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We study the rare-earth magnets on a honeycomb lattice, and are particularly interested in the
experimental consequences of the highly anisotropic spin interaction due to the spin-orbit entan-
glement. We perform a high-temperature series expansion using a generic nearest-neighbor Hamil-
tonian with anisotropic interactions, and obtain the heat capacity, the parallel and perpendicular
spin susceptibilities, and the magnetic torque coefficients. We further examine the electron spin
resonance linewidth as an important signature of the anisotropic spin interactions. Due to the
small interaction energy scale of the rare-earth moments, it is experimentally feasible to realize
the strong-field regime. Therefore, we perform the spin-wave analysis and study the possibility of
topological magnons when a strong field is applied to the system. The application and relevance to
the rare-earth Kitaev materials are discussed.

I. INTRODUCTION

Spin liquid candidates are often being searched among
geometrically frustrated systems, such as triangular1,
kagomé2 or pyrochlore3 lattices. This is quite reasonable
as the geometrical frustration could lead to a large num-
ber of degenerate or nearly-degenerate classical ground
states for commonly studied Heisenberg models and thus
enhance quantum fluctuations when the quantum effects
are included. However, the destabilization of simple mag-
netically ordered states and driving a disordered one can
happen even on unfrustrated lattices, by exploiting the
power of anisotropic interactions4; the Kitaev honeycomb
model5 is a representative example of the latter. Besides
being an academic interest, anisotropic spin interactions
are also inevitable in realistic magnetic materials, espe-
cially those with heavy atoms. A large number of spin liq-
uid candidates are known experimentally to possess a sig-
nificant spin-orbit coupling, leading to rather anisotropic
spin interactions6–11. Beyond the current interest in the
spin liquid physics, understanding the relationship be-
tween the magnetic properties and the anisotropic spin
interactions is a frontier topic in the field of quantum
magnetism.

The most commonly studied anisotropic magnets on
unfrustrated lattices are the 4d/5d magnets11,12 that in-
clude the honeycomb iridates and RuCl3. Due to the
possible relevance to Kitaev physics, these materials were
referred as Kitaev materials. Due to the spatial extension
of the 4d/5d electron wavefunctions, the exchange inter-
actions between the local moments are usually beyond
the nearest neighbors. Moreover, the iridates often suffer
from a strong neutron absorption such that the data-rich
neutron scattering measurement can be difficult. In com-
parison, the rare-earth family has the advantages of much
stronger spin-orbit couplings and much more localized 4f
orbitals13–15, and the exchange interactions often restrict
to first neighbors. This makes the understanding of the

modeling Hamiltonian more accessible. In addition, the
rare-earth magnets do not have the neutron absorption
issue that prevails in iridates. Furthermore, their smaller
energy scales allow for the possibility to quantitatively
understand their Hamiltonian through the external mag-
netic fields. However, rare-earth materials have only been
well-investigated on frustrated lattices9,16.

In this paper, we will study the rare-earth mag-
nets on the unfrustrated honeycomb lattice, and pur-
sue an understanding of the experimental consequence of
the spin-orbital entanglement on the honeycomb struc-
ture. We start by exploring the thermodynamic prop-
erties of a generic model with the nearest neighbor in-
teractions. It is well-known that the anisotropic ex-
change couplings could appear in the temperature de-
pendence of the thermodynamic quantities such as the
specific heat, spin susceptibility17 and magnetotropic
coefficients18,19. Especially for the spin susceptibility
and magnetic torque, magnetic fields along different di-
rections induce magnetization of different magnitudes,
leading to the anisotropic spin susceptibility20–25 and the
angular dependence of the magnetic torque26–29, and pro-
viding a natural detection of the intrinsic spin anisotropy
in the system. To go beyond the thermodynamic prop-
erties, we further consider the electron spin resonance
(ESR) measurement30,31 of the system. The ESR mea-
surement turns out to be a very sensitive probe of the
magnetic anisotropy and is especially useful for the study
of the strong spin-orbit-coupled quantum materials, and
we compute the ESR linewidth to reveal the intrinsic spin
anisotropy of the spin interactions.

Due to the small energy scale of the interaction be-
tween the rare-earth local moment, it is ready to ap-
ply a small magnetic field in the laboratory to change
the magnetic state into a fully polarized one. For such
a simple product state, the magnetic excitation can be
readily worked out from the linear spin wave theory.
We further consider the spin wave spectrum and explore
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the possibility of topological magnons32–39. We find the
magnon spectrum supports non-trivial topological band
structure. This feature can be manifested in thermal Hall
transport measurements.

The remaining parts of the paper are organized as fol-
lows. In Sec. II, we introduce the nearest-neighbor spin
Hamiltonian, followed by the high-temperature analysis
of heat capacity, spin susceptibilities and magnetic torque
coefficient in Sec III. Then we consider the ESR and cal-
culate the influence of anisotropy on the ESR linewidth
in Sec. IV. Next the linear spin wave theory of the sys-
tem is exploited under strong external fields in Sec. V and
the aspect of topological magnons is discussed. Finally
in Sec. VI we comment on a possible material YbCl3 and
its potential realization of the Kitaev honeycomb model.

