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Abstract

Entanglement in a pure state of a many-body system can be characterized by the Rényi
entropies S(α) = ln tr(ρα)/(1− α) of the reduced density matrix ρ of a subsystem. These
entropies are, however, difficult to access experimentally and can typically be determined
for small systems only. Here we show that for free fermionic systems in a Gaussian state and
with particle number conservation, S(2) can be tightly bound—from above and below—by
the much easier accessible Rényi number entropy S(2)

N = − ln
∑

n p
2(n) which is a function

of the probability distribution p(n) of the total particle number in the considered subsystem
only. A dynamical growth in entanglement, in particular, is therefore always accompanied
by a growth—albeit logarithmically slower—of the number entropy. We illustrate this
relation by presenting numerical results for quenches in non-interacting one-dimensional
lattice models including disorder-free, Anderson-localized, and critical systems with off-
diagonal (bond) disorder.
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1 Introduction

The entanglement between two parts of a many-body system in a pure state can be charac-
terized by the Rényi entropies S(α) = ln tr(ρα)/(1− α). The von-Neumann entanglement
entropy is given by S = S(1) ≡ limα→1 S

(α) = −tr(ρ ln ρ). Their time evolution, for
example following a quantum quench, offers important insights into the dynamics of the
many-body system. In very small systems the reduced density matrix ρ can be obtained
from quantum-state tomography [1]. In larger systems the Rényi entropies are difficult to
access experimentally and rather involved techniques using e.g. multiple copies of a sys-
tem have to be invoked [2–6]. For systems with particle number conservation, the Rényi
entropies can be expressed as

S(α) =
1

1− α
ln

(∑
n

pα(n) trρ̃α(n)

)
= S

(α)
N + S

(α)
conf . (1)

Here ρ(n) is the block of the reduced density matrix with fixed particle number n and
p(n) = trρ(n) is the probability distribution of the particle number n in the partition.
ρ̃(n) = ρ(n)/trρ(n) is the corresponding normalized reduced density matrix. The Rényi
number entropy S

(α)
N = ln[

∑
n p

α(n)]/(1 − α) — also sometimes called the Rényi gen-
eralization of the Shannon entropy or classical Rényi entropy [7, 8] — is then the part
of the entanglement due to number fluctuations only (i.e., in a system where only one
configuration for each possible particle number n exists we would have S(α) = S

(α)
N )

and S
(α)
conf describes the additional entanglement due to the existence of several config-

urations for a given n. This configurational entropy takes the particularly simple form,
Sconf = −

∑
n p(n) tr[ρ(n) ln ρ(n)], in the limit α → 1 [9]. The corresponding number

entropy SN has been measured very recently in an experiment on a cold atomic gas [10].
The source of the number entropy are fluctuations induced by particle transport. Sconf , on
the other hand, is determined by the full microscopic counting statistics. SN is thus much
easier measurable in experiments and can also be accessed theoretically using conformal
field theory (CFT) [11–14].

Here we prove that for non-interacting fermions on a lattice where the particle number
is conserved, the second Rényi entropy can be bounded from above and below by the
second Rényi number entropy S(2)

N :

1

eπ
exp
(

2S
(2)
N

)
− 1

6
. S(2) .

ln 2

π
exp
(

2S
(2)
N

)
. (2)

The existence of strict upper and lower bounds for the entanglement entropy by the same
quantity S(2)

N has an important consequence: With this the size and time dependence of
the entanglement is directly linked to that of the number entropy. On the one hand, this
allows to measure entanglement through the experimentally much easier accessible number
entropy. On the other hand, a dynamical growth of entanglement in any non-interacting
fermion system implies that the number entropy grows as well, albeit logarithmically slower.
Vice versa, in a fully localized phase, where the fluctuations of the particle number of
a partition are expected to saturate, the number of accessible configurations and thus
entanglement can no longer increase either.

