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Unlike the R* and V4R?* couplings, whose coefficients are Langlands-Eisenstein series
of the U-duality group, the coefficient 555}1) of the VOR? interaction in the low-energy
effective action of type II strings compactified on a torus 7% belongs to a more general
class of automorphic functions, which satisfy Poisson rather than Laplace-type equa-
tions. In earlier work [1], it was proposed that the exact coefficient is given by a two-loop
integral in exceptional field theory, with the full spectrum of mutually 1/2-BPS states
running in the loops, up to the addition of a particular Langlands—FEisenstein series.
Here we compute the weak coupling and large radius expansions of these automorphic
functions for any d. We find perfect agreement with perturbative string theory up
to genus three, along with non-perturbative corrections which have the expected form
for 1/8-BPS instantons and bound states of 1/2-BPS instantons and anti-instantons.
The additional Langlands—Eisenstein series arises from a subtle cancellation between
the two-loop amplitude with 1/4-BPS states running in the loops, and the three-loop
amplitude with mutually 1/2-BPS states in the loops. For d = 4, the result is shown to
coincide with an alternative proposal [2] in terms of a covariantised genus-two string am-
plitude, due to interesting identities between the Kawazumi-Zhang invariant of genus-
two curves and its tropical limit, and between double lattice sums for the particle and
string multiplets, which may be of independent mathematical interest.
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1 Introduction and summary

The scattering of massless excitations of type II superstrings compactified on a torus 7¢ is de-
scribed at low energy by maximally supersymmetric supergravity in dimension D = 10 —d. The
effective action consists of the classical supersymmetric two-derivative action plus an infinite
tower of cut-off dependent higher derivative interactions, which conspire to ensure ultraviolet
finiteness. The coefficients of these interactions are strongly constrained by non-perturbative du-
alities [3,4], which tie together perturbative and non-perturbative (instanton and anti-instanton)
contributions. Combined with supersymmetry, duality invariance sometimes allows determining
the exact coefficient of these interactions in terms of automorphic functions under the U-duality
group. Such results offer an invaluable window into the non-perturbative regime of string the-
ory, including the full spectrum of D-branes, membranes or supersymmetric black holes, despite
the absence of a first principle, non-perturbative formulation of string theory or of its eleven-
dimensional parent.

This programme has been pursued most extensively for four-graviton scattering, generalising
the celebrated lowest order result [5] in ten-dimensional type IIB string theory to lower dimension
D = 10 — d and to higher orders in the derivative expansion. Schematically, these effective
interactions take the form 5((;7)q)(¢) VA4PH6aRA where p and ¢ denote powers of the Mandelstam
invariants o9 = s +t2 4+ u? and o3 = s> 4+ t3 +u? of the external momenta in the corresponding
amplitude and R* denotes the fourth order polynomial tgtgR* in the Riemann tensor that
generalises the square of the Bel-Robinson tensor in D dimensions [6,7]. The coordinates ¢ on

the classical moduli space Mp = E411/K441 include the constant metric and gauge potentials

on T% as well as the string coupling constant g,. At weak coupling g, — 0, 8((;)(1) admits an
asymptotic expansion of the form
@ @ 2d+8p+12¢—4 X ool () o) o) )
,n.an. d—8 — , — —
Ery =Ep + 9o ZQD ELM L O(e72m/90) 4 O(e72/9B) (1.1)
h=0

where Efz’:)) arises at genus h in the perturbative string expansion, while the last two terms
originate from Euclidean D-branes and NS-branes wrapped on 7. The term Eéi)éfl'an' is a non-



analytic function of the string coupling g,, which arises in the process of translating from string
frame to Einstein frame [8]. U-duality requires that 8((;{)(1) should be automorphic, i.e. invariant
under the left-action of an arithmetic subgroup F;,1(Z) C E441 on Mp, while supersymmetry
imposes further differential constraints when 4p + 6g < 8 (the so-called F-terms) [9-15].

At leading and subleading order, the coefficients 5((&)0), Sfld,)o) are known exactly in all dimen-

sions D > 3, in terms of a special type of automorphic functions known as Langlands—Eisenstein
series [16—-23]:

E E
Eowy =, 4mE(d = 2) B3 Eloy =, 8mE(d = 3) €(d — 4) B Y (1.2)

2N > BN
dZ1

where Eﬁk is the (regularised) Langlands—Eisenstein series associated to the maximal parabolic
subgroup P, C G, in Langlands’ normalisation (in particular, E(?Ak = 1), and we denote by

£(s) = 7/2I'(5/2)¢(s) the completed Riemann zeta function. Here and elsewhere in this work,
we denote by A, the & fundamental weight of the algebra g according to Bourbaki’s labelling’,
and Py the associated maximal parabolic subgroup. We recall (see e.g. [24]) that maximal
parabolic Langlands—Eisenstein series are defined for Re(s) large enough as the Poincaré sum of
the canonical multiplicative character y;, of Pj,”

1 /
G _ —2s| _ —s
DV R P CL )
YEPL(Z)\G(Z) Qe My
Ox Q=0

and admit a meromorphic continuation to the full complex s-plane. As exhibited in (1.3),
they can be written as a constrained sum over the lattice M,i transforming in the irreducible
representation R(Ay) of highest weight Ag,® of the K(G) invariant bilinear form G(Q, Q) raised
to the power minus s. For M f;fl ' and Mff“, the constrained lattice sum can be interpreted as a
sum over 1/2-BPS states in string theory, that correspond respectively to particles and strings
in R~ with BPS mass Mgps(Q) = G(Q, Q)% [26], see Table 1.

The coefficients (1.2) satisfy tensorial homogeneous differential equations on M p, reflecting
the fact that they are only sensitive to 1/2- and 1/4-BPS instantons, respectively [12,13]. This
implies that they are related to unipotent automorphic representations attached to the minimal
and next-to-minimal nilpotent orbit, respectively. Supersymmetry Ward identities and U-duality

determine uniquely the function 5;& )0) in (1.2) for d > 3 and 5((?,)0) for d > 5, up to an overall

! Note that in formulae which are valid for all d such as (1.2), we use the labelling associated to E441 which
differs from the standard labelling for d < 4 — for example the Es labelling is { 134 2 } whereas the Ds labelling

is{123 %

2Here and elsewhere in the paper we denote by Zﬁ/ f(z)|y the Poincaré sum over coset elements v acting on
the seed function f by f(z)|y = f(v - z), where the action of v on z is defined by the right action on the group
element g(x) as g(z)y. A more precise definition of the y; will be given in Section 2.1.

3The constraint can be written in general as [25, (6.17)]

Qi X Q5 = kapT*Qi@T Q5 + (1 — (A4, Ap)Qi®Q; —Q;®Q; =0,

with kqp the Killing Cartan form and T the generators of the algebra g. The constraint selects those charges
Q € R(Ax) whose symmetric square lies in R(2Ax). In practice, the projection of this constraint on the largest
irreducible submodule is usually sufficient to enforce Q x Q = 0.



D d Gp=Ei M) My MG
10B 0 SL(2) 0 2 0

9 1 GL(2) 209 1@ 20 0

8 2 SL(3)xSL(2) (3,2) (3,1) 0

73 SL(5) 10 5 0

6 4  Spin(5,5) 16 10 1

5 5 Eg6) 27 27 27

4 6 Bz 56 133 1539

307 Egs) 248 3875 2450240

Table 1: U-duality group, particle multiplet (Agzy1) and string multiplet (A;); the constraints
on the particle and string multiplets are in A; and Ag, respectively.

coefficient. Using functional relations for Langlands—Eisenstein series, they can then be written
alternatively as

@ Eqi1 d Egi1
g(o,o) d§3 2((3)E%A1 > 5(1,0) d§5 (5)ESA1 . (1-4)

Remarkably, for d = 1 in the small volume limit (or equivalently, for type IIB strings in
D = 10) these couplings can also be computed in eleven-dimensional supergravity compactified
on T? at one-loop and two-loop, respectively [27,28]. For d > 2 or for d = 1 at finite volume,
membrane and five-brane degrees of freedom become important, and can be incorporated using
the framework of exceptional field theory in dimension D = 10 — d [29]. In this formalism,
all 1/2-BPS charges in the ‘particle multiplet’ lattice Mfd":l] are allowed to propagate in the
loops. At one-loop, this leads to a ‘constrained lattice sum’ which reproduces the Langlands—
Eisenstein series 5((5 >0) in (1.2) [1], while at two-loops it leads to a ‘double constrained lattice
sum’ which again reproduces the Langlands-Eisenstein series £({%, in (1.2) [1]. Note that the
one-loop amplitude in exceptional field theory also produces a divergent contribution to the
V4R? coupling, but this is cancelled by a one-loop amplitude with 1/4-BPS states running in
the loop [30].

At next-to-next-to-leading order, the coefficient 5(((‘)17)1) of the VOR? coupling is less well un-

derstood. It satisfies a set of inhomogeneous differential equations, the simplest one being the
Poisson equation [31,22,2]

(AEd+1 - W) g(((()i,)n = - (5(((?,)0))2 +40 C<3) (Sd,4 + 532 5’((()5,)0) 5d,5 + % g((i)o) 5d,6 ) (1.5)
where Ap,  is the Laplace-Beltrami operator for the Ey;i-invariant metric on Mp, and the
right-hand side involves the square of the R* coupling, plus anomalous terms when ultraviolet
logarithmic divergences appear in supergravity. As a result, the weak coupling expansion in-
cludes perturbative contributions up to genus three, 1/8-BPS instantons as well as bound states
of 1/2-BPS instantons and anti-instantons. The exact VOR* coupling in ten-dimensional type
IIB string theory was obtained from a two-loop computation in eleven-dimensional supergrav-
ity compactified on a torus T2 in [31] and further analysed using the differential equation (1.5)
in [32]. The same coupling in D = 9 and D = 8 was obtained using similar methods in [33,22,34],
albeit in a rather implicit way.



An explicit proposal for the VOR?* coupling in D = 6 was given in [2], by upgrading the
genus-two string theory contribution [35,36] to an invariant function under the U-duality group
Spin(5,5,7),*

160 16¢(8
EY, = 8TR.N. / o3 U5.5.2(Q ) oxa(Q) + 1?3(9)

EDs (1.6)
7 |2 4

Here F3 is the standard fundamental domain of the action of the modular group Sp(4,Z) on the
Siegel upper-half plane and I'g 4 (€2, ¢) is the genus-h Siegel-Narain theta series for the even
self-dual lattice II 4 of signature (d, d) given by

Laan(@) = Qa5 7% Glasag)—mi9 (aiay) (1.7)

qi€llyq

where i runs from 1 to h, QY = Qilj + iﬂéj is a symmetric h X h matrix with positive imagi-
nary part. Furthermore, G is the symmetric SO(d, d) matrix parametrising the moduli space
SO(d,d)/(SO(d) x SO(d)), ¢xz(f) is the Kawazumi-Zhang invariant [37,38] for the genus-two
curve with period matrix 2 and R.N. is a particular regularisation prescription for genus-two
modular integrals introduced in [39,40]. The ansatz (1.6) automatically satisfies the differential
constraint (1.5) and reproduces the known perturbative contributions up to genus three [2].
Moreover, its decompactification predicts the full SL(5, Z)-invariant VoR* coupling in D = 7,

A7 B < AL M. 57¢(7) sL(5
£ :/ —r QY G(M:M;) tr () L)
©0 8 sy 10,2 2« Prz($) + =50 By, (1.8)

M;eM

where G is the 5 x 5 unit-determinant positive definite symmetric matrix parametrising the
moduli space SL(5)/SO(5) in D = 7, the sum runs over pairs of non-zero vectors (M, M>) in
the lattice M AAf =~ 75, and the integral runs over the ‘positive Schwinger space’

L1+ L3 Lj
=< = Ly, Lo, L . 1.
St { 2 ( L Ly +L3) ‘ 1,Lo, L3 € ]R+} (1.9)

Finally, pif,(£22) is the supergravity (a.k.a tropical [41]) limit of the Kawazumi-Zhang invariant,
as computed in [36, §3.2]

@%Z(QQ) = lim )\_1 SOKZ(Ql + 1)\92) = % <L1 + Lo+ Lg —

A——+ioco

5L1L2L3)

1.10
det Q2 ( )

The result (1.8) has a structure similar to the two-loop supergravity amplitude studied in [28,31],
but the summation variables M; transform as doublets of vectors of SL(5), corresponding to the
multiplet of string charges in D = 7, while the multiplet of particle charges in D = 7 as a 10 of
SL(5).

“We define the regularised Eisenstein series ES\R as the O(e%) term in the Laurent expansion of E((’: +on, at
€ = 0, whenever Eg+€)Ak has a pole at that point.



Coming back to the exceptional field theory approach [1], the one-loop contribution to the
VORA coupling in exceptional field theory gives®

8t E
(d _ 27 d+1
Fon = peréd+H iy - (1.11)
while the two-loop contribution is
o AT a3, ! (DT

s = [ S Y O g, (112

S+ |Q2] 2 Ty Toe i

FiXFj:(%“

where gp%z (Q2) now arises from the Symanzik polynomial of the two-loop supergravity amplitude
[42], as shown in [28]. G is the symmetric bilinear form on the representation of highest weight
Ag411, depending on the moduli in M p. The sum runs over pairs 'y, I's of non-vanishing vectors
in the particle multiplet lattice M fﬁf, corresponding to the charges running in the two loops,
subject to the 1/2-BPS conditions I'; xI'; = 0 for 4, j = 1,2, where I'; xI'; denotes the projection
of the tensor product on the representation of highest weight Aj, see footnote 3.

These two functions are associated to two distinct VOR*-type supersymmetry invariants for
1 <d <6 (and d = 0 type IIA) [14]. In particular it was shown in [1] that (1.11) satisfies
not only the differential equation (1.5) for all d < 6, but also the more constraining tensorial
equation (2.10) for d = 4,5, 6, using differential properties of ff, and the lattice sum. This led
to the proposal that the total non-perturbative VOR* coupling should be given by the sum of
these two contributions [1]

Eom =Eon "+ Fiow - (1.13)

One main aim of this work will be to check that this proposal does indeed produce the correct
weak coupling and large radius expansions, and that it agrees with the proposal (1.6) and (1.8)
in D =6 and D = 7. Before addressing these expansions, a major task will be to provide a
proper definition of the integral (1.12), which is otherwise divergent.

Specifically, in this work we shall

1. give a mathematically precise definition of the formal integral (1.12) via dimensional reg-
ularisation;

2. demonstrate that (1.13) (suitably renormalised, cf. point 6 below) coincides with (1.6) for
D = 6, thanks to remarkable properties of double theta series associated to the particle
and string multiplet (Section 2) and of the Kawazumi-Zhang invariant and its tropical
limit (Section A);

3. generalise the string multiplet proposal (1.6) to other dimensions D > 3 and show that it
formally® agrees with (1.12);

® For d = 0 and d = 7, there is a single V®R* invariant and F(([‘)i’)l) vanishes. For d = 1,2, Fé(‘f))l) are given in
(F.4), (F.8), respectively. For d = 3,4, ]-'(((i)l) coincides with the second term in (1.8) and (1.6), respectively. The
function (1.11) is divergent at the given value of the parameter [1] and we consider instead its regularised version
defined in (1.30).

5To keep the length of this work within reasonable bounds, we refrain from describing the regularisation of
the string multiplet formula in arbitrary dimensions.



4. extract the weak coupling expansion of (1.13) for D > 4 (Section 3.2) and show agreement
with the perturbative corrections in string theory (Section 5.2);

5. extract the large radius limit of (1.13), reproducing the corresponding term in dimension
D + 1 along with the expected threshold contributions (Sections 5.3, and 5.4);

6. obtain the complete Fourier expansions relative to the weak coupling and large radius limit
for D > 5 (and part of it for D > 3), including instanton-anti-instanton contributions and
the 1/8-BPS instanton measure for generic Fourier coefficients in D = 4 and D = 3
(Sections 3.3 and E.2) ;

7. analyse the two-loop amplitude with 1/4-BPS states running in one of the two loops, and
show that it cancels the divergence of the two-loop amplitude in exceptional field theory,
such that the total amplitude including both 1/2-BPS and 1/4-BPS states up to three
loops is finite and gives the exact string theory coupling (Section 5.1)

The upshot of this analysis is that the appropriately renormalised form of (1.13) reproduces
the expected perturbative amplitude in string theory, up to non-perturbative corrections that
have yet not been computed from first principles but take the expected form of D-instanton
corrections. Using similar methods, one could in principle also extract the constant terms with
respect to the other maximal parabolic subgroups, e.g. the one relevant to the limit where the
M-theory torus T%*! decompactifies keeping its shape fixed, and hence characterise the behavior
at all cusps. Assuming that these constant terms also agree with predictions from M-theory,
one may then apply the the conjecture that the relevant U-duality groups do not admit cuspidal
automorphic representations attached to suitably small nilpotent orbits [43,44] to conclude that
(1.13), suitably renormalised, is indeed the full exact coupling in any dimension D > 4.

In the remainder of this introduction, we summarise our main results in view of the points
above, leaving details of the derivation to the body of the paper.

Double lattice sums and regularised integrals

As stressed before, the integral (1.12) is divergent and requires regularisation. In analogy with
dimensional regularisation in QFT, it is natural to replace d — d + 2¢ in the exponent of
|Q2], and define the integral as the value at e = 0 after analytic continuation from the region
Re(€) > 0 where the integral converges. However, we expect the analytic continuation to have
a pole at € = 0 when d = 4, 5,6, which thus needs to be subtracted appropriately. In addition,
we expect that the exact VOR?* coupling also includes the three-loop contribution in exceptional
field theory as well as contributions from 1/4-BPS states that play the role of counterterms in
exceptional field theory [30]. As we show in Section 5.1, the one-loop contribution to VOR?* in
exceptional field theory is in fact cancelled by a one-loop diagram with 1/4-BPS states running
in the loop, just as in the case of V4R?, but the same contribution .7-'{5 )1) reappears at three
loops [30], as we shall review later.

For the purpose of discussing this regularisation, it will be useful to decompose the period
matrix of the two-loop graph as in [28,31,45],

L1+ L3 Ls 1 1 T1
Qy = = — , 1.14
2 < Ls Lo+ L3> ™V \T1 |7"2 ( )



such that 7 = 7 4 iy runs over six copies of the standard fundamental domain F = {7 €
Hi, || > 1,0 < 71 < 1} for the action of PGL(2,Z) on the upper half plane H;, and set
it () = %|Qg|1/ 2 A(7) where A(7) is the modular function defined in the fundamendal domain
F by

A(r) = |72 =1 +1 +57'1(7'1—1)(\7'|2—7'1) ’ (1.15)

T2 7'23

and elsewhere by enforcing PGL(2,7). This function belongs to the class of local modular
functions, which appear at all orders in the derivative expansion of the two-loop supergravity
amplitudes [45] (see [46] for the relation to genus-two string integrands). Rewriting the measure
d3Qs/|2]3 = 2V2dVdrdry /73, the integral over V € RT can be performed easily, leading to a
modular integral over F,

872 I'(d—2) [ drdr ' 2 H
(@),BxFT _ OT A 1.1
©,1) 3 qd2 /]E 72 () Z G(I'y + 702, T + 71) (19

Iy, EMfd”:
Fi XF]' =0

The divergence of the integral (1.12) at V' — oo is reflected in the non-convergence of the double
lattice sum in (1.16). We shall regularise the latter divergence by dimensional regularisation,
i.e. by replacing d — d + 2¢ in the exponent of |{23] appearing in the denominator of (1.12), or
equivalently in the exponent of the summand in (1.16). It is indeed apparent in (1.16) that the
sum will be absolutely convergent for Re (¢) large enough. In order to regulate divergences due
to collinear charges, i.e. pairs of charges such that I'; AT'; = 0, we further introduce a cut-off”
T9 < L on the domain F in the coordinates (1.14), and consider the integral

d3Q . .
Ti(d.c, L) = 8 / e, (92) 65 (6,0), (1.17)
RExF(L) Qo] 2

where ¢ parametrises the moduli space Fg.1/Kqy1 and F(L) = FN{m < L}. Here, Gf:“
for k = 1,...d 4+ 1 denotes the ‘double theta series’ for the lattice Miﬁ”l transforming in the
representation with highest weight Ay,

!/

Hf:+l(¢, 0y) = Z e~ ™25 G(Qi,Q5) (1.18)

Qi eMH

QixQ;=0
The integral (1.17) is absolutely convergent for Ree sufficiently large. We shall argue that it
admits an analytic continuation to a meromorphic function of ¢ € C, by relying on similar
analytic properties of the Langlands—Eisenstein series which arise in its constant terms and of
the functions appearing in its Fourier coefficients. The renormalised value will be defined as the
value at € = 0, after subtracting a specific Eisenstein series canceling the poles that occur when

d=4,5,6 [47].

These poles can be interpreted physically as ultraviolet divergences of the two-loop amplitude
in exceptional field theory; they should cancel in the full theory in which all states are allowed

"The cut-off L plays the same role as the infrared cut-off y ~ 1/+/L introduced in [1,30].



to propagate in the loops. Indeed, we shall show that the sum of the contributions of 1/2-BPS
states (given by the above integral (1.16)) and 1/4-BPS states (which we compute separately in
Section 5.1) gives a finite answer. It will also become clear that the 1/4-BPS states’ contribution
is needed to restore supersymmetry Ward identities for d = 5. The remaining L-dependent terms
corresponds to infrared effects from the exchange of massless particles, which must cancel against
non-local terms in the 1PI effective action. The apparent ambiguity in the regularisation drops
out in the complete four-graviton amplitude. Since we shall not compute the full non-local
amplitude, we shall not keep track of the cutoff-dependent terms in the effective coupling 5(0 1

It would be interesting to fix these finite terms by analysing the full genus-two string amplitude.

Performing the integral (1.17) over V' leads to the modular integral

872 dridm

3 .7-—(L) 7'22

Za(¢y€, L) =

A(T) BN (1, ¢,d — 2 + 2¢) (1.19)

where the ‘double Epstein series’ Ef}j“ is defined for any k = 1,...,d+ 1 and Re (r) sufficiently

large® by
E F(?") ! ) "
- d+l T - . 1.20
(¢ )= " ZL [G(91+TQ2,Q1+T92) ( )
QieMA:H
Q;xQ;=0

Although we only analyse in detail the case ¥ = d + 1 in this paper, it should be possible
to use similar methods to show that = ”’“((ﬁ, T,r) can generally be analytically continued to a
meromorphic function of r € C for any fundamental weight A;. We will use these Epstein series
outside the domain of convergence, with the understanding that they are defined by analytic
continuation.

Equivalence of particle and string multiplet formulae

The proof of the equivalence of the exceptional field theory computation (1.13) and the covari-
antised string theory answer (1.6) rests on two main claims. The first is a remarkable property
of the Kawazumi-Zhang invariant pkyz, namely that it coincides with the Poincaré series seeded
by its tropical limit

pxa(Q) = lim > (19l elta(2)) | | - (1.21)
ve(GL(2,Z)xZ3)\Sp(4,Z.)

where the limit ¢ — 0 is to be taken after analytic continuation from the region Ree > %

where the sum converges. Using the theta lift representation of ¢z established in [48], we trace
the relation (1.21) to a similar property (Eq. (A.16) of Appendix A) relating genus-one Siegel—

Narain theta series for lattices of signature (3,2) and (2, 1). Inserting (1.21) inside the genus-two

fp] d+1

8For the particle multiplet ¥ = d + 1, we shall argue that “Ad (7, ¢,7) converges for Rer > 4,6,9, —9 for

d=4,5,6,7, respectively; for the string multiplet k£ = 1, that = d“ (1,¢,7") converges for Rer’ > 4,6, 127, 22—3



modular integral in (1.6) and unfolding the integration domain, one immediately arrives at

!/

dGQ 47 dsﬁg _ O L O. r
8r R.N. /}_ w F575’2 VK7 = ?RN /S ’92’1/2 Z e ™25 G(Qi,Q;)) @%Z(Qg) , (122)
? + Q1,0:€M,”

(Qi,9;)=0

where Q; runs over pairs of vectors in the even self-dual lattice M/]le = [I5 5 of SO(5,5), which
are null and mutually orthogonal.

In order to match (1.22) with (1.12) for D = 6, which involves a sum over pairs of spinors
under Spin(5,5), we invoke the special case d = 4 of a second remarkable property, namely

(d - 2) z’: ™ @) z’: 7 ’
=2 . LGy + T2, Ty +7T2)]  dz3 73 . LG(Q1+7Q0, Q1 +7Q2)
FhFZGMA:‘T QhQQEMAIM
T; xT;=0 QixQ;=0
(1.23)

where I'; runs over pairs of vectors in the particle multiplet (the spinor for D = 6), while Q; runs
over pairs of vectors in the string multiplet (the vector for D = 6). Asin (1.12), I'; x I'; denotes
the projection of the product on the representation of highest weight Ay, while Q; x Q; denotes
the projection of the product on the representation of highest weight Ag, which is trivial for d < 4
and understood as a singlet for d = 4 (see the last column in Table 1). While both sides of (1.23)
are in general divergent, the identity should be understood as a statement about the analytic
continuation of the sums Ef;‘;l(qb, 7,7) and Eff“ (¢, 7,7") defined in (1.20) as (r,r") — (d—2,3).
We do not expect that a similar relation holds for generic values of (r,7'). When the analytic
continuations happen to have a pole at the required value (r,7') — (d — 2,3), we shall argue
that the equality (1.23) still holds for appropriately renormalised expressions.

In order to justify this claim, we shall show in Section 2 that the integral of both sides
of (1.23) against SL(2,7Z) Eisenstein series and cusp forms agree, thanks to Langlands’ functional
equation for Eisenstein series of Ez,1. This can be viewed as a spectral justification of the
claim (1.23). Identities similar to (1.23) for double lattice sums associated to vector and spinor
representations of orthogonal groups are also established using similar methods in Section 2.8.

Formally inserting (1.23) into (1.22) and restoring the integral over V', we obtain the first
term in (1.13), hinting at the equivalence of the two proposals for D = 6. This equivalence
can be established more rigorously after regularising both (1.22) and (1.23). Conversely, we can
insert (1.23) inside (1.16), and obtain an alternative representation of the two-loop amplitude
(1.12) involving a sum over pairs of 1/2-BPS string charges,

S@EBFT 82 dmidm A7) z,: [ T2 3
D >3 3 Jr 73 o LG(Q1 +7Q2,Q01 4+ 7Qs)
Q1,Q26 M
Ox Q=0
A7 d3Q, ! OO, O.
S e Y emEe@e) 121
3 S+ ’QQ, Eq
Q1,0,eMfH
Q;xQ;=0



For d = 4 we recover (1.22), for d = 3 (1.8); for d = 1 (and d = 0 type IIB) the constraint
Q; x Q; = 0 is trivially satisfied and the r.h.s. of (1.24) reproduces the two-loop supergravity
integral of [31]. Note however that the first equality (1.24) only holds for d > 3. For example, for
d =1 the constraint I'; x I'; = 0 admits two independent solutions, and the sum over I'; € /R
splits into the sum over eleven-dimensional supergravity Kaluza—Klein momenta on 72, which
is equal to the right-hand-side of (1.24), along with an additional sum over M2 branes wrapping
T? which has no analogue on the string multiplet side.

Finally, as a by-product of this analysis, we obtain two alternative representations of 5(%{ ){;EXFT

as Poincaré series for the parabolic subgroups P; and P3 of Ey41, whose seed involves a special
function A, on the Poincaré upper half-plane,”

555?{?"”—5;:22 > [yﬁ‘dﬁ%(U)H — 87;2 3 [yg?’Z%(U)} ‘7. (1.25)

d>2
YE€EPg 1\ Eat1 YEP3\Eq 1

The function A,, defined in (2.43) below, satisfies the differential equation (2.44). For s =
3/2, it coincides (up to the overall factor % in (1.25)) with the exact VOR?* coupling in ten-
dimensional type IIB string theory considered in [31,32]. Thus, the second equation in (1.25)
can be summarised by saying that the exact VOR?* coupling in D dimensions is the sum of
the covariantisation of the S-duality invariant coupling in D = 10 under U-duality and the
homogeneous solution ]:((g’)l) in (1.11), which is separately U-duality invariant. Unfortunately,
while conceptually pleasing, the identities (1.25) do not seem to be convenient for obtaining

asymptotic expansions.

Weak coupling expansion

In Section 3 we compute the asymptotic expansion of (1.16) at weak coupling by generalising
techniques introduced in [1,50], whereby the constraints Q; x Q; = 0 are solved step by step for
a suitable graded decomposition of E4y; which keeps T-duality manifest. Using this method,
we find the expected perturbative contributions, up to instanton corrections:

g — 8 (KOP 4nC) 1(6)

D 2 ¢(d,2) 4 D, -1
O =t (St D B+ S B +O(e /7)) (1.26)

Here, the first term reproduces the tree-level contribution, the second term and fourth term
reproduce part of the genus one (3.2) and genus three (3.4) contribution (the second part com-
ing from the homogeneous solution (1.11) while the third term reproduces the full genus-two
contribution (3.3), involving the Kawazumi-Zhang invariant ¢kyz. This fact relies on the key
equality (1.21) between ¢z and the Poincaré series seeded by its tropical limit ¢ff,.

We are also able to extract the contributions to the constant term from bound states of
instantons and anti-instantons for any d < 6. For d = 0, our approach provides a powerful
computational method, alternative to the one used in [31], which reproduces the results found
in [32] by integrating the differential equation.

9 Another proposal for 58)1) was given in [49], based on a Poincaré sum over P;\SL(5), which can be rewritten
as a single lattice sum. In contrast, the double lattice sum in (1.8) can be rewritten as a Poincaré sum over
P\SL(5), see (1.25) below.
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Our method also allows us to analyse the non-zero Fourier modes of 5((5{)1’? “! that correspond
to contributions to the scattering amplitude in the background of D-brane or NS-brane instan-
tons. In Section 3.3 we express the D-instanton contribution in terms of nested orbit sums.
The result is complete for E5 = D5 = Spin(5,5), we argue that it is also complete for Eg and
we compute the generic Fourier coefficients (3.89) for E7. The generic Fourier coefficients in
d = 6 are particularly interesting because they are expected to be proportional to the helicity
supertrace Q14 counting 1/8-BPS D-brane bound states. We find agreement with [51-53] for
the simplest D-brane configurations, but further analysis is required to understand the general
case.

Large radius/decompactification expansion
In Section 4 we study in the large radius limit using similar methods and obtain the expected
expansion [22, 2]

12 5 2
EGYT = R \EGT 4 e - 6) RUTER,) + T - RPEG)  (12n)

(0,1) (0,1)

207

+ T§(6)§<d + 4)Rd+3 + w

(d+1)(6—d)

where R is the radius measured in D-dimensional Planck units. The first line in this formula

R0 L 0(e 1.

represents the contribution from the decompactification of the VOR* term on T% to the one
on T% ! along with threshold effects coming from the V*R* and R* interactions. The second
line, containing pure powers of the decompactifying radius R, represents one-loop and two-loop
threshold effects in supergravity.

Our method also allows us to analyse the non-zero Fourier modes of 8{5};? " which can
now be interpreted as instanton effects from Euclidean black holes wrapping the Euclidean time
circle. The result is complete for E5 = Spin(5,5) and Eg, we argue that it is also complete for
FE; and we compute the generic abelian Fourier coefficients for Fg in Appendix E. The generic
abelian Fourier coefficients in d = 7 are also particularly interesting because they are expected to
be proportional to the helicity supertrace counting 1/8-BPS black holes. We do find agreement
with [51-53] for the simplest black hole charge configurations, but further analysis is required
to understand the general case.

1/4-BPS contributions and renormalised function

The couplings derived from the two-loop exceptional field theory calculation alone diverge in
dimension d = 4,5,6 whereas the full string theory amplitude is supposed to be finite. This
discrepancy can be traced back to the fact that in exceptional field theory only 1/2-BPS states
are allowed to propagate in the loops. However, the full theory also involves 1/4- and 1/8-BPS
states as well as non-BPS states. For specific BPS protected couplings such as VOR?, one may
hope that only 1/2- and 1/4-BPS states contribute at two-loop. Indeed, the perturbative genus-
two VOR* coupling in string theory [35,36] exhibits precisely such contributions. The result of
our analysis shows that the contributions from 1/2- and 1/4-BPS states up to three-loop indeed
reproduces the exact low energy effective action up to VOR?, leading to the conclusion that
1/8-BPS states do not contribute to this coupling.

11



A similar issue was already encountered in [30] in the context of the V4R* coupling where
both 1/2- and 1/4-BPS states happen to contribute. The contribution of the latter was inferred
in [30] by taking the perturbative one-loop string calculation, extracting the contribution of
perturbative 1/4-BPS states, and covariantising this result under U-duality so as to obtain
the contribution of the full non-perturbative spectrum of 1/4-BPS states. Following the same
strategy for VOR?, we find that the two-loop amplitude with 1/4-BPS charges running in the
loops is given by a similar integral as in (1.12), where ¢, (€s) is replaced by — SL(Q (7)/V in
the variables (1.14). Combining this with the exceptional field theory result, we get

B 436, ESL3 (1)
Eom " = 3/3+ W(S@%z 363AT1) f::f(qﬁ, Q) . (1.28)
We will give strong evidence that this expression has a finite limit as e — 0 for all values of d.
At three-loops, the structure of the perturbative genus-three superstring amplitude [54] suggests
that only 1/2-BPS states run in the loop. The resulting three-loop contribution in exceptional
field theory [30] produces the sum of two Eisenstein series (5.18), one of which formally cancels
the 1/4-BPS contribution in (1.28), while the other reproduces the contribution (1.11)

(d)3-1 U d392 ES%?E—?Z )AI(T) E 8t E
d)3-loop __ - € d+1 d+1
Y27 g, 10,5 14 O (02 02) 567§(d+ 4129 Buigney,,, - (129)

The regularised Eisenstein series (1.11) is defined by

Fo = %g(d + 4+ 2e) E@Aw i %{(d +4) fﬁ;{i " (1.30)
where |0 denotes the zeroth order term in the Laurent series in €, which amounts to a minimal
subtraction prescription. According to the discussion below (1.18), we shall not keep track of the
finite terms proportional to the residue at the pole, which is similar to the difference between
minimal substraction (MS) or modified minimal subtraction (MS) regularisation schemes in
quantum field theory. We shall use the hat notation for similar zeroth order terms of any
Eisenstein series throughout this work.

Although the two functions in (1.29) satisfy the same E4y; invariant differential equation
(up to inhomogeneous terms), they do not satisfy the same differential equations [14] and corre-
spond mathematically to distinct automorphic representations [47]. Physically this means that
instantons with generic charges in a given limit may contribute to one function and not to the
other. In particular F(O ;) obtains contributions from generic Euclidean black holes instantons
in the decompactification limit whereas the first three-loop term in (1.29) and the two functions
in (1.28) do not, while these latter receive corrections from generic D-brane instantons in the
weak-coupling limit whereas ]-"(0 1) does not. It is therefore more natural to combine the first

component of (1.29) with the two-loop contribution (1.28) to define the renormalised coupling

5(d),ExFT (d),ExFT
5(0 1) 5(0 1),€

, as the finite part of

SL(2 SL(2)
SUEFT _ 41 d*Qy ’Q ’e tr 1E73/(\1) (1) lE—(3+2€)A1 (7) Ed+1(¢ Qy) (1.31)
(0,1),¢€ 3 s, |Q2‘6%d 2 36 1/ 1l+2e 36 vV Ad+1 152 '
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as € — 0. The two additional terms cancel each other for d < 3 and we shall see that the
function (1.31) has the correct behaviour in d = 4,5,6,7. In d = 4,5,6, these contributions
are individually divergent, but the total result is well-defined and satisfies all expected weak
coupling and decompactification limits. The sum of (1.31) and (1.30) defines the complete
non-perturbative function

~,

(d) __ &(d),ExFT 2(d)
g(oal) - g(O,l)x + ]:(0,1) ) (1.32)

which gives a precise definition to the formal formula (1.13).