II. MODEL

We begin with the following microscopic spin model,
that is the most general nearest neighbor Hamiltonian on
a honeycomb lattice with the (usual) Kramers doublet
effective spin-1/2 local moments6,10,15,40,

H =
∑
〈ij〉

JzzS
z
i S

z
j + J±(S+

i S
−
j + S−i S

+
j )

+ J±±(γijS
+
i S

+
j + γ∗ijS

−
i S
−
j )

+ J±z[(γ
∗
ijS

+
i S

z
j + γijS

−
i S

z
j ) + 〈i↔ j〉], (1)

with γij taking e2iπ/3, e−2iπ/3, and 1 on the bonds along
a1, a2, a3 directions respectively, as shown in Fig. 1.
The first two terms give the usual XXZ Hamiltonian,
while the latter two terms are bond-dependent and con-
stitute the spin-orbit interaction. The spin components
are defined in the global coordinate system in Fig. 1.
This is possible because the system is planar and has an
unique rotational axis. This differs from the rare-earth
pyrochlore materials where the spins are often defined
in the local coordinate system for each sublattice. This
model applies to the rare-earth local moment such as the
Yb3+ ion. For non-Kramers doublet like Pr3+ or Tb3+

ion, the J±z term is not allowed by symmetry, and the
model becomes further simplified. In fact, a non-Kramers
doublet based rare-earth honeycomb magnet arises from
the triangular lattice magnet TbInO3 after 1/3 of the
Tb3+ ions becomes inactive magnetically41. For the rare-
earth local moments, the 4f electrons are much localized,
and most often, one only needs to consider the nearest-
neighbor interactions, and occasionally, one would like
to include the further neighbor dipole-dipole interactions.
In contrast, for the 4d/5d systems, one may need to worry
about further neighbor exchange interactions because of
the large spatial extension of the electron wavefunctions.

An alternative and often used parametrization of the

Hamiltonian is that of the J-K-Γ-Γ′ model42:

H =
∑

〈ij〉∈αβ(γ)

[
JSi · Sj +KSγi S

γ
j + Γ(Sαi S

β
j + Sβi S

α
j )
]

+ Γ′
∑

〈ij〉∈αβ(γ)

(
Sαi S

γ
j + Sγi S

α
j + Sβi S

γ
j + Sγi S

β
j

)
, (2)

where α, β, γ take values in {x′, y′, z′}. In the latter
coordinate system, our unit vectors of Fig. 1 can be
expressed by x̂ = (−1,−1, 2)/

√
6, ŷ = (1,−1, 0)/

√
2 and

ẑ = (1, 1, 1)/
√

3. The spin components in the above
equation are
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′

= −
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3
Sz,
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3
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(3)

Furthermore, we have used the notation that αβ(γ) spec-

ifies a bond parallel (or anti-parallel) to the vector α̂− β̂,
or simply a bond of type γ. Here J , K and Γ are the
Heisenberg, Kitaev and symmetric off-diagonal exchange,
respectively, and Γ′ parametrizes the trigonal distortion.
The coupling constants in Eq. (1) and (2) are related by
the following equation

J =
4

3
J± −

2
√

2

3
J±z −

2

3
J±± +

1

3
Jzz,

K = 2
√

2J±z + 2J±±,

Γ = −2

3
J± −

2
√

2

3
J±z +

4

3
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1

3
Jzz,

Γ′ = −2

3
J± +

√
2

3
J±z −

2

3
J±± +

1

3
Jzz.

(4)

The Hamiltonian in Eq. (1) can also be used to describe
the general exchange interaction between the higher spin
local moments for the honeycomb magnets after some
modification. The differences are explained in details in
the Appendix A.

a3

a1

a2

x

y

z

FIG. 1: The honeycomb lattice with three different types of
bonds and our choice of the global coordinate system.
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III. THERMODYNAMICS

The highly anisotropic nature of the exchange inter-
action first impacts the thermodynamic properties of
the system. Here we explicitly calculate the specific
heat and the magnetic susceptibilities of the system
from the generic exchange Hamiltonian, with details pre-
sented in Appendix B. Using the high-temperature series
expansion43,44, we find the heat capacity to be

C =
3J2

0

2kBT 2
− 27J4

0

8k3BT
4
, (5)

where kB is the Boltzmann constant, and

J2
0 ≡

1

16
J2
zz +

1

2
(J2
± + J2

±± + J2
±z). (6)

Due to the spin-orbit entanglement, the coupling of
the local moment to the external magnetic field is also
anisotropic. The Landé factors g’s are different for the
in-plane and out-plane magnetic fields, and the Zeeman
coupling is given as

HZ = −µ0µB
∑
i

[
g⊥(hxS

x
i + hyS

y
i ) + g‖h‖S

z
i

]
, (7)

hx, hy are the in-plane components of the external mag-
netic field, and h‖ the z-component. µ0 is the vacuum
permeability and µB the Bohr magneton. Again using
high-temperature series expansion, we compute the par-
allel and perpendicular spin susceptibilities up toO(T−3)

χ‖ =
µ0µ

2
Bg

2
‖

4kBT

(
1− 3Jzz

4kBT
−

J2
±

2k2BT
2
−

J2
±±
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2
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k2BT
2
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3J2
zz

8k2BT
2

)
,

χ⊥ =
µ0µ

2
Bg

2
⊥

4kBT

(
1− 3J±

2kBT
+

5J2
±

4k2BT
2
−

J2
±±

k2BT
2

−
3J2
±z

4k2BT
2
− J2

zz

16k2BT
2

)
.

