

H =Y J..S:8; + J=(S;S; + 578))
(i5)
+ Jaex (i Si ST + 75557 S;)

+ Je (055587 + i ST S) + (i ), (1)

with ;; taking e , € ,and 1 on the bonds along
ajy, ag, ag directions respectively, as shown in Fig.[T} The
spin components are defined in the global coordinate sys-
tem in Fig. This is possible because the system is
planar and has an unique rotational axis. This differs
from the rare-earth pyrochlore materials where the spins
are often defined in the local coordinate system for each
sublattice. This model applies to the rare-earth local mo-
ment such as the Yb3+ ion. For non-Kramers doublet like
Pr3* or Th37 ion, the J4, term is not allowed by symme-
try, and the model becomes further simplified. In fact, a
non-Kramers doublet based rare-earth honeycomb mag-
net arises from the triangular lattice magnet TbInOgs af-
ter 1/3 of the Th3T ions becomes inactive magnetically*
For the rare-earth local moments, the 4f electrons are
much localized, and most often, one only needs to con-
sider the nearest-neighbor interactions, and occasionally,
one would like to include the further neighbor dipole-
dipole interactions. In contrast, for the 4d/5d systems,
one may need to worry about further neighbor exchange
interactions because of the large spatial extension of the
electron wavefunctions.

An alternative and often used parametrization of the
Hamiltonian is that of the J-K-I'-I" model*2:

H= Y [Jsi -8+ KS7S] +T(8¢S] +SfS§‘)]
(ij)eaB(v)
o o B B
4+ 1 (SiS;.Y—I—S;ij—FSZ-S]‘FS?Sj)a(2)
(ij)€aB(v)

2im/3 ,—2im/3

where «, 8,7 take values in {z/,4/,2’}. In the latter
coordinate system, our unit vectors of Fig. [I] can be
expressed by & = (—1,-1,2)/v6, § = (1,-1,0)/v/2 and
¢ =(1,1,1)/v/3. The spin components in the above
equation are

Y \f L V3

5 :——S + 5 Sy 5

sY :—is V24 Sy + *[Sz, (3)
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Furthermore, we have used the notation that «8(v) spec-
ifies a bond parallel (or anti-parallel) to the vector & — 3,
or simply a bond of type 7. The coupling constants in
Eq. and are related by the following equation

4 24/2
J=3le 5

K=2V2J1, +2J14,

2 22 1 (4)
IF'=—Jy— —Ju, J =Juzs
37+ 3 JE +3 3+ + 3
2 V2
IM=-=J —J
3% + 3 JEe T
The Hamiltonian in Eq. can also be used to describe
the general exchange interaction between the higher spin
local moments for the honeycomb magnets after some
modification. The differences are explained in details in

the Appendix [A]
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III. THERMODYNAMICS

The highly anisotropic nature of the exchange inter-
action first impacts the thermodynamic properties of
the system. Here we explicitly calculate the specific
heat and the magnetic susceptibilities of the system
from the generic exchange Hamiltonian. Using the high-
temperature series expansion®®#4 we find the heat ca-
pacity to be

3J2  21Jd

C= S 8k3,TY’ 5)

Y
x
z
FIG. 1: The honeycomb lattice with three different types of
bonds and our choice of the global coordinate system.
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FIG. 2: Susceptibilities versus temperature. The parameters
are chosen to be J,, =1, Jr = 0.9, Jr+ = 0.2, Jo, = 0.1.
The susceptibilities in the plot, x| and x., are in units of
,uo,u%gﬁ/élkg and poph g3 /4kp, respectively.

where we have

1 1
J5 = T6J32+§(J:2t+=]ii+Jiz)~ (6)
Due to the spin-orbit entanglement, the coupling of
the local moment to the external magnetic field is also
anisotropic. The Landé factors are different for the in-
plane and out-plane magnetic fields, and the Zeeman cou-
pling is given as

Hz = —pops Z (91 (haSF + hySY) + gyhyS7] . (7)