Outline

The remainder of this work is organised as follows. In Section 2 we establish the central iden-
tity (1.23) that relates the double lattice sums in the string and particle multiplets to show
the equivalence (1.22) between the particle and string multiplet representations of the VOR*
coupling 5((5’)1). In Sections 3 and 4, we analyse the weak string coupling and single circle decom-
pactification limits of 5(((?{‘)1), respectively. In particular, we compute the corresponding Fourier
expansion of Z;(¢, €, L) defined in (1.17), and find that it is a meromorphic function of e. In
Section 5, we discuss in detail the renormalisation of the function 5(&?’ )1) due to the contribution
of 1/4-BPS states at two-loop order and show that their contribution cancels the divergences
coming from the 1/2-BPS sector, leading to the well-defined total result (1.32). Several appen-
dices contain additional technical details. In Appendix A, we present evidence for (1.21) that
expresses the Kawazumi—Zhang invariant as a Poincaré series seeded by its tropical limit while
Appendices B-D discuss certain integrals and auxiliary Fourier expansions that are used in the
main body of the paper. Most of our calculations apply to 4 < D < 8. Appendix E contains
details for the special case of D = 3 with U-duality group Ejg that are also relevant to 1/8-BPS
black holes and Appendix F summarises the cases D > 8.

2 From particle to string multiplet

In this section, we give very strong evidence for the identity (1.23) relating double Epstein sums
in the particle and string multiplets of F4,1. This is done by first including arbitrary parameters
(r,7") on either sides to obtain convergent expressions, and analytically continuing to the desired
values (r,7') — (d — 2,3) at the end. In Sections 2.1 and 2.2, we show that both sides satisfy
the same differential equations invariant under SL(2) x Egzy1. The representation-theoretic
origin of the differential equations is discussed in Section 2.3. In the remaining subsections, we
provide a spectral argument for (1.23) by computing the integral of both sides against Maaf}
cusp forms and Eisenstein series of SL(2,Z), and showing that the two results are equal by
virtue of Langlands’ functional relation.

2.1 Laplace identities

We first establish that the lattice sum (1.20) in the particle multiplet representation satisfies

r[(d — 10)r — 20 4 18d — d?] =l 7 r) = 0 (2.1)

AEd+1 —Ar - d—8 A
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where Ag,,, is the Laplace operator on M = Eqy1/Kgy1, and A; = 73(92, 4 02)) is the SL(2)
Laplace operator on the upper-half plane. To prove this, we proceed as in [1] and write the sum
over doublets of charges I'1,I's such that I'; x I'; = 0 as a Poincaré sum over P;\FE4.1, where
P, is the maximal parabolic subgroup with Levi subgroup GL(2) x E;_1. Under this subgroup,
the particle multiplet decomposes as [1, (4.28)] 1°

Myt = (2,1)0 0@ (1, M P @ (2, My )Y@ (2.2)

Adi1 -1

corresponding to the various charges arises upon compactifying from dimension D +2 =12 —d
down to D = 10—d on a torus 72: the Kaluza-Klein charges on T, particle charges in dimension
D + 2, strings in dimension D + 2 wrapped on a circle in 72, while the dots correspond to
membranes wrapped on T2 and Kaluza-Klein monopoles. The superscripts in (2.2) denote the
scaling degree with respect to the action of GL(1) C GL(2), normalised so as to take integer
values. The representations of SL(2) x Eq_; are denoted as (2§ + 1, M) with 2j + 1 the
dimension of the SL(2) representation and A the highest weight of the E4_; representation.

As explained in [1], one can always rotate a pair of vectors I';, 'y using E4.1 into the top
degree space (2,1)10-%
allowing a rewriting of (1.20) as

(i.e. the eigenspace in (2.2) of maximal GL(1) eigenvalue), thereby

T
T B _ Uy y;l
T (r) ~hen (®rn=" 3, 2 (L, 7)M(L,U)|2 + 272Us det M
YEP\Eqy1 \ Mez?**?
det M#0

+ Y D [ 2 (2.3)

2., 2
miT +m
YEP 1\Eq+1 \(m1,m2)€Z? ’ ! 2| yd'H- ~

corresponding to non-collinear and collinear pairs of vectors, respectively, and where y; is the
multiplicative character for the parabolic subgroup Py, normalised'! such that the Langlands—
Eisenstein series is ngk =2 rep)\G Y 2°|y. Note that the second term can be viewed as the
contribution of matrices M with det M = 0 in the first sum; moreover, it is recognised as
SL(2 E
¢@n) B () L
Next, we use the fact that upon acting on functions depending only on the GL(2)/U (1) factor

parametrised by U = Uy +iUs € H; and yg4, the Laplacian on Eg11 reduces to to [1, (4.65)]

AEd+1 = (8_1d)yd8yd ((10 — d)ydé?yd + (20 + d(d — 18))) =+ AU . (2.4)

For d = 5, 6,7, this follows from embedding GL(2) x E4_1 in a dual pair inside Eqy1,

FE¢ D SL(2) x SL(6) : 27 = (2,6)d (1,15)
E7; D SL(2) x Spin(6,6) : 56 (1,32) & (2,12)
Es D SL(3) x Bs : 248 (8,1) @ (1,78) @ (3,27) & (3,27)

IR

1%

" The normalisation of the character is defined such that the action of the Cartan torus element on the lowest
weight representation Ay is normalised to yx. In other words, we write the torus element as exp(— Y, log(yi)h:),
where the h; are the canonical Chevalley generators that need to be evaluated in the lowest weight representation.
For example for SL(2) this leads to the matrix diag(y:,y; ")
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Acting on the seed in the first term on right-hand side of (2.3) immediately leads to (2.1). The
same is true using yd2+1 = ydUQ_1 for the sum in the second line of (2.3), which morally extends
the sum on the first line to all non-zero matrices M, thus establishing (2.1).

Similarly, for any 4 < d < 7, we claim that the lattice sum in the string multiplet satisfies

dT,(Qd —-1- T’l) ,:Ed+l
d—8 A

AEd+1 - A, — (QS,T,T/) =0. (2.5)

To establish this, we proceed as before and write the constrained lattice sum as a Poincaré sum
over P3\FE411, where Ps is the maximal parabolic subgroup with Levi factor GL(2) x SL(d).

Under this subgroup, the string multiplet decomposes as'”

M 2 (2, 1) @ (1, A2V) T @ (2, APTV) T @ (LV o APV) T 6L (2.6)
corresponding to the various string charges appearing in the large volume limit of type IIB string
theory compactified on T%: (p,q) strings, D3-branes, (p,q) 5-branes, and Kaluza-Klein, with
V = 7. Using F4,1, one can always rotate any pair of vectors Q1, Qs into the top degree space
(2,1)™] obtaining

/

T Ean N 7 Usys ' '
F(T/) —A1 (¢’T’T) - Z Z ‘(1’7')M(1,u)|2—{—2’7'2U2detM
YEPs\Eqy1 \ MeZ**?
det M#0

~

/ !
T2
+ Y ool : 2.7
{|m17+mzl2y12} 27

’YEPl\Ed+1 (ml,mg)EZQ 5

We then use the fact that the Laplacian on F4y1 acting on functions depending only on the
GL(2)/U(1) factor reduces to

d
AEd+1 = m(yga% + 2d — 1)y38y3 + AU . (28)

Acting with this operator on the seed terms in (2.7) establishes (2.5). For d = 5, the two
equations (2.7) and (2.3) are of course identical since the particle and string multiplets 27 and
27 are related by conjugation.

For r =d — 2, 7" = 3, the two eigenvalues in (2.1) and (2.5) agree and the two lattice sums
satisfy the differential equation

6d(d — 2)

=P =0 2.9
g : (2.9)

AEcl+1 —Ar+

where ZFda+1 stands for either the string multiplet expression Eff“ or the particle multiplet

. —FE
expression = AZE'

2For d = 6, 7, this follows by embedding GL(2) x SL(d) inside a dual pair,

Er D SL(3) x SL(6) : 133 = (8,1)® (1,35)& (3,15) ® (3,15)
Es D SL(2) x E; : 3875 = (1,1539)+ (3,133)+ (2,56) + (2,912) + (1,1)
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2.2 Tensorial differential equations

For the same values (r,r") = (d — 2,3), it turns out that the two lattice sums satisfy a much
stronger system of differential equations beyond the Laplace equation (2.9). This equation is
given compactly for d = 4,5,6 as

3
(T@TﬁTWDaDBD7 — A+ %)T%Q) =P = () (2.10)

where T are the generators of Egy; written in the highest weight representation R(Ag41) and
Dy =V, M (Onr + war) the covariant derivative in tangent frame, where VoM denotes the inverse
vielbein on the Riemannian symmetric space Eq11/K(Fq44+1) and wyy is the K(E441) connection
defined by the K(e441) component of the Maurer—Cartan form [12,47]. To prove (2.10) for the
particle multiplet sum, one uses the same Poincaré sum representation (2.3), and the restriction
of the tensorial equation (2.10) on functions of GL(2), which appeared in Eqgs. (4.94) and (4.96)
of [1]. For the string multiplet sum, (2.10) also holds for d = 5 since the particle and string
multiplets are conjugate. For d = 6, additional work is required. Using the same techniques as
in [1], one finds that for a function of the Levi subgroup GL(2) C P3 C E7,

Y30y, 16 0 0 0 0 0 0
0 (Y30, + U200 16 L0500, 16 0 0 0 0
N 0 10,00, 16 L(y30ys — U20p,)16 0 0 0 0
TD, = 0 0 0 020 0 0 0
0 0 0 0 1(—y30y, + U20u,)16 LU200,16 0
0 0 0 0 %Uz(()(j] 1g —%(y;gay:{ + Uga[,cz)ﬂﬁ 0

0 0 0 0 0 0 — 430y, 16

(2.11)

This is a (56 x 56) matrix of first order differential operators since R(Ag44+1) corresponds to the
56 of E7, see Table 1. The differential operators D, normally act on the 70 coordinates of
E;/SU(8) but here are reduced to the coordinates U = Uy 41Uz and y3 of the GL(2) C E7 part
of the symmetric space. The matrix is blocked according to the branching of the representation
R(Ag41) under GL(2) x SL(5) that is

56 = (1,6)? ®(2,6)Y @ (1,200 @ (2,6)" Y @ (1,6)? | (2.12)

and we have written out the doublets of 6 separately in (2.11). The third power of (2.11)
evaluates to

Silg 0 0 0 0 0 0
0 (S2+ éSZiU20UZ>]1(S %&;Uz@ul 1 0 0 0 0
0 LS3U200,16 (S2 — 383U201,)16 0 0 0 0
TTPT"DyDgDy = | o 0 T T 0 0 0
0 0 0 0 (=8 + 383U200,) 16 1830200, 16 0
0 0 0 0 1830500, 16 —(S2+ £S3U200,)16 0
0 0 0 0 0 0 81
(2.13)
with
37 3 27
3 2
S1 = (y38y3> - Z(y38y3> + ZAU + Zy?)ay:a )
1 3 25 3 9
3 2
82 - g(y38y5) + gAUy3ay3 - g(y?)ayd) - ZAU + 1y38y3 )
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3 1 33
Ss = T(y30y)” + 7 AU — T30y - (2.14)
4 4 4
Using these formulae, one can check that the seed function in (2.7) is annihilated by the operator

in (2.10).

We have shown that the seed of the double Epstein series (1.20) for the string and parti-
cle multiplet satisfy the same homogeneous differential equations. By inserting these equations
in (1.12) or (1.24), and using the differential equation satisfied by the (non-differentiable) modu-
lar function A(7) (see [31] and (B.3) below), one may show that both proposals (1.12) and (1.24)
satisfy the inhomogenous differential equations required by supersymmetry Ward identities [14],
including the Poisson-type equation (1.5) [1]. To prove that the two double Epstein series (1.20)
indeed satisfy the tensorial differential equations we need to take care of the poles that arise
by analytic continuation from the domain of absolute convergence. We shall argue that they
are indeed satisfied, but for Fg, in which case only the renormalised coupling does satisfy the
equations.

2.3 Nilpotent orbits and BPS states

The structure of the tensorial differential equations (2.10) can be understood by using the
language of nilpotent orbits of the group acting on its Lie algebra (see e.g. [55]). We shall be
using Bala—Carter labels for complex nilpotent orbits. The Bala—Carter label, e.g. A, Ay or
2A; (where the last case designates two commuting A; = SL(2) subgroups) indicates in what
type of Levi subgroup a given nilpotent Lie algebra element is distinguished. For type A,, a
nilpotent element is distinguished if it is regular (a.k.a. principal), i.e. if it belongs to the largest
possible nilpotent orbit of A4,,.'% If there are several non-conjugate Levi subgroups of the same
type in Eg41, the Bala-Carter label includes conventional primes to differentiate between the
non-conjugate orbits, e.g. (24;1)" and (24;)” in Es.

Nilpotent orbits provide a useful classification of Fourier coefficients of automorphic forms. In
physics terminology, Fourier coefficients describe effects from non-perturbative states coupling
to axions, corresponding to coordinates along nilpotent generators in the symmetric moduli
space Fg411/K(E441) in a given parabolic decomposition [5,21,23]. Therefore, the various
types of non-perturbative effects can be labelled by nilpotent elements. The set of nilpotent
orbits that support non-vanishing Fourier coefficients is often called the wavefront set of an
automorphic form. The wavefront set of a generic Eisenstein series induced from a parabolic
subgroup P = LU C FE4y1 can be easily determined from the Gelfand—Kirillov dimension, and
is tabulated for various groups and parabolics e.g. in [56].

In the relation between nilpotent orbits and non-perturbative effects, 1/2-BPS states cor-
respond to nilpotent elements of Bala—Carter label A;, while 1/4-BPS states correspond to
Bala—Carter label 24;. This can be understood by noticing that certain 1/4-BPS states can
be realised as an (orthogonal) intersection of two 1/2-BPS states. Similarly, certain 1/8-BPS
states can be realised by an (orthogonal) intersection of three 1/2-BPS states, leading to the

13For other Levi types there can be a finite number of such distinguished nilpotent elements; those are written
using conventional labels in parentheses following the Levi type, e.g., Da(a1). Since these Levi types only appear
for nilpotent orbits larger than the one encountered in the present paper, we refer the interested reader to [55].
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Bala—Carter label 34;. In addition, the labels As and 4A4; are also associated with 1/8-BPS
states and arise for a different class of non-perturbative effects [14,47].

The order of nilpotency p in 2P = 0 of a given nilpotent element x of the Lie algebra
depends on the finite-dimensional representation of e;y1 in which it acts. Since the Lie algebra
is represented by first order differential operators acting on functions on the symmetric space
Eg11/K(Eg441), the nilpotency relations translate into differential equations of order p satisfied
by the automorphic form. For a given automorphic form, the strongest differential equation
arises from the maximal orbit in its wavefront set. Physically, this equation corresponds to a
supersymmetric Ward identity [12-14]. Often it suffices to consider these equations in only one
of the fundamental representations, as the others will be consequences.

Equipped with this knowledge we now see that (2.10) is in fact the tensorial differential
equation associated with the maximal orbit in the wavefront set of the Eisenstein series induced
from the Heisenberg parabolic subgroup Py, i.e. the maximal parabolic subgroup P, ,, associated
to the highest weight for the adjoint representation (respectively Ag, Ag, Ay, Ag for D5, Fg, Ex
and Fg). As will be shown in (2.37) and (2.40) below, integrating the lattice sums Ef‘l“l at

Eat1
Adt1

Fisenstein series ng;l for the Heisenberg parabolic for a specific value of s. The wavefront set

r’ = 3 or respectively = at r = d — 2 against an arbitrary SL(2) Eisenstein series leads to an

of any such ‘adjoint’ Eisenstein series is generically of Bala—Carter type As.

Since integrating the double lattice sums (1.23) against an SL(2) Eisenstein series gives an
Eisenstein series with a wavefront set associated to A, nilpotent orbit, we conclude that the
Fourier coefficients of the double lattice sums themselves are also restricted to the same orbits,
and thus are at most of Bala—Carter type As, as confirmed by equation (2.10). Automorphic
representations of Eg4,; for d > 4 with this Bala—Carter type are uniquely represented by adjoint
Eisenstein series ng:, where s is determined by the eigenvalue under the Laplacian. This
already gives a strong indication that the two double lattice sums in (1.23) must be proportional
to each other. We shall now present further evidence based on spectral considerations.

The claim that automorphic representations of E;y1 for d > 4 with Bala—Carter type As
are uniquely represented by Eisenstein series relies on the conjecture that there is no cuspidal
automorphic representation associated to such small nilpotent orbits. Recall that cuspidal forms
are by definition exponentially suppressed at all cusps, and as such admit Fourier coefficients
that are themselves exponentially suppressed at all cusps of the corresponding Levi subgroup.
For the nilpotent orbit associated to the adjoint node 2Af, the generic Fourier coefficients in
the Heisenberg parabolic Py saturate the Gelfand—Kirillov dimension and are functions of the
Levi subgroup element v € Ly acting on the Fourier charge v(Q). For exceptional groups, the
following stabilisers Hg C Ly C E441 occur for generic charges

SO(1,1) x SO(2,2), SO(2) x SO(1,3) C SL(2) x SO(3,3) C Spin(5,5),
SL(3) x SL(3), SL(3,C) C SL(6) C FEg(s) »
SL(6), SU(3,3) C Spin(6,6) C Ermy,
Es(6)> Es(2) C Er(n) C Ey) - (2.15)

The stabilisers are all non-compact. It follows that the Fourier coefficients as a function of
v(Q) are constant along all the cusps of the stabiliser Hg, and therefore cannot be cuspidal.
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Applying this reasoning to orthogonal groups of type SO(2n,2n), one concludes that the first
possible cuspidal representation can only appear for the nilpotent orbit of weight 2A,,, for which
the stabiliser of generic charges SO(n) x SO(n) is compact, in agreement with the conjecture
in [43]. For exceptional groups one predicts in this way that cuspidal representations can only
appear for higher dimensional nilpotent orbits, like the nilpotent orbit of weight 2Ao of type
Ay + 3A; for E7 for example.

2.4 Integrating against cusp forms and against Eisenstein series

In order to prove the identity (1.23), we shall now integrate both sides against an arbitrary Maaf}
eigenform f(7) that is annihilated by A; — s(s — 1) and an eigenmode of all Hecke operators
Hy : f(1) — ka:N,OSka(%) Boris, are we sure it is the same normalisation as below
(2.24)7. To avoid regularisation issues, we first consider the case where f is a cusp form for
GL(2,7Z), and then discuss the case of an Eisenstein series.

Starting with the string multiplet sum, we consider, for Re (r') large enough and f a cusp

form,
dTl dT2 _E
Iy (for') = / s F(T)ENT () (2.16)
F T
where F is the fundamental domain for PGL(2,Z) defined below (1.14). Using (2.7), we rewrite
':'Ed+l

Ep, ' (7,7") as a sum over v € P3\Egy1 and over non-zero 2 x 2 matrices M. Restoring the

integral over the volume factor, we get

/

© dv drdr x
= S| My [Tt 3 el e
¥€Ps\Eqs1 |0 £ Mez2x2 ,
where
1 |7’|2 -7 1 1 U1
= = 2.1
T T (—7’1 1 )7 u Uy \U; |U]?) " (2.18)

such that (y3, U) parametrise the GL(2) factor in P;. The integral over F can then be unfolded
using the orbit method as in [57]. For cusp forms, the rank-one orbit does not contribute!'* and

5 7) with 0 < j <
k,k,p # 0, provided the integral over 7 is extended to the upper half plane. For fixed N = kp
with k,p > 0, the sum over k,p,j is recognised as the action of the Hecke operator acting on
modular functions in the U variable, Hy[f](U) = N~1/2 > kp>0kp=N 2=jmodp F(EEELY . Thus,

P
we get

Eg1 o0 dv d71d7—2 77‘rNy3\7'7U|2727ry3N
megn-e S S [[T g [ A e T
1

-
veP3\Eg41 \N>0 2

the sum over rank-two matrices can be restricted to summing over M = <

(2.19)

Y

Now, we use the fact that e~ =U/(2U2) yetg as a reproducing kernel on eigenmodes of A,

[58,59]. More precisely, for any smooth solution of [A; — s(s — 1)]f(7) =0,

/H dnidrs ooy =50 — A (s,8) £(0) (2.20)

T

YFor f an Eisenstein series, the rank-one orbit gives cut-off dependent contributions which do not contribute
to the renormalised integral for generic s.
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where the factor NV (s, t) is independent of f. This factor can be computed by choosing f(7) = 75:

1
s wt\TfU\Q 2 o0 - TtU:
N (s, t) :/ dTl(?iTQ (7—2> e % -2 / ﬂe_vlth_ my tomt

Hi T2 vVt Jo T (2.21)

2 7rt
:WK 1 (2nt) €2

where K, (x) is the modified Bessel function of the second kind. Setting ¢t = Ny3/V, we thus
get

—S

Us

o dV 2mysN U
I (fr) =4 Y [Z N / K ( o )Hj(v)f(U) | (2.22)
YEP3\Eg44+1 LN>0 4 5
The integral over V' can now be computed using
> dt 7'('_5, s'—s s+s
/O A K, 1 (2mt) = = —T(%5 +hreEts -1y, (2.23)

2
which is valid whenever Re (s') > |Re (s — 3)|. As for the action of the Hecke operator Hy, its
action on the Fourier expansion

F() = fors + fomy S+ ) faV2rm K1 (27|n|my) T (2.24)
n>0

sends f, — \/NZdKn,N) dilan/dz. From looking at the first mode with n = 1, it follows that

Hyxf(1) = VN fy f(7)/f1 if f(7) is a cuspidal Hecke eigenmode (i.e. fo = f) = 0, f1 # 0).
In this way, setting s’ = 7/ — } and assuming that Rer’ is large enough such that 1 — Rer <
Res < Rer, we arrive at

Ty (for') =73 "'T (T‘S) r (%) JVZOJ;IVNi—T' 3 [yg“f(U)} (7. (2.25)

’yEP;g\EdJrl

Recalling the definition of the completed L-series associated to f [60],

L*(f,r)=n"T (5 - ) T (5 + 1) Z (2.26)

N>0

normalised such that L*(f,1 — r) is equal to L*(f,r) up to a phase, we get
) = =8 Y T O] (2.27)

YEP3\E441

The right-hand side is recognised as an Eisenstein series induced from the cusp form f(U) on
the GL(2) factor in the maximal parabolic subgroup P3 with Levi subgroup GL(2) x SL(d).

L(2)

If we now take for f the non-holomorphic Eisenstein series EfAl , the same computation
goes through, except that the rank-one orbit gets cut-off dependent coefficients from the constant
terms in the Fourier expansion

_ 1/2
ESL(2)(7') — 54 5(25 1) 1—s

o1 PR 5

52 VI 201 0s(|N|) K 3 (27| N ) 2N
N;éO
(2.28)
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For 7' large enough, these terms vanish as the cut-off is removed, and the rank-two orbit picks
up contributions from the non-zero Fourier coefficients in (2.28). Using Ramanujan’s identity

SN oy (V) = s+ — D) (s s+ ), (2.29)
N=1

one finds the L-series associated to EfALl (2),

LNEND r)=e(r+s— 5 er—s+1) (2.30)

leading to a Langlands—Eisenstein series,

Ty (BN ) =60 — s) €0 +s—1) Y [y:? "EN U )} ’
’YEPS\EdJrl ! (231)

(! _ / _ Eqp1
={(r'—s)&(r'+s—1) EsAl-q-"';SAg )

We now turn to the particle multiplet sum. Using the same reasoning, the integral

dndr _
5 (f,r) = /f 1 p(r) 25 (7, ) (2.32)

Ty

for f a normalised Hecke eigenform evaluates to

Eg .
Lo(fr) =L (fr=3) Y. [l fO)]l, (2.33)
YEP\Eat1
or, for f = Ef/i(Q),
E SL(2 E
IA;;l(ESAl( )77’) =&(r—s)&(r+s—1) ES/;i;r-:l'f‘rgsAd ) (2.34)

Note that we use the Bourbaki labelling of Ey;1, with the slight abuse of notation that Ay
corresponds to a sum of fundamental weights for d < 3 as used in [1] to allow for general
formulae. In particular, for d = 3, the weights Agy1 and Ay in Ey correspond to Az and Ag + Ay
in A4.

2.5 Relating the particle, string multiplet and adjoint Eisenstein series

In order to relate the Eisenstein series (2.31) and (2.34), we use the general functional relation
for Langlands—FEisenstein series with infinitesimal weight parameter 2\ — p,

E{ = M(w,2) — p) Eg(A,%% (2.35)

for any element w of the Weyl group [61] (see [24] for an exposition targeted at physicists). Here,
p is the Weyl vector and the prefactor M (w, \), known as the intertwiner (between different
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principal series representations), is given by a product over positive roots that are reflected into
negative roots under w:

v I gy 20
wa<0

Using suitable Weyl elements'® we find for d > 3 that (2.31) and (2.34) coincide for r = d — 2,
=3,

- g Ed+1 . Eat1
lo—d+8)ed—d -9 B5 o, —€B- 90+ B, (230)

hence confirming the relation (1.23). In the following, we shall also need a dimensionally reg-
ularised version of the Eisenstein series in (2.37) with d. = d + 2¢, which satisfy the modified
identity

E E
5(5_d6+3) 5(4_(16_8) ES/;i;:1+d672275Ad = 5(3_8_26) 6(2+8—2€) ES/;ij_;'l_ng2+37s272eA3 . (238)

When f is an SL(2) cusp form, the expressions (2.27) and (2.33) describe more general
Eisenstein series induced from cusp forms on the parabolic subgroups P; and Py_1, respectively.
Langlands has also provided a functional relation for this case [61], see also [62,63], and the
intertwiner now depends on the cusp form f as well as on . For the case of SL(2) it evaluates
to the corresponding quotient of completed L-functions [63], implying the equality

Tyi(f.d = 2) = Ty (£,3) (2.39)

for all cusp forms. This completes the proof of (1.23).

It is also interesting to note that the same functional equation (2.35) also allows to rewrite

either side of (2.37) as an Eisenstein series EffMAs, E;EjsA , E?fsA ) Eﬂ% for the adjoint
2

representation, ¢.e. induced from the Heisenberg parabohc in agreement Wlth the discussion of
the last subsection:
i (pSL2) o
IA;:;( sA1 yd— 2) 5(8 —d+ 3) €<S td— 3) d;-l1+7d_§_sAd
_ 5(3 —4+ 23(l+1)£(5 —d—-1- 5d,7 + 25d+1)£(8 +d—3+ 5d,7) EEd“
£(s) (55 +si)Au

(2.40)

where s, = %, %, 6,9 for d = 4,5, 6,7, respectively.'¢

5For the values d = 3,4, 5,6, 7 we use wa, = wawiwsws, WDy = W3W2W1WsW3W2, WE; = W5WAW3W1WeW5WAWS,
WE, = WeWsWiW3W1WrweWswaws and W, = WrWeWsWaW3W1WsWrWeWsw4ws, respectively. Recall that
SAdJrl + digisAd fOI‘ E4 is SA3 + %(AQ + A4) in the A4 basis.

16Here7 we have used the following Weyl elements for the cases d = 4,5,6,7: wp, = wwiwsw2wiws,
WE; = W2WaW3W1WsWaW2W3WaWs, WE, = W1W3WiW2WsWaWsW1WeWswWaWewswawswes and finally wg, =

WsW7rWeWs5W4W2W3W1W4W3W5W4W2WeW5W4W3W1 W7 WeWs5W4W2W3W4W5WeWT .
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2.6 Poincaré series representations

For the case f(17) = A(7) of (1.15), the identity (2.20) is no longer valid, due to the non-
differentiability of A(7) on the locus 71 = 0 and its images under GL(2,7). Moreover, A(T) is
not an eigenmode of Hecke operators. Nevertheless, the manipulation in (2.17) and its analogue
for If::ll (A, r) are still valid, and lead to the Poincaré series representations

Ta(Ar) = ) [yJ ' ﬁg(U)] ‘7 (2.41)
YEP\Ea11
and
A = Y i AL o)] )7, (2.42)
YEP3\E4t1

where Ay(U) is the SL(2, Z)-invariant function

~ dv drdr Ty
AS(U)E/O TaEsT /f o A(r) Y e v, (2.43)

This satisfies the differential equation
~ ~ 2
AA(U) = 124,(U) — 6(£(25) E5XP(U))" . (2.44)

For the case of interest for the VOR?* coupling, using the identity between the particle and string
multiplet sums, we get

e _ BT >a i, | = 8% S AU 4
5 2 O] 55 X A0 24)
YEP\Eat1 - YEP3\Eq 41

This identity is formal however, since the value of r typically corresponds to a pole. The function
%A 3(U) corresponds to the exact VOR? coupling in ten-dimensional type IIB string theory in
2

the form given in [32].

2.7 Convergence

To determine the domain of convergence of the double Epsteln series = Ad“ (¢, T,7) for the particle
multiplet, let us insert an additional regulating power of 3, in the sum, and assume that Re (r)
and Re (€) are both large enough such that the second term in (2.3) can be combined with the
first by allowing all matrices with tk M > 1. We can then perform a Poisson resummation on
the second row of M and obtain the Fourier expansion with respect to 7,

/ -1 "
. e 72Uz y,
r 2.46
7 "T(r) Z Ya Z |(1,7)M(1,U)|? 4+ 212U det M ( )
YEP\Eat1 Mez2x? gl
_ é_( ) TE Egq+1 —|—€(27’-2) 2— ’I‘EEd+l

TAd+1+ Ad 1+€A Jr(T 1)Ad+1
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/
—Eé—r or—1(ged(m, n)) |mU+n|?
+47 Z (yd Z ged(m, n)2—2 Ky (2 =7,7)

YEP\Ea+1 m,n ¥

/ /
—é—1r |m1+Um2‘T_l |m1+maU||n1+n2U)| 27iTi (ming—mani)
+279 Z ( Z T+ U= T K,._1 (271'7’2—U2 ) e

YEP\Eq+1 mi1,m2 ni,n2 v
By Godement’s criterion [64,24], the first term E /{”1 oy in the limit € — 0 converges for
d+1
29 — Eqq
Re(r) >4,6,9,% when d = 4,5,6,7. The second term ElJrEA i —DAass never converges when

€ — 0, but its analytic continuation at € = 0 can be Shown to vanish. Thus, we conclude that
the double Epstein series Ef:ﬁ((ﬁ,’l‘,?‘) has no pole for Re(r) > 4,6,9, 229, respectively, which
indicates that 1t is absolutely convergent in the same range. Similarly, we find that the double

Epstein series 2 A (¢, 7,7") for the string multiplet converges absolutely for Re (') > 4,6, 127, 23

2.8 From vector to spinor double lattice sums

In this section, we generalise the observation on the equivalence of different lattice sums from
Ej+1 to Spin(d,d), as this will be used in our later analysis. Using the same techniques, one
can establish the relation between the double lattice sums in vector and spinor representations
of Spin(d,d) with d > 3,

d— 2 d—2 (2 / 2
= o e o] M VI e v MR
Qicllag 1 2, W1 2 TR 1 2, @1 2
QixQ;=0 Qivi—4Q;=0
where II; 4 is the even self-dual lattice in the vector representation of Spin(d,d), and Sy are
the lattices in the Weyl spinor prepresentation of Spin(d, d), for either chirality. More precisely,
using the same notation as in (1.20),
lim =Y = lim =Y = lim =} oF 2.48
lim =R = lim 2R () = lim ER () (2.49)
For d = 5, this reduces to the identity (1.23) for G = SO(5,5). For d = 4, it expresses invariance
under triality of SO(4,4). As a consistency check, note that the differential equations satisfied
by the two Epstein series

[Ap, — Ar —r(r+3—2d)] E{*(r,r) = 0 (2.49)

[Ap, — Ay —Yd—2)/(r' —d—1)] EQ(r,7') = 0, (2.50)

agree for (r,r") = (d — 2,2). Integrating both sides against the Eisenstein series E;gi(f)(T), one
gets

§d=2=9)§[d+s=3) B uoy =E2-9)E+DER by (2.51)

where the equality follows from Langlands’ functional relation (2.35). It is worth noting that
these series are related by functional equations to the adjoint Eisenstein series Es stam2p, A

24



similar functional identity should hold for Eisenstein series induced from SL(2) cusp forms f on
parabolic subgroups P, and P;_ o, namely

IVNfd =) = I0N.2) = Iy (£.2) - (2.52)

Assuming the relation (2.47) as well as the Poincaré series representation (1.21), we obtain

several equivalent ways of expressing the modular integral of the product of @iz with the Siegel-

Narain lattice sum,'”

db9 30y, D
——=kzLaa2 = /@r (Q2) 0,
/f2 E o 0 KZ Ar

430, s

(2.53)
. By .
00l 7(Q) 01 = / |Q|2 Pl (22) 070

where 9/{): is defined as in (1.18) and G = R™ x F. In Appendix C, we study the asymptotics
of the various integrals and find further support for the relations (2.53), hence for the Poincaré
series representation (1.21).

3 Weak coupling limit

In this section, we study the weak coupling limit of the integral (1.17). We first discuss the
expected form of the expansion, known from general physical considerations, before turning to
a detailed analysis of the constrained lattice sum Hfjﬁ of (1.18) entering in (1.17).

3.1 Expectation

The weak coupling limit (1.1) of the exact non-perturbative VOR* coupling (which is invariant
under the U-duality group E441(Z)) in generic dimension D = 10 — d takes the form

g [§<<3>2

5((:,)1) = 9Dd78 + 5((?11)) + 912> g(((;l,’f)) + ng(%i 13)> + O(eil/gD) (3'1)

D

where 2((3)2/3g? is the tree-level contribution while the genus one, genus two and genus three
contributions are given by [48, §2.1.1]*®

47 ((3 mt

suy = T a9 By 4 i e+ 9B, (32

dfQ

@2) _

Eon = 8m /]__2 W@KZ(Q)Fd,dQ (3.3)
4¢(6)

@3) _

Eony = T (E3Ad + By ) : (3.4)

'"In each of these equations, we assume that a factor |Q2|® is inserted in the integral, divergences are subtracted
and the limit € — 0 is taken after analytic continuation.

18The Eisenstein series in (3.2) and (3.4) originate from genus-one and genus-three modular integrals, respec-
tively. The genus-two integration measure d°Q/|Q2|? in this paper differs by a factor 1/8 from dpus in [48].

25



The exponentially suppressed terms in (3.1) originate from 1/8-BPS instantons, as well as pairs
of 1/2-BPS and anti-1/2-BPS instantons, as required by the quadratic source term in the Laplace
equation (1.5). In special dimensions where the local VéR* coupling mixes with the non-local
part of the one-particle irreducible effective action, there are also non-analytic terms proportional
to log g, [8,48] which we will discuss in more detail in Section 5.2.