(8)

In the SU(2)-symmetric point, Jzz = 2J±,
J±± = J±z = 0, the two expressions coincide. For
the rare-earth local moments with non-Kramers dou-
blets, g⊥ = 0 so χ⊥ = 0. In Fig. 2, we plot the magnetic
susceptibilities and show the deviation from the simple
Curie-Weiss law due to the high order anisotropic terms.

In addition to the simple thermodynamics such as Cv
and χ, the magnetic torque measurement is proved to
be quite useful in revealing the magnetic anisotropy. In-
trinsically, this is because the induced magnetization is
generically not parallel to the magnetic field. Thus, when
the sample has an anisotropic magnetization, the system
would experience a torque τ = M ×H = −∂F/∂θ in an
external magnetic field. The magnetotropic coefficient
k = ∂2F/∂θ2, defined as the second derivative of the free
energy to the angle θ between the sample and the ap-
plied magnetic field, can be introduced to quantify such

FIG. 2: Susceptibilities versus temperature. The dashed
black lines show the Curie-Weiss law, and the solid blue lines
plot the inverse of equation (8).

The parameters are chosen to be Jzz = 1, J± = 0.9,
J±± = 0.2, J±z = 0.1. The susceptibilities in the plot, χ‖
and χ⊥, are in units of µ0µ

2
Bg

2
‖/4kB and µ0µ

2
Bg

2
⊥/4kB ,

respectively.

anisotropy. It can be directly measured using the reso-
nant torsion magnetometry18. Under the high tempera-
ture expansion, we find the magnetotropic coefficient k
is given as

k =
µ2
0µ

2
Bh

2

kBT
cos 2θ

{1

4
(g2⊥ − g2‖) +

3

16kBT
(g2‖Jzz − 2g2⊥J±)

+
1

192k2BT
2

[
− 3g2⊥(−20J2

± + 16J2
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±z + J2
zz)

+ 6g2‖(4J
2
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2
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2(g4⊥ − g4‖)
]}
− µ4

0µ
4
Bh

4

96k3BT
3

cos 4θ(g2⊥ − g2‖)
2,

(9)

where we have defined h2 = h2x + h2y + h2z. Note that
there are two different sources of a nontrivial torque
magnetometry: the anisotropy of the g-tensor and the
anisotropy of the exchange. In the limit of g⊥ = g‖,
there is still a nonzero contribution to k, detailed in Ap-
pendix B. The coefficient will only vanish if the Heisen-
berg limit is further taken: Jzz = 2J±, J±± = J±z = 0.

IV. ELECTRON SPIN RESONANCE

In the thermodynamic properties, the leading contri-
butions come from the Jzz and J± terms, while the J±±
and J±z terms are subleading. Arising from spin-orbital
entanglement and completely breaking the U(1) rota-
tional symmetry, these terms play important roles in the
potential quantum spin liquid behavior. To resolve them,
we now turn to the electron spin resonance.

Electron spin resonance measures the absorption of
electromagnetic radiation by a sample subjected to an
external static magnetic field. For a SU(2) invariant sys-
tem, the absorption is completely sharp, i.e. described by
a delta function located exactly at the Zeeman energy30.
Therefore, the broadening of the resonance spectrum has
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FIG. 3: (Color online.) The dependence of ∆H (defined in equation (13)) on J±±/Jzz and J±z/Jzz, with fixed values of
J±/Jzz. Left: J±/Jzz = 1, middle: J±/Jzz = 0.2, right: J±/Jzz = −0.5. In the first two panels, the linewidths are minimal at
the “most isotropic” points J±± = J±z = 0. In the right panel, we depict the case J±/Jzz < 0, where the in-plane exchange is
ferromagnetic. The linewidths ∆H in the three plots are in the units µBg(θ)/

√
2π.

to arise from the magnetic anisotropy. To understand
the contribution of the anisotropy of the nearest-neighbor
spin interaction to the ESR linewidth, we decompose the
Hamiltonian Eq. (1) into the isotropic Heisenberg part
and the anisotropic exchange part

H = J
∑
〈i,j〉

Si · Sj +H ′, (10)

where the Heisenberg coupling J = (Jzz + 4J±)/3, and
the anisotropic part

H ′ =
∑
〈i,j〉

Sµi Γij,µν S
ν
j . (11)

Here Γij is a traceless and symmetric exchange coupling
matrix, satisfying

Γij,xx = 2J±/3 + (γij + γ∗ij)J±± − Jzz/3,
Γij,yy = 2J±/3− (γij + γ∗ij)J±± − Jzz/3,
Γij,zz = 2Jzz/3− 4J±/3,

Γij,xy = i(γij − γ∗ij)J±±,
Γij,yz = i(γ∗ij − γij)J±z,
Γij,zx = (γij + γ∗ij)J±z.