Again using high-temperature series expansion, we com-
pute the parallel and perpendicular spin susceptibilities
up to O(T~3)

HoB 9} 3J.. J2 J2,
M= "ty ( T 4kpT  2ET? 2LT?
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In  the  SU(2)-symmetric  point, S = 2J4,
Jitr =Ji, =0, the two expressions coincide. For

the rare-earth local moments with non-Kramers dou-
blets, g1 = 0so x1 = 0. In Fig. 2| we plot the magnetic
susceptibilities and show the deviation from the simple
Curie-Weiss law due to the high order anisotropic terms.

In addition to the simple thermodynamics such as C,
and x, the magnetic torque measurement is proved to
be quite useful in revealing the magnetic anisotropy. In-
trinsically, there is because the induced magnetization is
generically not parallel to the magnetic field. Thus, when
the sample has an anisotropic magnetization, the system
would experience a torque 7 = M x H = —9F/00 in an
external magnetic field. The magnetotropic coefficient

k = 9?F/00?, defined as the second derivative of the free
energy to the angle § between the sample and the ap-
plied magnetic field, can be introduced to quantify such
anisotropy. It can be directly measured using the reso-
nant torsion magnetometry®. Under the high tempera-
ture expansion, we find the magnetotropic coefficient k
is given as

2,2
MoﬂBh 3 2 2
k=—"— T cos 29{ g“) 16T (922 — 297 1)
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where we have defined h? = h2 + hi + h2. The coefficient
k vanishes in the g-isotropic g; = g and Heisenberg
limit: J,, = 2J4, J4+4+ = J+, = 0. More details of the
calculation can be found in Appendix

IV. ELECTRON SPIN RESONANCE

In the thermodynamic properties, the leading contri-
butions come from the J,, and Ji terms, while the Jy
and Ji, terms are subleading. Arising from spin-orbital
entanglement and completely breaking the U(1) rota-
tional symmetry, these terms play important roles in the
potential quantum spin liquid behavior. To resolve them,
we now turn to the electron spin resonance.

Electron spin resonance measures the absorption of
electromagnetic radiation by a sample subjected to an
external static magnetic field. For a SU(2) invariant sys-
tem, the absorption is completely sharp, i.e. described by
a delta function located exactly at the Zeeman energy=Y
Therefore, the broadening of the resonance spectrum has
to arise from the magnetic anisotropy. To understand
the contribution of the anisotropy of the nearest-neighbor
spin interaction to the ESR linewidth, we decompose the
Hamiltonian Eq. into the isotropic Heisenberg part
and the anisotropic exchange part

H=1JY S;-S;+H, (10)

where the Heisenberg coupling J = (J,, + 4J1)/3, and
the anisotropic part

= Z St Tiju S5 (11)
(1,9)

Here T';; a traceless and symmetric exchange coupling
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FIG. 3: (Color online.)
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The dependence of AH on Ji4+ and Ji,.

05

Left: Ji/J.. = 1, middle: Ji/J.. = —0.5, right:

J+/J.. = 0.2, The linewidth AH in the three plots are in the units upg(0)/v2x.

matrix, satisfying
Lijae =2J5/3+ (vij +755) ez — J22/3,
Lijoyy = 2J5/3 — (vij +7i5)Jex — J22/3,
Lijaey = (Vi — Vij)J++,
Lijyz = 1(75 — Vij)J £z

= (75 +7ij) -

(12)

Fij,zx

Under the Zeeman term of Eq. (|7]), the ESR linewidth

for a Lorentzian-shaped spectrum is
Ve (M§)1/2
npg(0) \ My )

where 6 is again the angle between the external field and
the sample, and

AH(8 (13)

g(0) = \/gﬁsinze—i—gﬁ_cos2 0, (14)
H  M*|[M~, H'
i, = (A0 A )
_ ([ [H, M| [H, [H, M)
M, = e . (16)