In the weak coupling limit, the behaviour of the homogeneous solution (1.11) can be deter-
mined using standard constant term formulae [65,24] to be

4¢(6)
27

—24 49 874 D
}—((g,)n =3dp s 7£(d + 4) E + 9127 ]:(((;i,’f)) +

o 2, gy Epl + 0yl L (35)

The O(g?) contribution arises for d = 5,6 only, and corresponds to a two-loop threshold term
proportional to log g,. Such a term is known to arise from the non-analytic part of the string
amplitude, after Weyl rescaling to Einstein frame [8]. Substituting this behaviour into (1.13),
it follows from the above equation, (3.1) and (1.2) that the two-loop exceptional field theory
amplitude must behave as (for D > 3)

—2+2[2¢(3)* | 4m((3) 4¢(6)

Ex D , D -+
EDBIT _ 0 302 + 3 5(d—2)EdeQA1+g§S<<§7f))+Tg§E3Add71+(9(e w)| (3.6)

up to logarithmic corrections discussed in Section 5.2. The three-loop amplitude is invariant
under the outer automorphism of Dy which exchanges the two spinor nodes due to the fact the
four-graviton amplitudes in type IIA and type IIB are the same up to order V¥R* [66]. The
constituent functions (3.5) and (3.6) are not invariant individually under this exchange since
they involve the two distinct spinor series associated to the fundamental weights Ay and Ag_1,
respectively.

3.2 Weak coupling limit of the particle multiplet lattice sum

We are interested in the weak coupling limit of the integral (1.17), which, after subtraction of
the divergent power law L-dependent terms we denote by R.N., reads

d30 . .
Z)(¢,¢) = STR.N. /g e ot (92) 051 (6,), (3.7)
2 2

where G is the fundamental domain R* x F for the action of PGL(2,7Z) on Qg (of which the
positive Schwinger domain S, is a six-fold cover). The integral and the sum are absolutely
convergent for Re (¢) large enough. By analyzing the Fourier expansion in this region, we shall
find evidence that Z;(¢, €) has a meromorphic continuation to € € C, with a pole at e = 0 for
d =4,5,6. As we explain in Section 5.1, these poles are cancelled by contributions from 1/4-BPS
states running in the loops. Since we are interested in the limit ¢ — 0, we shall retain the e
dependence only when there is a potential pole for some value of d.

The theta series Hfjill involves a sum over pairs of vectors I'; in the particle multiplet, subject
to the constraints I'; x I'; = 0 valued in the string multiplet. Under E4z41 D GL(1) x Spin(d, d),
the particle multiplet representation branches as

2d—14
5=d )

2
Eq (8—d
M I

Ads

)

_(d=6
655 o [Ad—f’Ud,d + Ad—7ﬂd,d] (3.8)
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where the superscript denotes the charge under the GL(1) factor, II;4 the even-self-dual lat-
tice in the vector representation, /\kIIdd the lattice in the k-th exterior power of the vector
representation (which is trivial for k > 2d), and S, the Weyl spinor representation lattice.'”
The branching (3.8) is complete for d < 6; for Eg there are additional terms indicated by the
ellipses. For d < 6 we denote the components of the charge I'; of (3.8) by ¢; € II14, xi € S,
and N; € A5, 4.

On the other hand, the string multiplet, appearing in the constraint I'; x I'; = 0 of the lattice
sum, decomposes under GL(1) x Spin(d,d) as

2d—12
8—

d—4
(§=a

3d—20
5=a )

G ) - 1¢
MAE;rHl N Z(ﬁ) oS ) ® [/\d_4IId7d + /\d_GIId,d:| d ® |:/\d_7IId,d ® S,:| ..., (39)

where the dots denote additional components that arise only for d > 6 and play no role in
our analysis. Thus, the particle multiplet components (g;, x;, IV;) along the decomposition (3.8)
must satisfy

(¢i,4) =0, qGraxj) =0, qu/ANj+Xi@va-ax;) =0, ¢-N;=0 (3.10)
where the last constraint arises only in d > 6. Here, we have denoted by 7, the gamma matrices
of Spin(d,d) and ~4_4 denotes the antisymmetric product of d — 4 such gamma matrices. In
terms of these components, the quadratic form G(I',T") occurring in the double lattice sum Hfjill
of (1.18) can be expressed as
a—7
oz (NP, (3.11)
where a € S;,b € R denote the Ramond-Ramond and Neveu—-Schwarz axions, respectively,
parametrising the unipotent part of the parabolic subgroup P;;q with Levi subgroup GL(1) x
Spin(d,d) (note that b is only present for d = 6). The norms |vi(q)[?, [v2(x)|?, |v3(IN)|? denote
the Spin(d,d) invariant quadratic forms in the respective representations, and depend on the
SO(d,d)/(SO(d) x SO(d)) moduli parametrising the metric and B-field on the torus. To avoid
cluttering, we denote all these norms by |v(-)|?>. The 4* matrices are integral valued in the
canonical null basis associated to the even self-dual lattice II; 4 with the normalisation {4, 7} =
Nab-

As in [1,50], we shall split the theta series Hfjﬁ into contributions where the components
(¢, i, N;) along the graded decomposition (3.8) are gradually populated, such that the con-

straints can be solved explicitly. We shall refer to the gradually populated subsets of charges

4 24=6 4
G, T) = g5 "vi(g+ avx + (3avig—aa + b)N)|* + g5> *va(x + aN) > + gp

that arise in this way as ‘layers’. We first focus on constant terms, which are independent of the
axions a,b and then consider non-trivial Fourier coefficients. A similar analysis for Spin(d,d)
lattice sums is presented in Appendix C.

1) The first layer

The contribution of the layer with x; = N; = 0 but ¢; # 0 gives

/ 4
Qi g8=d i,dj
95\1;_‘—1 ((b, QZ) — ; e 2 9p g(q QJ) . (312)
qicllg q
(gi,9;)=0

195, =~ S, when dis even and S, = S_ when it is odd. For the corresponding parabolic subgroups, we likewise
denote Py = P, for d even, and Py = P;_; for d odd.
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Integrating against ¢}f, in order to obtain the contribution to (3.7) and using the Poincaré series
representation (1.21), the domain G can be folded into the fundamental domain F» for Sp(4,Z),

By,
7 =sanN. [ o AR 0a) 0, 6.
Qy
_ 2448 4y d6Q
= 8mg, °°¢ / |Q2|3<PKZ(Q)Fd,d,2(Q) (3.13)
where
Pz = 91" ol (0) (3.14)

denotes the Poincaré series seed in (1.21) before taking the limit ¢ — 0. The expression (3.13) is
recognised as the perturbative two-loop contribution (3.3). Note that the Narain partition func-
tion I'g 42 includes the zero vector ¢; = 0 which is absent in GX;H(QZ), ), but the contribution
of this vector is removed by the renormalisation prescription mentioned above and discussed in
more detail in Section 5

2) The second layer

The second contribution corresponds to ¢; arbitrary, x; # 0 but linearly dependent x; A x; = 0,
while N; = 0. For d > 5, the constraints x;7a—4X; = 0 are solved by x; = n;X where x € Sy is
a primitive pure spinor i.e. Xy4—4X = 0 and such that no integer divides y (for d < 4 there are
no constraints to solve). The primitive pure spinor x can always be rotated to a standard form
by Spin(d,d,Z) with stabiliser Py C Spin(d,d,Z). Therefore, the sum over x; can be written
as a Poincaré sum over P,\Spin(d, d,Z) together with a sum over n; € Z. Under this parabolic
decomposition, Il q = A @ 7%, and the constraints (gi,q;) = 0 from (3.10) imply that ¢; € Vi
so that their Spin(d,d) invariant norm vanishes automatically. Since the sum over ¢; € 7% is
unconstrained, one can perform a Poisson resummation to obtain

4
) _sz8d an+a_b+b.+—22--
95\3”1 b, ) = E : 2 : § : ( w8y gp (y uab (g +ani)(q;+a’n;)+gp "y nmj)

ni€Z g7 €24 7€ Py\Da

v

4

d—6
28=3 -2 _a o o
( —4 —7rQ2 gD y2ninj —WQ;Z-;QD Sfdy du“bq;qi—ﬁ-%rmiq}la“)

|Qz|7 5

(3.15)

n;€Z qaezd ’yEPd\Dd

Here, y and ugy, parametrise the Levi subgroup GL(d) € SO(d,d) while the axions a € A?Z¢?
parametrise the unipotent subgroup within SO(d, d), and - is understood to act on them through
the non-linear SO(d, d) action.?’ The scalar y is defined such that y~2¢ is the canonical character
defining the Eisenstein series Eg(ld = Zve Pa\Dy y 28

The term (3.15) contributes both to constant terms and to Fourier coefficients of (3.7).
Constant terms may come from a) from ¢4 = 0 or b) from n;¢’, = 0 and ¢’ # 0. The contribution

29The axion a is not to be confused with the summation index a = 1,...,d.
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%

from a) ¢,

= 0 diverges at € = 0, but it can be obtained by analytic continuation in € as above
to give
/

a _% —2€ d Q —7Q nn;
I3V =8mg, Y |y? /g!Q |32660Kz(92) D e Qg'ning || (3.16)

YEP;\Dy n;€Z N

After integrating over the volume factor V' using the parametrisation (1.14), the sum over n;
produces an Eisenstein series E( (2)) A (7). The remaining integral over 7 can be computed
using the following formula, that we establish in Appendix B,

dridm SL(2), \ _ 3 [5(3)]2
R.N. /}_ 2 A(T) Egy 7 () = 2= s(s — DE@s) " (3.17)

Using this formula we get

2¢(3)* -4

— 2 16m2¢(—2 + 2¢)?
T _ 8-d —2¢
d o 1+ 26)(6 — 2¢) 2

YE€Pa\Da
which is recognised as the perturbative tree-level contribution in (3.1).

The contribution from n;q} = 0, ¢} # 0 is computed by unfolding the fundamental domain
of PGL(2,7) to the strip, so as to set (n1,n2) = (n,0), (¢',¢%) = (0, q), leading to
dm A(T)) (3.19)

8r2 gl oo qy /L dry /é
- 9 1/ —1+2¢ 2
6 4

yin2-1¥ 4
% Z 74226‘/72 g Yy dubqaqy

YEP3\Dq n2>1g,ez4

N[

y

Note that the boundary of the unfolded domain U,ep\s1,(2)7F (L) includes boundaries at each
image of the cusp, but since there are no divergences at these points one can safely extend the
unfolded regularised domain to the bounded strip with 7 < L.

Naively assuming that the expression (1.15) for A(7) holds for all 79 > 0, the integral on the
first line would evaluate to

1 1
= = 1 2 _ 2 5 2 _ 1
/2 drA(r) =~ /2 dn (* + (rl” =) ;_ (n ﬁ))) =Ty + — (3.20)
-1 -1 T Ty 67,°

We will see that this gives the correct powerlike terms in g, but misses exponentially suppressed
corrections to be discussed below and the full (non-naive) result will be presented in (3.27). To
compute the integral over 7 it is convenient to modify the regulator. Note that the integral
of the second term %in (3.20) is finite, while the first term 75 gives an incomplete Gamma

function; in the limit L — oo, the result coincides with the result of the integral over m € R*
with an insertion of a factor 7, %€ in the integral with the identification & = ﬁ — 0. Using this
regulator instead of L to simplify the computation, inserting this result in (3.19), and changing
variables to po = 1/(m2V),t = 1/V, we get

42 —ad o0t  dps p
@26 _ 5-d 2
" = e t3_6+g/ e (t+ 6t) (3.21)
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/ 2d=6 NI
8— 2,2 8— -3 b
x> y 30 ST e e, T A

YEP3\Dyg n>1gq,€7d

o

i e [y > (S22t Bgn G ey
- D

3 6(y%F utbqaqy)s—c+e

YEPy\Dq qu€Z4

LE(=2+ 2+ 3f377_1+6_€F(1 —et €)93>]
(¥ 7 uqagy) =t
_ 872 g;%—25g+2€<§(2 + 2e 4 2€)£(6 — 2¢e + 2€)
3 6
FE(—2 + 2¢ + 26)£(2 — 2¢ + 2€)gD2E([1)df6+€)Ad71+26Ad>

Y

6 ;Dq
9p E(376+€)Ad7 1+2eAg

0 2 —2e a3 D A72€(2426)E(6—2 D
30 g B ( ¢( )9U2C(2) ED* + m2E( 96)5( 5)906E(3d—5)Ad_1+25Ad +O(e))

where we used

D
=20(25)EL¢ i, - (3.22)

i 2 ((deg/_Qt >

—,ab s
4aCZAvEPA\Dy T U Gagp)

Y

Using the fact that a vector g, parametrises the highest weight component of a conjugate Weyl
spinor of opposite chirality under the parabolic decomposition associated to Py, one has

z,: > [f(yw%fuabqaqz))} ‘7 = z,: f(g(N,N)) , (3.23)

qa€Z% yEP;\Dy NeS_

for any function f(z) suitably decaying at infinity. Decomposing the more general sum with a

—2t

factor of y~=* one gets the sum over the non-maximal parabolic coset P;_; 4 of a product of the

two multiplicative characters that gives (3.22). Thus we get, in generic dimension

_ 24
I = 905" (3000 Exy,, + 292 ER). (38.24)

The two constant terms on the last line of (3.24) reproduce the expected one-loop and three-
loop contributions in (3.6). We shall explain in Section 5.2 how the renormalised coupling (1.28)
gives indeed the correct constant terms for all d.

Additional contributions to the second layer

However, (3.24) is only part of the constant term generated by (3.19), since the naive formula
(3.20) only holds for 75 > 3, where the representation is (1.15) is valid. To compute the integral
over the full half-line 75 € R™, it is convenient to extend the Laplace equation in (B.3) to the
full upper half-plane by GL(2,Z) invariance,

o T2 (ad4-bc) T +bd4-ac|T|?
(A —12) A() = —12 > P d|25( T ) (3.25)
YEPGL(2,Z) /(Zy X i)
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a
c

Z) ,ad — bc = £1 and the stabiliser subgroup Zs X Zs is generated by ((1) j’]> and

1
[2ac]

where v = <
(1 4)- The locus (ad + bc)my + bd + ac|T|? = 0 is a geodesic circle of radius

N going from
—g to —% on the boundary at 72 = 0. For fixed coprime (a, c), the pair (b, d) is determined up

to shifts by (a,c), which translate the circle by integers. There is only one circle among these

translates that intersects the region [—%, %] x iR and the possible values of 7 are restricted to
T < ﬁ due to the radius and both possible signs of ¢ are identical in this respect. Therefore

the integral of A(7) along the segment [—%, 3] satisfies the Laplace equation

H(1 — (2acms)?)

52 >
2 _
(7’2 787'22 — 12) /_1 drA(r) = 1219 — 2479 Z>1 T Racry)?

ged(a,c)=1

(3.26)

[

where H(z) is the Heaviside function, equal to 1 if > 0 or 0 otherwise. The first term on the
r.h.s. is the contribution of the coset v of the identity with (a,c) = (1,0). The unique solution
to (3.26) with the correct behaviour at 75 > 1 is?!

1

1 Z 1+ 2(2act2)? + (2acry)*

2 1 3
dr A(T) =T+ —= — = 1 — (2acm)?)2 3.27
/_% 1 ( ) ’ 67—25 7 a,c>1 aC(CLCT?)?) ( ( 2) ) ( )
ged(a,c)=1
2ac<1/12

The first two terms reproduce the naive answer (3.20), but the last term, upon insertion into
(3.19), produces an additional contribution

2.8272 [ AV Lat 3 —Ad
%) = — / / (1432 1t —t¥)2g, 5 3.28
d 21 0 V—142€ 0 5 ( + 2 + )( ) 9o ( )
/ Qﬂ __4 4
< DL vt X D e~ Te9n" v (2aen®) =5l g, STy T dut® (2acqagp)
’Yepd\Dd a,c>1 n>1 anZd
ged(a,c)=1 o

Using (3.23) and observing that an and cn are independent divisors of N* = acng®, we get

4
. 25672 — 2440 [l d¢ i < Ko (S5 |v(N)])
(2¢) __ 8—d 342 4 2\ 2 2 gnt
Tam = =5 9 /t5<1+2t +HA=2)2 D oa(N) (V)2
0 NeS
NxN=0
1672 —2L40 <~ o9(N)?
= — b 2 By (2T (N 2
TR 2. v B @D (3.29)
NeS_
NxN=0

where we introduced the special function

3
2

Bi(z) = 16 /01 %(1 + 32+ (1 - 17)2 K, (%), (3.30)

2!The homogeneous solution ( — (2n72)*)H(1 — 2n72) would have a § source non-vanishing and is thus

ruled out.

1
(2n79)3
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which evaluates to

> U 1
16 —_—(1+ =
/1 \/uQ—l( 2(

_ <s2 —4 822 642 ) (

Bs(z) = w4 u?) —ut - u*4)K8(2uz) (3.31)

_9_
22 32—9+ (s2=9)(s2—-1)

s(s—4) 2(s+2) 8 6423

+< I Sl | P § DA
s(s+2) | 2(s+9) 827 6424

+<_ 2 s+3 43+ (-9 1) (K5 ()"

For s = 2, this reduces to

& S KK () (3.32)

i=0,1

232(22) =

where r;; are the functions defined in [32, (2.45)]. As a result, for d = 0 (3.29) reproduces the
formula [32, (2.44)], i.e. 13’1T2 _— o) Inl g, (27r |n|). In the limit g, — 0, using the standard

\n|5 9o

asymptotics of the modified Bessel function, we ﬁnd that (3.29) reduces to

d ol

. — 2445 e 9D
I((f ) ~ —(p 8—d Z O'Q(N)2W y (333)
NeS_
NxN=0

which can be interpreted as contribution from bound states of instantons and anti-instantons
with vanishing total charge. Indeed, these effects are required by the differential equation (1.5),
given that &, contains instanton corrections of the form (see e.g. [5, (66)] for d = 0, [23, (4.84)]

for d = 4)
— 27 |y(N)|+27iNa

Z@ )6 gD,v(N”g . (3.34)

w\w

47TgD

Consistency with the Poisson equation

In order to check that the contributions (3.29) do satisfy the inhomogeneous Laplace equation
(1.5) sourced by the instanton terms in 5{57{)), we use (2.1) to compute

6(4 — d)(d + 4) . 872 T(d—2) [ dmdm _Epy
(AEd+1 S 5(%”1;: FT _ = /; 5 AT) [Ar —12] E47 . (3.35)

T3

Restoring the integral over V| integrating by parts over 7, and focusing on the contribution to
the term (3.19) of type 2b), we get

16 —Ad d 1/2
” / Vdv / = [ (302, —12) / Adn
~1/2

S i 4
y Z <4Z Z o VTQ!]D n? ﬂgv dy du“bqaqb>

YEP\Dy n>1g,ez?

(3.36)

Y
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We now substitute the source term on the r.h.s. of (3.26) into the square bracket, obtaining

—Ad 201(, d oo
ar?g, Sy / i / vav
a,c>1 T2 1- (4CLC7_2)2 0
gcd(ac) 1
2g322 7V ﬁ—éab
D S ) S S BT
YEP4\Dy n>1g,e7 .
The integral over V is of Bessel type, giving
2(2 d) 2 5
T -
A_z Z Z/ - > ! Ky (Ty a n\/m>] . (3.38)
5 ac>1 n>1 TQJTW vePDy Pqagqy 2 )
gcd(ac) 1

The integral over 7o can be computed by changing variables to v = 1/(2acm2) and using

> du 1 2
/1 ﬁKS(Quz):§[KS/2(z)] : (3.39)

Setting acng® = N?, the sum over a, ¢,n amounts to a sum over pairs of divisors (an, cn) of N°.
As a result, we get

24 ! 2
2672 g7 s—at? Z a2(N) K, 2m /usb N, N, 4
[v(N)] 9s (3.40)

NeS_

NxN=0

which we recognise as the square of the D-instanton contributions in 5((51,)0) consistent with (3.29).

3) The third layer

The third contribution to (3.7) is obtained when x; and y2 are non-zero and linearly independent,

while the NN; still vanish. The y;s can then be rotated into the degree-one doublet of the SL(2)

factor in the Levi subgroup associated to the graded decomposition??

(25) (%)
(oh @sk @sh sl 2) Y 0 (202 02972) T 0 (A22772) T C sou,
d—6

Xi €Sy=-® (2 ® /\QZd_2>(ﬁ) ® (2’ ® 74~ 2)(d ) o2 (3.41)
wev=(z) s 202)0 6 (22) 77

We denote the variables parametrising the Levi subgroup GL(1) x SL(2) x SL(2)" x SL(d—2) by
(y, vi5, B, uap), and the coordinates on the unipotent part 22’ ®7Z%2 by czﬁ . The coordinates

22GQuch a doublet of spinors defines a (d — 2)-form x174—2x2 which is in the Spin(d,d) orbit of a highest weight
representative, which can be rotated into a standard form using Spin(d, d) to a specific representative.
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of x; are (0 ,0 nﬁ) while the constraint q?fyaxj) = 0 in (3.10) implies that ¢; = (0,2 pa, ¢%)

where n;’ nﬂ /ged (nl ) Using these variables one can write the Poincaré sum

09 (6,2)= 3 ( >y ™ 9n d((952yn2+p""(pa+aan)(pgﬂgn))v,;zﬁikﬁjl)
d+13"?
¥E€Pq—2\Da \ nJ€Z? ¢¢€z7~2
etn;éO Pa€Z2
4 2 - - - -
—m Qg dyd2uab<qf+agmk+cgamk(pa+aan>><q§+a;fnﬂ+c§?%l(ps+aan>>)

X e
Y
_4% 248 P
_ 9 2 : 2 : z : g4 . -y 9,57 Y yvpmifing!
1Q |% Q”UMn kil
2 ¥€Pa—2\Da \ n,J€Z? ¢\ 74?2 ki
detn;ﬁO prEZ?
4
—gh b o
—mg, 57 (y = 292Ju“bqéq{,+ﬁpaﬁ(lﬂfcg“n o) (P’ — cﬂn qb))+2m(q2m3a§f+np“aa)
X e Q3 vy
~
(3.42)

where we have used Poisson resummation on the unconstrained variables p, and ¢{'. The constant
term comes from ¢in;/ = 0 and np® = 0, implying p® = q¢ = 0. Replacing d — d + 2¢ for the
analytic continuation, one obtains the constant term

_ a—6 PO
I(sa) _ _43%31 d QQ Q Y 2 —ﬂQ;jgzgfdvaniknjl
d = 8mgp |Q 2 6‘PKZ( 2) § § Q” i [e K
YEP;_2\Dg \ n;icz? Uk‘ln nj vy
det n#0
_24+48e 194y de — 2 d 0 Iy PO
= 8mg, °7° el -2 Z v Z / 226 PRz 92)67”92]?’”1%"1'%7'1
§(4e) €2
YE€P—2\D4 nJ€Z? vy
det(nZ 7)£0
(3.43)

where we have done the integral over V' = |Qg\_% and the sum over ged(n) and then rewritten

the result as a new simpler integral over V' and sum over the matrices n;7 without explicit ged(n).
In Appendix C.3, we argue that in the limit € — 0, this gives a finite Eisenstein series

" 4 2 de — 2 8 _nggs € d
=, —80E(2)E(6)¢(8)gs m+2E?§Ad,4+4Ad ~ (3.44)

As we shall see in Section 5.2, this undesired term cancels against the counterterm in (1.28) and
does not appear in the renormalised coupling.

4) The fourth layer

Up to now, we have considered only contributions with N; = 0, which exhaust all layers when
d < 4. The fourth layer includes N; # 0, but linearly dependent (N; A N; = 0), which is
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automatic for d = 5, where N; € Z. We shall argue that the contribution from this layers drops
out in the renormalised coupling (1.28).
For d = 5 one has

/

d3Q
G Qo] 2 Ni€Z
4 _2 _8
Z T (92 9(ai+arxi+ 3 (ara)Nigj+ayx;+3 (ara) Nj)+g5 3 v(xit+aNi)v(x;+alN;)+g; * NiN;) (3.45)

Xi €S

qi€ll5 5

Xi X5 =N(iq5)

(gi,4;)=0

while the same term for d = 6 can be written as a Poincaré sum

By |, !
I0(4e) = 8RN, /g ﬁ(p%z(ﬁg) Y%

~EP1\SO(6,6) N,EZ
§ : eﬂrQ? (gig((h+a7Xi+%(a'ya)Ni,QjJFa'YXjJF%(CWCL)N]')erv(XiJFaNi)'U(Xj+aNj)+94_2y2NiNj)
Xi€S -
qi€ll5 5
Xi X5 =N(iqj)
(gi,95)=0
% E o~ T gFy? (mita(xi+an:)+n;) (my+a(x; +an;)+bn;)
m;EZ v

!/

8 _ B

-
94 ~veP1\SO(6,6) €222 N;EZ

§ : o™ (939(ai-+avxi+i(ava)Ni,gj+avx;+ 3 (@ya) Ny +yo(xi+aN;)-v(x;+aN;)+g5 2y2NiN; )

Xi€S -
q;i€ll5 5
XivX; =N(:a5)
(gi,q5)=0
% E 6_7792_1'1]'9221/7277%7711'+27Timi(@(><i+am)+bni) (3.46)
7 T
m*eZ y

The abelian Fourier coefficient is obtained by setting m’ = 0, leading to

u _4—4e _4_4e _1
78 (be) =9, ° >, y UL (g =y 2ga)| . (3.47)
~EPI\SO(6,6) K

Therefore the contributions to the constant terms and abelian Fourier coefficients in d = 6 are
determined from the ones in d = 5 through a Poincaré sum.
In Appendix D.1, we study a similar integral If::ll (ESS/L\(IZ) ,d+2e¢ —2) where A(7) is replaced

by an Eisenstein series ESS/L\(I2> . There we find for generic s that the constant terms from the orbit
with V; # 0, N; A Nj = 0 disappear as € = 0, due to an overall factor of @. Therefore we
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expect this factor of ( 9 to appear in the computation irrespective of the function (e.g. A(T)

or E(ff\l ) on SL(2)/SO(2) one considers. However, for the specific value s = —3 corresponding
to the counterterm in (1.28), one finds that the coefficient diverges in £(1 + 2¢) and there is a
finite contribution in the limit. Consistency requires that this finite contribution disappears in
the renormalised coupling (1.28), see Section 5.2.

5) The fifth layer

For d = 6 one must also consider the cases with NV; non-collinear. One can write the sum as a
Poincaré sum over P» C SO(6,6) such that

IIes = (ZH) 2 @ (S2)9 @ (2*)? Sy 2 (Iy0) ™2 @ (222 84)” @ (I144)?,  (3.48)

where the embedding SO(4,4) C SO(6,6) differs from the standard one by triality. The solution
to the constraints (3.10) decomposes in this basis as

q; = (0707 nzj) ) Xi = (07 nzj%v Qia) ) Nl - (n’bj (gég)uyaaapg Gia, ml']) ’ (349)

where k can be chosen as an integer coprime to p, that divides n;7, Y**pygiq and ”l  (p.p) ’p ). The

integer k can be decomposed as k = kiko such that k1k2 \nﬂ and kl\( ) For any p., one can
find a pair of primitive null vectors u, and v, such that (u,v) =1 and

(p:p)
2gcd(p)

Pa = ged(p)ua + (3.50)

aad

and the condition k|y***p,qiq reduces to the property that the component of ¢;, in the null
space of u, is divisible by ke and the one in the null space of v, is divisible by kiks. So
Qia € kolly a[k1] = (k:lng) (kQZ)4 in the appropriate decomposition. The bilinear form reads

G(T;,T;) = frvg(mi’ + aqia + 3@a;,, ik + ond)(m;? + aq + tala;n;t + bn;t)
+ Vi 520% (qia + @iani’) (gjp + apni?) + fovinidng?  (3.51)

where
2 2 P 942 “ 2
n=9iy, =05 y+uaﬁ(”f+aa)<%+a6>+@[<%+aa)(%+a°‘>] :
s
0 +g y “lud 67 ad”Y 5/3( +a” )(%'f‘aﬁ)

)

\/1 + 94 y_llﬂ(s(pi +ay) (B +as) + 542 [(p7 + av)(% +an)]?
dia — Eijnaba]b _ a ay Cla7aad( p& + aa) 7

b=b+a%(te +aq) + (22 + an) (B +a®) , (3.52)
with (aq, Giq, @) € S— parametrising the unipotent in P, C E7 in

S_=(S) @ (2% @ 44)” & (S4) (3.53)
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and (cj4, ¢) the unipotent Z? ® S_ ® Z of P, C SO(6,6) and u® and u®’ the Levi subgroup
Spin(4,4) in the vector and spinor representation and v;; the SL(2) Levi subgroup of P. For
fixed po and k, the sum over n;/, ¢, and m;} reproduces a genus two Siegel-Narain theta
series over the lattice kolly 4[k1] @ II2 2[k1 k2], with n;/ non-degenerate. The computation at this
level would involve the consideration of the Poincaré sum of |Q2|pif, (£22) over all congruent
subgroups 'o(k1k3) of Sp(4,Z) (v = (* #) with C a multiple of k1k3), which seems out of reach.

C D

Rather than pursuing this approach, we shall argue that the sum over p and k in this
expression can be seen as a Poincaré series over P;\SO(5,5) acting on the overall unconstrained
lattice sum in IIs ¢ with n;? non-degenerate. The reason is that one obtains exactly the same
sum in the T? decompactification limit of the same coupling, i.e. in the parabolic Py C E;

My = ()P e STV 6 (22 @ Ir5)” @ SV & (22)® . (3.54)

The decomposition of this series can be computed explicitly when all strictly negative degree
charges are zero while the degree 0 ones are non-degenerate, in which case they match exactly
the set of charges we have defined above, i.e.

(nz]anz] L (;?];g) 1 ) (Z2 ® 15 5)(0) (C]iaﬁaaa%qia) € S-(ﬁ) ) mij € (Z2)(2) . (3.55)

This does not parametrise the whole set of charges in the large T2 volume, but only those for
which n;/ is non-degenerate in Z? ® II5 5, which we call the principal layer in the decomposition
of the SO(5,5) Poincaré sum.??

With this interpretation, the sum over p and k of each Narain theta series over kolly 4[k1] ®
II5 5 [kq k:%], with n is the Poincaré sum acting on the Narain theta series over Il 6. So one can
apply the orbit method for the single Sp(4, Z) invariant theta series, and then carry out the sum
over p and k on the resulting expression. This leads to

3
/|dQQ§ /d391 |Q|“piE, () | Z Z ¢~ G(LiTy)+miQy (2235mi g —(gioa;))
g 2 Z3\R3

nid €72 ia€lla,a
det n#0 m;JcZ?

dBQ Q —T Var ('t ik, m itn
= 2 /d3Q1 ’QQ|EQD%Z( ‘ 2‘ Z Z e \/>921] 2 (M Q) (mI1+-Qilny )

G ‘92‘3 Z3\R ~3+e 1+6

j EZ2 m” EZ2
det n#0

x § eWiQijPL (gi+an;)-prL(qi+an;)—miQ¥ pr(g;+an,)-pr(gi+an;)+2mim’ (qz‘&Jr%é?mi +bn;)

Qia €114 4
439, Q2 Ji
— d3Q1 |92’e tr (92) ‘ ‘ 2”vz]m m
3 ~3+e 1+e
g Q23 Jz3\rs
YEP:\Sp(4,Z) miez?
det C(v)#£0 det m#£0
X Z -7l Ju Qiaqjb— 7719 77 QZaq1b+27nm j(haa] + ... , (356)
Qia €144

23The Poincaré series turns the vector (0,0, m?) into an arbitrary null vector (n’, go, m’) with the same ged.
The trivial element gives (0,0, m'), elements in the first layer are vectors of type (0, pa, m") while elements in the
principal layer are (n®, po, m*) with n® # 0.
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where the ellipsis denotes non-abelian Fourier coefficients. In words, we first enforce the con-
straint by introducing the integral over 1, then rescale 25 to identify the sum as a Narain
theta series over IIgs and use Poisson summation over mi?, and in the last step convert the
‘partial’ P»\Sp(4,Z) Poincaré sum over linearly independent (m%, n;/7) but with trivial symplec-
tic product into a ‘partial’ Poincaré sum of |Qa| 0%, (22). Indeed, the sum over (m%, n;/) with
n;) non-degenerate can be promoted to an Sp(4,7) invariant sum over doublet of symplectic
vectors that are linearly independent. The Sp(4,7Z.) orbit of doublets of symplectic vectors with
a non-trivial symplectic product contribute to the non-abelian Fourier coefficient and can be
computed similarly. The Sp(4,Z) orbit of doublets of symplectic vectors with a vanishing sym-
plectic product can be written as a Poincaré sum over v € Py\Sp(4,7Z) of the representatives
with n;/ and m* non-degenerate, but only when the 2 x 2 matrix C' in the lower-left block of
is non-degenerate is the resulting n;/ = Cz-jmjj non-degenerate.

Now we shall argue that the missing terms in the Poincaré sum over P;\Sp(4,7Z) only
contribute to degenerate Fourier coefficients, such that the following refinement of (1.21) holds?*

/

im0 (1962 ()], = exz () — @iz () = D Far(Qa)e®™ MM (3.57)

€E—00
YEP2\Sp(4,Z) MeSy
det C(7)#0 det M=0

where S is the set of symmetric matrices with positive integral diagonal components M;; > 0
and half-integral off-diagonal M9 that is moreover > 0 if M1 = My = 0. The function Fys(€s)
removes part of the Fourier coefficients of the KZ invariant in (A.11) supported on rank-one
r that

. . . SLE2)
matrices. For € # 0, one expects, by analogy with the Siegel modular form ¥ E;jﬁgf )
YEP\Sp(4,Z)

the constant term at € # 0 takes the form

SL(2)

. 5¢(3 ) 2 ;2SL(2) T g(de—1) £(=4+20)6(3+2¢) E3a
> (1906, Q)] ~ 7V Eaer, (T) + 35 30 §3r208 (20 vz - (3:58)
YEP2\Sp(4,7)

det C'(7)#0

The second term vanishes in the limit ¢ — 0. Inserting the first term in the previous integral,
one obtains

SL)

d*Qy 5¢(3) B A Q|2 —7r\/>Q s smitmdd
7096, = or [CREOTAD 55 By R
’ ~3+e~1+e

g [af? 4m ’yePQ\SO(G 6) PacSy Y2 g g

det m=£0
gcd(k ) 1 et

o _ SL(2

N 2yt ] P 7)]2)%4‘5 .,

“/EPQ\SO(G 6) pacsy (1T ofy P +a)( +as)+ Sl +a) (3 +a
k>1

ged(k,p)=1

24For the Siegel-Eisenstein serles (A.25) with s1 = s2 = s, one checks that the sum over rank-one matrices C

L(2)
gives the constant term 5(;{92 )1) M

rank-one. We shall argue in Append1x D that for s; and s2 generic, the principal layer of the Poincaré sum over

and contributes to the degenerate Fourier coefficients e?™ 1M1 with M

rank-two matrices C' gives all the constant terms of the two-parameter Siegel-Eisenstein series.
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_ 2060 €= DECRe 1) AU s LI (f26+...)\V

T £(2¢€)&(2¢ + 3) 7eP2\SO(6 6
40£(2€)€(3)(2 — 2¢)€(5 — 2¢) g7 OEDs
€G3 120 Facky +o00 (3:59)

where the ellipses are Fourier coefficients. Here, we rewrote the sum over (p, k) as a sum over

(».p)

unconstrained (p, k) and n = 5> not zero, up to an overall factor of ETSD) and then performed

3+2e)
a Poisson summation over n and set k to zero through the introduction of the theta lift of Ef[flm

1
2 T 3

)

= (-% + (B +ay) (B +a5) + [ +a)) (5 +a7)]) 2
k>1
ged(k,p)
OodpQ 7Tl'p2( Y k2+u(p+ak,p+ak)+i(n+pa+ aak)? )+i7rp1(2nk7ﬁp)
- Y y
3 + 2¢) _1
nez
PaES+
k>1
- g4 y2 —7pau(p 7p)fli2 2 12rinpa—inp1 pp
= (3120 / dpz/_dpl eA1 )—PE)Z e 72 9
n>1
pa€S+
§(2e —1)6(2e —4) 5490 5_
274 3.60
3 +20€(2) 4 Y (3.60)

Although several steps in the computation just outlined remain to be clarified, in Appendix D.1
we apply the same reasoning to a similar modular integral with A(7) replaced by an Eisenstein
series Efﬁf), and find that it reproduces the correct constant terms (namely the last three terms
n (D.2)) predicted by Langlands’ formula. This agreement is a strong indication that this
reasoning is indeed correct.