(12)

Under the Zeeman term of Eq. (7), the ESR can be
computed using the Kubo-Tomita formalism45, yield-
ing a Lorentzian-shaped spectrum. The corresponding
linewidth at high temperatures is given by the second and
the fourth moments of the ESR line-shape function46–48

∆H(θ) =

√
2π

µBg(θ)

(
M3

2

M4

)1/2

, (13)

where θ is again the angle between the external field and
the sample, and

g(θ) =
√
g2‖ sin2 θ + g2⊥ cos2 θ, (14)

M2 =
〈[H ′,M+][M−, H ′]〉

〈M+M−〉
, (15)

M4 =
〈[H, [H ′,M+]][H, [H ′,M−]]〉

〈M+M−〉
. (16)

M2 and M4 are the second and the fourth moments, re-
spectively, and M± ≡

∑
i S
±
i . The expectation “〈· · · 〉”in

the above equations is taken with respect to high tem-
peratures. Specifically, we find that

M2 =
3

4
(J2
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3
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4
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2
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2
J4
±z

+
153

2
J2
±±J
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2
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2
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±J
2
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±J
2
±± + 24J4

±.

(17)

The high-temperature ESR linewidths (13), expressed
in terms of the different exchanges (17), can be com-
pared with future experiments on the rare-earth based
honeycomb magnets in order to extract the anisotropic
exchanges. The Jzz and J± exchanges are easier to in-
dicate from analyzing the experimental data of suscepti-
bilities, as they have lower-order effects. Using their ex-
tracted values, one can infer the corresponding J±± and
J±z from the ESR linewidth ∆H. In Fig. 3, we depict
the three-dimensional plots that explicitly demonstrate
the dependence of the ESR linewidth on the anisotropic
couplings Jz± and J±± for three different choices of J±.

V. POLARIZED PHASES

A. Strong field normal to the honeycomb plane

To further explore the effect of the anisotropic ex-
change interaction, we study the spin wave excitation
with respect to the polarized states under the strong mag-
netic fields. This is clearly feasible in the current labo-
ratory setting for the rare-earth magnets as the energy
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scales for them are usually rather small. For the 4d/5d
magnets, there can be difficulty to achieve as the energy
scale over there is much higher, typically by two orders.
Our results here are relevant to the inelastic neutron scat-
tering and thermal Hall transport measurements.

We first consider the case of a strong magnetic field
in the direction normal to the honeycomb plane such
that the system is in the fully polarized paramagnetic
phase and all the spins are aligned along the z direc-
tion. In this case, the magnon bands carry nontrivial
Chern numbers for generic range of parameters, as found
in reference39 in the J − K − Γ − Γ′ presentation. We
expand about this fully polarized state using the con-
ventional Holstein-Primakoff transformations of the spin

variables49, which are Szi = S − a†iai, S
+
i = ai, S

−
i = a†i

for sublattice A, and substitute a → b for sublattice B.

a and b’s are bosonic operators, [ai, a
†
j ] = [bi, b

†
j ] = δij .

Keeping only the bilinear terms of bosonic operators and
taking the Fourier transformation, we arrive at

H =
3N

4
Jzz − 2Nµ0µBg‖hz +

1

2
Υ†kHkΥk, (18)

with Υ ≡ (ak, bk, a
†
−k, b

†
−k)T . Here we have denoted

k1 = − 1
2kx +

√
3
2 ky, k2 = − 1

2kx −
√
3
2 ky, and k3 = kx

that correspond to the y-, z- and x-bonds, respectively.
We further define f(k) =

∑
i e
iki , g1(k) =

∑
i e
−ikiγi,

g2(k) =
∑
i e
ikiγi and u ≡ (g‖µ0µBh‖ − 3Jzz/2), we

then have for Hk a block form

Hk =

[
A(k) B(k)
B†(k) AT (−k)

]
, (19)

where we have

A(k) =

[
u J±f

∗

J±f u

]
, (20)

B†(k) =

[
0 J±±g1

J±±g2 0

]
. (21)

All the J±z terms are not present.

The spin wave dispersion relation for Hk follows as

ε(k)2 =u2 + |f |2J2
± −

|g1|2 + |g2|2√
2

J2
±±

± [4|f |2u2J2
± +

|g1|2 − |g2|2

4
J4
±±

+ (f∗g∗1 − fg∗2)(f∗g2 − fg1)J2
±J

2
±±]1/2,

(22)

where only the positive square root of ε(k)2 is taken.

Several simple limits of this expression can be checked:
(1) in the Heisenberg limit Jzz = 2J± ≡ 2J , then ε(k) =
(
g‖µ0µB

2S h‖ − 3J ± |f |J)1/2; (2) when only Jzz is finite,

it reduces to the Ising case ε(k) =
g‖µ0µB

2S h‖ − 3
2Jzz; if

only J± is present, we have a graphene-like dispersion
ε(k) =

g‖µ0µB

2S h‖ ± |f |J±.