My and M, are the second and the fourth moments, re-
spectively, and M* =3, SE. The expectation “(-- - )”in
the above equations is taken with respect to high tem-
peratures. Specifically, we find that
3

M, :Z(sz +4J + 4T3 +10J2, — 4T J..),

3 9 57
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(17)

Our result for ESR linewidths can be compared to
the future ESR experiments on the rare-earth based

honeycomb magnets in order to extract the anisotropic
exchanges. In Fig. [B] we further depict the three-
dimensional plots that explicitly demonstrate the depen-
dence of the ESR linewidth on the anisotropic couplings
J.+ and Ji4 for three different choices of Ji.

V. POLARIZED PHASES

A. Strong field normal to the honeycomb plane

To further explore the effect of the anisotropic ex-
change interaction, we study the spin wave excitation
with respect to the polarized states under the strong
magnetic fields. This is clearly feasible in the current
laboratory setting for the rare-earth magnets as the en-
ergy scales for them are usually rather small. For the
4d/5d magnets, there can be difficulty to achieve as the
energy scale over there is much higher. Our results here
are relevant to the inelastic neutron scattering and ther-
mal Hall transport measurements.

We first consider the case of a strong magnetic field
in the direction normal to the honeycomb plane such
that the system is in the fully polarized paramagnetic
phase and all the spins are aligned along the z direc-
tion. In this case, the magnon bands carry nontrivial
Chern numbers for generic range of parameters, as found
in referencé®? in the J — K — I' — I presentation. We
expand about this fully polarized state using the con-
ventional Holstein-Primakoff transformations of the spin
variables®™®, which are S7=5-— aIai,Sj' =a;, 5, = az
for sublattice A, and substitute a — b for sublattice B.
a and b’s are bosonic operators, [ai,a;] = [bi,b;] = 0ij.
Keeping only the bilinear terms of bosonic operators and
taking the Fourier transformation, we arrive at

3N 1
— 22 = 2Npoppg)h + iﬂ‘Hka’

H =
4

(18)
with Y = (ax, bk, aik, bik)T. Here we have denoted
k= —tky + Lhy ko = — 1k, — Lk, and ks =k,

2 My
that correspond to the y-, z- and x-bonds, respectively.
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FIG. 4: (Color online.) The two spin wave bands w+ when a
strong field in the z-direction is applied. The parameters are
chosen as J,, =1;J+ =0.9; Jr+ = 1;J1, =0.3;u =5.

We further define f(k) =3, e, gi(k) =Y, e *iy,

g2(k) =Y, €%y and u = (gyuopshy — 3J.2/2), we
then have for Hy a block form
A(k) (k) }
Hx = 19
where we have
_ u  Jpf*
Ay = |, (20)
0 J.
t _ ++91
BT(k) [Jiigz 0 } . (21)

All the Ji, terms are not present.
The spin wave dispersion relation for Hy follows as
|91]% + |g2|?
V2
91% — 19|
4

+(f 9i — f93)(f g2 — fg1) IR T2 )2,

where only the positive square root of €(k)? is taken.

Several simple limits of this expression can be checked:
(1) in the Heisenberg limit J,, = 2Jy = 2.J, then e(k) =
(AEE by — 3 + | f|J)Y/?; (2) when only J.. is finite,
it reduces to the Ising case e(k) = 52 h) — 3.7 ; if
only Ji is present, we have a graphene- hke dispersion
e(k) — 9||,uoltB h‘ + |f|J:|:

At hlgh ﬁelds the results can be simplified by the
Schrieffer- Wolff transformation,

e(k)? =u® + | f]*J - Jis
(22)

+ [l J2 + Jiy

7:lk = eW’er_W
= Hat WA 5 (WA 4, (28)
with the commutator understood as
[X,Y] = XnY —YnX, (24)

and 7 is a diagonal matrix with entries (1,1,—1,—1).
Following the treatment of Ref®? we choose the trans-

formation to be
1 0 B(k)
V= (—BT(k) 0 ) : (25)

so that up to O(hiz), we have the Hy, to become A(k) —
A(k), B(k) = B(k),

A(k) _ (u— 7|9 |2 f*Jﬂ: ) ’

fJ+ u— Jﬁ 911 (26)
oy Jedex (f*oi 4 g f 0
Bl ===~ ( o f*g’f+gé‘f)'