In Section 5.2 we shall see that the sum of the contributions from the five layers to the pertur-
bative part of the renormalised coupling (1.31) reproduce the expected terms in (3.1), including
logarithmic terms in the string coupling constant, while the divergent one-loop contribution in
I8 (¢, €) disappears in the renormalised function (1.28).

3.3 Fourier coefficients

Beyond the constant terms, our method also gives access to non-zero Fourier coefficients, which
we now turn to.

The first source of Fourier coefficients comes from what was called the second term above,
more specifically n;q% # 0 in (3.15). The corresponding terms simplify to

_ 24 d 9] ij —1,-2 i i
2! 9 O 1 s (gt
74 = 8mg, ° / N 1 D DD D A G
q€S+ nlEZ
q><q] 0 niq '#£0

To analyse this expression, it is convenient to unfold the integral domain G to the set of positive
matrices RT x Hy/Z by fixing n; = (n,0) for n > 0. Setting N = nq', one can solve the
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constraint for ¢ in the Py C SO(d, d) parabolic decomposition associated to N such that

700 = /VdV/ de/dTlA (1) Z Z Z

~EP\SO(d,d) NEN n|N

y Z VT2+V72 . 2+ Uy (2 (GH(s0) N2 T u(g)?)) +27iNa
q —z
AUESY
1
872 A1 [ *dmy 2 _ NJ
— an 8—d VadV : § § § § d 2miTy
3 0 0 T22 _1
vePd\SO (d,d) NeN n|N jEZ 2
Xy_l Z e* (V_,_2 +V7'2 g2n2 + 2y d "U(q)|2 ‘F291) ~2)+27r1( (q §)+Na) (3 62)
eZd(d—l) N
q 2
qNg=0

For j # 0 and ¢ # 0, this term involves the integral of the Fourier coefficient of A(7) with a

saddle point at
[T [v(q)] /
y @ |v(q
=n|| T——— 3.63
9pIN (3.63)

which is exponentially suppressed in e . One can compute explicitly the con-
tribution from the leading part (3.20) of the constant term of A(7), and similarly for its Fourier
coefficients. Using the same method as in (3.26), (3.27) one solves the differential equation for
the Fourier coefficients?

@\3

N 2my d\(

82 % e
(TQQ—(%_ 5 — (27Tj7'2)2 — 12) ) d7'1A(7')e_27”JT1 (3.64)
2 =

2
H(1-(2 2
= =127 — 247 Z ( ( ac7'2)2)
a1 V1 — (2ac?)

ged(a,c)=1

cos(2mj(5t- + 2)) Cos( 1 — (2acm)?)

where b is the solution modulo a to ad — bc = 1. One finds the unique continuous solution that
reproduces A(7) for 7, > 3

1

2 e~
/dTlA(T)e_QmJTl =
1

ac)?
+ Z COS(QFj(i—Fg)) <3<(75E) )23 + ~22 - 54 3(1— (2a072)2)>

6
™ T
sl 7))y (7)) (7T
ged(a,c)=1
2ac<1/m2
25For each positive coprime a and ¢ there are two solutions 71 = — 1 — b 4 V1Z(Zacra)” (2acrz)? where b is the same

2ac 2ac
modulo a, leading to the same source term as in (3.26) multiplied by 62”5(2ac+ ) cos(Z2/1 — (2acr2)?). Because
the function A(7) is even in 71, its Fourier coefficients are real. For each coprime a, ¢, there is the permuted pair c, a,

with b and —d permuted, and the contribution carries the complex conjugate phase e2ii(zaz = 2) = 2™l ~3ac—a).
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X < 1 — (2acms)? COS( 1 — (2acm)?) — — Sln( 1-— (2ac7’2)2)>

75
+ ~7a03(1 — (2acm2)?) sm( 1 — (2acm)?) | . (3.65)
(m])°73
The saddle point (3.63) is at large 72 at small coupling g,,, therefore the contributions from A(r)
at ™ < % will be further exponentially suppressed and at leading order one can neglect them.
The integral gives then

-3
1672 — 2043 y
(2d) 8-d N SL g(N,N)
Ly~ =39 > U2(N)(gcd(N)f(Q)EAld(vN)Kl(QﬂgD)
NeSy
NXxXN=0
29_5
2 YN SLqg g(N,N)
N E Ky (2rY—"—
90 Gacd(N )5(5) 5a, (0N) 1 (27 )
3 ! . Ké(%y]vd\wv( ) S
T el DI o (o )
N gez*s” (y d!vN( Ik
ONQ=0
15¢2 ! ; K§(27TyNd‘vN( )|) NN ;
- 3 (@@ i (o YD) J V) (3.6
N ggies (i on (@)
QAQ=0
where we kept the variable yy = ~ g((’) for simplicity, 7 is a sum

over characters of the unipotent stabilisers of the charge N. The leading term in g, factorises
as an Eisenstein series over the Levi stabiliser of N, while the full Fourier coefficient depends
non-trivially on the whole parabolic stabiliser.

The neglected terms in (3.65) give rise to integrals over the truncated domain 75 € [0, 7]
for any coprime a and ¢, which are therefore further exponentially suppressed. As we shall see,
these corrections can be ascribed to instanton anti-instanton corrections, similarly to (3.29) for
the constant term. To see this, it is convenient to do the inverse Poisson summation over j.

Note that the function f, . ;(72) appearing in the sum over coprime a, ¢

1
2 . 3 15
dr A(r)e ™M = + a,cj\T: 3.67
[gmae Grrm 3G b 2 Jed) (397
ged(a,c)=1
2ac<1 /12

is regular at 7 = 0 and gives

1+ %(2@072)2 + (2@072)4

Tac(acte)3

Faco(m) = — (1— (2acr)?)? (3.68)

as in (3.27). The Poisson formula involves the inverse Fourier transform

2
- T29p j2

Fueam) = [d7 7 £, () €T (3.69)
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which evaluates to

- Vy? [2acn(i+(q,))+N(1+2bc+ /1 — @acr)?)]?

r3 1 -2 2

fa,c7j (TQ) = (P(I(J,C),j( ) PG(, ;]( ) 1 - (20’67-2)2)6 7295 (2acn)
) ) o vy22 [2acn(j+(q,§))+N(1+22bcf\/71—(211(:72)2)]2

— (P(i C)J(Tg) P(; C)](TQ) 1- (2ac7'2)2)e 295 (2acn)

+ Paogj( 2)(erf(\/%;%Zaﬁn(]+(q,§))+1v(21atibc+ 1—(2067’2)2)) _ erf( / Z (,y,) 2acn(j+(q.5)) +N(1atibrﬂ/1 (2(1(7’2)2))) (370)
Here P(i C) j are polynomials in the various parameters which we omit since they are not particu-
larly 111um1nat1ng. In the saddle point approximation, one computes that these corrections are

26

exponentially suppressed with the action

S = ZW(N N (6 Q)2 Q) + ZN POV + (6 Q)2 + 2 (@) (3.71)

which corresponds to the sum of the actions of an instanton of charges (N + N1, Q) and anti-
instanton of charge (—Ni, —Q) with

N1 = beN + acnj Q =acng . (3.72)

It is convenient to change variables to N1, ) and

t 2
T =— V =aenv , 3.73
> 2ac ( )
and define Y
2 2 -

F(ta 37%7/7 N> Nl + (gv Q)) = 7fa,c,j(7_2) ) (374)
where the dependence on the arguments is made explicit in F'. Then the complete function Z, ()
reduces to the sum of (3.66) and

87r fﬂﬂ
[ [E > 5 PRI Ip ML
~€P;\SO(d,d) NeN 72450 JEZ n|N  a,c>1
q/\q 0 ng(a o)=1
(2 ty2N2+ 2u 2 _
v y—le W(yt vt 2y T Ju(acnq)| )F(t, 3721/, N,beN + acj + (g,acq))
D
.
8772 atl : 27iNa :
=— iy % S D @M N 0y(V1, Q)oa(N + N, Q)
~EP)\SO(d,d) NEN Ni€Z
Qez
QAQ=0
26To do this computation it is convenient to introduce z; = \/y2 (N+ N+ (5,Q))2 + yz_% |[v(Q)]? and 22 =
5 o Vy? [2acn(+(a.9))+ N (142bc+T= Zaen))]?
\/yQ(Nl + (5, Q)2 +y?"4|v(Q)|2. The saddle point for e 293 (2aen)? lies within the

integration domain when z2 > z; and the action takes the minimum value 2—"(7;1 + z2), whereas the saddle point

9gp
__vy? [2aen(i+(a,6))+NA+2be—/T- Gun))]?
a2 2acn)? . cils . . . .
for e 7295 (2acn lies within the integration domain when z; > z2 and attains the same

minimum value. The error functions involve the same exponential in their asymptotic expansion at large = using

erf(z) = sign(z) — e 52 T(4 + k) (— )"
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(2 N2y 2w 20 2
< yle (2224 20025 (@) )F(t’zgy,N,Nl—&—(g,Q)) (3.75)
Y

where we used the property that cn divides (N1, Q) and an divides (N + N1, Q) using 1+bc = ad.
Note that the case (N1,Q) = 0 is excluded from the second sum: In this case a and j are fixed
such that b2 + aj = 0 and the sum over ¢ (after replacing a?c’n? by (acn?)?~%
regularisation) leads to a factor of ((2e¢ — 2) which vanishes at € = 0. The factors o2(NV, Q) and
o2(N + N1, Q) are the measure factors of the 1/2-BPS instanton and anti-instantons, see [5,67].

We conclude that the dominant contribution (3.66) to IC(lZd) is of the expected form to cor-
respond to 1/2-BPS Euclidean D-brane instantons, with the spinor N identified as the D-brane
charge satisfying the 1/2-BPS constraint N x N = 0. The overall factor of go(N)/N? is recog-
nised as the partition function of the world-volume theory of N Euclidean Dp-branes on the
torus [67]. For a D(d — 1) Euclidean brane instanton yx vy defines the string frame metric and
¢y the B field components along the torus, so that the sum over @ in (3.66) can be interpreted
as contributions from world-sheet instantons over the Euclidean brane background. The sub-
leading correction (3.75) can instead be interpreted as the instanton anti-instanton corrections,
which also carry the measure factor of the two constitutive instantons.

in dimensional

The second source of Fourier coefficients comes from the third layer of charges, more specif-
ically from (3.42) with g’n;? # 0 or np® # 0,

2442 a*Q e~ vyt
8 = 8mg, ¥ < Z /]92]280%2 ) ———————— (3.76)
YEP3—2\Da

v N
yQ2 Vi

n; €72
x (555 byi o7 S kg b8 0,
77 yd 2Q;,;u” qétzﬁﬁpaﬁ@a*cg“‘m ) (PP —c}" qb))+2m(qém]a§+np‘*aa)>
X E RiTiTT
d—2
4LEZ
paez2

The integral over G can be unfolded to Rt x H; at the expense of restricting the sum over n;/
to Z2*2/GL(2,7). The integral over €2, is once again dominated by a saddle point as g, — oo.
The modulus of the exponential is of the form e~ where S is the ‘action’

S(Q) = w(TngY +Te0; X + (3.77)

TrQQY>

where X, Y are symmetric positive matrices and M > 0. The extremum with respect to {29 is

VM XY 4 2,/[XY]
o = TrXY +2,/[XY]

$(©3) = 27/ M + TeXY +2/[XV] . (3.79)

Provided the integrand ¢, (€22) is continuous around €3, the integral in the saddle point ap-

given by

(X + VXYY 1), (3.78)

and satisfies

proximation reduces to

. . _ —2m\/ M+Tr XY XY
/ 0 07 () si0,) | Plp(X + VIXY]Y e A (3.80)

H(w) Q2 Tr QY VIX[(Te XY 4 2/[XV]) (M + T XY +2,/[XY]) T
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For the integral (3.76) one obtains, setting P* = np® and Q’, = njiqé,

2 R a d—4 N N N N N =
S(Q3) = W\/ ypap(P* = QL) (PP — &7Q]) + 5 (viju QLQ) + 2 (wbuct w%ubd)@éQngQz) (3.81)
D

which is identified as the classical action for a 1/4-BPS D-brane of charge N € Sy with
Nv4-4N #0, (and 42N - (Ny4_4N) = 0 in AT61T, 4 for d > 6)

S(9%) = ?\/ [o(V)[2 + /20 ra—av(N) 2 (3.82)

We shall now express the Fourier coefficients (3.76) in a covariant fashion by resolving the
sum over Py_s\D,. For each non-zero spinor N € S, one has a sum over the doublets of spinor
xi € S— satisfying instead Y;74_4X; = 0 such that (Y;74—2x;) - 72N = 0 in AY*II, 4 and such

that
1 1

ged(Xiva—2X;) ged(xi)
Introducing the same notation g(-,-) for the metric on any module of Spin(d,d) parametrised

by the coset SO(d,d)/(SO(d) x SO(d)), and unfolding the integration domain against the sum
over x;, one can write (3.76) as

Xiva—sN € N3y, ———<Ne€S;. (3.83)

24 / _ \2
76D _— 16 —5-at2 27riNa d*Qy tr 0 ged(x:)
§ = 167, e R A e
NeSy Xi€S_ ®Z2/GL 2,7) 7/ HR) 2 9\Xi» Xj
Y2 N-(Nya—aN)=0  XivYa—ax;=0, XiVd— 2Xﬂé0
) XiYd—2X;-v2N=0
o d—3
Eedtig ) X a-s VAT e

gcd(x zedt VESH
.. Qi_l_gikgjlg()zk»yd_:iNyXl—yd_SN) zkejlg(x X)) a(R N.%7 N)
*”Q?g(xl',x]‘)*%( 2 S IWNLN) X3)9(XkYd—3NX1vd-3 )
xe 95 9(X17vd—2X2:X17Yd—2X2) QF 90xix;) 95 90x5:x;)9(X17d—2X2/X1 7d—2X2)
_24 4401 ! e%iﬁa—%\/Q(N,N)Jr?\/9(N*/d—4N7Nm_4N)
~ Bmg, Ty (3.84)

N

Nesy (9(N,N) +2v/g(Nvq—4N, Ny4_4N))
LoN-(NTq_4N)=0

2 _ _
% E ng(XZ) tr [( 9(Xivd—3N.Xj¥d—3N) + 2g(Nmf4N,wa4N)g(xz,x]))—1]
‘ ( - )| 9(X17a—2X2,X17d—2X2) 2[g(xkx1)I ’
YiE€S_ 9\ Xi» Xy
XiVd—4X3=0, XiYa—2X;#0
XivVd—2X;v2IN=0
1 o d—3
2ed(Xi7q—_2X; )Xv'yd 3NEA Hd,d

NeS4+

gcd(x )

where we used the same saddle point approximation as above in the second step. To find
this formula one can use the fact that the sum over non-zero y; decomposes into the Poincaré
sum over Py_9\Dy and x; = (0,0,n;7). Then ¥;v4—2X; = €ij(...,0,detn), and the constraint
XiVd—2X;j - 72N = 0 imposes that N = (0,Q%, P¥). Then the only non-zero component of

_ . 7 _ . —17 3 . .
XiVd—3 NN is Egjni’Qfl, SO thaF the one of m)(i’yd 3N is —g4n; 7@, which in order to be
an integers requires that @y, = n; qfl for an integral ¢’. Finally the condition that ( )N S

is automatically satisfied for Q% and requires that P be divisible by ged(n;).
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In D = 4 there are additional contributions from the last orbit to the Fourier coefficients.
For generic abelian Fourier coefficients, one can insert the Fourier expansion (A.11) in (3.56)
without having to worry about the discrepancy (3.57). The integral over € sets the matrix M
in (A.11) equal to %naqu qj- As the Fourier coefficient is defined by the charge Qf = m;’ qJ, we
recast the sum over ¢ and m;’ into a sum over integral charges Q; € 11, 4 and matrices A; J
dividing them in Il 4. One obtains in this way

- Y (XY s i) e

YEP\SO(6,6) 94y QEZ2QIIs 4 ACZ?X?/GL(2,Z) d|A71Q-QTA™T
A@Q)>1 AT'QeZ2®II44

d*Qy (4rA(Q) 5 1 -
- Z / 1921 ( +a) * |Qa| <L(§€7 +a)3 + L(% +a)2tr[Q2vQ . QTmD)

k>1
pESY
ged(k,p)=1
(p,p)
7‘;1,5 €Z
4 Bpeg

wtr[vTsz(L(ma)Q-QT+QuQT+9;2(z+a)T¢m<’;+a>>]g’atr[%1}+2m<Q,a+cw<z+a))>
X e 4

~

where

A(Q) = detn Qi Q)] L(p) = \/1 + %uaﬁpapg + %(p,p)2 . (3.86)

Note that A(Q) is the usual quartic invariant of electromagnetic charge vectors in an N/ = 4
truncation of N' = 8 supergravity [68].

To exhibit the Fourier expansion, we still need to decompose the sum over (k,p) into p mod
k and the integral part p’, and Poisson resum over p’. We define the function

gazy d3Qs [4TA(Q) 5 1 or .
fQ(ﬂ)‘/mmzf( L) +wrnz|(L<x>3*L(x)?trmz”@'@”TD)

e—wtr[vTQQU(L(x)Q'QT+QUQT+Q‘T42x7@u@x)] Ty tr[Qy g

. (3.87)

which can be evaluated in terms of matrix variate Bessel functions [80, 50], and its Fourier
transform

Fal) = / B fo(z)e?m0ee) | (3.88)

where we have rescaled variables such that fQ (x) does not depend on y. While we do not have
an explicit formula for fo(x), we note that it is a well-defined, absolutely convergent integral.
Moreover, we expect that it should have the characteristic exponential suppression for 1/8-BPS

D-brane instantons. The generic Fourier coefficients can be written as®’

2"The condition d|Q - QT is a shorthand notation for d|(Q1, Q1)/2, (Q2,Q2)/2, (Q1, Q2).
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1
60 _ —1 -3~/ AQ)
- Y (B XY Yy )
~EP\SO(6,6) \"*  QeZ2® I, 4 XES+ AcZ272 JGL(2,Z) d|A~1Q-QTAT
A(Q)>1 ATIQEZ2R1II4 4

% Z eQni(%,x) fQ (g (X + @C)) 627ri(Q,a)—i—27ri()(,a))

E>1
p€S+ mod kS+

(p,p)
_’;l,f €Z
A Wreg

(3.89)

il

where the coefficients ¢(n) are defined in (A.12). As expected for a generic Fourier coefficient
saturating the Gelfand—Kirillov dimension of the automorphic representation, these Fourier co-
efficients decompose into a ‘measure factor’

pey(QX) = > S At (G) Y, e (3.90)

A€Z?*2/GL(2,Z) d|[A~1Q-QTA-T E>1
AT1QeZ?RII4 4 peSt mod kS
' (p,p) ez
_3k
Alareg

and an analytic function %% fQ(g(X + @c)) of g4 and the Levi factor v acting on the charge
(0,Q, x) only, but not on the number-theoretic properties of the charge. Note that the depen-
dence in y and the axions c is such that the function is covariant under P» as a U(1) x SO(4) x
SO(4) C P, invariant function of v(0, @, x).

A significant complication is that the true measure factor p(Q,x) differs from (3.90), due
to the fact that the charges in the form (0, @, x) do not define a unique representative of the
P, C Spin(6,6) orbits. We shall not attempt to compute the measure p for general (Q,x),
although we expect that it will take a similar form with different powers of the determinant
|A| of the dividing matrix A and of the integer d. In the special case however where @ is a
projective charge, in the language of [69], then the problem simplifies drastically. One example
of such a projective charge is a configuration of one D5 and three D1 Euclidean branes wrapping
three orthogonal T2 C T°, two once and one N times, possibly along with one unit of D(—1)
brane, i.e. 1 D5 +1 D141 D1+N D1 (41 D(-1)). Then each representative has ged(Q) = 1,
ged(Qi- Q) = 1 and ged(Q4 AQ5) = 1 such that A =1, d =1 and k = 1. In this case there is no
sum over p and the measure reduces to E(A(Q)) = 6(A(0, Q, X)), where A(0,Q,x) = A(Q) is
also the quartic Spin(6,6) invariant of the total charge (0, @, x). Then the measure is the same
for all possible representatives in the Poincaré sum P\ Spin(6,6), so the Spin(6,6,7) invariant
measure will be preserved and equal to E(A(O, Q, X)) This is indeed in agreement with the index
of a 1/8-BPS stack of D-branes on T determined in [51-53], which counts four-dimensional BPS
black holes.

The full Fourier expansion for Dj

For d = 4, we have exhausted all the contributions in the theta series Hfjﬂ(gb, Qs), and have
thus obtained the complete expansion of the integral (3.7) that we record here for reference
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X e 96 9(x172X2,X172X2) Q5 9(xixj) Q5 9(xi:x5)9(X17v2Xx2,X172X2)

1672 _, ~— o032(q)? (27T )
— ge By | —|v(q 3.91
2% 2 fugp® (g M0l) G
q'€lly,q
(¢",¢7)=0

As shown in Section C.2, the theta lift formula [ & 0] 3¢KZ(Q)F57572(Q,1‘/) gives indeed the same
constant terms. The integral in the second line can be simplified as in (3.66) and (3.75).

4 Decompactification limit

In this section, we study the integral (1.17) in the limit where one circle inside 7% becomes
very large. We first discuss the expected form of the expansion, known from general physical
considerations, before turning to a detailed analysis of the constrained lattice sum (1.18). For
d = 5, it is worth noting that the decompactification limit is equivalent to the weak coupling
limit under exchanging g5 with R~', due to the symmetry of the Dynkin diagram of Eg and
(1.23) with d — 2 = 3, which will allow us to cross-check our computations.

4.1 Expectation

The decompactification limit of the non-perturbative VOR* coupling takes the formal generic
form [22] [2, (2.28)]

12 _ 5 _ _
ED ~ RFa (5(&;{1)” + 2¢(d = 6) R + A06(2)¢(0)¢(d + 4) R

1672¢(d — 2)?

) R2d—6> (4.1)

2m
2T od — 9) A3~
TR o (6=

3
where R = ry/¢p41 is the radius of the circle in Planck units, up to logarithmic terms that
depend on the specific dimension and can be found in the Appendix B of [2]. These terms are
determined by matching the decompactification limit of the perturbative string theory answer
together with the requirement that the result must be expressed in terms of the functions
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multiplying the lower-derivative terms in R, R* and V4R? in the effective action. On the other
hand, the decompactification limit of the homogeneous solution .7-"5& )1> in (1.11) (coming from
the one-loop amplitude in exceptional field theory) gives

d 12 d—1 5 —
Fihy ~ R (Fi 4+ 2€d - 6)6(5) R7TELS +406()6(0)(d+4) RTP)  (4.2)

where C(5)E§Xl = Séf@l) for d = 6 and for d = 0 in type IIB, whereas
2

4 3
£4D = ¢(5) EE + %5 (d+1)E% (4.3)

5 d+1
P! g

for 1 <d <5 and d =0 type ITA.?®
It follows from (1.13) that for d < 5, the two-loop exceptional field theory amplitude must
behave as

Am? 2
EGRPT ~ R (EG50P 4 Sg(d - 0)(d+ D RUTEY |+ Se(d— ) R

Hon,
1672¢(d — 2)% oy
dine g ?) @

up to logarithmic corrections that will be discussed in detail in Section 5.3. This formula applies

up to non-analytic terms to d = 6 if one omits the term E?ﬁl which is divergent.
5 A

A

4.2 Decompactification limit of the particle multiplet lattice sum

We are interested in the decompactification limit of the integral (3.7). Under Eg11 D GL(1) x Ey,
the particle multiplet decomposes as

MEd+1 — 7,9-D) D [M/id](l) @ [MJJ\EJ] (d—7) @ [MAE:](Qd—lE)) 7 (4_5)

Agi1
where we define M, ,;Edi =% and M AE: = {0} for k > d+1. We denote the charges I'; accordingly by
(mi, Qi, Pi,n;i). The constraints I'; xI'; = 0 are valued in the string multiplet, which decomposes
as

M = (M2 @ M e M) @ (M (4.6)

Thus, the components (m;, Q;, P;,n;) are subject to the constraints
Qi x Qj=muPy ., PixQply, =0, Pi Qp=-3muny, PixPi=-n;Q; (47)

where the third only arises for d = 6, and the last constraint simplifies to (F#;, Pj) =0 for d =5
and disappears for d < 4. In terms of these components, the quadratic form G(I',T') can be
expressed as

G, T) :R_2%(m+ (a,Q) + {a x a, P) — deta n)*
—|—R_ﬁg(Q—|—2axP—axan,Q—i—anP—axan)

2 15—2d 2

+R2gg(Pf an,P —an)+ R"5=d n

(4.8)

28 For d < 3 one must understand EsEfd as the sum over the 1/2-BPS particle charges, so one gets EfABS =

. 3
Ef,fl(2>EfAL2(3), ESEAQ2 =7 ESSAL1<2) + 1/_%5, EfAll = gjs for type IIA, and zero for type IIB.
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where a denotes the axions parametrising the unipotent part of the parabolic subgroup Pii1.
As in Section 3.2, we shall split the theta series Gf‘jﬁ into contributions where the components
(mj, Q;, P;,n;) along the graded decomposition (4.5) are gradually populated, such that the
constraints can be solved explicitly.

1) The first layer

The first layer corresponds to all charges being zero except m;, in which case one has the

contribution
/

05\2@(@1}7 QQ) - Z G_WQ;jR_

m;EZ

29—d

8=dmm; (4.9)

This term corresponds to the Kaluza—Klein states running in the loop. It is infrared divergent
and requires regularisation. Integrating against pif,, we get

(1) d392 tr (1)
Id = 8« 76;(1%0KZ(92)9A4+1 (¢’ Qz)
g ’QQ| 2
/ _,9-d

812 [ dV drdm —_7VR §=d lmint®
B 3 o V3d ), T22 A7) Z € "

(m,n)€Z?

1672 12 L 90g 3 drdre SL(2)
= = £(2d — 4) Rs—a*t2d=3) /f — A(T) B 550, (T)
2
167%£(d — 2)* REd+2(d-3)

6—d)(d+1) (4.10)

where we used (3.17). More precisely, using the regularisation (1.17) one obtains after taking
the limit L — oo
o 1677 €(d 4 2e — 2)? 1244 | o(d—3)+4e
de (6 —d — 2€)(d+ 2€+ 1)
It has a double pole in d = 2 and d = 3 associated to the double pole in the eight-dimensional
supergravity amplitude, and a simple pole in d = 6. It is associated to both the log divergence
proportional to the & coupling in d = 6 and the log divergence proportional to the &g,
coupling in d = 5 and is not proportional to a sum of them. We shall discuss the logarithmic
contribution for d = 6 in more detail in Section 5.3.

(4.11)

2) The second layer
The second term comes from m; € Z, Q; #0, P, =n; = 0:

/ ..
00 (6,0 = 3 Y e (n

Qierdd m;EZ
QixQ;=0

_29

£ (mi(@,Q0) (my +@. Q)R 19(Q0.Q)) (4.12)

d

! RQ% Lop9=d 2 _
_ § : § : e—?TQ;in 8—dmimI—mQy R™ 8-dg(Q;,Q;)+2mi(m'Q;,a)
1 .
QieM(fd mitez |S)2|2
Ad

QixQ;=0
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The term Z'* with m? = 0 is recognised as the theta series 01(¢, Q2), up to factors of |Qq| and
R, whereas the term I( ®) coming from m; # 0 but m;Q* = 0 can be treated as Iffb) and Iffc) in
Section 3.2. In the same way we unfold the fundamental domain of PGL(2,Z) to the strip, so
as to set (m!',m?) = (0,m) and (Q1,Q2) = (Q,0), leading to, upon using (3.27),

9—d
8772R2 8—d e dV LdTQ 7rV R28 d 2 wR_ 8- d Z )
I<2b) _ / / / d A me— 1Z(Q)?
d 3 o Va2 f 72 1 § : E: :

GMEzl m>1
QxQ= 0
87r2R = av dn —2V R A |2(Q) 2
= / Vd— 2+2e/ Z Z " o
Qe MEd m>1
QxQ= 0
1 1 1+ 5(2ac7'2)2 + (2acrs)? 9\ 3
x|+ — == 1 — (2acr 2
ged(a,c)=1
2ac<1/72
87T2R1§+46 d.—3 Eq §(de —6)6(de +1) 4 7 Eq
= | e e~ R P BLL, | : RETEL

Rd - Z ”dE 3|d Z)Bd 3(27R|Z(Q )l)) (4.13)
Qxé\)/[ 0

where d. = d 4 2¢ and By_3(x) is the function defined in (3.30). In total, one obtains

€ d Q ! iJ
Ic(lz) - R (87T/ 7‘2d€ Pr7(22) Z R (4.14)
2] QieMyy
QixQ;=0
872 _ e _
58 (de = 2)8(de = )RV ELL, |+ =0-6(de = 6)(de + DR B
2
1672 4 5 = (04-3(Q)
167 i g~ (203 @) o )
21 w 1Z(Q)]
QeM,
QXQ—O
2(d—3) deQ —Qy mmJ QY R2g(Q:,Q;)+2mi(miQ;,a)
+8m R i (Q Z Z e i U
€22 2" QZGMC’ mieZ

Qi XQ] =0 m 'QiF#0

The first term, corresponding to m’ = 0, reproduces the function R%Id_l in dimension D + 1.
The two terms in the second line formally give respectively (part of ) the threshold functions 5((5 3)1)
and 5((16{5;) in D 41 dimensions, while the third line corresponds to non-perturbative corrections
to the constant term. We shall discuss the renormalised expression at € = 0 shortly. Note that
unlike in the weak coupling limit, the regularisation does not give rise to non-maximal parabolic
Eisenstein series. This is because there is no additional Poincaré series in this computation, so
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one cannot deviate from the P; maximal parabolic Poincaré series associated to the sum over Q);.
The last term corresponds to non-trivial Fourier coefficients associated to 1/2-BPS instantons,
which can be analysed similarly as Iffd) in Sections 3.3 and C.1.

Following the steps as in Section C.1 and in particular (C.19), one computes that

8M2(d_3)/ LR Z Z o~ im0 R2(Qu.Q,)+ 2mi(miQu.a)

22 eMlt mieZ
leQfoszéO

9— 3d+(9 d)(d—4)

]_67]'2 a3 / y 10—d
=—3 B > (%3(@)( 9 = &(d— 4)E§d41A (UQ)K%@”R\Z(Q)D
QGMI(% ng(Q) 2
QxQ:"o
ch K a2 (2 " ug (q) )
d—2 7Ty v (g
PR Q)5 Z Gaa(g)emtose) 28 T s (27RIZ(Q))
s Rgcd er‘“ ( e d|UQ< )2
4xq=0
5— 3d —929-d
15 L Ka@2ry, " ug(9)])
- Yo = 2 oa_a(q) 2milase) 279 K (27RIZ(Q)])
2m1 R? ged(Q) geMP! (Yo " "vala)])> i
gxq=0
SRR
+ % N B (v K s RRIZ(Q)) )0
6R2 ged(Q e %Ad-l 2

87T2 - ! /
+TR2d 7/ _d/ Z Z Z 0d-3(N1,q) 0qg—3(N + N1, q)

vEP\Eq NEN Ni€Z,
QGMEJ l1
gxq=0

2,2 N2 2
% y—le—ﬂ(%-‘rutR y2N +27VR2y10—d|v(q)‘2)F(t,R2y21/’ N,N; + (g’ q))62ﬂ—iQa7 (415)

Y

where yg = écé( ‘), the sum over ¢ € M, f ' runs over over characters of the unipotent stabilisers
of the charge @, and F' is the function defined in (3.74). The leading term in R factorises as an
Eisenstein series over the Levi stabiliser of () in the minimal representation, while the full Fourier
coefficient depends non-trivially on the whole parabolic stabiliser. One recognises o4_3(Q) as
the measure for 1/2-BPS charges @ € M}*, and similarly o4_4(g) as the measure for 1/2-BPS
charges ¢ € M, ,i’: !, just like for Fourier coefficients of 5((5 0)1) and 5((5 0)2) in the decompactification
limit, see [23,1]. To interpret these Fourier coefficients it is relevant to combine them with the
1/2-BPS Fourier coefficients of the homogeneous solution [50]

_ 1244e d+3 Kats (2ﬂR|Z(Q)|)
da  e—2m@, a)]_—<d> =80£(2)R 54 T2 [ £(6)0443(Q)—2 d+3
e 2|
+ Mf@w’fwv@m : (27 R|Z(Q >|>> (4.16)
Roged(Q) =
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where @ x @ = 0. Altogether, the abelian Fourier coefficients of 6'(%{)1) involving an Eisenstein
series of the Levi stabiliser of the charge ) combine in the full coupling 5}5{ )1) as

J2 yais (167 Kags (21 R|Z(Q)])
! <5670d+3@ 2@ F
+47T0'd 3(Q) £6=2, Q)Kd23 27 R[Z(Q)))
Sy Q)=
Ka:(27R|Z(Q
+M5{ﬁg$>(v(g) 712 L_E )\)) (4.17)
TRyl )5 Q)

and we assembled the effective couplings in D + 2 dimensions that appear with the expected
2

power of the torus volume Ryérd associated to the charge Q.

The last term in (4.15) involving the function F' can be ascribed to instanton anti-instanton
corrections of charges @ = (N,0,0) and Q1 = (N1, ¢,0), and is further exponentially suppressed
in e~ 27R(1Z2(Q)+2(Q=Q1)) | The measure factor also reproduces the 1/2-BPS measure appearing
in the Fourier expansion of 5(0 0)» consistently with the property that these terms are the solution

to the Laplace equation (1.5) with a quadratic source term in 5551,)0).