FIG. 4: (Color online.) The two spin wave bands ω± when a
strong field in the z-direction is applied. The parameters are
chosen as Jzz = 1; J± = 0.9; J±± = 1; J±z = 0.3;u = 5.

At high fields, the results can be simplified by the
Schrieffer-Wolff transformation,

H̃k = eWHke
−W

= Hk + [W,Hk] +
1

2

[
W, [W,Hk]

]
+ · · · , (23)

with the commutator understood as

[X,Y ] ≡ XηY − Y ηX, (24)

and η is a diagonal matrix with entries (1, 1,−1,−1).
Following the treatment of Ref.39, we choose the trans-
formation to be

W =
1

2u

(
0 B(k)

−B†(k) 0

)
, (25)

so that up to O(h−2‖ ), we have the H̃k to become A(k)→
Ã(k), B(k)→ B̃(k),

Ã(k) =

(
u− J2

±±
2u |g2|

2 f∗J±

fJ± u− J2
±±
2u |g1|

2

)
,

B̃(k) = −J±J±±
2u

(
f∗g∗1 + g∗2f 0

0 f∗g∗1 + g∗2f

)
.

(26)

At high fields, we can thus ignore B̃(k) and focus on the

Ã(k) term. Writing Ã(k) = d0(k)1+ 1
2d(k) ·σ, with the

three components being

d1(k) = 2J± Re(f), (27)

d2(k) = 2J± Im(f), (28)

d3(k) =
J2
±±
2u

(|g1|2 − |g2|2), (29)

d0(k) = u−
J2
±±
4u

(|g1|2 + |g2|2). (30)

At each momentum k we have the eigenvalues

ω±(k) = d0(k)± 1

2
|d(k)|. (31)
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FIG. 5: Edge state in a cylindrical geometry. The y-direction
is periodic, while x-direction contains 50 sites. The parame-
ters are Jzz = 1, J± = 0.9, J±± = 0.6, u = 4.

The above spin wave bands Eq. (31) do not touch unless
J± = J±± = 0, as we have depicted in Fig. 4. We further
compute the Berry curvature as follows

F xy± (k) = ± i
2

[
d(k)

|d(k)|3
·
(
∂d(k)

∂ky
× ∂d(k)

∂kx

)]
. (32)

This is negative semi-definite in the Brillouin zone. The
Chern numbers follow as

C± =
1

2πi

∫
BZ

dkxdkyF
xy
± = ∓1. (33)

This implies the presence of chiral magnon edge states
and thermal Hall effect, resulting from the presence
of magnon number non-conserving terms B(k) in the
Hamiltonian34,39. The edge state for the open bound-
ary condition is depicted in Fig. 5.

B. Strong field along the honeycomb plane

We now turn to a strong in-plane field, in the x-
direction. This is relevant for the rare-earth local mo-
ments with the usual Kramers doublet, and does not ap-
ply to the non-Kramers doublet. The Holstein-Primakoff
transformation for sublattice A is modified as Sxi =
1
2 − a

†
iai, S

y
i = 1

2 (ai + a†i ), S
z
i = 1

2i (ai − a
†
i ), and that for

sublattice B is obtained by substituting a by b. These are

again bosonic operators satisfying [ai, a
†
j ] = [bi, b

†
j ] = δij .

Keeping only the bilinear terms of bosonic operators and
taking the Fourier transformation, we obtain

H =
3N

2
J± − 2Nµ0µBg⊥hx +

1

2
Υ†kHkΥk, (34)

Υ ≡ (ak, bk, a
†
−k, b

†
−k)T . (35)

Define g3(k) = eik1 + eik2 −2eik3 , g4(k) = eik1 − eik2 and
recall f(k) =

∑
i e
iki . The Hk is of the familiar form

Hk =

[
A(k) B(k)
B†(k) AT (−k)

]
,

but now with the A,B matrices given by

A(k)11 = A(k)22 = v = µ0µBg⊥hx − 3J±, (36)

A(k)21 = A(−k)12 = (
1

4
Jzz +

1

2
J±)f +

g3
4
J±±,(37)

B(k)11 = B(k)22 = 0, (38)

B(k)21 = B(−k)12 = (−1

4
Jzz +

1

2
J±)f

+
1

4
J±±g3 +

i
√

3

2
J±zg4. (39)

Appealing again to the Schrieffer-Wolff transformation
with

W =
1

2v

(
0 B(k)

−B†(k) 0

)
, (40)

then up to O(h−2⊥ ), we have the effective H̃k to be

A(k)→ Ã(k), B(k)→ B̃(k).