At high fields, we can thus ignore E(k) and focus on the
A(k) term. Writing A(k) = do(k)1+ $d(k) - o, with the
three components being

d(k) = 275 Re(f). (27)

da(k) = 2: Im(f), (28)
2

dy(k) = ZE(lgal? ~ lgaP), (29)

dok) = u- (Pt lgP) (30)

At each momentum k we have the eigenvalues

Sld0)] (31)

The above spin wave bands Eq. do not touch unless
Ji = Ji+ =0, as we have depicted in Fig.[df We further
compute the Berry curvature as follows

[ d(k) od(k) od(k)
FoY(k) = £- : (32

200 =+3 |iquep (o, * A )) @
This is negative semi-definite in the Brillouin zone. The

Chern numbers follow as

1
Ci:T

i (k) = do(k) =

dkydk, F
BZ

= Fl. (33)

This implies the presence of chiral magnon edge states
and thermal Hall effect, resulting from the presence
of magnon number non-conserving terms B(k) in the
Hamiltonian®#39,  The edge state for the open bound-
ary condition is depicted in Fig. [5}

B. Strong field in the honeycomb plane

We now turn to a strong in-plane field, in the z-
direction. This is relevant for the rare-earth local mo-
ments with the usual Kramers doublet, and does not ap-
ply to the non-Kramers doublet. The Holstein-Primakoff
transformation for sublattice A is modified as SY =
1 —ala;, 8¢ = L(a; +al), 57 = 2 5:(a; al), and that for
sublattice B is obtained by substltutmg a by b. These are
again bosonic operators satisfying [a;, a}] [b:, j] = 0.
Keeping only the bilinear terms of bosonic operators and
taking the Fourier transformation, we obtain

3
H

N
s — 2NpousgLha + TT’Hka, (34)

T (ak7 bk, a_k, bT_k)T. (35)



FIG. 5: Edge state in a cylindrical geometry. The y-direction
is periodic, while z-direction contains 50 sites. The parame-
ters are J,, =1, J+ = 0.9, J++ = 0.6, u = 4.

Define g5(k) = eikl' +ethz —2¢tk3 g, (k) = etf1 — ™2 and
recall f(k) =", €. The Hy, is of the familiar form

Ak Bk
=) a7 ok

but now with the A, B matrices given by
A(k)22 = v = poppgrLhe — 3Jx, (36)

1 1
Ak)21 = A(=k)12 = (szz + §Ji>f + %Jii(i’ﬁ)
B(k)11 = B(k)a2 =0, (38)
B(k)21 = B(=k)12 = (— Jzz + Ji)f
\/5
+4Jii93 + —J+:94. (39)
Appealing again to the Schrieffer—Wolff transformation
with
1 0 B(k)
V=2 <—BT(k) 0 ) : (40)

then up to O(h?), we have the effective #, to be
Ak) = A(k), B( )—>B(k)

< 2L 12|2 o A(E;)(lQ)zlP) 7(41)

B(k) = ” [A(k)ng( )12 + A(k)12B(k)21].(42)
At high fields h,, we can ignore B(k) and focus on the
A(k) term. Rewrite A(k) = do(k)1+ 3d(k)-o, with each
component being

1 1 1
dy = (ZJZZ + iji)Re(f) + ZJ:E:ERG(QS); (43)

1 1 1
d2 = <ZJZZ + §J:|:)Im(f) + iJj:j:I'n’L(gg)7 (44)

1.3, 1 1 1
ds = o0 [1794Jiz[(it]zz + §Ji)f + Zjiig?)]
+c.cl, (45)
1
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FIG. 6: (Color online.) The two spin wave bands w4+ when
a strong in-plane field is present. The parameters are chosen
Jox=1;J =0.9; Jyyr =1; J1, =0.3; v =5.