3) The third layer

The next layer corresponds to m; € Z, Q; € ME" and P; # 0, with P, A P; = 0, so that P; = n; P
for two relative prime integers n; and some P € M E‘l In this case, the last constraint in (4.7)
implies that P is in the orbit of the highest weight representative in the parabolic decomposition
(3.9) with respect to P, C E; . Within this decomposition, the constraints (4.7) for the charge
Qi in the decomposition (3.8) imply that Q; = (¢;,0,...) for a doublet of vectors ¢; € IIg_1 41,
subject to the conditions (g¢;,q;) = 2m;nj). Writing this third contribution as a Poincaré series
over Pi\Ey, the seed is recognised as a Siegel-Narain genus-two theta series for the lattice I 4
as follows,

05, (6, Q2)

L ;2 2 a,a Y
_ Z Z o™ y RS (<yR2>*l<mz +(a,0) + B0n) (m; + (a,05) + 52n;) + glai + ani, g5 + any) + sznz"])

YEPI\Eq4 g€y 1,41
ni,m;E€Z n;#0
(9i,q5)=2mnj)

ol
= Z (‘yR_SEdQQ’(QZ/d:}Ql Fd,d,2<Ry%,Q1+iyR_837dQ2)
7€P1\Ed [0,1]3
_ Z Z e—TrQ;ij_B—Qd((yRQ)—l(mi-&-(a,qi))(mj+(a,qj))+g(qi,qi))> (4.18)
¢i€ldg—1,4-1 ME€EZ )

(9i,9;)=0
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where Fd,dyg(Ry%,Q) is the genus-two partition function for the lattice Ilj 4 = Ilg—1,4-1 ® 11 1,
with radius Ry% on IT1 1. To compute the integral of the first line against ¢if,, we first rescale
Qo — R Q2/y, so that the argument of the Siegel-Narain theta series becomes 2 = Q) +iQo;
we then use its invariance under Sp(4,7Z) to fold the integration domain to the fundamental
domain F», at the cost of replacing @i, by the sum of its images under Sp(4,Z); the latter
sum produces the Kawazumi—Zhang invariant pkyz by virtue of (1.21). As for the second line in
(4.18), we perform a Poisson summation over m;, obtaining finally

s [ A5 1
IP =8rR*1 Y <y2 d/ [ ’330KZ(Q) Fd,d,2(QaRy5)>

YEPI\Eq

(4.19)

~

_87T R% Z y3_d/ d Q2 SOKZ QQ Z (& WQQZ]Rzyninj_WQ?Q(%’7qJ')+27ri(niQi7a)
g

YEPI\Eg4 ’Q2| n*ez
@€l 1,91

(9i,9;)=0

~

The next step is to integrate over {21 in the first line. In principle one should do the computation

using the unfolding method and the Fourier-Jacobi expansion of ¢, (£2) at € # 0. Instead, we

shall do the computation at ¢ = 0, and argue a posteriori that we do not miss any term for

d > 4. At e = 0, we can use the equivalence (2.53) between the constrained lattice sum over

the vectors in II; 4 and the constrained lattice sum over spinors in S;. As for the second
s, tr

line, it is useful to change variable from Qg — Q5 ', using the fact that d*Qq/|Qa|*p%, (Q2) —
d3Qg/]QQ|4 St (Q2) under this operation. After these steps, one obtains

d—2 _ d30 . — 1
D (T
~yEPI\Eq4

d3Q ij . —1 i j .
_ R2 / | |di1 @EZ(Q ) Z e_WQQJRQyn1nJ_7rQQ'ng(q ,¢7)+27i(niq ,a))] (420)
2 n,€Z
qiel_Idfl,dfl
(¢*,¢7)=0

v

The integral on the first line can then be computed by inserting (C.24) with R replaced by
Ry!'/2. Most terms in (C.24) coincide with the terms appearing in the second line of (4.20) and
cancel out, leaving only

ijo ko
-7 VN

: 12 g d°Qs . e
¢ = 8rRs=a" 3 Z ( Z /|Q |290%<z 2) ———5  (4.21)

’(ngvkiniknjl) 2

YEPI\Eq n;Jez?
d€Pi_3\Dg_1 detn#0
’ —1 P ' . b8 i o
fﬂRQy(injua”qéq{,Jrijyilpaﬂ(p —2 ;b qi) (p? il a]) ) +2mi(ginidad +np® aq)
% § e Q5 vt
?
a,€2? &y
paezd73

where y and 3’ are the coordinates on the GL(1) factors of the Levi subgroups of P; and P,_3,
respectively, i.e. the associated multiplicative parabolic characters. At this point we change
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2 M 3-d PO P
variables y = y/v, ¥ =y,? v 2 such that vvk[niknjl is identified as vk[niknjl over SL(3) and
14 is the multiplicative character for Py

18—2d

ea O (gl, ®sly @ sly Dsly_3)® @ (2,3,d— 3)F0 @ (3, (1)) 5 @ (2, () T8 (4.22)

under which

(zd 12) 4d—30

Mfdd N (Zd—B)(ﬁ) P (22 ® Z3)<%> @ (23 ® 243505 @ (22 @ /\2Zd—3)<%) @ (23 ® N3Z4-3) 59 | (4_23)

In this way, denoting y4 by y again for simplicity, we obtain

_ d Q2 e—wﬂgjyvmni’;nj[
) _ et (z [ et (420
VPV \niez? (5 yopnitng')

4

yd—3
! _TFRQ (QQij 3uaquq}3)+ ij koo l‘paﬂ(pa —C nl qa,)(pB _C ﬁn d ]))+27”(qanlja’a+np aa)
X E e Qg vty
qé€Z2 Y
paezd—3

9—d
where czo‘ are the axions in the component (2,3,d — 3)'3¢=9) of the unipotent of P, and Q =

(np®, qini,0,0,0) is the Fourier charge in (4.23). Using the saddle point approximation as in
(3.77), (3.79) one obtains that these terms are exponentially suppressed in

_4 g 2
27TR\/yd*3 paﬁ(npa — cganikq}l)(npﬁ — cb’gn] qb) + ys3 (u qaqbvklnZ n; —i— 2|det g|/det(nvnT) )

= 2R\ |Z(QP +2VAQ < Q) (4.25)

the BPS mass of a 1/4-BPS charge Q). The charge @ is 1/2-BPS if det ¢ = 0.

4) The fourth layer

Next we consider m; € Z,Q); € Mfd" and P; € MAEI“, with Py A P, £ 0. In this case Py A P, €
M fj is non-zero, and it is in the minimal orbit such that one can decompose the sum over

P; as a Poincaré sum over P3\E; and a sum over non-degenerate 2 by 2 matrices n in this
GL(2) x SL(d — 1) decomposition

MAE: _ (Zd—l)(ﬁ> ® (Z2x(d—1))(%> ® (/\3Zd—1)(2§:}4> o (Z2 2 /\5Zd_1)<3g:%3)
Mid — (Z2)(1) (/\ Zd 1) d 1 9y (Z2 ®/\4Zd_1)(33:19) o (Zd_l ®/\5Zd_1)(4g:§8) ’
ME = (2D e (29 Nz T e (4.26)

The general solution to the constraints F; X Qj)| Ay = 0 is then

P =(n,0,0,0), Q= (¢} nt,0,0), (4.27)

with ¢; and p in Z% ! and k relative prime to p that divides n;, while the additional constraint
Qi xQ; = m; Py implies that
mi = Bai (4.28)
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so that k divides p,q{". One can then check that all the other constraints in (4.7) are satisfied.
The bilinear form then reduces to

5= 2 =5 ab P P k1
Rs=1G(Ty,T;) = (R y+yatu® (B +aq) (B + ab))vif[ni n;

+ (yﬁuab+R_2(% +ao) (B +ap)) (gf + (af + (5 +ac))ni )(q] + (a?—i—c;zd(%d +aq))ny')
(4.29)

For fixed k and p,, the sum over ¢ is in kZ @ 72, and one can do a Poisson summation to
the dual lattice %Z @ 792

4 . .
Z o (v Tuap+R™2 (B +aa) (B +ap)) (¢f +d2ni*) (g +ibny!)

(4.30)
€241
Paqj €KZ
—nQyky T (w2 utCubd i tac) (B +ag) )aidi ,
1 e (%] yd ‘R2k2+u(p+ak)(p+ak) omi "i]qz Ga
d—1 Z 1 e .
4 3 . df
v || dezt k2 + Y u®(po 4 aok)(py + apk)
PAG; EEZ 2

Writing instead the sum over n;//k which we write n;/ for brevity and changing variable

Ny — Rv (R*K* + y‘ﬁuab(pa + aqk)(pp + abk:))_l(lg (4.31)

one obtains

1_4) _ 87TR1§+45_4€ Z / d? Qz SDKZ Z e 7rQ2 YU nJ Z Z

5 —€
VEP3\Eq 9 |93 nJGZQ €241 (k.p)
det n;éO k‘p/\qi
;o8
2 "ijqz (aa+cab(&+ab)) e 921] (y d 1 R2uabq Q£+y a1 (uacubdfuadubc)(%‘i'ac)( +ad)qaqb) (4 32)
e TR GG . _
4(1-2 a1 R-2 2
y2(k? +y TR 2u(p + ak,p + ak))?* N
The contribution from ¢’ can be computed by Poisson resumming over p, € Z4~!,
7T 12+45 ii Ao
7" = £(4e > v / e L B
~EP\Ey g |Q2‘ nJez?
det n#£0
! Kd—l (27TR uﬁuabp“pb)
d—1 d—1_o ! .
X <§(46—d—|—1)Rd_1_4E LR 3 "% Z Od1-1¢(p) 2 ie i 2% aa
peZd—1 (ydfluabpap ) 4 v
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ged(Q1AQ2)
v(Q1NQ2)

_ 8w R12+45 £(de- d—l—l)Rd I —de Z
§(4e) 5
QiEMA;

Q;ixQ;=0
Q1NQ2#0

+2RT % Z >

QEM Q;eM
QXQ 0 QixQ=0
Q;xQ;=0
Q1AQ27#0

3 iy
2/ d 22 @%Z(QQ)C_KQ;JG(Q“QJ.)
g |Qa]27¢

ged(Q1AQ2)
v(Q1AQ2)

2 dSQQ . O (0,0
| St i een)
g ’QQ’

X 0’d—1—4e(Q

Ko , (27R|Z(Q :
1y (27R|Z( )!)egm(Q,a)> (4.33)

Z(@)F ™

where the sum over M, ff with @; x Q@ = 0in M AE;’, defines a function on the Levi stabiliser Fj_1
of ) as a constrained double lattice sum over Mf}‘“.

We shall now argue that this contribution disappears in the renormalised integral (1.28).
One can use the same argument as in Appendix C.3 to compute that the source term for the
Laplace equation satisfied by this function vanishes as ¢ — 0, with

=12 cd(Q1AQs L QG040
(AEd — 12+ 2029012 )) Z g’U((Q1/\Q2)) / o @QZ(Q )~ G(Q:i.Q))
QieMAEId g | |
Q;xQ;=0
Q1AQ2#0
+1()e 2 D, 1—¢ 02 Kl e(*|U(Q)|) 27i(Q.a
= —271'é~ € — 1 Z g 9— + ( (26 - 2)E6A(212 + 29 Q; g(Q:d(2Q)2 |v( )‘1+e & (Q, ))
yEPI\Eq Qx0=0

E E
= 2mE(2 — 1)E(d — 3+ 2€) (E(Ed_%mﬁd—s;ﬁmd Bty 0 Bl + o(e)> = O(e) (4.34)
which vanishes at ¢ — 0. Therefore the potentially dangerous constant term in Ic(fa) must be

proportional to an Eisenstein series. The coefficient follows by computing the first non-trivial
orbit in the string perturbation limit

d(O1A05) |2 d3Q, . i O,
LY gi((gliggi)/ i (Qa)e ™ (909%) 4 O(e) (4.35)
Q€M g |Q2|2
Q,xQ;=0
Q1AQ2#0

472
= 75(6 —26)§(2+ QE)E 3A1+(24€)As

SL(2
_ 2m® Z ged(Q1AQy) |2 2 EiSI(h)(T) e_WQéjG(Qi’Qj)
= ; v(Q1NQ32) G ’QQ|%_€ Vv )
QZEMld
Q1A Q270

In the last equality, that can be computed in the same way as in Section 2.4, we recognise the
same constant term as in the counterterm in (1.28). Using a functional equation, the Eisenstein

series in the middle line of (4.35) is seen to diverge as &(1 + QE)EféA1+A5 for d = 4,5, while it
2

56



has a finite limit otherwise. The same computation applies to the Fourier coeflicients in Ic(fa),
since the function of the Levi stabiliser E4_1 is the same. We conclude that Igm) —>0 0 for
€—>!

d # 4,5, and expect that the same holds for the whole contribution I((f). For d = 4,5, Igm) has
a finite limit, but cancels in the renormalised coupling (1.28).

5) The fifth layer

We now briefly discuss the last layer for which n; # 0. This layer only occurs for d = 6.
The analysis from Appendix D.1 shows that for the similar integral If; (ESSAL1 (2), 4+ 26) where
A(7) is replaced by an arbitrary Eisenstein series, the contribution from this layer contains a
£(4e—5)&(4e—9)

£(4e)(4e—4) 7

specific value s = —3, the factor

so we expect the same for the case of interest. However, at the
£(4e—5)&(4e—9)
£(4e)§(de—1)

that compensates for the 1/£(4¢) and gives the finite contribution 52¢(2)£(10)R'® in the limit.

As for the other cases we expect that this finite contribution cancels out in the renormalised
function (1.28), as it must for consistency. Note that the fifth layer also contributes to generic

general factor

multiplies a divergent function containing &(2¢)

Fourier coefficients with charges @@ with a non-trivial Fg cubic invariant I3(Q) # 0. However,
the supersymmetric Ward identity for the renormalised coupling requires that such Fourier
coefficients must vanish [14]. It is therefore consistent that this fifth layer should not contribute
to the renormalised coupling after canceling the counterterm.

The contributions from the five layers produce exactly the expected constant terms in the
decompactification limit shown in (4.1). For this it is crucial to take into account the renor-
malisation and contribution from 1/4-BPS states. This will be discussed in more detail in
Section 5.3.

5 Regularisation and divergences

In the previous sections, we have computed the perturbative and decompactification limits of
the VOR?* coupling based on (1.12) that represents mutually 1/2-BPS states running inside a
two-loop diagram of exceptional field theory. In the calculation we have encountered various
divergent contributions, see for instance (3.44). In the present section, we analyse these singular
terms in more detail and provide a renormalisation prescription that also includes 1/4-BPS states
running in the loops and will be shown to cancel the pole in the two-loop 1/2-BPS contribution
in space-time dimension D = 4,5,6, so that the sum of the two is finite in the limit ¢ — 0 in
all dimensions. We will show that this regularisation gives the expected logarithmic term in the
string coupling constant in perturbation theory.

5.1 Contributions from 1/4-BPS states

We follow the same reasoning as in [30], where the analogous one-loop contribution to V4R*
with 1/4-BPS states running in the loop was obtained. The idea there was to interpret the
perturbative genus-one string integrand in the limit 79 — oo as a sum over perturbative string
states running in the loop, and extending the sum to the full non-perturbative spectrum of
1/4-BPS states. In this way, the 1/4-BPS state contribution to the V4R* coupling at one-loop
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was given in [30] as

1-loop 1-BPS 03(F X F) /OO dL 1 —WLM(F)Z
1 = 4 L - _1
fao T2 preor, [ (L+ 27 V(T r)\)e - B

Eqy1
1—‘61\4/\(H

I'x[#£0 A/(I)=0

where |V(T x T)|? is the E4,-invariant quadratic norm on R(A;) and M(T) is the mass of a
state satisfying the 1/4-BPS constraints I' x I' # 0 and A’(T") = 0 with A the quartic invariant
on R(Ay) and A’ its gradient. The explicit form of the 1/4-BPS mass is

M(D) =+/|Z@D)]2 + 2V xT)| . (5.2)

The contribution for each charge I" to (5.1) is weighted by o3(I' x I'), which we recognise as the
twelfth helicity supertrace Q12(T) = 15 Tr(—1)2/2(2.J3)!2 counting 1/4-BPS multiplets of charge
', as computed in [70, 50].

Turning to VOR?, a similar contribution must appear as a one-loop sub-diagram in the
two-loop integrand by factorisation. We propose that the VSR coupling receives a two-loop
contribution of the form

-loop §- Ty x FQ) dL1dLydLs 1
g2loon 1BPS _ o0 o3( / s (L2+L3+—>
v rezM:F VT FQ)PRa (i LiLj) =7 2m|V(['g x Ta)|

[y xT;=0 +
TaxT2£0 A/(I2)=0

o= T(LAM(T1)2+LaM(T2)?+LsM(T1+T2)?) (5.3)

Here the two edges with Schwinger parameters Lo and L3 carry 1/4-BPS multiplets of charge
I’y and T'; + T'y, whereas the edge of length L; carries a 1/2-BPS multiplet of charge I'y. We
assume that the two-loop contribution with a 1/2-BPS charge I'; and a 1/4-BPS charge I'y, but
with I'; x I'y #£ 0, vanishes, as well as contributions where none of the charges I'y,I's, 'y +I'y is
1/2-BPS.

Let us first analyse the contribution (5.3) from the point of view of perturbative string theory,
by writing it as a Poincaré sum over P;\Eg;; of a charge sum in II; 4. This is possible because
one can always rotate the vector I's x I's to a highest weight representative using v € P;\Egy1.
In the corresponding graded decomposition, the charge I's is g2 € Il 4 with (g2, ¢2) # 0 and the
constraint I'; x I's = 0 implies according to (3.10)

(Q2;Q1):0a QgPYaXIZ()a CI2/\N1:07 Q2'N1:0, (54)

from which one concludes that x; = N1 = 0 and moreover from I'y x I'y = 0 that (¢1,¢1) = 0.
It will be useful to consider the change of variables on the Schwinger parameters

4 4 4

Li=g, " (t+ pous(l —uz)), Lo=g," "p2(1—u2), Lz=g," "pous, (5.5)
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where po and ¢ are positive reals and uy € [0,1]. One obtains from (5.3)

007* _£4 q2 d dt 1 1 1
D D - R
R 0

3
YEPI\Eq11 qi€llyy 2 2 pst 27 pa| %
(QLgi):O
‘D) #0
X (pzt)g+e€_7rtg(‘h7Q1)—7rp2g(q2+u2q1,q2+qu1)_7rp2q22] (56)
v
St 40 15~ tos(inl) . .
= -4 — 2 2minp1
0> o / P %(pg i K3 (2m[nlpa)e®™ ™ Tuaa(@)| |
vEPNEan P1,2\H2(C) ne .
where
Q= p pUQ + u1 ) ’ (57)
puz +up o1 +1it + pug

and the integration domain P; 2\H2(C) ranges over [— ;, 2] for p1, u1, ue and o1 and over Ry

for po and ¢. In the last line we used the identity Kj/(27|n|p2) = 272?7]“'2 (1 + m)
n|p2

Before evaluating (5.6) further, we note the consistency of the known expression with the
genus-two contribution to the VOR* coupling, given by [35, 36]

—24 44 d%Q
8mg, ° ¢ /f w@KZ(Q) Fqa2(9) . (5.8)
2

From (A.13) we recall that

SL(2)
E
/ duz/ dul/ doi1pkz = t—i—%mlt(p), (5.9)

where the SL(2) series has the well-known Fourier expansion

22 10¢(3) _ :
s BS(p) = 2 gz 10 a0y D ke nfulpm)erne . .10
nez ’I’L

exhibiting the same sum of Bessel functions as in (5.6). This shows that our non-perturbative
proposal (5.8) does include the known perturbative contribution from perturbative string theory.

Returning to (5.6), we next fold the integral from P; 2\ #H2(C) to the standard Siegel modular
domain Fy = Sp(4,Z)\H2(C). The resulting Poincaré sum of the non-zero Fourier mode does
not converge, but can be evaluated formally as in [30] to give

o Yl el
t

YEP1 2\Sp(4,Z)

(5.11)
Y

5 5 VInlp2 K (27|n| py)e*mner 5
- t

~EP\Sp(4,Z) 5€ P \SL(2)

v
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SL(2)
272 o3(|n) Z E5\ 7 (p)

) ESL(Q)(T)
3¢(3)  Inl ¢

_ 272 os(|n)) —3A,
o 3¢3) Inl 2

YEP1\Sp(4,Z) YEP\Sp(4,Z)

where in the last step we use the analytic continuation of the Poincaré sums

SL(2) SL(2)
Z E(2+675)A1(p) _ g _ Z Eos s, (7) (5.12)
tl—e—0 , T (20-3)A1+(24+e—0)Ay T V1+2e . ) :

yEP1\Sp(4,Z) YEP2\Sp(4,7)

from the convergent range e+ 1 > § > 4 to their value at ¢ = § = 0. The Eisenstein series in the
last term of (5.11) is recognised as a Siegel-Eisenstein series of Sp(4) satisfying the functional
identity
spee)  _ E(B)E() pspiay
RGO (A

Using these equalities between (divergent) Poincaré sums and ignoring the fact that the regu-

(5.13)

larising factor |Q2|¢ spoils modular invariance, one obtains from (5.6) that

Joop 1. 16072 = o3(n)? 2l A% £(8)E(B) Lsp)
S = Ry X (07 e emen B @Taa(®)
3<(3) n=1 " YEPI\E 441 72 ’QQ, €(7)§(4) 2 Y
00 SL(2)
16072 O'3(TL)2 d392 E—3A1 (T) B
= 0, (p, Q) . 14
5 2 /G|§22|6d225 v he(62) 519

Making use, as in [30], of the formal Ramanujan identity

. _
= n 240
one concludes that
SL(2)
oo Lpps 272 3Qy  EZ500(T) g
52 loop $-BPS __ . 3A1 gL 79 ] 5.16
(0,1) 9 g |Q2|6—c12—2e v Adgi1 (@Z) 2) ( )

Even though we have used the formal identities (5.11) and (5.15) in the derivation, we stress
that the original expression (5.3) is regular and well-defined for large enough e.

As stated in (1.28) in the introduction, the complete two-loop amplitude with both 1/2- and
1/4-BPS states running in the loops is therefore given by the sum

SL(2)

: d*, 7 EZ50 (T g
glzloor _ g / P A A X)) 5.17
(0,1) @ p |Q2|67(12726 (@KZ 36 % ) Agy1 (¢7 2) ) ( )

which should be finite as € — 0 in all dimensions d > 4. We show that it is indeed finite in the
weak coupling and decompactification limits for d = 4, and for all the terms that we can compute
for d = 5 and d = 6. With hindsight, the reason for this finiteness is that the divergences at
e =01ind = 4,5,6 come from the constant terms proportional to 7, ® in i, and Efgl(i) (r)/V,
that drop out in the difference (5.17).
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The three-loop exceptional field theory contribution was computed and analysed in [30,
(2.19)]. The analytic contribution has poles in d = 4, 5,6, but those poles cancel against non-
analytic contributions, leading in these dimensions to

£(8)

EWHP = 40€(2) £(6) £(d + 4) Ef%ﬁ;dﬂ + 40%§(d + 1)E(25,, — d + 3)E(25.,,) EfdjjAlH (5.18)

where s5 = %, s = % and s7 = 6 as in (2.40). For d = 3, the three-loop contribution decomposes

similarly as®’

EGDT = 10£)€6) 6T E7,) + 40623 €@ BYD (5.19)
which is finite and does not require regularisation. Both terms in (5.18) or (5.19) are homoge-
neous solutions of the Laplace equation (1.5), but they satisfy different tensorial equations [14]
and thus belong to two distinct automorphic representations. In particular, the second function
solves (2.10) whereas the first one does not. The first function in (5.18) is recognised as .7?5(‘){)1)
in (1.30), while the second can be written using (2.40) as the finite part of

SL(2)
Coox? A3, BT (1)
(d)Adj __ 2 (3+2¢)A1 B
o1 = 9/g 0 % Opsti (6,92) (5.20)
0 EAEE ) i
- 405(4 + 26)5(7 + 46)£(d + 1 + 26)5(23(1“ + 26 d + 3)5(2Sd+1 + 26) E(8d+l+€)AH 9

at € — 0 in agreement with the last term in (1.31).> One finds therefore that the sum of the
second term in the three-loop contribution with the full two-loop contribution (5.16) reproduces
(1.31).

Thus one gets the exact coupling (1.32) stated in the introduction, with a now precise
prescription for defining the divergent integral (1.12). It will be useful in the analysis below to
rewrite (1.31) as the finite function

~ 872 B R
g((g)ffoT _ %If::: (A(T) _ %Efgf1)7 d— 2) + 405(8)5(614‘1)5(2?%14‘3 d)§(28d+1)Eii]+XH ’ (521)

where If::ll (f,s) was defined in general in (2.32).

In summary, we have explained how the total VOR? coupling arises from the sum of the
one-, two- and three-loop four-graviton amplitudes including massive 1/2-BPS and 1/4-BPS
states running in the loops. Since for d < 7 there are two distinct supersymmetry invariants
completing VOR* [14], it is natural to decompose this coupling into two functions as in (1.32).

29The weight Ag_1 in [30, (2.19)] is in general the highest weight of the third order antisymmetric product of
Ag+1, which for d = 3 gives two solutions: A; + 2A4 and 2A2 of SL(5), corresponding respectively to type ITA
and type IIB. The three-loop contribution is therefore 40¢(—1)&(—2)&(—3)(E*) + B ).

—3(A1+2A4) — 372
30The same formula holds for d = 3 with

SL(2)

272 d3Q, E_(3+2€)A1 (1) A, SL(5)
AT v Oh; (¢, €22) = 406(2 + 2€)6(3 + 206 (D EZ 171 _(140a, -
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The computation of the 1/4-BPS states contributions at one- and two-loops are rather formal as
in (5.11), and we do not understand the analytic continuation that would lead to a justification of
the formal infinite sums we have been doing. The derivation of these contributions can therefore
be considered as heuristic. Nonetheless, the final definition (5.21) can be justified independently
as the unique regularisation of the two-loop integral that is consistent with supersymmetry
Ward identities and the string theory perturbative expansion. Indeed, as we show in detail in
Appendix D in (D.30) and below, the term Iff(Efél(i),?) + 2¢) in (5.21) yields an Eisenstein
series that belongs to an automorphic representation associated to a bigger nilpotent orbit than
the one required by supersymmetry according to equation (2.10). It is therefore apparent that
only the finite combination involving A(1) — %E“_gé(\zl) in (5.17) solves (2.10) with the appropriate
source term as written in [1], and is therefore consistent with supersymmetry. The last term
in (5.21), involving an adjoint Eisenstein series, is the appropriate homogeneous solution to the
homogeneous tensorial equation (2.10). As we shall argue in Section 5.2, its presence in the full

coupling is required for consistency with string perturbation theory.

The renormalisation prescription (5.21) also makes the equality of the particle and string
multiplet sums stated in (1.23) meaningful. While the identity (1.23) is divergent at the values

~,

of interest for the functional relation, the renormalised integral 5((3)1’;5 T of (5.21) makes sense

on either side and the equality holds for these renormalised couplings.

5.2 Divergences and threshold terms in the weak-coupling limit

We shall now analyse the cancelation of divergences and the contributions to logarithmic terms
from (5.21) for each of the constant terms derived in Section 3. For brevity we shall refer to the
last term in (5.21) as the ‘adjoint Eisenstein series’

£AG _ 406(8)&(d + 1)£(28441 + 3 — d)§(23d+1)EEd+1
(0,1) 5(7) Sat1Am *

(5.22)

The second term Ifj:(Efé(\zl), d+2¢—2) in (5.21) coming from the 1/4-BPS state sum (5.16)
will be referred to as the ‘counterterm’, the idea being that exceptional field theory contains only
loops of 1/2-BPS states, while additional contributions from 1/4-BPS states are described by
suitable counterterms. To analyse the perturbative terms we must deal with the poles at e = 0
using the renormalisation prescription for the integral (5.17). There are divergent contributions
from what we called the second layer in (3.21), the third layer in (3.44), the fourth layer in (3.47)
and lastly, from the fifth layer in (3.58).

We have already argued that the contributions from the third and the fourth layers, which
are both proportional to @, should cancel when using the renormalisation prescription (5.17).
We expect the same to happen for the fifth layer in d = 6 proportional to @. This is indeed
the case if the last term in the conjectured expansion (3.58) is correct. We are not able to check
this property at this stage, and leave it as a conjecture.

Let us now turn to the terms that contribute at three-loop order in string perturbation

theory. The divergent contribution from the second perturbative layer Iffb) in (3.21) is given by

— 24 _9cd=d 4 25(2 _
—d —4 4m +2€)€(6—2¢) 6 D
9o ’ ’ 9 9o E(3d76)/\d,1+26/\d : (523)
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while the correct contribution appearing at three loops in string theory, computed using the
same regularisation as in [30], is instead the zeroth order term at € — 0 of

24
—5=a T2€ 472 (242€)£(642¢) GEDd

9o 9 (B+e)Aa_1 (5.24)

By examining the constant terms of the two functions one sees that these two results differ.
The discrepancy is, however, resolved using the renormalised integral (5.21) as follows. Using
the Langlands constant term formula (D.2) in Appendix D.1 one finds that the contribution
from the counterterm in (5.17) cancels against (5.23), such that (5.17) is indeed finite, while the
contribution from the adjoint Eisenstein series in (5.21) gives precisely the perturbative term
(5.24) as was already observed in [47].

In addition, the counterterm (5.16) and adjoint series (5.20) both include a spurious correc-
tion in g, 3 in string frame, that cancels out in the total coupling. In d = 6 there is an additional
spurious contribution from the adjoint series in g2 in string frame, that cancels the same one
from the counterterm in (3.58), while the divergent one-loop term in (3.59) is canceled in the
renormalised coupling (3.58).

In summary, the full V6R* coupling (5.21) reproduces all the expected perturbative correc-
tions detailed in Section 3.1: The tree-level term appears in (3.18). The one-loop correction
comes from (3.24), with the additional logarithmic term for d = 6 that comes from the adjoint
series (5.20) that we shall discuss below. The two-loop term comes from (3.13). The three-loop
correction in (3.24) is canceled by the counterterm and replaced by the function (5.24) from the
adjoint series (5.20).

We close the perturbative analysis of the VOR?* coupling by a discussion of the logarithmic
terms. To analyse them we shall need the precise weak coupling expansion of .7?(((‘% which

corresponds to the first term in (5.18) and of gé& )1’;: T The weak coupling expansion of ]?f[‘i >1) is
given for 1 < d <6 by

Fiohy ~ 4<(?§(5)9§10/7(r5’ )+ (6) e,

P~ S B W) + g@gg] BHr),

Fipy ~ D SE?z + X0 g

F o~ mlég)g ED + g( )log g6 + 442(7@E£A447 (5.25)
Fiony ~ 55€1(gg‘)E]2)§1 + [Qggc(?)) " QC( ) By ]mgg + Z;ig 3y

g, S50 gy 50K ] O g | O

where we have shown the complete result of the constant term calculation. We first discuss the
logarithmic terms for d = 4, 5,6 and then the derivative of the Eisenstein series that appears for
d = 6. And finally we will discuss the special case d = 2.

The integral in (5.17) is finite layer-by-layer for d = 4,5,6 and the cancellation of the pole
between the two-loop integral and the counterterm also hold for the logarithmic terms. Therefore
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the logarithmic terms in £ (gl )1)E T must come exclusively from the three-loop contribution (5.18).

As was shown in [47], the adjoint series corresponding to the second term in (5.18) produces the
logarithmic terms

JEXFT Ad
5((3)1) oy g(()>J C( )loggs+ ...,
0g g6 log
,ExFT 5)Adj Ds
ECHT ~ EQY ~ —2¢(3) By} loggs +..., (5.26)
0g g5 loggs 3

5(6) JExFT E(G)Adj -~ {1OC()

D
©on .~ €0 g0 + —= 2748 EQAGS] log g4 + ..

S g4 1) log g4

Combining the contributions from (5.25) and (5.26) then produces the following total logarithmic
terms for 5{5}1)

Ea o~ 5C(3)10g g6 (5.27)
40 40 20
(5) D (5)
Eon) log gs [99?;4(3) + %C(?’)Egil] log g5 ~ 55(0,0) log g5, (5.28)

5¢(5) | 2n* Do 8¢(8) ED6} log g4

)
(6) (6)
5(0‘1) 10;:{14 |:ng0 2792 24 371' g 4 - ;8(1,0) log 94 - (529)

where 5(0 o) and 5((?@ are the coefficients of the effective R* and V*R* couplings given by (1.2).
This indeed produces the expected non-analytic terms in the weak coupling expansion of the
VOR?* couplings [2]. Note that the coefficient of the log g, correction had to recombine into
a U-duality invariant function, since it is related to the scale of a logarithm in Mandelstam
variables [8], determined by form factor divergences in supergravity.

In d = 6 one must be more careful with the two-loop contribution since they potentially
include an additional logarithmic term and a derivative of an Eisenstein series. Adding the
two-loop contribution (3.13), the similar contribution from the counterterm and the two-loop
contribution from the adjoint series leads to

d%Q T
—8—4e € Sp(4)
87y, /E [0 (‘PKZ(Q) - %E_3A1+(2+6)A2 (Q)> Le,6,2(€2)

2¢(6 ) D
15 0 E(46 25)A1+5A2

(5.30)

and where |0 denotes the constant term in the Laurent expansion around ¢ = 0. In Appendix
C we provide evidence that this genus-two integral is finite at ¢ — 0, such that (5.17) is indeed
finite as claimed. If so, it cannot contribute to log g4 terms, and there is therefore no log g4 at
two-loop order. The finite two-loop contributions from the Eisenstein series then add up to

22 d°Q _sp() 2¢(6 ) D
_@ /B |Q2|3E—3A1+(2+6)A2(Q) L6,6,2(€) 159 e E(46 2e)A1+ehz |,
2¢(6) 8. EDs

~2¢(6) ) 5D
15 85 41\61+€A2 + 15 8 € (4 26)A1+6A2

4¢(6 ) D
B 159% 0 E(43-6)A1

(5.31)
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In order to reproduce the genus-two string theory amplitude (5.8), it should be that

dsQ dfQ ¢(6) . p
R.N. —_— O)r Q) = ——— gz (T Q — == 0.E " 5.32
[ i@ oo = [ oG eia @ oo _ - 500 0E ], 552
where we factored out 87Tg4_8 from (5.8). This identity may hold up to terms proportional to
Eﬁfl which can be absorbed by adjusting the splitting between the analytic and non-analytic
parts of the full amplitude. This ambiguity appears in the renormalisation of the pole

d6Q € s Dg 0
/. g #e( To2(2) = {601 + 2068 + 20 ES g, + O (5.33)
at € — 0. A more detailed analysis would be needed to establish (5.32), which we again leave
as a conjecture.

Let us end this discussion with the case d = 2, for which there is a logarithmic supergravity
divergence with a double pole in dimensional regularisation at two loops. The sources of loga-
rithmic divergences in Zy(¢, €) come from the two-loop integral Z" (3.13) that behaves as (cf.
Appendix F)

L [ A
70 — 8y 8 / Pk T222(9) (5.34)
Fo ’ 2|

_ ge< 16726(20)° i

~ B\ 20 M <U>E§f§f)<T>+O<e°>>,

and the contribution

8m2 _ot2¢

- 98 ? 5(_2 + 26)5(2 - 2€)E(D12—6)A1+2EA2 =

i 812 242 ESLO)

Tgs 37E(3 —2€)E(2 — 2¢) (1—e)A1(U) (5.35)

from (3.21). To cancel the pole in %, we must include the divergent component of the supergravity
amplitude, with massless legs, as well as the divergent component of the one-loop R* form-factor
associated to the two-loop exceptional field theory amplitude with only massless states running
in one of the loops. Implementing an infrared cut-off p as in [1,30], one obtains *!