Ã(k) =

(
v − 1

2v |B(k)12|2 A(k)12
A(k)21 v − 1

2v |B(k)21|2
)
, (41)

B̃(k) = − 1

2v

[
A(k)21B(k)12 +A(k)12B(k)21

]
.(42)

At high fields h⊥, we can ignore B̃(k) and focus on the

Ã(k) term. Rewrite Ã(k) = d0(k)1+ 1
2d(k) ·σ, with each

component being

d1 = (
1

4
Jzz +

1

2
J±)Re(f) +

1

4
J±±Re(g3), (43)

d2 = (
1

4
Jzz +

1

2
J±)Im(f) +

1

4
J±±Im(g3), (44)

d3 = − 1

2v

[
i

√
3

2
g∗4J±z[(

1

4
Jzz +

1

2
J±)f +

1

4
J±±g3]

+c.c
]
, (45)

d0 = v − 1

2v
[(

1

4
Jzz +

1

2
J±)2|f |2 +

3

4
J2
±z|g4|2]. (46)

We then arrive at the dispersions ω±(k) = d0(k) ±
1
2 |d(k)|. The spectrum is plotted in Fig. 6. We find both
bands have zero Chern numbers, and we have checked for
many other parameter choices and also obtained trivial
zero Chern number. Thus, the in-plane field magnon
band structure is quite distinct from the topological
magnon band structure for the normal-plane field case.

VI. DISCUSSION

We have studied the experimental consequences of the
spin-orbital entanglement and the anisotropic spin ex-
change interactions in the honeycomb rare-earth mag-
nets. These results can be directly compared with the
experiments, thereby providing a useful guidance for the
future study on candidate systems. One future direction
would be to involve higher-lying crystal field states based
on the information of specific materials.
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FIG. 6: (Color online.) The two spin wave bands ω± when
a strong in-plane field is present. The parameters are chosen
Jzz = 1; J± = 0.9; J±± = 1; J±z = 0.3; v = 5.

One potential rare-earth candidate for the anisotropic
honeycomb lattice model is YbCl3

50, which has a simi-
lar crystal structure to that of RuCl3. The Yb3+ ions
have nearly filled 4f -orbitals, which, combined with the
large crystal fields lead to Kramers doublet ground state
manifold. This is modeled as an effective spin-1/2 lo-
cal moment. Furthermore, its edge-shared octahedral
structure gives simple exchange physics that is relatively
well-understood according to a microscopic calculation in
Ref. 15. There is very limited information about this ma-
terial in the literature apart from a very recent work51.
Comparing their susceptibility data with our calcula-
tions, we are able to pin down the exchange parameters
Jzz ∼ 8K, J± ∼ 6K.

In this paper, we have focused the analysis on the hon-
eycomb lattice rare-earth magnets and its anisotropic in-
teraction. It is noticed that, the generic model for the
rare-earth honeycomb magnets contains a Kitaev inter-
action as one independent exchange interaction out of
four. It is thus reasonable for us to consider the pos-
sibility of Kitaev materials among the honeycomb rare-
earth magnets. In fact most rare-earth magnets have not
been discussed along the line of Kitaev interactions, ex-
cept the first few works13–15. In the previous work13, we
have illustrated this observation with the FCC rare-earth
magnets. Since many non-honeycomb lattice iridates are
claimed as Kitaev materials, it is thus reasonable to con-
sider the rare-earth magnets with other crystal structures
to be potential Kitaev materials beyond the previously
proposed ones and the honeycomb one here52,53. The
reason that these rare-earth magnets contain a Kitaev
interaction is due to two facts. The first fact is the spin-
orbital-entangled effective spin-1/2 local moment. The
second fact is the three-fold rotation symmetry at the
lattice site. This symmetry permutes the effective spin
components and generates a Kitaev interaction. These
two ingredients can be used as the recipe to search for
other rare-earth Kitaev materials beyond the honeycomb
one.

To summarize, we have focused on rare-earth honey-
comb materials with nearest-neighbor interactions and
computed the high-temperature thermodynamic proper-

ties, ESR linewidth, and spin-wave behaviors as the ex-
perimental consequences of the anisotropic spin interac-
tion.
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Appendix A: Generic spin models and candidate
states for higher spins

This spin model in Eq. (1) is designed for effective spin-
1/2 local moments. It can be well extended to the high-
spin local moments. For the honeycomb lattice with spin-
1 local moments, the pairwise spin interaction is given as

H =
∑
〈ij〉

JzzS
z
i S

z
j + J±(S+

i S
−
j + S−i S

+
j )

+ J±±(γijS
+
i S

+
j + γ∗ijS

−
i S
−
j )

+ J±z[(γ
∗
ijS

+
i S

z
j + γijS

−
i S

z
j ) + 〈i↔ j〉]

+
∑
i

D(Szi )2.