We then arrive at the dispersions wy (k) = do(k) £
#|d(k)|. The spectrum is plotted in Fig.|6] We find both
bands have zero Chern numbers, and we have checked for
many other parameter choices and also obtained trivial
zero Chern number. Thus, the in-plane field magnon
band structure is quite distinct from the topological
magnon band structure for the normal-plane field case.

VI. DISCUSSION

We have studied the experimental consequences of the
spin-orbital entanglement and the anisotropic spin ex-
change interactions in the honeycomb rare-earth mag-
nets. These results can be directly compared with the
experiments, thereby providing a useful guidance for the
future study on candidate systems. One future direction
would be to involve higher-lying crystal field states based
on the information of specific materials.

One potential rare-earth candidate for the anisotropic
honeycomb lattice model is YbCl5*, which has a simi-
lar crystal structure to that of RuCls. The Yb3T ions
have nearly filled 4 f-orbitals, which, combined with the
large crystal fields lead to Kramers doublet ground state
manifold. This is modeled as an effective spin-1/2 lo-
cal moment. Furthermore, its edge-shared octahedral
structure gives simple exchange physics that is relatively
well-understood according to a microscopic calculation
in Ref. There is very limited information about this
material in the literature apart from a very recent work®?.

In this paper, we have focused the analysis on the hon-
eycomb lattice rare-earth magnets and its anisotropic in-
teraction. It is noticed that, the generic model for the
rare-earth honeycomb magnets contains a Kitaev inter-
action as one independent exchange interaction out of
four. It is thus reasonable for us to consider the pos-
sibility of Kitaev materials among the honeycomb rare-
earth magnets. In fact most rare-earth magnets have not
been discussed along the line of Kitaev interactions, ex-
cept the first few works™3 15, In the previous work™, we
have illustrated this observation with the FCC rare-earth
magnets. Since many non-honeycomb lattice iridates are



claimed as Kitaev materials, it is thus reasonable to con-
sider the rare-earth magnets with other crystal structures
to be potential Kitaev materials beyond the previously
proposed ones and the honeycomb one heré®®2.  The
reason that these rare-earth magnets contain a Kitaev
interaction is due to two facts. The first fact is the spin-
obital-entangled effective spin-1/2 local moment. The
second fact is the three-fold rotation symmetry at the
lattice site. This symmetry permutes the effective spin
components and generates a Kitaev interaction. These
two ingredients can be used as the recipe to search for
other rare-earth Kitaev materials beyond the honeycomb
one.

To summarize, we have focused on rare-earth honey-
comb materials with nearest-neighbor interactions and
computed the high-temperature thermodynamic proper-
ties, ESR linewidth, and spin-wave behaviors as the ex-
perimental consequences of the anisotropic spin interac-
tion.
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Appendix A: Generic spin models and candidate
states for higher spins

This spin model in Eq. is designed for effective spin-
1/2 local moments. It can be well extended to the high-
spin local moments. For the honeycomb lattice with spin-
1 local moments, the pairwise spin interaction is given as

H =Y J..8;S;+ Jo(SfS; +875))
(i)
+ Jax (75 S S; + 7587 57)
+ I (V5SS + 7387 55) + (i )]
+3 D(SP)2.

(A1)

Because of the larger Hilbert space, a single-ion
anisotropy is allowed and new states such as the quantum
paramagnet can be favored here. Thus, the phase tran-
sitions between quantum paramagnet and other ordered
phases can be interesting. Further neighbor exchange in-
teraction, if included, could bring more frustration chan-
nel than the spin-orbit entanglement induced frustration.