2

[L— —2¢ —2¢ —€ —4e
Ty + §7T T(e) p 2 5(((??0)’6 + 3 (7‘(‘ 2 F(e)2 + %7‘(‘ I'(e) + (’)(60)) ot (5.36)
47 o, 2m 2¢(2) ~S1(2) ~5L(2) m
o o log(gs)” + 9 10%(98)( e +4C(4)(Ex, 7 (U) + Ex (1)) + g) +..
472 2T 2¢(2 ~ ~ 47 T
+? log(2mpu)? — 3 log(27ru)( 9(2 ) +4¢(4) (Eif(Q)(U) + Eif@) (T)) + 3 log(gs) + §)
8

where the dots stand for analytic terms in the string coupling constant coming from 73, and
SL(2) —SL(3
EDye = Ame20)ENPENY = dng(2) + €2 + O(e)

_2 o4,
~ ar(€e)gs P ELAP O ELD(T) + €3 - 2009V ERP (), (5.37)

1

31The term %W“F(E)L26 has not been derived but must be there for cancelling the first order pole.
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is the dimensionally regularised one-loop exceptional field theory R* coupling [1]. The result is
finite at € — 0 and reproduces the logarithmic terms in the string coupling constant computed
n (2, (2.19)], up to the additive, scheme-dependent constant %.

We conclude that the renormalised coupling (1.32) reproduces correctly all the required terms
in the weak coupling expansion, including the terms that are logarithmic in the string coupling
constant.

5.3 Divergences and threshold terms in the large radius limit

In the decompactification limit, similar divergent terms arise in the calculation presented in
Section 4 and have to be considered along with the renormalisation and three-loop contribution
shown in (5.21). More specifically, there are divergences in the first layer in (4.11), in the second
layer in (4.13), in the fourth layer in (4.33) and in the fifth layer. Most of them were already
discussed in detail after their derivation and we now focus in more detail on the second layer.

In the derivation of the second layer we used identities that are only valid at e = 0. However,
the calculation in Appendix D.1 shows that the derivation gives the correct result at € # 0 if
the local modular function A(7) is replaced by an ordinary non-holomorphic Eisenstein series.
Indeed we find a consistent result for d = 4,5, 6 using the regularised expression (4.13). Taking
this contribution from the second layer, subtracting the 1/4-BPS counterterm (5.17) and adding
the three-loop contribution to give (1.31), one gets

Ze [A(T) = §ER (D] + T40 [FE2 s, (5.38)
4 e
~ %Rlﬁ <6£(de - 2)¢(d, - HRCPELL, |+ 6.~ O)¢(de + DR B,
- ®£(d —6)¢(de + 1)R% EY — &(de — 6)€(de + 1) R pEa
5(7) ¢ de *GA € d6+1 Ay

a6 20e(a + 1+ 20 R (D g, g perepl
et Py, ity

8¢ (10)

~ R¥a (S%w D(d+ 2~ YRV B+ bag oy B2 log(R)

4m28(d — 6 — 2€)E(d+ 1+ 2€) 4 7o
| 4% e >Rd72E5ﬁ%A>

The first term above is regular at ¢ = 0 for d > 4. For d = 6, the extra term above cancels
against the contribution from the first term (4.11). The last term gives

4m2E(3 4+ 2€)6(5+2€) 5 0 A, 10¢(3 6 ~A,
2 96)5( ) ps2 A o~ 3;}3)(26 log(R) + ~€(E(6)EL} )
472E(2 + 2€)€(6 + 2 5
i f( + 96)5( + €)R—2 2¢ E(gie) As 3R2<( 10g( ))47Tf(2)Ef45 —|-47T§(4)§( )E?lj\i)
AmE(1 +26)€(7+2€) 1o 5, —2e 6
5 R172 Eé+€)A6 ~ 40£(2)R™2 6(1+2€)§(5—26)E%76)A1 (5.39)
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for d = 4,5, 6, respectively, reproducing the expected result displayed in Section 4.1.

We close the section by considering the logarithmically divergent contributions in the de-
compactification limit for d > 4. The logarithmic terms in the radius R arising from .7-"((3)” as
given by the first term in (5.18) are for d = 4,5,6

=~ 5

]:((g,)w IO’;R _§C(3) log R,

=~ 10 20
o) or 9 (3)R*log R — 5C<3)R2 Egjl log R,

]?(6) ~ —iC(S)Rlz log R + §C<3)R6EE6 log R — 3C(5)R5EE6 log R (5 40)
OV g 2 *TT3 a8 or sa, OB :

~

Turning to the decompactification limit of 6'((5,)1’? I we note that there was a logarithmic
contribution for d = 6 coming from the first constant term in (4.11) as well as the counterterm
and there are additional contributions coming from the counterterm as well as from the three-
loop amplitude given by the adjoint series given in (5.20). Therefore we have the following

logarithmic terms

~ . 10
EGTT ~ ENY ~ ——=((3)log R+ ...

O gr gk 3
S 5 i 10
(5),ExFT (5)Adj 2 D
o) log R Eon) log R _§<(3)R Egil log R (5.41)
o~ 8 16 ; )
(6),ExFT 12 12 (6)Adj 5 nE
Eol) oh a2 (8) 1 log t33 C(B)R“log R+ &y o ~—(()R Eg/G\l log R.

Combining the two contributions then gives the following logarithmic terms

35
EW -~ —34(3) logR,

0.1 log R

25 10
En [~ g TG log R+ 5-C(3) R log R,

0.1 log R
£ o s 1ogR+§R65<5> 1ogR—i (8)R2log R (5.42)
O 10k 2 T@O) 6 = C00 2

where 6'((5{ g)“ and E'((ﬁ g)l’ are the coefficients of the R* and V4R* couplings in dimension D + 1,
given by (1.2) (after using Langlands functional equations). This agrees with the coefficients of
the logarithms found in [2, (B.62)].

For d = 6, we must also consider the derivative of the Eisenstein series. This derivative arises
from the term proportional to R in ]:((31) that takes the form

. _E(1426)E(5 + 2¢) £(5)
.~ 406(2)e(6) (R o —RP ED : 5.4
]:(0,1> i f( )5( )(R €(6+26) (%+6)A1 265(6) gm) e—0 ( 3)
There is a similar term in E{g‘};?‘“ that reads
5(6),ExFT N 405(2) (R5+2E§(1 . 26){(5 + 2€)EE6 + R5§(5) EE6 ) (5 44)
on = (3+oM 2¢ 301/ leso '
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such that the unphysical derivative of the Eisenstein series (83E5{51)\ <5 drops out in the total
2
coupling 5((3)1>.
For d = 2 the combination (1.28) is not finite because there is a logarithmic divergence in
supergravity. One obtains

120e [ 16726(2€)% 27 o
I . - +4e = 2¢—1 2 (1) 0
. e <(4 2@+ T3 {26+ OLE)

1 2
~ 5 (EGoe T )+ O (5.45)
where
SL(2 SL(3
EXye = Ane20)ENPVENY = dne(2e) + 2 + O(e)
EW . = 4mE(2e—1) (V—%U—%)Eiﬁ@)m + ﬁﬂ—%)) — &0+ 0(e) . (5.46)
2

Taking into account the divergence coming from the supergravity amplitude and the R* form-
factor as in (5.37), one obtains instead

2
o+ 5 T EG 4+ o (T72T(O? + §n7T(e) + O(e) )™

3 3
4972 7 =
~ log(R)? — o log(R)(REGy + 3)
472 27
= log(2mp)? — 5 log(2mp) (R EGhy — 147 log(R) + ) (5.47)

which is finite as € — 0 and reproduces the expected logarithmic terms from [2, (B.49)].

For d = 3 one obtains the constant terms

2 2
1_3 o~ R12-£4e 167 g(l + 26)
: (3—26)(4 + 2¢)

8 2
R* + Iy + %Rzeg(l + 26)5<(§,)o),s + O(€O)>
12 [4r2 2m
~ R3 {3 log(R)? + = log(R) Eiy + - (5.48)
which reproduces the expected logarithmic terms from [2, (B.38)].

In summary, our renormalisation prescription leading ultimately to the renormalised cou-
pling (1.31), reproduces correctly the expected expansion of the VOR? coupling in the weak
coupling and decompactification limits, including logarithmic terms in the string coupling and
the radius R. This lends very strong support to the claim that (1.31) is the correct full coupling.

5.4 Generalisation to Ejy

In three dimensions there exists a unique VOR* type supersymmetry invariant [14]. Thus, the
second term in (1.13) should be omitted, leading to

SL(2) SL(2)
e _gmwer _g [ P 0 0w Elay (1) 7 B 5hagn, (7) 65 (6, )
(0,1) (0,1) n —1 21 PKz 36 1/ 1+2e 36 Vv Ag\Pr 262 ’
1l (5.49)
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consistently with the sum of the exceptional field theory amplitude contributions up to three
loops [30], and the 1/4-BPS states contribution discussed in this section.

The analysis of Section 4.2 can be applied to the lattice M, ,\Ej in the adjoint representation
of Fg. As we explain in Appendix E, the computation is very similar for the first five layers,
but there are two additional layers of charges. We are able to compute the constant term and
the generic Fourier coefficients for the sixth layer of charges. Using the Langland constant
term formula for the Eisenstein series IES(EEKI .5+ 2¢), we argue that the last layer does not
contribute, so that the constant terms that we are able to compute do exhaust the non-vanishing
contributions. Despite the fact that the three contributions in (5.49) are individually finite in
the limit e — 0, Iﬁ‘(ES??)M)A ,5 + 2¢) is not analytic at (e,6) = (0,0) in C2, because its
‘”26 Therefore the renormalisation prescription (1.31) gives a finite
contribution that must be taken into account to reproduce the correct coupling. One obtains

limit includes a factor of

eventually

. 5 (5 9¢(5)? 5¢(11
ED ~ RY (55;}1) + —log R £y, + 2(7T) R'ED, — 8;2) R® + 1(%) R, (5.50)

which reproduces the expected result from [2, (B.70)]. The first three terms come from the
second layer of charges with

IEA(T) ~ § i’éfAl( )]+ T (6 B 5 o] (5.51)
~ R2(R¥TT (A7) = 2R (7),5+ 26) + TR (BB 000, (7).5))

+ 4321%1%46 <6£(5 +26)6(4+20) R EGL L\ + (142068 + 20) R* By 5.

- 222 (1 + 2€)£(8 + 2€)R7H3 E(E%7+€) A~ S+ 2068 + 2¢) R*¢ E(’ZQE) A7>

+ 4i£<1 — 26)£(8 + 2¢) R (ggigR”?E By, BT Eﬁ;QE)A7>
~ R!2 <R4€If77 (A(r) = ZE%R (7),5+2¢) + Iy (5B (QQG) A, (7),5)

872

A72€(1 — 26)E(8 + 2
T f( 6)5( + 6)R QGE(EAZH) +Tf(5)£(4+26)R4E(E216) ) .

9

To compute the logarithmic term one uses the property that the only divergent terms are
472€(1 — 2€)&(8 + 2¢)
E L(2) 2¢ E
Ix: (% E? Zlataon, (7),5) + 9 L
. (742€)£(844€)€(942€)€(12+2€) B 2 E
= 40¢(4 )( €(A12)E(T+He) Elgron, TE(1 —26)8(8 +2¢)R™ E(LH)A?)
~ ~ 5
= 10E(8)E(9)E12)BE, + 106Q)EO)E10)BE, + ~log RU(B)EL, +0(0) (5.52)

consistently with (5.50). The last constant term in 40£(2)£(6)&(d +4) R™3 that comes from the
function ]:((0 )1> for d < 6 now originates from the sixth layer of 5((5)1?’(” displayed in (E.33).
This analysis also lends support to our renormalised coupling (1.32) in the case d = 7.
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A Poincaré series representation of gy

In this section, we provide evidence for the relation (1.21) expressing the Kawazumi-Zhang
invariant ¢kyz as a Poincaré series seeded by its tropical limit. We first recall how both sides
can be expressed as theta liftings for lattices of signature (3,2) and (2, 1), following [48]. As
a result, (1.21) would follow from a similar property (A.16) for Siegel-Narain theta series. We
give evidence that (A.16) holds, by integrating both sides against a vector-valued Eisenstein
series of weight —1/2, and invoking Langlands’ functional relation for generic Eisenstein series
of SO(3,2) = Sp(4,R)/Z2. Additional evidence for (1.21) comes from the analysis of constant
terms in Sections 3 and 4 and in Appendix C.

A.1 Theta series representation for real-analytic Siegel modular forms

The Siegel modular group Sp(4,7Z) is isomorphic to the automorphism group of the lattice Z°
with quadratic form 2(myn! +mon?) + 3b® of signature (3,2). Using this observation, we can
obtain Siegel modular functions of Sp(4,7) from theta liftings of vector-valued modular forms
under SL(2,7Z), generalising earlier constructions of the log-norm of the Igusa cusp form ¥y [71]
and of the genus-two Kawazumi—Zhang invariant [48]. For this purpose, we introduce the lattice

partition functions for i = 0,1 (setting z =z +iy € H and ¢ = e27riz)
Pz =y Y. i@’ =0 (A1)

ml,mg,nl,nZEZ
be2Z+1

where

i ma — pmy + on' + (po —v?)n? — bv
ph +ivh = (oo - ,
V P2 02 — U5
L .o ma—pmy+ant+(pg —v?)n? —bv+ Sv3(nt + pn?)
pL +1pL = 2
V P202 — Uy
(n' +n2p)v — (nt +n2p)v
2p2

(A.2)

)

pf:b—i-i

70



such that p? — |pg|? = 4m;n® + b*. Here,

Q:(i g) (A.3)

lives in the Siegel upper-half plane Ha, and (pg,pr) and pr, = (p},p?,p?) are the projections of
the lattice vector Q = (my, ma,b,n',n?) on the positive 2-plane and its orthogonal complement.
Given a weak Jacobi form h(z,v) of weight —1/2 and index 1, we can take its theta series

decomposition [72]
h(z,v) = ho(2) 03(2z,2v) + h1(z) 02(22, 2v) (A4)

and consider the modular integral

Toalt] = [ S5 [P0 2) ho(e) + D02 () (A5)
1
over the standard fundamental domain F; = {7 € H1,|7| > 1,|n| < 1/2} for PSL(2,Z) (which
consists of two copies of the fundamental domain F for PGL(2,7Z) defined below (1.14)). The
integrand is invariant under SL(2,7Z) x Sp(4,Z), so the integral produces a Siegel modular form,
possibly with singularities on rational quadratic divisors when h has poles at the cusp. In the
limit Q — ioco (corresponding to the maximal non-separating degeneration in the language of
genus-two Riemann surfaces, or the limit where one circle decompactifies in the language of

)

torus compactifications), Fg;Q(Q; z) factorises into I'1 1 (V; 2) X Fg?l (7,2), where

I1(V;2) =V1 Z oI taz?/(yV?)
(p,q)€Z?

. (A.6)

O =y Y. ik =01,

a,c€Z.,be2Z+1
Here V = 1/|Q2]"/? is the inverse radius of the large circle, 7 is defined as in (1.14) and
2 2

alt|+ b1 +¢ . at® +br + ¢

pp= ATl tbnte pL+int = ——— (A7)
T2 T2

such that |py|> — p% = b* — dac. In the decompactifying limit V — 0, the dominant term in the
modular integral (A.5) comes from the zero orbit (p,q) = (0,0), so Z32[h] ~ V=1 I 1 [h] where

Lol = [ S5 (002 ho(a) + 19 ri2) )] (A3)
FAY
Thus, the leading tropical limit Z5 1 of the Siegel modular form 739 is itself a theta lift. Sub-
leading terms come from the terms with (p, q) # (0,0). For these terms, the integration domain
can be unfolded to the strip R* x [—%, 1] at the expense of restricting to ¢ = 0. The integral
over u picks up contributions from zero or negative Fourier modes of h;, leading to powerlike or
exponentially suppressed terms in 1/V, respectively. The minimal non-separating degeneration
limit t — oo with t = 7 /V keeping p2 = 1/(V ) fixed instead corresponds to the limit where

the volume of T2 becomes infinite, and can be extracted using similar orbit methods.
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The Kawazumi-Zhang invariant ¢kz is obtained by choosing [48]
1 -
(ho, h1) = —§D,5/Q(h0, h1) (A.9)

where

h(z,v) = ho(z) 83(2p, 2v) + h1(z) 62(22, 2v) = b (A.10)

and D, = #( , — %) is the Maaf} raising operator, mapping modular forms of weight w to
modular forms of weight w + 2. Using the theta lift representation, it is straightforward to
obtain the asymptotics of iz in the tropical limit {2 — ioco, and indeed the complete Fourier

expansion,
5¢(3
YKz = %|Q2|1/2A(T) + 5752) Q]!
) —3~/4|M mitr —2mitrMQ)
+2 ) (\M|+m(1+2m[1\492]))2k Sg( UL (PriteMS | = 2miteMSy (A 1)

MeS+ k‘M

where Sy is defined below (3.57), A(7) is the modular local function defined by (1.15) on the
fundamental domain F, and ¢(n) are the Fourier coefficients of

_ 6a27) _ Y én)g" . (A.12)

6
n(4r)® - =
In the minimal non-separating degeneration ¢ — oo, one has instead
T
PRz =gl po+ % +0(e™™), (A.13)
where
% (v, 1
o =mpauj — log 1 p)‘ = 5D1a(psv)
n(p) 2 (A.14)
) T _SL(2) .
=———0D : — F. .
STy 22(00) + 2 By 17 (p)
Here, D, is the Kronecker-Eisenstein series
2109 a+b—1 ! e27ri(nu2+mu1)
Dyp(v,p) = (ipa)T _ — (A.15)
27 (mp +n)*(mp+ n)
(m,n)eZ2

where v = u1 + ugp. It may be worth noting that D;; coincides with the scalar propagator on
the torus.

A.2 Poincaré series from theta lifting

The identity (1.21) expressing the Kawazumi-Zhang invariant as a Poincaré series seeded by its
tropical limit would follow from a similar property for the lattice theta series,

7 . 1.6
Iy = lim > <|92| 2" Fé)l) ‘ : (A.16)
~€(GL(2,Z)x Z3)\Sp(4,Z) 7
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where the limit ¢ — 0 should be taken after analytic continuation away from the region where the
sum converges. While we do not know how to prove this relation, we shall test its consequence
when integrating against the Eisenstein series E(s, w; z) of weight w = —% under the congruence
subgroup I'g(4) C SL(2,7). The Eisenstein series is defined by

E(s,w;z) = Z YT

€T \T'o(4)

w

, (A.17)

where the ‘slash’ notation corresponds to the action of v € T'g(4) on the variable z with an
additional factor of automorphy (cz + d)~". Decomposing as in (A.4)

E(s,w;z) = Eo(s,w;4z) + E1(s,w;4z2) (A.18)

and computing the integral (A.5) by unfolding, we get

/

—2s Sp(4
Iso [E(s—1,—3)] = E pr(Q)| 2 = £(2s) Es/ﬁ( ) (A.19)
Q=(m1,mz,n' ,n?b)eZ?
b2+4mint+4mon?=0

which we recognise as the Siegel-Eisenstein series for Sp(4, Z). Indeed, using the constant terms
(for w € Z + 3)

A2 lE =1l (2s — 1) C(4s —2) 1w

Bowd =" =1 e g cwmon? | TOCT AN)

and the orbit method, we find the constant terms

£(25 — 2) €(4s — 3)
&(4s —2)

In the first term, the theta lift can be computed by unfolding,

VT  [E(s — 1, —3)] +£(25) £(4s —2)V > + Vs, (A.21)

I'(s— % ! (25—
12,1[E<s—§,—$>]:(—f) Soopp® Y

S—

m (a,b,c)eZ?
b2 —4ac=0
—(2s-1) —(25—1)
I(s—3) ! 1 b|? c\ @
=l IV 25
(a,b)eZ? c#0
a#0,4a|b?
_ SL(2
=VlE(2s = 1) By, (7). (A.22)

where in the last line, we solved the constraint 4a|b? by setting (a, b) = kp(p, q) with ged(p, q) = 1
and k > 1. In total, (A.21) reproduces the known constant terms of the Siegel-Eisenstein series
EZY 140, (3.13)].

S

The conjectural property (A.16) now predicts that

spay  €(2s—1) . 1ie 2SL(2)
ENY = NN lim > (!Qzlz B a (7)) ‘7 (A.23)
~e(GL(2,Z)xZ3)\Sp(4,Z)
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SL(2)

Expressing E(25—1

)Al(T) as a sum over cosets, this is tantamount to

sy 2 €252 g > (Il .
§25) 0| b s '

where B is the Borel subgroup of Sp(4,7). The righthand side is proportional to the generic
Langlands—Eisenstein series

Sp(4) _ _ L(si4ss) _sa
E(82—81)A1+51A2 - Z P§1 t "y N Z |92| 2(o1+s2) 7_52 o
YEBNSp(4,Z)\Sp(4,Z) ~YEBNSp(4,Z)\Sp(4,Z)

(A.25)

Y

with (s1,s2) = (1 — s+ €,s + €). Using the functional equation satisfied by (A.25) under
(s1,82) — (1 — s1,82), and recalling (A.3), we find that the right-hand side of (A.24) is, in the
limit € — 0, equal to
S (2P (A.26)
YEBNSp(4,2)\Sp(4,2Z) K

which is the standard definition of the Siegel-Fisenstein series Ef/{)2(4)

consistency check on the conjecture (A.16), and therefore on its consequence (1.21).

. This provides a strong

A.3 Poincaré series from 1/2-BPS state sums

If (ho,h1) or equivalently h(z) = ho(4z) + h1(4z) can be represented as a Poincaré series for
SL(2,7Z), then we can evaluate the either of the integrals Zss[h] or Zp1[h] by the unfolding
method [73], and obtain a sum over lattice vectors of fixed norm, which can be reinterpreted
as a Poincaré series for Spin(3,2,7Z) = Sp(4,7Z) or for O(2,1,Z) = PGL(2,Z). Let us assume
that h is proportional to the Niebur—Poincaré series Fy(s, k,w; z). The integral then becomes

1_
T3o(s,5;Q) =T (s + 1) Z (pR/K) 47" 2F (s + 3,5+ 3:2s;—k/pF) . (A.27)
(m;,bn?)EZS
Am;nt+b2=k

where

mae — pmy +ont + (po —v*)n? —bv

PR = 5
V P202 — V5

The summand is (away from the singular locus where pp = 0 for some vector Q) an eigenmode
of Agysy with eigenvalue $(4s +1)(4s — 5). For k = 1, all vectors are images of the vector
Q = (my, b,n*) = (0,1,0), whose stabiliser is SL(2, Z),*x SL(2,7),. Therefore, we can interpret

(A.27) as

(A.28)

vl
1'3,2(8, K = 1, Q) = F(S -+ %) Z MS < ’7 (A29)
VE[SL(2,Z)x SL(2,Z)]\Sp(4,Z) V202 — v}

where

3 1
M(u) =u" 275y <5+ 15+ 3328 2>
! (A.30)
1 1 :
2\ —(s+ 1 1. .
=(1+u?) " Cta) R (s+4,s—4,2s,—1+u2> 7
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where in the second equality we used Pfaff’s identity 2 F1(a, b, c; 2) = (1—2)"%2F1(a,c—b, ¢; Z5).
Note that Ms(u) satisfies
1+ 4y?

1
5(1 + u2)83Ms(u) +

OuM(u) = [2s(s — 1) — 3] My(u) (A.31)

which ensures that the Poincaré series (A.29) is an eigenmode of A sp(4) With eigenvalue 2s(s —
1) — %. Similarly, we can write the tropical limit as a Poincaré series:

1
Toa(s,m7) =T(s—1) Y., (PR/K)7 2P (s+ 1,5 — §:25,—k/p7)
(a,b,c)eZ3
b2 —4dac=k <A32)

=I(s—3) > ms(71/72)|y

~ESO(2)\SO(2,1,Z)

where pg = [a|T|? + bry + ¢]/m2 and

1
ms(u) = u"2s+s o Fy <s + %, s — %; 2s; —2> (A.33)
u

Choosing s = %, x = 1 and adjusting the normalisation, the Niebur—Poincaré series reduces to
the weak holomorphic modular form (A.10) appearing in the theta lift representation of the
Kawazumi—Zhang invariant or its tropical limit,

. - . 1
h@):;m@z)+hﬂ4@::_fﬁﬁfﬂgJﬂ—%z). (A.34)
2
Using the identity
Dy Fu(s, k,w; z) = k(28 + w) Fy(s, kyw + 2; 2) (A.35)

and setting s = % in the previous formulae, we get

1 dxdy
el =g [ 5 [0 o 4~ §2) + TN ) Pl 4, -9
1

41'(9/2) Y
1
 T3,5(9/4,1/4; 0
4F(9/2) (9/4,1/4;€2) (A.36)
I'(5/2) 3 1 Y
Mprh =3z >~ M| ———
4F(9/2) (mi,b,ni)€Z5 35 760(3727Z)/O(2727Z) \/m ol
dm;ni+b2=1
where
35 11 + 150>
M(u) = =3 F) (3,5, %; —1/u2) o [3(2 + 5u?)arcsinh(1/u) — \/j—i—iuz] (A.37)
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Similarly, for the tropical limit A = S, we get

3 dad ~
Ay =-2 /f L (005 2) Doho(z) + T8)(7:2) D (2)]
1

T y ; ;
__3 / WY 1O (7. 42) D.(2)
TS Frgwy Y ’ (A.38)
3 8 Ti
ey S T o(2)
2m!/20(3) (a,b,c)eZ? 357 ~€0(2,1,2)/O(1,1,Z) 2/
b2 —dac=1
where
m(u) =u"t oF (3,25 -1/u*) = % (15u* + 4 — 3 (3 + 5u®) u arccot(u)) . (A.39)

Note that m(u) is a bounded, continuous, even function of u € R, non-differentiable at u = 0,
and decays as 1/|u|* for |u| — oco. It is annihilated by the differential operator 0, (1 +u?)d, —12,
which ensures that the Poincaré series (A.38) is annihilated by A; — 12 away from the locus
71 = 0 and its images under GL(2,Z).

B Integrating A(7) against single and double Eisenstein series

In this appendix, we compute modular integrals of the local modular form A(7) defined in
(1.15), which we copy for convenience,

_ |7'|2 -7 +1 n 511(m — 1)(\7’|2 — 1)

T2 T23

A(T)

(B.1)

multiplied by either a standard non-holomorphic Eisenstein series EfALl @ (1), or a ‘double Eisen-
stein series’ defined in (2.43), over the fundamental domain F for PGL(2,Z) defined below
(1.14). These results are used in the computation of the weak-coupling expansion in Section 3.2.

B.1 Against a single Eisenstein series

Here we establish the formula (3.17), which we recall for convenience,

2
R.N. /F 14T 4 () BSPO) (1) = [12_2’([5(5)%] ok (B.2)

72
It will be convenient to unfold the integral to the domain F' = {|7 — | > 3,0 < 71 < 1} which
consists of the 6 images of F under the permutation group S3 C PGL(2,Z). Inside this domain,
the two factors in the integrand are eigenmodes of the Laplacian [31, (3.12)],

A, —s(s — 1] ESS® =0, (B.3)

1279 IT|? — 7
(Ar —12)A = —12156(11) — 1272 6(1 — 71) — EE ) ( EE
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We define the truncated fundamental domain F'(L) by removing the region 7 > L and its
images under S3. To avoid dealing with the delta functions, we regulate F'(L) by requiring
§<m <1-46,|r—2%]>1%+06and welet § — 0 at the end. Thus,

drd
[s(s —1) — 12] / 2 A ESN® = / X [A dES® — ESIP qa (B.4)
Fr(,L) T2 AF'(8,L)
where xdT; = dmp,xdme = —d7;. Due to S3 symmetry, the three boundaries at m = 0,1 and
|7 — %| = % produce identical contributions, while the the contribution from the boundary at

= L and its image is subtracted by the renormalisation prescription. The contribution from
the boundary at 7 = 0 can be computed by using

1
A0, ) =7+ —, OnAl, 0+ = b ) hm GTlESL(Q) 0. (B.5)
T2 T2
At 7 = 0, 72 runs from L to 1/L, hence
dridm SL(2 dm sre2
(s — 1) — 12]/ 12 A(r) B (r) = 18 / RpsioGn) - (B
FI6L)  To z T2

2
The integral on the r.h.s. can be computed for Re[s] > 1 by substituting ESL(Q) > Aﬁ
(e,d) =1

and integrating term by term. Upon folding the integral and subtracting the divergence, we get

. dme _sr(2) Ly 2 o s s 1. m?
= </1 = P (07) >_sC(23) > RS+ L—tE) . (BY)

L—oo T S o 1

where the sum and the integral are absolutely convergent for Re[s] > 1. Using the functional
identity>?

s s 2 —2s s S SF(%)Q —s
2P (5,854 1, —2°) +x 2F1(§,s;§+1;—ﬁ) = 2T (s) x” %, (B.8)
and exchanging m and n one obtains
-2 2
SC Zn T 2Fi(5s5 - n?): ZZ 25)' (B.9)
n:1 m=1 n=1m= 1

consistently with the advertised formula (B.2).
It is worth noting that the integral (B.6) can be computed alternatively by inserting a power

SL(Q)(.

74 in the integrand, subtracting by hand the constant term from E Ay im), and extending the
integral from [1/L, L] to R*:

T dry SL(2) £(2s —1) SL(2 1
ESM P iny) — 5 - 2 gl ) = 1 (ESNP) p4 < B.10
fo s (B - St ) = (B g) - w
32 A special case of the general identity [74, Eq. (15.3.7)]
I'(b—a)l a I'(a —b)I"
zpl(a,b;c;z):%(g) gFl(a,afc+1;afb+1;§)+FE b))r((g (=1)" Py (b—ct1,b; —atbi1; 1),
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which gives the same result in the limit n — 0 using (2.30). We therefore conclude that

drid 18 2
R.N.// 7712272 A(r) ESEO) () = p— ggi) (B.11)

After dividing by 6 to get the integral over F, we obtain (B.2).

B.2 Against a double Eisenstein series

We now briefly consider the integral against the ‘double Eisenstein series’ defined in (2.43),

~ © dV drdr _moag2
AS(U):/O V1+2s/f Ay S M (B.12)

where, for an integer matrix M = <q1 p 1),
q2 P2

T
Mot (pl q1> . ( 1 —U1> ' (m q1> ' < 1 —n)
T2Us P2 Q2 -Uy |UP? P2 Q2 -1 |7]? (B.13)
1
=9l (Ipr = Up2 = 7(q1 = Uq2)|* + [p1 — Up2 — (1 — Ug2)|?)

Using (B.3) and the fact that M? degenerates to
1 T2
M2 = — Ups|? —Ugs|? B.14
o0, P Ul e = U (B.14)

on the locus 71 = 0, it is straightforward to check that the integral (B.12) satisfies the differential
equation
AAL(U) = 124,(U) — 6(¢(25) ES 7 (U))? . (B.15)

Using the same method as in [32, App. A], it is straightforward to show that the relevant
solution to (B.15) can be represented as a sum of an Eisenstein series and a lattice sum-type
series
_ ESL(Z)(U)
A(U) = 6¢(25)? 21 det7) "2 hy (U /U ‘ B.16
S( ) E( S) 2(2—8)(284-3)_'_%( € ’7) 8( 1/ 2)7 ( )

where??

S = {+11\ { (j ?) € 722 GL*(2,R)

(o) = gedr.0) =1} (BT
and hg(u) is the unique smooth, decaying solution of

[0u((1 +u?)0y) —12] hy = —(1+u?) 5. (B.18)

33In the expression (B.16), GL1(2,R) consists of positive determinant GL(2,R) matrices and the action of

(f; f) € GL"(2,R) on the upper half plane is U > jgif The Laplacian on the upper half plane is also

invariant under this action that extends the usual SL(2,R) action.
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This solution can be expressed for s ¢ {1,2} as

1—3s 3 1 su? 1 3
- R (== L2 Fi(—= 1.7._2
65— 1)(s —2) 21T sigi ) Ty e filmges F g )

hs(u) =
+ a(s) g + 5u? + u(3 + 5u?) arctan(u)} (B.19)

in terms of hypergeometric functions and the term in the second line is the unique homogeneous,
even and smooth solution of (B.18). The latter can also be written as

o

4
— 4+ 5u? 4 u(3 + 5u?) arctan(u) = [m(u) + S

3 lul(3 + 5u2)} , (B.20)

combining the non-smooth homogeneous solution m(u) introduced in (A.39) and the independent
non-smooth solution |u|(3 4 5u?). The numerical coefficient «(s) is fixed by requiring that h(u)
decays (as 1/|u|?) as |u| — oo and is given explicitly by

F(% + )

= . B.21
) = 3 G = )5 =T (B-21)
For s = 3/2, we recover the solution in [32, (A.7)]
7+ 44u? 4+ 40ut 16 (4 5 5 )

hsso(u) = — — | z +5u” +u(3 + du”)arctan(u) | . B.22

Similar closed algebraic forms arise when s is half-integer, e.g.

13 + 102u? + 168u* +80u® 32 (4 ) )

hsjo(u) = — 01 1 u2)32 + or \ 3 + 5u” 4+ u(3 + bu)arctan(u) | . (B.23)

It is interesting to note that the representation (B.16) can be obtained directly by plugging
in the Poincaré representation (A.38) of A(7) into the integral (B.12), and unfolding the sum
over 7 € GL(2,7Z). The first term in (B.16) comes from contributions of rank-one matrices M
while the second comes from non-degenerate matrices. The agreement with the second term in
(B.16) relies on the conjectural identity for A = I,

16 [ dV dridry 2z =lv—r? s
S ), VI ), ez P min/r) = 6l T() R (U1 /T) (B.24)
1 2

which we have checked at the first few orders in a Taylor expansion around U; = 0 using
Mathematica. Note that the factor m(7/7m2) in the integrand, despite being annihilated by
A;—12, is not regular along the locus 7 = 0 in H, so that the reproducing kernel identity (2.20)
does not apply. Indeed, upon applying it blindly, it would only produce the term proportional
to the non-smooth m(U;/Uz) in (B.19) via (B.20).

Using the same method as in Section 3, it is straightforward to obtain the Fourier expansion
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5 3¢(25)2 U2 36(2s — 1)2 U2 N £(5 —25)€(25 + 3)

AU) = 525 @ ey TE@EEs - D+ =m0 6 vy
/ 2
33 B o)

dmd - .
+ 2Us Z /}_ T;QQTQA(T)|m11+Tm12|2 1K2$_1(2ﬂU2|m11+7'm12||m21+7m22\)627r1detMU1 (B.25)

[ma1+7mag[?s—1 T2
Mez?*?

det M#0

where the function B, was defined in (3.30). It can be checked that this expansion is consistent
with the Poisson equation (B.15).%*

C Spin(d,d) lattice sums

In this appendix, we analyse the two-loop/genus-two integrals introduced in (2.53) involving
Spin(d, d) lattice sums. This provides support for the conjectures in Sections 2 and 3 as well as
in Appendix A.

C.1 Large radius limit

We start with the genus-two modular integral (3.3), which we rewrite for convenience,

g(d’Q) = 8m RN/ d679(pKZ Fddg . (Cl)
(0,1) T |QQ|3 )

Its asymptotics in the limit where one circle S' of radius R inside T¢ decompactifies was discussed
for generic d in [2, (2.38)]:

_ 21 I 5 e 1672¢(d — 2)% 5,
Eon = R2EGH™ + ?f(d —2) RTEG Y + ;ﬁ(d —6) RO EL + d+ 15(6 _ c)i) R4
(C.2)
and
g = dme(d —2) BD gz _ A €(d+2)EDe (C.3)
(0,0) %Al ’ (1,0) 45 %Al

Except for the last term proportional to R2¢~%, these constant terms can be obtained by using
the orbit method: the term proportional to R? is the zero orbit contribution, while the terms
proportional to R¥~! and R4~ originate from the terms proportional to ¢ and 1/t in (A.13),
the O(tY) term giving a vanishing result after integrating over v. The orbit method fails to
produce the complete expansion due to the logarithmic singularity of ¢kz at the separation
limit, but one can recover the contribution in R*¢~* by carefully extracting the contribution
from this degeneration as in [75]. One can also determine this coefficient using the Poisson
equation satisfied by the integral (C.1).