(A1)

Because of the larger Hilbert space, a single-ion
anisotropy (the D-term) is allowed and new states such
as the quantum paramagnet can be favored here. Thus,
the phase transitions between quantum paramagnet and
other ordered phases can be interesting. Further neigh-
bor exchange interaction, if included, could bring more
frustration channel than the spin-orbit entanglement in-
duced frustration. It is known that, simple J1-J2 (first
neighbor and second neighbor Heisenberg) model on hon-
eycomb lattice could induce spiral spin liquids in two
dimensions where the spiral degeneracy has a line degen-
eracy in the momentum space rather than the surface
degeneracy. The presence of the anisotropic interaction
in Eq. (A1) would overcome the quantum/classical or-
der by disorder effect and lift the degeneracy. In addi-
tion to the spin-1 local moments, the model in Eq. (A1)
also applies to the spin-3/2 systems. Since the honey-
comb lattice contains three nearest neighbor bonds, one
may consider the possibility of the ALKT states on the
honeycomb lattice where the nearest neighbor bonds are
covered with spin singles of the spin-1/2 states and three
onsite spin-1/2 spins are combined back to a spin-3/2
local moments.
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Here, we have only listed the pairwise spin interac-
tions. Due to the spin-orbital entanglement and the spin-
lattice coupling, the effective interaction for the spin-1
and spin-3/2 magnets can contain significant multipolar
interactions. A simple example would be the biquadratic
exchange −(Si · Sj)2 that is induced effectively by the
spin-lattice coupling. The presence of these multipolar
interactions can significantly enhance quantum fluctua-
tion by allowing the system to tunnel more effectively
within the local spin Hilbert space and thus create more
quantum states such as multipolar ordered phases and
quantum spin liquids54,55.

The relevant physical systems for the spin-1 and spin-
3/2 moments would contain the 4d2, 5d2, 4d4, 5d4 and
4d1, 5d1, 4d3, 5d3 magnetic ions, respectively. The rel-
evant ions can arise from Ru, Mo and even V atoms,
where spin-orbit coupling in the partially filled t2g shell
is active54,55.

Appendix B: Details of high temperature expansion

The high temperature expansion requires to take into
account the commutation relations between different spin
operators on a same site. To this end, we define a ver-
tex function νi(nx, ny, nz) at each site i following Ref. 43,

where nx, ny and nz have to be even integers for the func-
tion to be nonzero. Its explicit form can be calculated by
introducing the generating function

ψ(ξ, η, ζ) = Tr [exp(ξSx + ηSy + ζSz)] . (B1)

Expanding the exponential and using the definition of ν,
we have

ψ(ξ, η, ζ) = 2

∞∑
nx=0

∞∑
ny=0

∞∑
nz=0

ν(nx, ny, nz)

2nx+ny+nz

ξnxηnyζnz

nx!ny!nz!
.

(B2)
On the other hand, by diagonalizing the matrix of the
exponential, we have

ψ(ξ, η, ζ) = 2 cosh
(√

ξ2 + η2 + ζ2/2
)
. (B3)

Expanding this and comparing with the previous equa-
tion,

ν(nx, ny, nz) =
[(nx + ny + nz)/2]!

(nx/2)!(ny/2)!(nz/2)!

nx!ny!nz!

(nx + ny + nz)!
.

(B4)
We note this function is symmetric under the permuta-
tion of nx, ny, nz.

The heat capacity is related to the zero-field partition function in the following way

C =
1

N

∂E

∂T
=
β2

N

[
1

Z0

∂2Z0

∂β2
− 1

Z2
0

(
∂Z0

∂β

)2
]
, (B5)

where we have divided by the number of sites N to get the intensive quantity, and β = 1/kBT . Z0 is given by

Z0 = 2N

1 +
1

4
β2
∑
〈ij〉

(
1

8
J2
zz + J2

± + J2
±± + J2

±z)

+O(β3), (B6)

where the 2N factor results from the summation over all possible configurations.

Susceptibility in direction a can be reduced to the following expectation values of two spin operators,

χa =
1

βN

∂2

∂h2a
lnZ

∣∣
ha=0

=
µ0µ

2
Bg

2
a

NZ0
β〈
∑
m,n

SamS
a
n〉0. (B7)
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Using the vertex function ν(nx, ny, nz) defined above, we obtain for the parallel case,

〈
∑
m,n

SzmS
z
n〉0 =

∑
{Si}

∑
m,n

SzmS
z
ne
−βH

=
∑
{Si}

∑
m,n

SzmS
z
n − β

∑
〈ij〉

∑
m,n

HijS
z
mS

z
n +

1

2
β2
∑
〈ij〉

∑
〈kl〉

∑
m,n

HijHklS
z
mS

z
n + permutations +O(β3)


=
∑
{Si}

{
N

4
− 3N

16
βJzz +

3N

128
β2J2

zz + (
3N2

32
− 3N

16
)β2(

1

8
J2
zz + J2

± + J2
±± + J2

±z)

+
β2

32
(J2
± + J2

±±)
∑
〈ij〉

[νi(2, 0, 2)νj(2, 0, 0) + νi(2, 0, 2)νj(0, 2, 0) + νi(0, 2, 2)νj(2, 0, 0) + νi(0, 2, 2)νj(0, 2, 0)]

+
β2

32
J2
±z

∑
〈ij〉

[νi(2, 0, 2)νj(0, 0, 2) + νi(0, 2, 2)νj(0, 0, 2) + νi(0, 0, 4)νj(2, 0, 0) + νi(0, 0, 4)νj(0, 2, 0)]

+
1

16
β2
∑
〈ij〉

(J2
zz − 2J2

±z) +O(β3)


=2N · N

4

[
1− 3

4
βJzz + β2(

3

8
J2
zz −

1

2
J2
± −

1

2
J2
±± − J2

±z) +
3N

8
β2(

1

8
J2
zz + J2

± + J2
±± + J2

±z) +O(β3)

]
.