The relation between entanglement and number fluctuations in a partition of a many-
body system has a long history [15–20]. E.g. an exact asymptotic expression of the entan-
glement entropy in terms of number cumulants has been given in [15], and often the lowest
order term provides already a good approximation. Being an asymptotic expansion, con-
vergence is not guaranteed however. Furthermore any truncation of the expansion is neither
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a strict lower nor a strict upper bound. While strict bounds on the entanglement entropy
in terms of the number fluctuations can be given for non-interacting fermions, the bounds
in terms of the number entropy in Eq. (2) not only have a clear physical interpretation, we
also found numerical evidence that they carry over to the case of interacting particles [21].
This has important implications for phenomena such as many-body localization.

Our paper is organized as follows. In Sec. 2 we present the proof for the lower and upper
bounds in Eq. (2). In Sec. 3 we exemplify the usefulness of these bounds based on numeri-
cal data for the time evolution of the entropies after quantum quenches in one-dimensional
fermionic lattice models with and without disorder. This includes, in particular, the inter-
esting case of off-diagonal disorder (bond disorder), where the von Neumann entropy shows
a very slow ln ln t increase in time [22–25], while the number entropy scales as ln ln ln t.
Extensions to fermionic models with interactions will be discussed elsewhere [21].

2 Bounds on the Rényi entropy by the number entropy

In the following, we will establish a relation between the second Rényi entropy S(2) =
− ln tr(ρ2) of a quantum state ρ, which we will refer to as purity entropy, and the cor-
responding number entropy S(2)

N = − ln
∑

n p
2
n. Specificially, we consider models of non-

interacting fermions with particle number conservation.

2.1 Lower bound on the purity entropy

Since the number entropy does not account for the different configurations of particles in
the considered subsystem, a trivial lower bound for the purity entropy is given by

S(2) ≥ S(2)
N . (3)

This is, however, in most cases only a very weak bound. An alternative and often much
better lower bound can be obtained using the relation between S(2) and the particle number
fluctuations ∆n2 derived in [26]

4 ln(2)∆n2 ≥ S(2) ≥ 2∆n2. (4)

From the right hand side of Eq. (4) together with the modified version of Shannon’s in-
equality for discrete variables [27]

1

2
ln

[
2πe

(
∆n2 +

1

12

)]
≥ SN ≥ S(2)

N , (5)

we find the alternative lower bound for the purity entropy

S(2) ≥ 1

eπ
exp (2SN )− 1

6
≥ 1

eπ
exp

(
2S

(2)
N

)
− 1

6
. (6)

For S(2)
N > ln(eπ/6)/2 ≈ 0.18 this bound is positive and for S(2)

N & 1.25 it is a stricter
lower bound than the trivial relation (3).

2.2 Upper bound on the purity entropy

In order to derive an upper bound on the purity entropy we make use of the fact that the
quantum state ρ for a non-interacting fermionic system in any dimension is completely
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determined by its single-particle correlations and has a Gaussian form. This applies in
particular to all eigenstates of free-fermion Hamiltonians and to all time-evolved states
under such Hamiltonians if the initial state is Gaussian. Since we assume, furthermore,
total particle number conservation, ρ can be represented as [28–30]

ρ =
1

Z
exp

(
−
∑
mn

c†mCmncn

)
, (7)

where cm(c†m) are the fermionic annihilation (creation) operators at lattice site m. Here
C is a Hermitian matrix which is determined entirely by the matrix f of (normal) single-
particle correlations

fmn =
〈
c†mcn

〉
= tr

(
ρ c†mcn

)
=

[
1

1 + eC

]
mn

, (8)

and Z = tr
{

exp
(
−
∑

nm c
†
nCnmcm

)}
.

We will now show that the particle number fluctuations ∆n2 in a partition are bounded
from above by the Rényi number entropy S(2)

N . Making use again of relation (4) this will
then result in an upper bound on the purity entropy in terms of S(2)

N . To do so, it is
useful to introduce the moment generating function of the total particle number N̂ in the
partition [15]

χ(θ) ≡
〈
eiθN̂

〉
= tr

{
ρ eiθN̂

}
=
∑
n

p(n) einθ, (9)

whose Fourier coefficients are the probabilities p(n) to find n particles in the subsystem.
For Gaussian fermionic states, the generating function can be written as a determinant [31]

χ(θ) = det
[
1 + (eiθ − 1)

1

1 + eC

]
.