34Note that the only term of the Fourier expansion of EZSSLA?)(U ) present in (B.16) that is not cancelled in

(B.25) is the leading constant term proportional to UZ®.
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We now consider the integral on the last line of (2.53),

d3Q ij
Isa=8m 0 ol 00 0, 0) = Y e ™ MRI(Q) (C.4)
’ | QieSy
Qiva-4Q;=0

We shall see that the functional identity 5(0 D = Ig7d in (2.53) holds for the renormalised coupling

SL(2)

SL(2
Ta=sr [ 902 (0afvk, _rEWO  r B o,
R STON 36 Vit 36 v Aa o '

as in (1.31).

In order to analyse the decompactification limit of (C.4), we decompose the sum in Hfj.
Under Spin(d,d) D Spin(d —1,d — 1) x GL(1), the Weyl spinors @); € Sy decompose into two
spinors ¢; € Sy, and p; € S_ of opposite chiralities. The invariant quadratic form becomes

[0(@Q)I* = R™Yv(q + ap)[* + Rlv(p)|® (C.6)
while the constraints (;74—4@); = 0 reduce to
4ivd-54; =0,  piva-sp; =0,  @iVd-aPi = ¢ivd-6pi =0 . (C.7)
As in Section 3.2, we decompose the theta series into contributions where the components (g;, p;)
are gradually populated.
The first layer

The contribution from lattice spinors with ¢; # 0,p; = 0 gives

/

d3Q i
10, = soevn [ % ) S e Rz, (C8)
€] GES+
4iYd—59;=0

where we can take the limit e — 0 provided Zg 41 is itself regular.

The second layer

For the layer with p; # 0 but p; A po = 0, one has the Poincaré sum

Kom- T (X ¥ o

YEPg_1\Dg_1 \Ni€Z q2€Z4-1

Ré—1 / i _od=3
_ E : y—2(d—2) § : § : -7y Ry?nin;— 7TQ2U d—1qy@ qaqb+27rm1qa
- d

? yePy_1\Dg_1 ni€Z ¢}, €741

2 d—3

a-1 uab(Q?-i-a“ni)(Q§+abnj)+Ry2nmj) )

o

vy
(C.9)
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Constant terms originate from a) ¢ = 0 and b) n;¢. = 0,¢. # 0. The former requires to take

into account both the dimensional regularisation € # 0 and the regularisation of the fundamental
domain Fr. One obtains after taking the limit L — oo

a —4—2¢ —4e d 0 -7l nin
TG = SrRM*AE N (y ) / dj ~pin(Q2) Ze Q5 min
YE€EPg—1\Da-1 €] 2 n;€Z
_ pri-a-2 167%6(3 —d +2¢)>  p,, _, pd- 4 167%¢(d — 2)* (C.10)
(6 —d+2€)(1 +d —2¢) 2ha 6—d)(1+d)’ '

using (3.17).
PGL(2,7)

1
*©  dV > dr 2
d—1 2
167 R /0 V4—d+26/0 7,2 [/_1 dry A(7)

2

93—d
(s 5 et

YEP3-1\Dg—1 n>1q,eZ4-1

The contributions b) are computed by unfolding the integration domain over

(C.11)

Y

As in (3.19), this may be computed by inserting (3.27) in the square bracket. After changing
variables to ps = 1/(m2V),t = 72/V, The contribution from (3.20) to the integral gives

7o _ Ar?RI-Y o0 dt * dps . ps
S,d - 3 d+1 _ d—1_ . + 6t
0 t 2 0 2
P2

! 3—d
T 2
y Z <y2(3_d)§ : } : e~ TP2Ry?*n?—F Ry d=Tus anb>

YEP3—1\Da—1 n>1g,eZ4-1

.,
8m? RI-1 Da—1
= T EB-dF29E[d =320 ELS o
41 d—5 Da—1
T BT —d+298(d+ 1290 B L o, (C.12)

The terms on the last line are recognised as Rd_lé’(ﬂi 5)1‘1) and Rd—f’g((ﬁg;’” in (C.2) with their

respective coefficients. The last term in (3.27) gives additional non-perturbative contributions
that would be overlooked by the naive unfolding method. They are

. 2. 8272 ©dV Ldm 3
I§d> - T Rd/ VW/ *5(1+%T22+724)(1—722)2

% Z <y (2—d) Z Z Z er—TzRy (2acn?)— d (2acqaqb)>

YEP;_1\Dg—_1 a,c>1  n>1g,ezd-1

gcd(a,c):l K
167 _ o
C LT gy 20 i) (C13)
a2 )
d—1,d—1
(2,9)=0

where Bs(x) was given in (3.31).
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The third layer
The contribution from p; A p2 # 0 can be written as a Poincaré sum
(d)(gb, 0y) = Z < Z Z e—WQ;]Rfly((R2n2+y3—dpo‘ﬁ(pa—I—aan)(pﬁ—&-algn))vk[ﬁikﬁjl)

YEPy3\Da—1\ n;i€Z? q*€Z?
det n;éopa czd-3

o o™ R yuap(af Hagin® et (pa+aan))(q?+a?njl+0?ﬁﬁjl(pﬂ+aBN)))

Y

ez (T can
2

ij e kel
YE€P3—3\Dg_1 \ njcz? ¢ ez? (€23 vp i ”J) 2
det n#0 paczd—3

5—d

_WR(y—l Z]u qaqb—&—ﬂwv ;

T Pas (P —cp i ) (07— i qb))+2ﬂi(qénija§+npaaa)>
X e 2 Tk

Y

The constant term contribution is at ¢/ = p* = 0, since n;? is non-degenerate. After manipu-
lating the integral over V' as in (3.42), one obtains the constant term

de —d+3) 4 _ O Ruro- ams o
I(Ba) _ 871'5( Rd 1 1/ 7'('92 Ryvkln2 n;
S,d 5(46) Z Z |Q |2 e

YE€P3_3\Da—1\ n;icz?
det n#£0

. (C.15)

o

The factor of {(4¢) in the denominator suggests that this contribution may vanish, but we shall
see that the integral also diverges in £(1+ 2¢) so that there is a finite contribution. Nonetheless,
we argue in Section C.3 that this terms drops out in the renormalised function (C.5) as a
consequence of the tensorial differential equation. In particular, one has

) 47T§(8) &(4e —d+3) Dy_
(3a) _ d—1—2¢ _ d—1
IS,d - 9 5(7) =R 5(46) 5(26 =+ 3)5(26 4)E2€273Ad73+4/\d72 + O(E)
. AmE(8) [d—1-26 E(c—d+)E(4e=3) £(2+20€(1+206(~5+206(~6+2¢) 2 Da—1
- 9 £(7) E(4e)é(4e~2) £(2c+4)€(2¢-3) 23 N g 5+40g_2
80£(2)£(6)€(8)6(d —2) Dy,
=0 5(3) E_%Ad—5+4Ad—2 (0'16)

for d > 5, where the function is Eﬁ(‘3 for d = 5, and zero for d < 5.

Fourier coefficients

The Fourier coefficients from (C.9) simplify to
d Q !/ !/
2 (i g o (i
I,<5'2,Z) = 871-R2d4/ d42r1 W%Z 2) Z Z efﬂ'Q nsz 7TQ2”R 9(¢*,q7 )+2min;i(q*,a) (017)
|QZ| n,ﬂeZqieﬂd_Ld_l
(¢',¢°)=0

niq'#0
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which can be computed as in Section 3.3. It is convenient to unfold the integral domain G to the
set of positive matrices R* x H1/7Z by fixing n; = (n,0) for n > 0. Setting N = ng', one can
solve the constraint for ¢ in the P;_y € SO(d —1,d — 1) parabolic decomposition associated to
N such that

I3 = 83 R* 4/0Vd 4dV/ ar /dn A(7) > Z > (C.18)

~vEP; 1\SO(d-1,d-1) NEN n|N

. 25— .
« Y e r (VRN LY B2 (i (s.0) - N (@) 2)) +2miNa

9 0o %4 ! 1
- S [Vt [T S S S5 [ e

T: 1
2% eP;\SO(a-1,a1) NEN n|N jeZ ' ~3

d—>5
n R°y“N* | V p2,240-7 2 )
gy Z o (VT2+V727+T2R y ()P RE 2T 2) +27i(j(q.6)+Na)

(d—1)(d—2)
2

qEZ
gAq=0

Following the steps as in Section 3.3 and in particular (3.65), one computes that

9723d+4(d74)

1672 _at1 Yy -t .-
Iﬁi?— 3 R Z <Gd—3(N)<Ndsf(d 4)E gL&i)(UN)K%(%R\/g(N,N))

NeS4 ng( )
NxN=0
e oo Kz ™ o (Q))
. N - Z O'd_4(Q)€2m(Q’§N) 2_i — K% (QTFR\/Q(N,N))
s Rng(N) 2 Q€ZLJ—1)2<H> (yNdflyvN(Q)D 2
QAQ=0
15,5 / oo Ka@ryy on (@)
— N +1 Z Ud,4(Q)€2m(Q7§N) 2 — y K%(QWRM‘(](N,N))
27T R ng(N) QGZWI}Z@—Z) (y]\[d"l)]\](Q)DE
QAQ=0
5-3d , 4d
- _7(N B}
o %d u L)7 SDEG " (on) K as (2r RGN, N)) | )
6R%  ged(N)"2 2

de5/

/ Z Z Z 04-3(N1,Q)og—3(N + N1,Q)

~yEP; 1\SO(d-1,d-1) NEIN N1€Z

d(d—1)

QezZ =
QAQ=0
v () .
% y—le—ﬂ( +1/tR v 22 QTRQde*‘ |U(Q)‘2)F(t, R2y21/, N, N; + (g,Q))€2mNa7 (C19)
~
where we kept the variable yy = kafiVN for simplicity, and the sum over ~ is a sum

over characters of the unipotent stabilisers of the charge N, and F' is the function defined in
(3.74). The leading term in R factorises as an Fisenstein series over the Levi stabiliser of N,
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while the full Fourier coefficient depends non-trivially on the whole parabolic stabiliser. The
last term involving the integral and the function F' can be ascribed to instanton anti-instanton
corrections, and is further exponentially suppressed.
The Fourier coefficients from (C.14) yield
d3Q e—ﬂQ;jvmnif“nji
3 _ d—1 2 ¢
ISS,d = 81R < Z /’Q ’2SDI€Z ) - - a3 (020)

oy .k 15
vEP; - B\Dd 1\ n;7€Z? (QQ kT 1y ) 2

= ;o b5 1 o
! —mR? (ngu qaqb+mpaﬂ(p —ct nikqé)(Pﬁ—CianZQi))+2ﬂ1(q¢3nija}’+npaaa)>
X E e 2 VRI™MT T
qi€Z? .
pD‘EZd73

Using (3.77), the integral gives in the saddle point approximation

: \ _1y—2my /M4 T XY +2,/[XY
d*Qy oty () o S(@2) PRz (X + VXYY He e

) - (C.21)
P (1r0,y) % BIXT(1e XY + 2 IRVT) (1 + T XY + 20/X7) *°
For P® = npo‘ and QZ = njiqg7 we obtain
S(Q) = 27TR\/ YT pas(P* = Qi) (PP — Q) + vigu™QLQ] + 2| det Ql) (C.22)

which is recognised as the BPS mass for the vector Q € II; 4 with a non-vanishing norm, such
that

S(Q) = 27R\/9(Q,9) +(2,Q) - (C.23)
Collecting all contributions, one finally obtains

16m2£(3 — d)?
IS,d — R2 IS,dfl + 6T 553 ) R2d74

6—d)(1+d)

87 d—1 D 4 d—5 7D
+ 5 Cd=2)8(d=3) R B[ 4+ —-{(d=6)S(d+ )R 5Edf1A11
2
256772 Lt P Kq-3(*Rlv(q)|)
_ o1 Rd 1/ tT.)(l + %tz + t4)(1 — t2)2 Z O'd73(Q)2 ‘ (t)|d_3 ’
0 q€lly_1,4-1 v\d
(¢,9)=0

430 ! ! _ NP
+87TR2d_4/ |Q dJer SO%Z 2) Z Z e 7rQ nln] 7rQ2”R2 (¢*,¢7)+2min;(¢%,a)
2

| ni€Z g €lly_1,a-1
(¢".¢’)=0

ij ooy 0

i1 S [0 g e
+ 8TR |Q |2§0KZ ) ij A i@
YEP; 3\Dd 1 \ n;iez? (Q2 Vg nj) 2

d—3 N bB . 7 i Lo A
! —mR? (05 ub g qf + 2 7 Pas(D® *ck"‘ni’“qé)(pﬁfcfﬂnjlqi))+2m(qénﬂa}?+np°‘aa)
% E e QQ vt
qLeZ? .
pD‘EZd"Q’
(C.24)
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which is consistent with the identity (2.53). It is worth noting that the term proportional to
R?¥=4 on the first line can be viewed as the contribution of the vector ¢ = 0 in the integral on
the fourth line, while the first term R? Zs4—1 can be viewed as the contribution from n; = 0 in
the same integral, upon using the identity

dsQ d3Q QT o) v
/ o 3PKz()laa2 = / ol (Q) D e lG) (€ .25)
Sp(a,2)\H4 () Q2] GLE,Z)\H.(R) 122] e
XiVd—ax;=0
C.2 Large volume limit
We now consider the large volume limit of the genus-two integral
dfQ d3Q,
i = Sﬂ/ 5Kz Lad2 = 877/ — iz (Q2) 07 (C.26)
@ 7y Q223 v G |Qf32¢ K7 M

The latter may be computed either by the orbit method for the modular integral over Fs, as
in [75], or by decomposing the lattice sum Hfld. We shall show that the two procedures give the
same results, providing supporting evidence for the Poincaré series representation (1.21) which
underlies the equality (C.26).

Applying the orbit method on the first expression in (C.26), we find constant terms coming
from the rank-zero, rank-one and rank-two orbits, respectively,

dsQ
(@2) _ d
Eo) = 8mR (/F )8 P2
2

dt [ dpd ’ _pRlTT(m)|?
—i—/(; t3/]: P12PQ/ duidusdoy <6t+90 + SDl) Z e t

P2 [0,1]3 nezd
dsQ 5¢(3) _ —ARQ; T (nf)w T (nd)
+/ (so“ Q) + ) TR T ) (.27
o |92‘3 KZ( ) ) n§5 ( )
rkn=2

where R = V2 and we replaced @iz by its constant terms (A.13) and (A.11) in the Fourier—
Jacobi and Fourier expansions, respectively. The first integral was evaluated in [36] using the
Laplace eigenmode property of pkz,

dfQ 3
—= =— C.28

/ﬁ, Q2 7 180 (C28)
In the rank-one contribution, the integral over u;,us annihilates ¢g and replaces ¢; by the
Eisenstein series 15—2 Eég ALl(Q), whose integral on F vanishes. In this way we arrive at the constant

terms

ot 4

, d d—1 SL(d)

Er) ~ R R EAd :

30 d A 3

48R 2/|Q é@téz )Y e —r Q0T (ni)0 T J)+C( éfr( ) pi- 5E5A(,) . (C.29)
ZGZS
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where we omitted in the third term the restriction of the sum to rank-two matrices, which would
follow from (C.27). The additional sum over rank-one matrices arises due to the logarithmic
divergence of the Kawazumi—Zhang invariant at the separating degeneration locus, similarly to
the term proportional to R??~* in (C.2) of the last section, and would be absent in the case
of a regular theta lift (against a cuspidal form or a Siegel-FEisenstein series. Physically this
third term comes from the two-loop ten-dimensional supergravity amplitude on 7%, which does
include all Kaluza—Klein momenta and not only rank-two matrices.

The Fourier coefficients only get contributions from the rank-two orbit, but they are com-
plicated and unilluminating, therefore we shall not display them.

Alternatively, one may compute the large volume limit by decomposing the constrained
lattice sum in the vector representation,

! / .
gfd — E o™ R () v(e) | E E e—ﬂﬂg(R’lv(qﬂrapi)'v(qfrapj)+Rv*7(pi)~v*7(pj))
1
q; €72 pi€Z4 ¢; €7
2p(i-4j)=0

/

- Z o~ R~ 0(qi)v(q))

qi€Z4

+ Z Z Z —WQJRy ninj =, Ry~ T o(gf)o(g?)+ 2ri(nigt )

’YEP(i_l\SL(d) n,€EZ qZEZd 1 |S22

Yy [z ¥

YEPs_5\SL(d) \n;ic7z2x2 Gicgz2*(d-2) ’Q2|

v

e—Tl'Q;J Ryp,;[niknj L427i(n; 7§ a3+npa)

detn£0 PEZ
; R d 21)( ) (J)_ = R ( il .CA)Q
X e T P e pga e, TS ) (C.30)
gl
Here we solved the constraints p; - ¢;) = 0 using the decompositions
d = (d=2)072 a205p = (0,n), (C.31)
d = 2 Ve@-27sq=6Gnl.a), (C32)
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where 7 = n/ged(n), and performed a Poisson resummation over §; € Z%~2 and p € Z. Inserting
the decomposition (C.30) inside the last integral in (C.26), one obtains

430 !
5(%,’12)) ~ 877Rd2/ 3_24 oi7(Q2) Z e~ v(ai)v(gj) (C.33)
g ’ ‘ q; €72
d—e (d) dridry SL(2)
R ESN @ (4~ 2¢) RN ARG, ()
+8le*1§(—1 — 2€) £(1 + 2€) BY Y
3 L2 py 5—2eAg_4
477'2 » SL(d 167T 0'2
g RO EB3 20 £(5+ 20) E#id_z_m 1 Ri1 Bi(27Rv(Q)))
2zd
Q><Q 0

4e —2) g 1_2¢ -9 d3Q Qi oyl
—|—87F£(£(4€) )Rd 1-2 Z <y 1-2 |Q |22€‘PKZ(92) Z e QF pp ])

YEPy2\SL(d) nJ eZ?*?
detn#£0

Y

where the second term comes from the contribution of rank-one charges with ¢; = 0, and the
third and fourth lines from rank-one charges with ¢* # 0,7n;¢' = 0, which can be computed as
n (3.24), (3.29), giving the two Eisenstein series above using

—S8—¢€

!
d—2
S P (PT@E) =26+ 20E sy, (C39)

YEP;_1\SL(d) go €741

at s = 1/2 and s = 5/2, for the third and fourth terms respectively. The last line comes from
the last line in (C.30) at ¢ = p = 0 and generically vanishes at e — 0 because of the overall &) 46)
factor. In addition, one checks using the Langlands constant term formula that for any z € C,

1im(§(1+2e) B3 ) £(2) EYH (C.35)

142
e—0 26N g otzehg_q

generalising the functional equation

f0+20 B =c@+20 BIL (C.36)

To identify the first term we use the identity

d392 tr / —mQF v(q)-v(g;) d? 2y tr / —mQ5 o T (00" T(nd)
okt 3 o) G0 3 e
g |QQ| inZd ’I’LiEZd

that follows by Poisson summation using that the renormalised integral fg mdj%gpgz(ﬁg) van-
ishes.

Putting these terms together, one therefore matches the expansion (C.27) in the limit € — 0,
up to the exponentially suppressed terms that are missed by the orbit method. This computa-
tion, valid for generic d, provides strong evidence for the Poincaré series representation (1.21).
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It is worth noting that the term of order R? arises in two different ways in these two com-
putations, leading to a rather remarkable identity for the integral of piyz over the fundamental
domain of Sp(4,7Z),

dsQ 3 dridr SL(2)
— =—RN. | ——A(")E C.38

/;2 103 PKZ 270 /f 722 (1) 2A1 (1) ( )
This identity can presumably be established more directly by using the Rankin—Selberg method,
i.e. computing the Petersson product between ¢kz and Effl(4) using the unfolding trick, and
extracting the residue at s = 2. However, there are regularisation issues which make this

computation challenging.

In addition, there are non-perturbative corrections coming from the second line with ¢* # 0
but n;¢' = 0 through the extension of ¢¥,(Q2) to H+(R). The Fourier coefficients from the
second line at n;q" # 0 can be computed after a change of variable in Qy — R‘ly_QQQ_ ! and
implementing the Poincaré sum at e = 0 as

d3Q ! ! P WINP SN O NI (i),
87 R / e éso%z(m) > SO ey T Q@) Q) (.39)
2 dd=1) mieZ
i 2 i0).
QixQ;=0 m'Qi70

For d = 5 it coincides with the last line in (4.14) with d = 4, in agreement with the functional
equation (1.23). It can be simplified in the same way as in (4.15) for general d. The rank-two
Fourier coefficients come from the last line in (C.30) with (g',p) # 0. One checks for d = 5
that they match the Fourier coefficients of (4.24) at d = 5, with a change of variable in Q2 and
upon identitfying P3 C SL(5) as Py C E4. Under the assumption that the renormalised Iff) of
(4.32) indeed vanishes in the limit € — 0, one obtains a perfect match of the two functions (1.6)
and (1.32) at d = 4. This provides further evidence for the vanishing of the renormalised fourth

layer contribution Ic(f) in the decompactification limit.

C.3 Vanishing of the third layer contribution

In Section 3.2, we relied on (3.44) to show that the third layer contribution to the weak coupling
limit of the renormalised coupling (1.31) cancels out. To justify (3.44) we shall first establish that
Ie(fa) is an eigenfunction of the Laplace operator. The argument of this section will generalise
straightforwardly to prove the similar result (C.16) for Igjzl).

For this purpose, one can write (3.43) as a Poincaré sum

8m? 2t ioiaeE(4de — 2) (T 3¢(2¢)?
I(Sa) — 8—d 1—2¢ Ae U) — ESL(?) U ’
d 3 £(4e) 2 {y ( ) 6+ — 262 2e ( ))} N
YEP3_2\Dyq

B 872 7%+2+4e 5(46—2) 1-2 % C(3) Dy
B YA

where we used the functional relation

—1—2¢ ,7SL(2) _ D _ D
620 Y (vITERW)| =€OED L, =E@-290BR gy, (CA)
YEPg_2\Dgq
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in the last line. Acting with the Laplace operator and integrating by parts, we find

(Ap, + (A2 12)< > (Ao - ST pw ) ‘v)

)
P \Ds 6+ ¢e— 2

6+ € — 22 2M
YEP;_2\Dgq

= e’ Y [t (RN - BRO)]| (C.42)

YEP3_2\Dy4

The right-hand-side of this differential equation is a Poincaré sum of a function with a finite limit
at € — 0, and so we expect I(3“> (that includes an extra E(de )) to satisfy a homogenous equation

at e = 0. To study this, it Wlll prove convenient to use the double lattice sum representation of
the Poincaré sum

8ed(Q1 A Q)| oy, (@)

Z <y1 Z e”%jy%imk"ji) = (01 A Oy (C.43)
v€Pg-2\D4 nJez? v Q €Sy 1 2
det(n;7)#£0 QZXQ]_
Q1AQ27#0

Using this representation one can rewrite the differential equation

(Ap, + (d_2)(1+226)(d—26) B 12)< Z {y—1—2e (/L(U) _ WESL@)(U))} ‘W>

6+ € — 22 2eM

YEP;_2\Dg
3 9epy 2 (Q1 A Qo) 1
= —-m “I'(e
2" 1O L Fiainon @ Fw@F
Qi xQ;=0
Q1NQ2#0
2 gcd q2) 1 1
- e Yy 3yl
YEDy /Py m1€Z goe N274 n2€Z T v(ge) | (D) (v (n2 + (22, @) + 977 [o(@)?)° |,
q2xq2=0
= —6£(20) Y (s@ze)y ST g
v€D4/Py
2
g K1 (2ry~alv(q)])
+2y—2%+46% Z gcd(q)JQEfl(q) 3¢ - e?m(qya)
qeNn2z4 |U(q)’2 5
qgxq=0

The terms in the bracket are recognised as the Fourier expansion of the Eisenstein series E ;

with respect to the parabolic P; , up to a constant term proportional to Eﬁi(g)m. Thus the
previous result can be continued as

d— y L(a
= 6620 Y. (@B - 2+ 200 BT+ 0(0)
YEDa/ P4

= —6£(20£(2) (B — EYY +0(e)) = O(") (C.44)
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where we use EY4 = EP4 in the last step. After dividing out by £(4e¢), the source term in the
Aq Ag—1
Laplace equation therefore vanishes.
Assuming that the source terms for higher order invariant differential operators vanish in the
**) must be proportional to an SO(d, d) Eisenstein series satisfying
to the same differential equations as the one appearing in the same perturbative limit of the
counterterm in (1.28). Since the counterterm in (1.28)

same way, we conclude that Z

SL(2)

27r2 d3Qy  EZ53(7)
p ‘92’6 d—2¢ SVI ‘9/(xdd)+l(¢ 92)
4m% €(4e — 2) £(8) —2t8totde .
7@6(5 — 26)5(3 + 26)@g[) (—%+€)Ad—2+4Ad (C45)

(where 95{11 corresponds to the third layer contribution (3.42)) satisfies by construction to the

same differential equations as the function Z;(¢, €) without the source terms, it follows that Ig’“)

must be proportional to EDd We shall now argue that the coefficient of proportionality

SAg_at+4Ag’
is such that this Eisenstein series cancels in the renormalised coupling (1.28).

To this aim, we compute the first non-trivial contribution to the double lattice sum (C.43)
in the parabolic P;. In this limit, one get a first contribution

iy i W
_gocndy) ‘e_mg (42 (it (0,00 15+ (a5.0)+4* T () 0(ay) (C.46)
ez, U5 2ng0(gj)
GEN?Z4
qiXq;=0
q1/N\q2=0
n[;q;70
- Z Z Z Z gcdq e_%(%m,lzp 2424 \v(q)l)
YESL(2)/ Py qen2Z2 n2€Z i €Z' Y "
qufO
— Z Z Z Z |: ged(q) ‘ m@ V(my n22+1 2454 lv(q )‘) —rV Ty 22
N 2d 2
VGSL(Q)/Pl C]G/\QZ2 no€Z n1€EZ q)

gxg=0

627‘riﬁ,1 ((q,a)—i—n TL2):|

v

and the associated constant term is therefore
/ > dVv / dmy /
dT1
0 V2+26 T22
2

= 26(20)€(—1 + 2¢) y 2T B 4 SR 2T TE ) L O
(C.47)

/ d—4
27
— 7 (nyPn2+ Ly T )

e

ged(q)
ffw(q)

e/\2Z2 no€Z y

gxq=0

Comparing with a similar term in the expansion of EP fixes the coefficient of the second

3Ad 4+4Ag
term in (3.44) to match the one of (C.45) in (D.2). In contrast, the first term does not appear
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Da
—3Ag_at4Ag’

Eisenstein series Efj. Indeed it is not a solution to the homogeneous Laplace equation, and
we therefore expect that this term will cancel against another contribution at the next order in
level expansion for the charges, including either ¢; A q; # 0 or p; € INVAS

in the expansion of E instead it is recognised as a constant term of the minimal

We may also consider the tensorial differential equations (2.10) on the renormalised expres-
sion (1.28). Using the reduction formula for Whittaker coefficients of the series B4 Ay atdhy [24,
SAa—

76], one computes that it admits non-zero Whittaker vectors of type AsA; for d > 5. This im-
plies that this function admits Fourier coefficients outside of the wavefront set determined by the
tensorial equation (2.10), that allows at most for Whittaker vectors of type As. We conclude that
the naive pole subtraction prescription for Z;(¢, €) and the counterterm (C.45) violate the ten-

sorial equation (2.10), but the term proportional to El_)g A, . drops out in the renormalised
2

_4+4A
function (1.28), such that it satisfies the required supersymmetry Ward identities.

. _E . . . .
D Integrating =" (7,¢,7) against an Eisenstein series

In order to determine the weak coupling and decompactification limit asymptotic expansions of

the renomalised coupling (1.31), we shall repeat the computations of Sections 3 and 4 with A(7)

replaced by an Eisenstein series Ef/flm. Although these expansions can be easily computed by

using Langlands’s constant term formula, it is nevertheless instructive to obtain them in this
way, since it will allow us to identify the constant terms that we could not compute directly
using the method of Sections 3 and 4 as contributions of specific double cosets in the Weyl

2

group. Since these contributions can be expressed as theta-lifts of Ef/fl up to an overall factor

of @, it is plausible that the analogous contributions for A(7) will also vanish in the limit
e — 0, justifying our previous computations.

With these motivations in mind, let us consider the function

Ege1 [ -SL(2) [ dndmne _sLe) _E
Iy (E(4+5)A1’d +2-2) = /f 2 Elryn Eagy, (70, d + 26 = 2) (D.1)

E
=  £d+2e—6—086)Ed+2e+1 +<5)JE@M+(4H)M+1

_ &(2841 + 0 —2€)&(28,, +3—d+ 06 —2€)&(d+ 1+ 2+ 5)EEd+1
d=4,5,6 (4406 — 2e) (ser1+3—€)Ag+2eAay1

)

This function reproduces the last two terms in (1.31) upon setting either 6 = 0 first or € = 0
first and then writing § = 2¢. Recall that s, = % %, 6 for d =4,5,6.

D.1 Weak coupling limit

We shall first write the result of Langlands constant term formula. We refer to [65,24] for the
precise statement of this formula in terms of double cosets in the Weyl group. We shall use
the convention that Ay_j stands for the trivial vanishing weight when k = d, and an Eisenstein
series including a weight Ay for k > d vanishes. Using Langlands’ functional relations between

92



Fisenstein series, one obtains the following formula valid for all d < 6
- Eq1
E(d+2¢—6—0)E(d+2e+ 1+ 5)Ed+2€;6—5Ad+(4+é)Ad+1 (D.2)
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§(4e — 5)E(4€ = 8) ¢(_75120)e(5420)6(—4-6+20E(3+54+2¢)  —648¢
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+da6

This formula can be recast as a sum of contributions of the different layers of charges as in
Section 3.2, with A(7) replaced by the Eisenstein series E +(62))A1

E, SL(2
Ty (B d = 2+ 29) (D:3)

24+8e¢

- S
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The first layer of charges, as in (3.13), gives the first line in both (D.2) and (D.3), while the
second layer, as in (3.24), gives the second line in (D.2) and the second and third lines in (D.3).
Note that for an Eisenstein series there are no exponentially suppressed contributions to the
constant terms as they do arise for A(7), see (3.29). The fourth layer of charges gives the fourth
line in (D.3) as in (3.43), which can be identified with the third line in (D.2). For d < 4 this
exhausts all terms. For d = 5 and 6, it follows by elimination that the fourth layer of charges
gives the fourth and fifth lines in (D.2), that we have reproduced as such in (D.3). Although we
have not been able to compute these latter using the double lattice sum, the overall factor of
§deb) suggests that the total contribution from the fourth layer of charge to the abelian Fourier

£(4e)
coefficients vanishes.

For d = 6, the same computation as in (3.59) gives the last line in (D.3). Using Langlands’s
constant term formula for the Sp(4, R) Langlands—FEisenstein series

SL(2) SL(2 SL(2
Sp(4) N Eisn,  €(—4— 64 2¢) Ege,\(l) E(7T+20)&(3 + 0 + 2¢) EQG,\(l)
(4+0) Ay +23=2 Vit2e (=3 —§+2¢€) VOO (8 +20)E(4+ 6+ 2€) V279

)€
G

Elde—1) &(—4— 6 +20¢(3+ 3+ 20) Fiiion,

(

§(de) E(=3—0+2c)5(4+0+2¢) V22

(D.4)

one obtains three contributions which, upon using the identification of the sum over coprime p,
and k as a Poincaré sum over P;\SO(5,5) as in (3.59), give the two last lines in (D.2). We have
not proved rigorously that one can indeed write the sum over p, and k of the lattice sum over
kolly 4[k1] & IIQQ[}Clk%] as a Poincaré sum over P;\SO(5,5) of a lattice sum over Ils¢ that we
used in (3.56), neither do we have a proof of the identities (3.57) and (3.58). The fact that the
three constant terms match provides a strong consistency check that one has indeed

SL(2) . o
s D] &4-d+29 By (74 20)6(3+ 6+ 2¢) Egn)
T+2¢ o 510 —9-s
~EP\Sp(4,Z) 4 ” §(=3-05+2¢) V EB+20)(4+d5+2¢)V
det C(7)#0 o

E(4e — 1) €(—4— 5+ 20€(3 + 0 + 2¢) Eliiga,
€(4e) E(-3—0+20)E(4+6+2¢) V22

in agreement with (3.57), (3.58) for an Einsenstein series and that one can indeed use (3.56).