It is known that, simple J;-J (first neighbor and sec-
ond neighbor Heisenberg) model on honeycomb lattice
could induce spiral spin liquids in two dimensions where
the spiral degeneracy has a line degeneracy in the mo-
mentum space rather than the surface degeneracy. The
presence of the anisotropic interaction in Eq. would
overcome the quantum/classical order by disorder effect
and lift the degeneracy. In addition to the spin-1 local
moments, the model in Eq. also applies to the spin-
3/2 systems. Since the honeycomb lattice contains three
nearest neighbor bonds, one may consider the possibility
of the ALKT states on the honeycomb lattice where the
nearest neighbor bonds are covered with spin singles of
the spin-1/2 states and three onsite spin-1/2 spins are
combined back to a spin-3/2 local moments.

Here, we have only listed the pairwise spin interac-
tions. Due to the spin-orbital entanglement and the spin-
lattice coupling, the effective interaction for the spin-1
and spin-3/2 magnets can contain significant multipolar
interactions. A simple example would be the biquadratic
exchange —(S; - S;)? that is induced effectively by the
spin-lattice coupling. The presence of these multipolar
interactions can significantly enhance quantum fluctua-
tion by allowing the system to tunnel more effectively
within the local spin Hilbert space and thus create more
quantum states such as multipolar ordered phases and
quantum spin liquids®3*4,

The relevant physical systems for the spin-1 and spin-
3/2 moments would contain the 4d? 5d%,4d*, 5d* and
4d',5d", 4d>,5d> magnetic ions, respectively. The rel-
evant ions can arise from Ru, Mo and even V atoms,
where spin-orbit coupling in the partially filled t54 shell
is active?3o4,

Appendix B: Details of high temperature expansion

The high temperature expansion requires to take into
account the commutation relations between different spin
operators on a same site. To this end, we define a ver-
tex function v;(ng, ny, n,) at each site 7 following Ref. [43]
where n,, n, and n, have to be even integers for the func-
tion to be nonzero. Its explicit form can be calculated by
introducing the generating function

B(Em,C) = Tr [exp(€S™ +nSY +CS9)].  (B1)
Expanding the exponential and using the definition of v,
we have

sen =23 3 3 Mitun S

00 m=0 ng!ngyln,!
(B2)
On the other hand, by diagonalizing the matrix of the
exponential, we have

(€, Q) = 2cosh (VE + 2 + (2/2).

(B3)



Expanding this and comparing with the previous equa- We note this function is symmetric under the permuta-
tion, tion of ny,ny,n..
Ny +ny +ny)/2]! ngng,n,!
V(nwvnyanz): [( - | Y 'Z)/ ] | = Y . "
(n2/2)1(n, /2. /2)! (1 + 1, + 1)
(B4)

J

The heat capacity is related to the zero-field partition function in the following way

C10E B 10°Z 1 (04 (B5)

 NOT N |Zy0p2 7\ 983 ’

where we have divided by the number of sites N to get the intensive quantity. Zy is given by
1 1
Zy =2V 1+ZBQZ(§J§Z+J1+Jii+JiZ) +0(8%), (B6)
(ig)
where the 2V factor results from the summation over all possible configurations.
Susceptibility in direction a can be reduced to the following expectation values of two spin operators,

1 62 MOMQng a Qa

Xo = gxamz o = TNz, PSS (B7)

Using the vertex function v(ng,ny,n.) defined above, we obtain for the parallel case,

(Y SaSido=_ > SnSie ¥

m,n {S;} m,n
z Qz z Qz 1 2 z Qz : 3
= Z Z SzZ8: -8 Z Z H;;SZ,5% + 56 Z Z Z H,;;H S2,S7 + permutations + O(8°)
{8:} [m.n (i) m.n (i) (ki) m,n
N 3N 3N .5 3NZ 3N 1., o oo
- RN MY Sacid e £y c Jay
{%:}{ 4 16 /8‘] + 1286 Jzz+( 39 16 )6 (8 zz+ i+ ii+ iz)

2

+ 33(Ji +J2.) Z [vi(2,0,2)v5(2,0,0) + v4(2,0,2)r;(0,2,0) 4+ 14(0, 2,2)1(2,0,0) + 3(0,2,2)1,(0,2,0)] (BS)
(ij)

52

+ @Jiz Z [Vi(27 07 2)”] (07 Oa 2) + Vi(oa 27 2)”_] (07 Oa 2) + Vi(oa 07 4)”](27 Oa 0) + Vi(oa 07 4)”_] (07 27 0)]

(i5)

1 2 2 2 3
(i5)
N 1 1 N 1
=2 U 00 PG = g - s - )+ PG 4 I T IR + 0.