Making use of Parsevals theorem one then finds

∑
n

p2
n =

1

2π

∫ 2π

0
dθ
∣∣χ(θ)

∣∣2 =
1

2π

∫ 2π

0
dθ
∣∣∣det

[
1 + (eiθ − 1)

1

1 + eC

]∣∣∣2 (10)

=
1

2π

∫ 2π

0
dθ

det
(
1 + 2eC cos θ + e2C

)
det2 (1 + eC)

=
1

2π

∫ 2π

0
dθ det (1−G + G cos θ) .

In the last equation we introduced the matrix

G =
2eC

(1 + eC)
2 = 2 f(1− f) ≤ 1

2
1. (11)

We see that the argument in the last line of Eq. (10) is a positive-definite matrix. Thus we
can apply the arithmetic-geometric inequality to get an upper bound on det (1−G + G cos θ).
Denoting the lattice size as M we find

∑
n

p2
n ≤

1

2π

∫ 2π

0
dθ

[
1 +

(cos θ − 1)tr(G)

M

]M
→ 1

2π

∫ 2π

0
dθ exp

[
(cos θ − 1)tr(G)

]
, (12)

where the last step holds in the thermodynamic limit M → ∞. The integral can be
calculated elementary in terms of the modified Bessel function of the first kind I0(x)
resulting in
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∑
n

p2
n ≤ exp

(
−tr(G)

)
I0

(
tr(G)

)
. (13)

Furthermore, we see from Eq. (11) that the trace of the matrix G gives the fluctuations of
the total particle number

tr(G) = 2 tr
(
f(1− f)

)
= 2 ∆n2 . (14)

Combined with Eq. (13) we therefore find for the number entropy

S
(2)
N = − ln

∑
n

p2
n ≥ 2∆n2 − ln

(
I0

(
2∆n2

))
. (15)

Using the asymptotic expansion of the modified Bessel function in the limit of large ∆n2,
this expression can be simplified to

S
(2)
N ≥

1

2
ln
(
4π∆n2

)
. (16)

In the opposite limit of small ∆n2 the contribution of the modified Bessel function in
Eq. (15) can be neglected and we find instead

S
(2)
N ≥ 2∆n2. (17)

Now making use of the left hand side of the inequality in Eq. (4), we eventually arrive at
an upper bound on the purity entropy in terms of the Rényi number entropy. This bound
can be written explicitly in the two limiting cases of either small values of ∆n2

S(2) . (2 ln 2)S
(2)
N , (18)

or large values of ∆n2

S(2) .
ln 2

π
exp
(

2S
(2)
N

)
. (19)

Eqs. (18,19) and (6) are the main results of our paper. They show that the entanglement
quantified by the logarithm of the purity entropy S(2) is bounded both from below and
above by the number entropy. As a consequence, a growth of entanglement in free fermionic
systems is always accompanied by a logarithmically slower growth of the number entropy.

3 Time evolution of entropies in free fermionic systems

Next, we illustrate our results by considering one-dimensional tight-binding models of
non-interacting fermions. By applying a Jordan-Wigner transformation, these models can
alternatively also be seen as spin-1/2 XX chains. We discuss free fermions without disorder
in Sec. 3.1, with potential disorder leading to Anderson localization in Sec. 3.2, and with
bond (off-diagonal) disorder resulting in a critical system in Sec. 3.3.

The Hamiltonian for all these systems has the same structure

H = −
L−1∑
j=1

Jj(ĉ
†
j ĉj+1 + h.c.) +

L∑
j=1

Dj ĉ
†
j ĉj , (20)

with hopping amplitudes Jj , onsite potentials Dj , system size L, and open boundary
conditions. In the following, we always consider the Rényi and number entropies for a
partition of size l = L/2. We are interested in the time evolution of the entanglement
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entropies following a quantum quench starting from an initial state |Ψini〉 which is not an
eigenstate of the Hamiltonian (20).