(B8)

Here, the summation for {Si} is over the possible configurations of spins on all sites. The notation Hij means the
terms in the Hamiltonian for the bond labeled by sites i, j; namely, H =

∑
〈ij〉Hij .“Permutations” on the second line

are those with respect to the relative orderings of Hij , Hkl, S
z
m and Szn.

Similarly, for the perpendicular susceptibility, we have

〈
∑
m,n

SxmS
x
n〉0 =

∑
{Si}

∑
m,n

SxmS
x
ne
−βH

=
∑
{Si}

∑
m,n

SxmS
x
n − β

∑
〈ij〉

∑
m,n

HijS
x
mS

x
n +

1

2
β2
∑
〈ij〉

∑
〈kl〉

∑
m,n

HijHklS
x
mS

x
n + permutations +O(β3)


=
∑
{Si}

N4 − 3N

8
βJ± +

N − 2

16
β2
∑
〈ij〉

(
1

8
J2
zz + J2

± + J2
±± + J2

±z) +
1

64
β2J2

zz

∑
〈ij〉

νi(2, 0, 2)νj(0, 0, 2)

+
1

32
β2(J2

± + J2
±±)

∑
〈ij〉

[νi(4, 0, 0)νj(2, 0, 0) + νi(4, 0, 0)νj(0, 2, 0) + νi(2, 2, 0)νj(2, 0, 0) + νi(2, 2, 0)νj(0, 2, 0)]

+
1

32
β2J2

±z

∑
〈ij〉

[νi(4, 0, 0)νj(0, 0, 2) + νi(2, 2, 0)νj(0, 0, 2) + νi(2, 0, 2)νj(2, 0, 0) + νi(2, 0, 2)νj(0, 2, 0)]

+β2
∑
〈ij〉

∑
〈jk〉

[
1

8
J2
± +

1

16
J2
±±(γijγ

∗
jk + γ∗ijγjk) +

1

32
J2
±z(γijγjk + γijγ

∗
jk + c.c)

]
+O(β3)


=2N · N

4

[
1− 3

2
βJ± +

3N

8
β2(

1

8
J2
zz + J2

± + J2
±± + J2

±z)−
1

16
β2J2

zz +
5

4
β2J2

± − β2J2
±± −

3

4
β2J2

±z +O(β3)

]
.

(B9)

One can similarly compute 〈
∑
m,n S

x
mS

x
n〉0 and arrive at the same expression as above. The cross terms 〈

∑
m,n S

x
mS

y
n〉0

turn out to be zero.
The magnetotropic coefficient k can be computed using its relationship with the partition function with non-zero

external field,

k =
1

N

∂2F

∂θ2
=

1

βN

[
1

Z2

(
∂Z

∂θ

)2

− 1

Z

∂2Z

∂θ2

]
. (B10)
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The first term always give higher order terms compared with the second term, while the latter reads,

∂2Z

∂θ2
=− βµ0µB

∑
i

〈g⊥ cos θ(cosϕSxi + sinϕSyi ) + g‖ sin θSzi 〉+ β2µ2
0µ

2
B

∑
i,j

〈g2⊥ sin2 θ cos2 ϕSxi S
x
j + g2⊥ sin2 θ sin2 ϕSyi S

y
j

+ g2‖ cos2 θSzi S
z
j − g⊥g‖ sin θ cos θ cosϕ(Szi S

x
j + Sxi S

z
j )− g⊥g‖ sin θ cos θ sinϕ(Szi S

y
j + Syi S

z
j )

+ g2⊥ sin2 θ sinϕ cosϕ(Sxi S
y
j + Syi S

x
j )〉+O(β3)

=µ2
0µ

2
Bβ

2 cos 2θ(g2‖ − g
2
⊥) +

3µ2
0µ

2
B

4
β3 cos 2θ(2g2⊥J± − g2‖Jzz)−

µ4
0µ

4
B

48
β4 cos 4θ(g2⊥ − g2‖)

2(3N − 2)

− µ2
0µ

2
B

192
β4 cos 2θ

{
3N(g2⊥ − g2‖)

[
4µ2

0µ
2
B(g2⊥ + g2‖) + 3(J2

zz + 8J2
± + 8J2

±± + 8J2
±z)
]

− 4
[
2µ2

0µ
2
B(g4⊥ − g4‖)− 6g2‖(−3J2

zz + 4J2
± + 4J2

±± + 8J2
±z) + 3g2⊥(J2

zz − 20J2
± + 16J2

±± + 12J2
±z)
]}

.

(B11)

The expression above reduces to, in the limit g⊥ = g‖,

∂2Z

∂θ2
∣∣
g⊥=g‖

= 2N · N
4
β3µ2

0µ
2
B cos 2θ

[
−12Jzz + 24J± + β(7J2

zz − 28J2
± + 8J2

±± − 4J2
±z)
]
. (B12)
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