Here, the summation for {S;} is over the possible configurations of spins on all sites. The notation H;; means the
terms in the Hamiltonian for the bond labeled by sites i, j; namely, H = Z(i mn H;;.“Permutations” on the second line
are those with respect to the relative orderings of H;j;, Hy;, S7, and S7.



Similarly, for the perpendicular susceptibility, we have

O oszsme =3 sz sme ot

m,n {S;} m,n

= Z Z Sy Sy —5 Z Z H;; Sy Sy + 62 Z Z Z i H1SE S* + permutations + O(5%)

{S:} [mn (i) m,m (ig) (k1) m,n
N — 2 2 2 2 2 1 2 72
= Z - - 7ﬁJi + 75 Z(SJZZ +Ji+Ji +J5) + 6746 J. ZVi(27072)V7(0a0a2)
{si} (i5)

(i)

1

+ ﬁ52(@ +J3y) Z[z/i(él, 0,0)v;(2,0,0) + v;(4,0,0)1,(0,2,0) + 5:(2,2,0)r;(2,0,0) + 1;(2,2,0)v;(0,2,0)]
(ij)

1
+ @BQJL Z[ui(él, 0,0)r;(0,0,2) + 4(2,2,0)r,(0,0,2) + v;(2,0,2)v;(2,0,0) + 14(2,0,2)r;(0,2,0)]
(ij)

+/62 Z Z |: Ji + Jii(’)/l]’y]k + lyz]r}/]k?)

32 Jiz('yw%k + %J'ng +c.o)| + O(ﬁg)
(ig) (ik

(B9)
N N
=2

1 5 3
4 |:1_/6Ji+/82(8 zz+‘]:t+‘]:|::|:+‘]:|:z)_T662J§z+1182‘]:2t_62‘]:2t:t_152J:%:z+0(ﬁ3> .

The magnetotropic coefficient £ can be computed using its relationship with the partition function with non-zero
external field,
1 9Z\* 1822
00 Z 002

The first term always give higher order terms compared with the second term, while the latter reads,

Z
29 ﬁuo,uBZ (g1 cosB(cos pS; + sinpSY) + g sin 657) +ﬂ2u0uBZ (g2 sin? 6 cos? <pS“JS:”+gJ_ sin? @ sin” @S} S}

7

1 0*°F 1

“ N2~ BN (B10)

ij
+ gﬁ cos? 0575 — g1g)sin6 cos O cos p(S; S} + 57 S5) — gurg)sin cosOsinp(S7SY + 57 S7)
+ g7 sin” Osin g cos o(S7SY + SYS7)) + O(8)

3#0#3 3 7#3#4}3 4 2 2\2 -
=piu% B2 cosQO(gH g3 ) + 2B 33 cos 20(2g7 T4 — gHJZZ) 45 B cosdb(g1 — gj) (3N —2)

“fg‘; 6% cos 20 {3N (g% gﬁ> (481 (9 + g) + B(JZ + 872 + 82, +87%.)

— 4|2 (gt — gi) — 697 (=372 + 472 + 4734 +8J2.) +3¢% (S — 2072 +1672, +1272,)] }.
(B11)

The expression above reduces to, in the limit g, = g,

9*Z N
= |y oy = 2N ZﬁBNg,fB cos20 [—12J., + 24Jy + B(7J2, — 2873 +8J31, —4J3.)]. (B12)
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