We use exact diagonalization (ED) methods to obtain the eigenvalues of the reduced
density matrix ρ(t), see Eq. (7), which is calculated from the time-evolved state |Ψ(t)〉 =

e−iĤt |Ψini〉 following Refs. [28–30]. From the eigenvalues fm of the correlation matrix f
in Eq. (8), we can directly obtain all quantities of interest efficiently. This includes the
von-Neumann and purity entropies

S = −
∑
m

fm ln(fm)−
∑
m

(1− fm) ln(1− fm),

S(2) = −
∑
m

ln(1− 2fm(1− fm)),
(21)

as well as the number distribution which can be calculated from the corresponding char-
acteristic function

p(n) =
1

l + 1

l∑
k=0

exp

(
−i2πkn
l + 1

)
χ(k), χ(k) =

〈
ei 2πk
l+1

N̂
〉

=
∏
m

(
1 +

(
ei

2πk
l+1 − 1

)
fm

)
.

(22)

3.1 Free fermions without disorder

The case of fermions on a one-dimensional lattice has been studied extensively in the past,
both analytically using conformal field theory [32] as well as numerically, see e.g. Ref. [23].
The conformal field theory results show that the von-Neumann entropy as well as all Rényi
entropies increase linearly in time in the thermodynamic limit although with a slope which
is non-universal. Here we choose a density-wave state with a fermion on every second site,

|Ψini〉 =

l∏
j=1

ĉ†2j |0〉 , (23)

as initial state. Note, however, that the results are qualitatively the same for any generic
initial product state. The numerical results in Fig. 1(a) show that S(2)(t) increases linearly
in time until the particle-hole pairs created by the quench reach the boundaries of the
partition of size l = L/2. This happens for times t ∼ l/v ≈ l/2 [23, 32] where v ≈
2 is the velocity of the excitations. For times t > l/v boundary effects dominate the
dynamics and S(2) is oscillating around an average value which depends on the size of the
partition. Fig. 1(a) confirms that the lower and upper bounds obtained here are valid for
all times, including long times where boundary effects dominate. The upper bound (19),
in particular, is a very tight bound for all times in this case, see the inset of Fig. 1(a).

Based on the bounds and verified by the numerical results above we find that the
Rényi number entropy grows as S(2)

N (t) ∼ ln t for free fermions on a one-dimensional lattice
without disorder. This logarithmic growth can be understood as follows: Consider a quench
in a half-filled system where at long times each arrangement of particles has approximately
the same probability. Then for a system of size 2L we have L particles. If we cut the
system in two halfs of size L, the probability to find k particles in one half is given by

p(k, L) =

(
L
k

)(
L

L−k
)(

2L
L

) . (24)

For 1� k < L we can approximate this distribution by a normal distribution
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Figure 1: (a) S(2)(t) for a quench from the initial state (23) using the Hamiltonian (20)
with Jj = 1, Dj = 0, and system size L = 1024. The purity entropy S(2) grows linearly
until it reaches its maximum at t ≈ l/v. The upper bound (ub), Eq. (19), and the two
lower bounds from Eq. (6), (lb-1) exp(2SN )/(eπ)−1/6, and (lb-2) exp

(
2S

(2)
N

)
/(eπ)−1/6,

encapsule S(2). Note that the upper bound is tight, see inset. (b) Rényi number entropies
S

(α)
N (t) for 20 Gaussian waves who are initially spaced at equal distances and whose width

increases linearly in time, see Eq. (29), for ν = 1. We find S(α)
N (t) = const + 1

2 ln t. The
saturation at long times is a finite-size effect.

p̃(k, L) =
2√
Lπ

exp

[
− 4

L

(
k − L

2

)2
]
. (25)

We can now obtain the Rényi number entropies by integrating over the continuous distri-
bution

S
(α)
N (L) ≈ 1

1− α
ln

(∫ ∞
−∞

dk p̃α(k, L)

)
= ln

[ √
π

2α1/(2−2α)

]
+

1

2
lnL . (26)

The von-Neumann number entropy can be obtained by

SN (L) = lim
α→1

S
(α)
N (L) ≈ 1

2

(
1 + ln

[
Lπ

4

])
. (27)

If we now consider excitations which spread ballistically ∼ vt then we have regions of
size 2L ∼ vt in which each arrangement of particles has approximately equal probability.
Putting this into the results for the number entropy and the Rényi number entropies we
obtain the final result

S
(α)
N (t) = const +

1

2
ln t (28)

which includes the von-Neumann case (α→ 1). Note that the constants do depend on the
microscopic details of the model but are monotonically decreasing with α, see Eq. (26).
Thus we conclude that all Rényi number entropies behave the same qualitatively and
S

(α)
N > S

(α+1)
N .

An alternative perspective to understand the logarithmic spreading—more closely re-
lated to the numerical simulations— can be obtained by considering Gaussian waves

|Ψi(x, t)|2 =
1√

4πνt2
exp

(
−(x− xi)2

4νt2

)
(29)

7



SciPost Physics Submission

with initial positions xi spread evenly along a line. Here ν is a constant and the width of
the Gaussian wave is increasing linearly in time. The probability to find the particle i at
x > 0 is then given by

P (xi, t) =

∫ ∞
0
|Ψi(x, t)|2 =

1

2

(
1 + erf

(
xi

2
√
νt2

))
. (30)

If we have N particles in total then the probability to find k at x > 0 is

p(k, t) =
∑

ni∈{0,1}

′ N∏
i=1

[P (xi, t)]
ni [1− P (xi, t)]

1−ni (31)

The sum
∑′ is over all permutations of the {ni} and has to be evaluated with the constraint∑N

i=1 ni = k. It can be directly evaluated if N is not too large. Results for N = 20 particles
are shown in Fig. 1 (b) and confirm Eq. (28).

3.2 Anderson Localization

Static potential disorder in an isolated quantum system of non-interacting particles can
induce Anderson localization (AL), defined as the absence of particle diffusion [33]. For
one and two dimensions, Anderson localization occurs for any strength of disorder D [34].
For a one-dimensional system we can extract the localization length ξ in dependence of
energy ε and disorder strength D using a transfer matrix approach as described in [35]. If
we quench a one-dimensional system with potential disorder we thus expect that for times
t� ξ/v both the number and configurational entropies will stop increasing.

To study the Anderson case numerically, we set the hopping in Eq. (20) uniformly to
Jj = 1 and draw random values for the potential from a box distributionDj ∈ [−D/2, D/2].
We now quench the system from initial random product states at half filling

|Ψini〉 =
L∏
j=1

ηj ĉ
†
j |0〉 , (32)

where ηj ∈ {0, 1} are random, and half-filling is imposed by requiring
∑

j ηj = L/2. The
random product state will on average yield a state with energy ε = 0 and we consider both
a weakly disordered case, D = 2, and a strongly disordered case, D = 20. Since we consider
systems large compared to the localization length we do not expect a qualitative difference
in the time dependence of the purity entropies in the two cases: there will be an increase
of entropy in time until a constant value is reached that does depend on the localization
length ξ but is independent of system size L if L� ξ. Our numerical simulations, shown
in Fig. 2(a-b), verify this behavior. Furthermore, they also verify the lower and upper
bounds in terms of the number entropy. Plotted are the average Renyi entropy S(2) as well
as the lower and upper bounds proportional to the averaged exponential of the number
entropy exp{2S(2)

N }. It should be noted, however, that the bounds hold for every individual
disorder realization. We note, furthermore, that S(2) is bounded quite tightly from below
by S(2)

N for small values of S(2), see Fig. 2(b). Here the trivial lower bound, Eq. (3), is
the better bound since both the purity entropy and the corresponding number entropy are
quite small in the localized regime.

3.3 Bond disorder

As the third example, we consider the Hamiltonian (20) with bond or off-diagonal disorder,
where the hopping amplitudes are drawn from a box disorder distribution, P (J) = const

8
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Figure 2: (a-b) S(2)(t) for potential disorder after a quench starting from the half-filled
random product state (32) averaged over 2000 disorder realizations and initial states. While
all bounds hold for individual disorder realizations, we have plotted disorder averages, i.e.

S(2) and exp
(

2S
(2)
N

)
. (a) In the weakly disordered case D = 2 for L = 512 sites, the

upper bound (ub), (ln 2/π)exp
(

2S
(2)
N

)
is quite tight for the regime in which S(2)(t) grows.

The lower bound (lb) shown is exp(2SN )/(eπ) − 1/6. (b) For strong disorder, D = 20

and L = 128 sites, the entanglement remains very small and Eq. (18), 2ln(2)S
(2)
N , is the

better upper bound (ub). For the same reason S
(2)
N (lb) is a better lower bound. (c)

S(2)(t) for bond disorder after a quench starting from the half-filled random product state
(32) for L = 1024 sites, averaged over 20000 disorder realizations and initial states. (ub)

corresponds to (ln 2/π) exp
(

2S
(2)
N

)
, (lb-1) to the maximum of S(2)

N and exp(2SN )/(πe)−1/6

and (lb-2) to exp(2SN )/(πe)−1/6. We confirm that S(2) ∼ ln ln t. At long times, S(2) and
the upper bound (ub) (19) based on the number entropy only differ by a constant shift.
The grey dotted line signals the point in time where double precision is no longer sufficient
to obtain reliable results, see also Ref. [23].

with Jj ∈ (0, 1]. It is known that this system in the thermodynamic limit is at an infinite
randomness fixed point [36–39]. The mean localization length scales as ξloc(ε) ∼ | ln(ε)|Ψ
with Ψ = 1/2 being the critical exponent. The system therefore shows a localization-
delocalization transition as a function of energy for ε→ 0. The entanglement dynamics of
this model has been investigated previously in Ref. [23] and of the related transverse Ising
chain in Ref. [22].

Starting from the random half-filled state in Eq. (32) we show in Fig. 2(c) converged re-
sults for the time evolution of S(2)(t) obtained from exact diagonalizations of a system with
L = 1024 lattice sites over very long times. One notices an extremely slow, but monotonic
double-logarithmic increase of S(2) in time consistent with the results in Ref. [23]. The
data provide, furthermore, verification of the upper and lower bounds for S(2) in terms of
the number entropy derived in Sec. 2. We conclude that in the critical bond disordered case
the number entropy in the thermodynamic limit also grows without bounds but extremely
slowly, S(2)

N ∼ ln ln ln t.
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4 Conclusions

In this paper we have considered the entanglement properties of Gaussian states of non-
interacting fermions with particle number conservation. We have proven that for any
such system—with and without disorder, on arbitrary lattice geometries, and in arbitrary
dimensions—the second Rényi entanglement entropy S(2) can be bounded from above and
below by the corresponding number entropy S(2)

N . Our result implies an asymptotic scaling
S(2) ∝ exp

(
S

(2)
N

)
, i.e., a growth of the entanglement entropy always implies a growth,

albeit logarithmically slower, of the number entropy and vice versa. While the precise
upper and lower bounds have been derived for S(2), all Rényi entropies are expected to
show the same asymptotic scaling with time or length. The connection between a growth
in the entanglement entropy and a logarithmic slower growth in the corresponding number
entropy is thus expected to hold for all Rényi entanglement entropies including the von-
Neumann entanglement entropy.

Apart from being of fundamental importance for our understanding of entanglement
in fermionic systems with particle number conservation, the bounds derived here are also
useful for experiments on cold atomic gases. In such systems a measurement of the particle-
number distribution function p(n, t) is possible [10] allowing to obtain any Rényi number
entropy. Determining the entire configurational entropy and thus the full entanglement
entropy experimentally, on the other hand, remains an open issue. Here our results provide
an avenue to obtain the asymptotic scaling of the entanglement entropy from p(n, t) alone.

The strict bounds for the entanglement in terms of the number entropy are not only
physically instructive. We have found numerical evidence that similar relations between en-
tanglement and number entropies also exist for interacting fermionic systems with particle
number conservation, with important implications for phenomena resulting from the inter-
play between disorder and interactions such as many-body localization. These questions
are studied in a recent preprint [21].
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