(D.5)

Note that for generic J, the limit € = 0 is regular and produces the adjoint Eisenstein series
constant terms (with d replaced by 2¢ in order to match the notations in (1.31))

£(25, +2€)€(25, +3 —d+2€){(d + 1+ 2¢) _E,.,
&(4 + 2¢) (sar1t+e)Am
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2 [ €(12420)€(9+20)€(T+2¢)  —1d—de | £(—4+20)&(—1420)(1+2¢) E(T+4e) 4
+6d,69n( ( €);5((4+2:)) 2y, & €))5§4+2e)€) 29 5%8+439D6>> :
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D.2 Decompactification limit

We shall first write the result of Langlands’s constant term formula for d < 7, using again the
convention that the weight Ay vanishes for d = 6, and an Eisenstein series including a weight
A7 vanishes for d < 6. Applying the functional relations between Eisenstein series, one obtains
the following formula valid for all d < 7

E
E(d+2e—6—08)E(d+2e+1+ 5)Edf;€;6*5Ad+(4+5)Ad+1 (D.7)

1244

~ R 5-d <§(d +2e—T7—-0)&(d+ 2+ 5)E;Eﬁ252*7*5Ad,1+(4+6)Ad

+&(d+ 2 — 6= 0)¢(d + 2 + 1 4 §) R (R‘sEfoe;G_aAd + R E;Ef%;lmd)
+ £(4e—1)€(34+0+2¢)E(5+0—2¢
E(A6)E(A+0+2€)E(4+0—2€)

d+1+6—2¢ Eq £(7+28) pd—6—6—2€ B )
X (R E + R E
( 45;1 A1+d7572(5726 Ad £(8429) 46;1A1+ d+2~26725 Ad

Ve(d—5— 5 — 20)(d +2+ 5 — 26)

{(de+1—d) d—1—de 2Bq
a0 £(6—2e+0){(—1—2e—0)R E(4+6)A1—3+52*2€A3
£(de—5)E (de—9)E(— 14+5+2¢)(9+6—2¢) d4+3—6
+ S GE e r0eato—aq S0 — 0 —26)§(12+6 - 2)R ‘
—d—10—06+6¢ 74+ E, 7426 —d—3+56+6¢ —§ nE,
x (%(TMR Esfg—%Aﬁﬁ—é{seM + SR IR E12d+3726A6,16+3766A7>

£(—16—6+2€)&(—12—542€)€(—8—6+2€)£(8+6+2€) £(—17—5+6€) 14+25
+ da,7 (( 65(7775+25)§(7376+2e)6 - 5(71676+6Z) R

| (T420) E(6-9420E(5—5+20E(5—1+20E(1-0+2¢) E(0-10+6¢) | plO—de pFr
£(8+29) E(0+26)E(4+0+2¢) £(6—916¢) 2eA7

+ £(4€—9)E(4e—12) E(—1T—0+6€)E(6—10+6€) £(—8—5+2¢€)E(—4—5+2€)E(5—1+2€)€(3+5+2¢€) R18786EE7
£(4e)€(4e—4)  £(—16—5+6€)E(6—9+6€) £(4+6—2€)€(4++2¢€) 7 4+52726 Ag+(4468)A7

+ £(4e—9)€(4e—13)€(4e—17) £(—17—5+6€)E(5—10+6¢) R2O—1Oe E(1740—2€)E(134-0—2€)£(9+0—2€)E(8+0+2€) RéEE7
E(4€)€(4e—4)E(4c—8)  €(—16—0+6¢)E(0—9+6¢) E(4+0—2€)E(—T+5+2¢) 8+<52+26A7

| &(T120) (246206004 20£(0—9+20E(6—512¢) p—T—0 ppF7
£(8+29) €A1 20)E(0+2¢) 1=bd2ep, :

For d < 6, the last five lines drop out and this formula can be rewritten as a sum of contributions
of the various layers of charges in Section 4.2 as®®

Eqo1 ( 2SL(2) 24de [ g, ~SL(2)
Iy (E de —2) ~ R34 (IA;(E(M)Al,de—s)

Agi1 (4+6)A10 7€
> dV LdTQ % SL(2) > ! ,MR2,L2,L|Z(Q)‘2
+/0 Vde—Q/o 72/ VB D Y e T
2 73 n=1 Qemp"
QxQ=0

3°Note that the general theory of Fourier coefficients for Eisenstein series induced from cusp forms predicts
precisely the structure of L-functions appearing in (D.8), suggesting that this formula should hold for any Hecke
eigenfunction.
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o/ SL(2
1
5(4€)L*(E(4+(52))A ¥ +2€) . Vd T—2¢ 4+5
1rV

» Z (3 d— 262 Z R2yn? V,Qg(qq))
n=1qg€lly.1 41

YEPI\Ey v
(2,9)=0
SL(2)
5(46 +1- d)L*(E(4+5)A ’ _% + 26) Rd7174€IEd ESL( ) 1 2
L (B 1o At (Bappa, 142¢)
(4+8)A1° 2
2
e D)~ LB Gy, —F+2) o,
6 SL(2
£(4€)§(4e — 4)L*(E(4+(5))A yg +2¢)
0o dv LdT2 5 SL2 _1VR2.2 7 |z 2
X/ Vo2 ﬁ/ldﬁEu(éA Z Z ¢ e (D)
0 0 2 J—3 n=1 QEMAF;
QxQ=0

The first layer of charges does not contribute for an Eisenstein series because the regularised
integral over Fp, of the product of two Eisenstein series vanishes [77]. The first line of (D.7) is
reproduced from the first line of (D.8) that comes from the second layer of charges Ig(lza) with
Q; = 0 in (3.15), while Ic(fb) gives the second line in (D.8) that reproduces the second line
n (D.7). Eq. (4.24) might suggest that the third layer of charges does not contribute to the
constant terms, but the use of (4.20) is only valid at € = 0 and there is a non-zero contribution
at € # 0. Using the Langlands’s constant term formula for the Sp(4) Siegel-Eisenstein series in
the Fourier—Jacobi expansion P;\Sp(4)
Zp-ﬁ(-?)/h-&-MAz ~ tﬂJrEEiLig’)éA + ggiggg tiMJrEEff‘gi%A

E(de—1) £(—4—06+2¢€)&(3+5+2¢) M_ L(2) E(7+26) _M_ L(2)
+ E(4e) &(—3—0+2€)&(4+0+2¢) (t EE 2+6+26A +5(8+25)t 6E5+<s 2€A) (D_9)

one obtains

3) 1 SL(2)
1, [E(4+5)A1] (D.10)
1 gdi2e 2—d—2e d°Q Sp(4) 1
=t ;E (y 5 [P Zaran, 2, Laa2( Ry2) X
YEL1\Lq
3 o g 4
R > (yg_de/ de%* S4L+6A Ze_ﬂngRQynZnJ_WQ;JQ(%‘U)+27ri(”ZQi7a)>
1
2 YEP1\Eq g ‘QZ‘ - n'e€z 5
‘heﬂdldl
Ql7qJ
o Eleml) E(-1-0420€(3+0420) p = dfz 4+5 4 ETH26) 3
(30 &(B-0+20(ateorad) It ; Vd 1—2¢ 1 * G2 2
2

<y3 d— QEZ Z VTQQ(QQ)>
’YGPl\Ed

n=1qg€ll q.1
(9,9)=0

Y
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12+4e

6(4671)§(3+6+2€)€(5+6*26)&_(d 55 —20¢(d+ 246 — 20 R 54

£(4€)€(4+5+2€)E(44+6—2¢€)
% (Rd+1+5726EEd 4 £(7+26) Rd7676726EEd >

de—1 d—5-5—2 de—1 d+2+86-2
eTAl—FfeAd £(8+29) GTAH'%/W

such that the third layer of charges gives the second and third lines in (D.8) that gives the third
and fourth lines in (D.7). Consistently with (4.20), these two terms appear with a factor of
5(54(64;)1) that vanishes at ¢ = 0. We expect that the integral of A(7) will give the same result
from (3.58) such that this contribution vanishes in the renormalised function (1.31).

The fourth layer of charges gives the fifth line in (D.8) using (4.33), where the ratio of L-
functions (2.30) comes from the presence of the factor [v(Q1 A Q2)|72 in (4.33) that shifts the

weight s in the Eisenstein series but not in the parameter of the L-function in (2.27). This term

reproduces the fifth line in (D.7). By elimination, the last two lines in (D.8), which reproduces
the sixth and seventh lines in (D.7), must come from the fifth layer of charges that only exists
ind > 6.

The same analysis holds for d = 7 for the first five layers of charges as we show in Appendix
E. The sixth layer of charges that only appears for d = 7 can be computed as in (E.27), (E.33)

to give
SL(2)
1 [ d3Q Eiio)a
/ 2 [a3q, (7@ o 1+5; 1 (D.11)
2 g ’QQ|§ Z3\R3 (4+5)A1+TA2 YV 14-2¢
-y e—TrQZ_i}Rf}ijmgimjj —Wﬂgjﬁabqfq?—WiQijnabq;-’q;?—f—Zwimjiqfdf;
X R
Z Z ( v(£,6)\2 v(£,0) y% S~ 1y SR g-{-e
micz? q:cllys (y+ 2SN + (y + Do) Lu(p, p) + 2 u(pvb, 57p))
det m#£0
o ((EE16=0420)(—12-5+20)6(~8—0+2)€(8+042¢) £(~1T—3+6c) 14423
E(—T—6+2€)&(—3—5+2¢) &(—16—0+6¢)
L E(T420) £(0-9+208(0—5420£(0—1420)E(1-342¢) £(F—10+6c) | pl0—de
£(8+20) E(0+20)E(4+0+2¢) £(0—9+6¢) 2eA7
| §Ue—9)¢(4e=12) £(=17—54GOE(I—10+6e) €(~B—0+20)6(~A—d4+20)E(0—1+20¢(3+3+20) [R18—8e 7

£(4€)€(de—4)  E(—16—0+6€)E(6—9+6¢€) E(4+5—2€)E(4+0+2€) _4+52726 As+(4+8)A7

By elimination one then concludes that the last seventh layer of charges contributes the last two
lines in (D.7) for d = 7.

In the limit € — 0 at generic 0 (a posteriori set to § = 2¢) one obtains from (D.7) the constant
terms of the adjoint Eisenstein series

E
€d =620+ 1+20B 0 oy (D.12)
_ £(28, +2€)8(28,1 +3 —d =047 +2€)(d+ 1+ g7+ ZG)EEdH
£(4 + 2¢) (sar1te)Am
~ R §(25,+2€)€(25, +4 — d + 2€)&(d + 2¢) g,
£(4 + 2e) (sate)As
H6(d =6 —20)6(d + 1+20) (R By, + SEHIRTT B, )

£(18+2€)£(13+42€)£(9+2€) p24+4e | §(T+4e) £(26—10)£(2e—5)E(2e—1) p10—4e
+5d,7( £(4+2¢) R T E(5+ae) £(442¢) R )> '
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D.3 Comments on layers with vanishing contribution

We have claimed in Section 5 that all the constant terms in the weak coupling and the large
radius limit with an overall factor of Fid vanish for the renormalised function (1.28) at € — 0.
We further argued that the whole layer of charges generating them, including contributions
to the Fourier coefficients, vanishes in the limit ¢ — 0. In this section, we shall discuss the
corresponding terms for the Eisenstein series (D.1).

For d = 4,5,6, there are additional poles in % when one first sets § = 0, such that Formulae
(D.6) and (D.13) are not valid at § = 0. We must therefore be more careful in the analysis of the

contributions in @. We shall first discuss the constant terms and then the Fourier coeflicients.

Decompactification limit

Let us first discuss the constant terms in the decompactification limit (D.7). The term

£(4e—1)E(3+2€)E(5—2€ £(7) pd—6—2¢ 7 E
(5(45)5)(4(+26)§)(4(—26) Ye(d =5 - 20)¢(d +2 - 26)%}2 E‘“dT*lAlJri’”Q;ZeAd (D.13)

has a finite limit at e — 0 in d = 4,5,6 and

£(4e—1)&(34+2€)£(5—2¢) e N d+1—2¢ ;pEq
e 6(d =5 —206(d + 2 —20R™ *EEL, |y (D.14)

is also finite in d = 5. Assuming the conjectured expansion (3.58) is correct, these terms cancel
in (1.28). Next, the term

{(4e+1-d) d—1—4e E
Wﬁ@ —26)¢(—1—-2¢)R € E_§A1+(2+6)A3 (D.15)
also admits a finite limit at € — 0 in d = 4, 5, thanks to the functional identity
1+2

—3A1+(2+)As 3y 5 £(4+2€) (“3+A1+(d—44e)Az

. Ed
and the finiteness of E—§A1+(d—4)A2'

By the same reasoning as in Section C.3, we expect that the leading contribution from

Ifj:ll(A, d — 2+ 2¢) will include the same L-function factors as for the Eisenstein series in (D.8),

such that
£cd(Q1AQy) |2 [ 1d° 05 G(0:,0;)
> |Sooy /g |92|2_€A(r)e 3 J (D.17)
QiGMf]d
Q;xQ;=0
Q1NQ2#0
£(6)6(2) £ oy _ §(6)(2) Lk 0
= WIAf(A7 1+26) + O(€) = =577 E75, L a1ga, TO€)

reproducing (4.35). We checked explicitly in the decompactification limit that the last equality
holds for d = 4.
For d = 6 we moreover have a finite contribution from the fifth layer of charges,

€(de—5)E(4e—9)E(—1+26)E(9—2¢) 9—6e 1 F 26(2)§(6)§(10) g
fa0edeDe(AT208-20 &0 = 26)6(12 = 2e)RTEG ) — TR . (D.18)

This contribution comes from the constant term in 7, 3 of the Eisenstein series Efflm(T) that
also appears in A(7), so it is expected to cancel in (1.28).
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Weak coupling limit

Turning to the weak coupling limit (D.2) , we have already seen that the contribution

§(4e —5) 1+665(784’26)5(76‘#26)5(64»26) _7 D
(4e) 77 £(=342¢) E( d3+€)/\d 5+(3+e)Aqg (D.19)

of the third layer of charges has a finite limit in d = 4, 5,6, but we argued in Appendix C.3 that
it cancels in (1.28). The contributions from the fourth layer of charges for d = 5,6 do not vanish
at = 0 in the limit ¢ — 0. The two terms contribute for d = 5 and only the first for d = 6. We
expect them to cancel in (1.28). The contribution from the fifth layer of charges gives a finite
contribution in d = 6

§(de —5)E(4e — 8) £(—T+26)E(2€)6(—4+2€)E(3+2¢)  —64+8€ 12Dy
6(46)5(46 _ 4) &(—3+2¢)€(4+2¢) 9o E4A1+( 2+€)A2 (D'20)

which cancels in (1.28) provided the expansion (3.58) is correct.

Borel Fourier coefficients

We want now to argue that the Fourier coefficients associated to the layers of charges that
give constant terms with an overall factor of Wie)’ also include a similar factor and generically
vanish. For this one can use a reduction formula for abelian Fourier coefficients in the Borel
decomposition, the so-called (degenerate) Whittaker coefficients or Whittaker vectors [76,24].
The abelian Fourier coefficients of the SL(2) Eisenstein series can be written as
sre)  Ws(n) 1

1
i = [ dre2minmpSl® = el e g . (D21
SAI (nal) /; 7_16 SA1 6(23) 5(23) T2 |n|37% s—%( 71-‘77,|7—2) ( )

Similarly for SL(r + 1) Eisenstein series, the generic abelian Fourier coefficients in the Borel

decomposition®® take the form

Ws (nk)
WA"S A (anak) = /dae_%”zk”’“a’“ESLSX - {k} = ,  (D.22)
> sehk - I > skl I1= 5(22 g — k)
for {s;} such that none of the ¢ arguments vanish, i.e. HZ;[I) —(2 Zkﬂ — k) # 0. The

functions Wi,y (ny) are Eulerian functions *7

particular the reduction of the wavefront set at special values of {sj} is a consequence of the

on the Cartan torus and are regular for all si. In

vanishing ¢ factors only. The abelian Fourier coefficients of an arbitrary Eisenstein series over a
reductive group G

WszskAk(Z ngay) = /Udae_%iZk"’“a’“E%SkAk (D.23)
k

can be written in a similar way. It can however happen that the ‘instanton charges’ n; on the
simple roots are not all non-zero, in which case one is therefore computing a degenerate Whittaker

36The product of ¢ functions in the denominator is due to the product over all positive roots of SL(r + 1), see
also [78].

37ji.e. they can be written as infinite products of p-adic Whittaker vectors for all primes p, including a special
function contribution from the ‘archimedean prime at infinity’.
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coefficient. The resulting expression is then not necessarily Eulerian but can be given by a sum
of different terms in a way described by Weyl cosets according to a reduction formula [24]. If
the subset of non-zero ny corresponds to a subgroup SL(r1+1) X SL(ra+1) x---x SL(ry +1)
of G, the corresponding Whittaker coefficient is said to be of Bala—Carter type A, A, ... Ay, .
It is generally given by a sum over Weyl elements acting on Y sxAj and subsequent projection
to the subgroup SL(r1 +1) x SL(ra+1) x --- x SL(ryx + 1) generating products of terms of the
generic type (D.22) with coefficients depending on the s.

We shall now analyse some of the Whittaker vectors for the Eisenstein series (D.1). We
will only display the & factors and will schematically write f; for some products of functions

Wigy ().
e For Dj5, using the reduction formula one computes the Whittaker vector of type As A1 Aq

JiWaye(m) + %hWe_g(m)

Ds = D.24
Wingans (men mace mastp0s) = e e e —20¢G + 2063 20 0 Y

where, at the identity in the Cartan torus,
i = Weaate(mar +nsa2)Wea(p) ,  fo= W%H,efg(”lal +n2a2)W%+€(p) . (D.25)

One recognises the structure of the terms in the third lines of (D.7) that have the same factor
of FOEd +§€)5( =20 suggesting that they come from the third layer of charges in the decom-
pactification limit. One can understand that the type As A1 Ay corresponds to generic Fourier

coefficients in the decompactification limit. In this case the Fourier coefficients in the 10 of P;

50(5,5) = ... @ (gl; D sl5)® 107 (D.26)

supported on the simple root pas, of type A; have a Levi stabiliser sls @ slo, so the generic
Fourier coefficient that can be related to a Whittaker vector corresponds to a Fourier coefficient
of the generic SL(3) x SL(2) Levi functions that are by definition of type A2A;, leading to a
total Bala—Carter type A A1 Ay. The Whittaker vectors of type As Ay have a structure similar
to (D.24) where Wo (m) and W, 3 (m) are replaced by the constant terms (at the identity) of

LR g BSL®

the corresponding SL(2) Eisenstein series E(2 oA (e—3/2)Ar>

together with one additional
new contribution

FLE(A+2) + (3 +26)) + BB fa(€(4 — 26) + £(5 - 2€))
E(4e)&(4 + 2€)E(4 — 2€)E(5 + 2€)&(3 — 2e)
£(2+2€)€(6 — 2¢) W, G,%(nlal + noag)Wae—1(p)

D
W(eil)A3+4A5 (niay + ngag + pas)

+ D.27
£(4e)&(4+ 2€)€(4 — 2€)&(5 + 2€)E(3 — 2€)&(8) ( )
The new contribution has a factor of Wa._1(p) associated to the Eisenstein series E(‘Z[;(_Ql)) Ay

whose corresponding constant term includes a factor £(4e — 3), and is understood to correspond
to the fourth layer of charges in the decompactification limit. One may check that for ¢ — 0, the
Ao Whittaker vectors collapse to the Eulerian Whittaker vectors of the adjoint series, so that
all Fourier coefficients associated to the third and the fourth layer of charges indeed vanish at
e=0.
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e For Fg, using the reduction formula one computes the Whittaker vector of type Ao A1 Ay

FiWeare(m) + &g f2W,_s (m)
E(4e)E(4 + 2€)E(4 — 2€)E(6 + 2€)E(2 — 2¢)

WE6 (n1a1 + mas + naas + pag) = (D.28)

(e— *)A5 +4A¢6

that can similarly be attributed to the third layer of charges, and does vanish in the limit ¢ — 0.
One finds for type A2A;

F1(E( +26) +€(3+2€)) + 5B F26(4 — 26) +£(5 — 2€))

E(4e)&(4 + 2€)E(4 — 2€)E(6 + 2€)E(2 — 2¢)
§(2+26)¢(6 = 2)W, s (nicn +noaa)Wy, s (p)

E(40)E(4 1 200E(4 = 2e)§(6 + 20€(2 — 2¢)
§(7T—2¢)f3+&(1+ 26) f4
T @Ot + 20)E(d —20¢(6 + 26)5(2 “20)

Again, one can attribute the first line to the third layer of charges, the second line to the fourth

W e

(e~ 1)As+4A (nia1 + naas + pag)

(D.29)

layer of charges and the third line to the third layer of charges. All these contributions vanish
in the limit € — 0, but the last term associated to the third layer of charges. One finds also a
Whittaker vector of type A3 A; that does not vanish at e — 0

1)
(1+26) Z 8)

E
W(ei%)A5+4A6 (77/10(1 + mas + 7’L20é3) 5(46)5(44—26)5(4 26)5(6—1—26)5(2 26) + O(E) . (D30)

This Fourier coefficient can be identified as a A3 A; type Fourier coefficient of EPs PN RENY

(D.7) and is therefore associated to the third layer of charges. This shows that the Wavefront set

E
of £ (66—1)/\5+4A

to the tensorial differential equation (2.10). In order for the renormalised function (1.28) to
satisfy this equation, this contribution must cancel against the Fourier coefficients of the theta
lift of A(T).

e For E; the Eisenstein series {(2¢)E. ,\d+ﬁ4 A, is of Bala—Carter type A3A; (with wavefront
set associated to the smallest nilpotent orbit of that type). The corresponding Whittaker vector

‘50 is of type A2 A1 and not As, and therefore this function cannot be a solution

is
)
£(4e)&(de — 4)E(4 4 2€)E(4 — 2¢)

consistently with the fifth and last layer of charges contribution in (D.7), that includes the same

£(2e)¢(7+ 26)W6A LA, (n1ag + naay + naas + pag) = (D.31)

denominator.
Turning to the A3 A1 A; type, we find
§(26)8(7 + 26)W6A6+4A7 (n1on + mag + ngas + par)
B f1+%f2 §(4e — )(fl-l-@ﬁ)
TEAOE(A+20E(d —20) T E[d0)E(de —A)E(d 420 €A —2¢)

(D.32)
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where the first term comes from the third layer of charges as in (D.24) and (D.29), while the
second comes from the fifth layer of charges. One finds again that the A2 A; Whittaker vector

E(26)E(T + 20)WHT L yx. (mion + naas + par)

- 6(46 — 5) : 1 € € — 2€ €
T (de)é(de — 4)E(4 +2€)E(4 —2€¢)  £(8) (5(2 VE(T)(f3 + fa) + E(L + 2€)E(T — 2e€) fu( ))

1 £(7)
+ . £(2¢ — 5)E(1 + 2¢) f3(e) + O(e) (D.33
£(4e)§(de — 4)E(4 +26)€(4 — 2¢)  £(8) ( ) )
vanishes at ¢ — 0. For FE; all the AsA; type Whittaker vectors are in the same Weyl orbit
and therefore vanish in the limit ¢ — 0. For Wi; e (n1c + mag + naag) the contribution
from (D.30) coming from the second layer of charges in (D.7) cancels agains the same contri-

bution from E¥6 | coming from the third layer of charges in (D.7). We conclude that
TA1+(476)A6

13 (26)E6EA‘16+J¢4 A7|60 is of Bala—Carter type Az, and must therefore satisfy the tensorial equation
(2.10). We also checked that all the Whittaker vectors of Bala—Carter type A1 A1 A1 A; vanish
at € — 0 and the ones of type Ay collapse to the ones of the adjoint Eisenstein series (i.e. all

terms proportional to @ cancel in the limit € — 0).

To summarise, we have found that for d = 4 and d = 6, all the Whittaker vectors of Bala—
Cater type exceeding Ao vanish in the limit ¢ — 0 and the ones of type As collapse to the
Whittaker vectors of the adjoint Eisenstein series (D.6), while for d = 5 we found that some
Fourier coefficients of Bala—Carter type A2 A; originating from the third layer of charges remain
in the limit. We take this as further evidence for the fact that for all d, the fourth and fifth
layers of charges do not contribute to the Fourier coefficients of the renormalised coupling (1.28)
in the decompactification limit.

E Decompactification limit for Ejy

In this appendix, we discuss the d = 7 case considered in Section 5.4 in more detail. We first

explain how to rewrite the charge sum in the double theta series (1.18) in this case. We extract

the constant terms and abelian Fourier coefficients from the new layers that have no counter

part for d < 7. In particular we extract the summation measure for 1/8-BPS instantons in the

decompactification limit, which is related to the index of BPS black holes in four dimensions.
We consider the lattice sum (1.18)

, .
QES (qb, QQ) = Z e_ﬂ'Q;JG(Qi’Qj) , (E].)

8
Q«L‘EMAE;‘
Q;xQ;=0

where M fj is the lattice in the adjoint representation invariant under the Chevalley group Eg(Z).
Under the grading

ege) =102 @560 @ (gl @ erpr))” @560 © 1@ (E.2)
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one defines Q = (n,Y,0+ Q,I',m) € M with n,m € Z, Y, T € M = Z°° and Q € ¢7 and
{ € Z/2 such that Q + £ acts on M as a Z°%*°® matrix [50, §4.1]. For ¢ integer, Q@ € M. The
Spin(16) invariant bilinear form is

G(Q,Q) = R™*(m+ (a, T +bY) +2b0+bn+ 3{a,Q - a) + L0, A'(a)) + 1nA(a))”
+R_2|Z(F +Q-a+la+ A (a,a,T) + tala, T) + {nA'(a) + b(Y + an)) ‘2
—|—|V(Q +2axY+ax an)|2 + (4 3(a,T) + bn)2
+R2‘Z(T + an)‘2 + R'n? (E.3)
where the axions a € R%,b € R parametrise the Heisenberg unipotent subgroup R+ c P,
R € R' the GL(1)* subgroup and the SU(8) invariant norms |V(Q)| and |Z(T)| depend on
E7/SU(8). Altogether they parametrise P3/SU(8) = Eg/Spin(16). Recall that A'(T") € M is
the gradient of the quartic invariant A(I') € Z and A'(T',T2,T'3) € M/ is the corresponding
symmetric trilinear map. The 1/2 BPS constraint Q; x Q; = 0 is satisfied if and only if the

symmetric product Q; ® Qj|a, = 0, and the highest weight A; module decomposes under (E.2)
as

38751332 3 (9124 56) Y © (153901330 1) © (912 56)V ©133% . (E4)

The five components of (E.4) can be written explicitly as [50]

) TxT=nQ,

) 2Q-T=nl—(Y, 2Yx(Q-J)+2Jx(Q-T)=(JT)Q, VJeM:,

iii) Q% J= (30 = 3mn+ $(Y,T))J +2T(T,J) —2I(Y,J), VJeM, YT xTI=(Q,
)
)

~

1

v) Q- -T =(—mY, ' x(Q-J)+2Jx(Q-I)=(I)Q, VJeM,

iv
v) I'xT'=maQ, (E.5)

We consider the computation of Hf: layer by layer as in Section 4.2.

E.1 Constant terms
1) The first, second, third and fourth layers

For the first four layers of charges, i.e. with T; = n; = 0, one finds that £; = 0 from the constraint
and the computation is identical to the one carried out in Section 4.2. All the corresponding
results in Section 4.2 apply to the case d = 7.

2) The fifth layer

Let us now consider Y; # 0 and n; = 0. First we shall discuss the case in which T; are linearly
dependent, so one can consider the Fg grading;:

ery =2 2770 @ (gl @ ege)) ” B 27T,
56 = 1093277V 9270 9 1® |
912 =~ 789 ¢ (351@27) Vo (3510 27)" @ 78%
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1539 = 27099 (351027) "o (10 780650)” @ (3510 27)” 27", (E.6)

such that T; = (0,0,0,n;) € 1®®. Using the 912 constraint one obtains that Q; = (0, 5¢; + 0, p;),
such that s € Z. The 56 constraint then gives s;; = —¢;. Then the condition @Q? +4I' A Y in
the 1539 enforces that I'; = (p?, Di, @i, ¢io) With the additional constraints
n(iqj) = —DPi X Dj , nipj) = 22Dj) » napy) = —4xix; (E.7)
where »; = —/; is in Z/2. Then the constraint T x I' = £Q) gives
- 1 0
f(ipj) = *an(ipj) ) NEPj) = 45(1'%]') ) (E.8)

the constraint QT'|g12 = 0 gives

. . . . r
25¢(;0j) +p(ip?) =0, pu XDy =245, 496 x (Dj) X y)=putrgyy+ 3Y trpiqy) , (E.9)
whereas the 56 component of iv) gives
(3¢ — L) aoj) + 5 trBuay) = —many)  (34q — 306)a5) = 2P X pj) - (4 + 306)py) = PD;

Finally v) gives

Pi X pj = =Py 2mas) = 3pGdoy) — tTads) s 4qe X (py) X y) = i tr gy + %y tr p(;qj)
(E.11)
and

¢ X qj — P(()Z-pj) = n(Dj) - (E.12)
For ¢; = 0 the solution is the same as for the fifth layer of charges in E7. We are not able
to extract the constant terms from the fifth layer, but the Langlands constant term formula
suggests that they will involve a factor of Whe—ﬁl) and vanish in the limit ¢ — 0, along with

the corresponding abelian Fourier coefficients.

2) The sixth layer

We shall now consider Y; # 0 and linearly independent with n; = 0. In this case one can
consider the SO(5,5) grading:

e 2 10026 (2216) " @ (gl @ sl ®50(5,5)” @ (22 16)" © 10 |
56 ~ 202316 V3 (2010 @16 @2 |
912 = .. (20120892x2210)" @ (31601444 16)" & (20455 2)? $ 16",
1539 = ...0(12003®10910)? @ (2®16)® @ 1W | (E.13)

with Y; = (0,0,0,0,n;/) € 2. The condition QY|g12 = 0 then implies that

3P

A A
_ k 1 )
Q= (0,0,711-]7 + idéni - ,0,n; ’

q) €2®2)%®(2216)" ®10? , (E.14)

104



so that ¢ = %nijﬁj/r. The condition Q? 4 4I' A Y to vanish in the 1539 implies that

i 45 E 5 s X
I = (m ?? N ?J% %mj%y% +5]k7qu',¢i%mij> (E.15)
with the constraint ) )
26k[n(ikm]~)l = (qi, qj) . (E.lﬁ)

The only constraint that is not yet satisfied is I'; X I'; = m;@; that enforces

1p, P JKJ E.1
qlk +m; - ( . 7)

mi =35
Here we defined k coprime to p € S and r coprime to ¢; € Z? such that they divide n;/J and all
the other necessary quantities for the charges to be integer valued.

One can then interpret the sum over (k,p) as a Poincaré sum over P;\Eg, and the sum over
(r,¢;) as a Pomcare sum over P;\SL(3), for the maximal pair SL(3) x Eg C Eg, and manipulate
the sum over n, ¢;, m;? using the orbit method for an auxiliary genus two theta lift. One can
understand this in two steps. One can first rewrite the set of charges at ¢; = 0 in the P; C Ejg
decomposition in which the sum over (k,p) can be interpreted as a sum over P;\Fjg

s =22 @27 0 (2027) V@ (gl sk B es) @ @ (2027)V @277 @ 2@
i 5PID

IRl € (2027)0

p phip

(g g’k 2k?2

mi € 2®. (E.18)

(nija n

) e ﬁ@)

The set of charges of the sixth layer, at ¢; = 0, span the three first degrees in the decomposition
above, where the doublet of non-collinear charges in the (2® 27) is in the Fg orbit of (n;/,0,0).
One recognises the sum over (k,p) as the Poincaré sum over P;\ Es of the solution to Q; x Q; =0
at p = ¢; = 0. Similarly, the sum over non-trivial (r,¢;) can be interpreted as a sum over
Pi\SL(3) in the decomposition

g - @ (gl ®sls ®50(5,5)” @ (3216)Y ¢ (3210)? $16° @ 3@
Y Y TN
(nij, nij?k + 5%”%%,71#%) S (5[3)<0)

A
(AL n2Ly e (3@ 16)0

k’ rk
A7 EA p’yp I
(Qz‘,ffjk?k% + @) (3®10)®
%fi* e ﬁ(?’)
(mid, mi 2 + I;%f ) € 3¢ (E.19)

Now, the set of charges of the sixth layer span the five first degrees in the decomposition above,
where the doublet of non-collinear charges in sl3 is in the SL(3,Z) orbit of (n;?,0,0). One
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recognises the sum over (r,¢;) as the Poincaré sum over P;\SL(3) of the solution to Q; x Q; =0
at £; = 0.

With this interpretation as a Pi\Es x P;\SL(3) Poincaré sum in mind, we rewrite the
invariant bilinear form as

G(Qi, Qj) = (R 2yuij+ RA5E5) (mi* + (@, gs + Sagni®) + bni®) (myd + (@, ¢ + Lag)ng +bnj?)

1

= 1 (P7aD)( mbp >
Py, pvp)

+ ((y + R_2’U(g ))uab + Rzp’}’au’)/bp + 4 R4 + R2 + a nz CIJ + dgnjj)

(Rzy +o(Z,0) + y2u(p, p) + igz(p’yp,p(’g £)>( 57 Cnitngd  (E.20)
where we introduced for short
gz:%—kaz, ﬁ:%—ka—kcz(%—kaz),
ag = a?+cﬂ“(% +a+ ;cﬁ(‘;ﬁ + a; ) —I—c“(% +6Li) + ;e@uﬂ%(f{ﬂ +a,;)R2f:?@~) ;
b=b+ %a(% +a+ %cf(% +ai)) + %af(% )+ LBt (B.21)

The factors of R? + %’U(g, ) in the denumerator in (E.20) comes from completing the squares in
R72yvgjmiimjj + R4 (mi'l; + %ﬁéiﬁ)(mjjgj + $P¢;D)
_ 477 Diip 15l PP
== R 2 V33 + R 4£”‘€A (m + l'UlkE 7,.,,.,) (m '7 + ] g 7~~)
U v GG m Ryt ol )/ \ "Ry +o(l,0)

_‘_l (ﬁf)/aﬁ) (1371)}52 q@ql? (E22)

4 7
RU 4+ o, 0™
and

Yuandlds + R 2viua (67000 + 3ni'5v°P) (1045 + $ni7pv"p)

~ b~
= + R™20(0,0))u, f—I—lnz ko Py P + n]vz-:l€#
W (s (g + i R2y+v€£>(qj 2" R2y+u(u))
1 (mp,m p) L
= + == ll5)n;" in; E.23
g Aty (B2
and repeatedly using the Spin(5,5) identity [79]
Ve = =3PV P)ve =  YP(BVap) =0. (E.24)

G(Qs,Qj) in (E.20) is then recognised, up to a scale factor, as the the metric on the SO(7,7)
lattice II777

9(Qi,Qj) = UZ] (mZ + (a q; + aknl ) + bn;’ )(mjj + (&j q; + lEL~)njl + imjj)
+ Uab(gi + d;}nil)(q] +a; n] ) + RU”TLZ n] . (E.25)
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with

l\)\»—l

G(Qi, Q) = \/(y + “559)2 + (y+ ”If’f))% (p,p) + 4R4U(mp,mp) 3(Qi, Q)

B o R2\/1+U(U) u(p.p) | 1 wpyp,PIp)

R Reys ' Riy+ R2u((,0)
il
~ o Ulj + R2;
v D
1+ Y5t
(1 + U(gf))uab_‘_ = p,yau,ybp_‘_ 1 (ﬁ’Yaﬁ)(ﬁ'Yb?)N
gy = u il Ryt B (E.26)
\/(1 +uEDN2 (14 v i) | 4 2l

where one checks that @, is indeed an orthogonal symmetric matrix using (E.24).
We can now use the orbit method for the genus-two Siegel-Narain theta series on the lattice
II7 7 to compute the sum

3 ) o
| L @l @u)lulf 3 e o G
g 2 Z3\IR3

n; JeZQ Gia €15 5
det n#0 miieZ?

d3Q
/g ] /3\]R (1921Kz (2 Z Z

Q02

'Y€P2\SP(4 Z) micZ? qi€lls 5
det C'(y)#0 det m#0
_e 7TQ2U RoYm; m]J 7TQ uaqu q; —WlQlj’I]aqu q; +27r1m]1q;‘afl
xR +... (E.27)

(v + “E0Y2 4 (y+ 2E0) Hu(p ) + 3 fru(pop.pop)) 2
where the ellipsis denotes non-abelian Fourier coefficients. The constant term at ¢; = 0 can be
computed using the interpretation of the sum over k£ and p as the principal layer of the Poincaré
sum P;\Eg and the sum over r and ¢ as the principal layer of the Poincaré sum over P;\SL(3).
In order to carry out the sum over k and p bellow we shall use that the sum over P;\ Eg can
be interpreted as a weak coupling limit with g5 = (Rzy% + y_%v(g, EN))_% such that

1
Z Z v(@ é) uw(R4a,2+a) 1 u[(%+a)'y(%+a),(%fc~t)’y(§+a)] s
h=t p%isgss + R2y3 B Riyt R2u(3,0) )
(k,p)=1

(4, 0)
Ry

_ (25 —8)¢(2s — 11) 4R16(1+

s NP S W
€225 9) ) HO@ETVEIRE)  (m2)

up to the exponentially suppressed Fourier coefficients in €27(¢:%) by recognising

E 1 1
ES/{SG - 2((2s) Z 312 -3 3 1 1 s
wez (95 °K* + g5 Sulp + ak,p + ak) + gdu(q + (ayp) + 3(ava)k, q + (ayp) + 3(aya)k))
pESH
q€lls 5
2ng=pyp

(E.29)
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Similarly, to carry out the sum over ¢ and r one can recognise the unrestricted sum over ¢ and
r as the SL(3) Eisenstein series

SL(3) 1 < 1 Y s
5L _ forn (R E.30
(s—e)A1+2eh2 — 9 (2¢) 7%% (y3 '0(0 + ar, € + ar) + y2r2)s 2N 1+v<§+:é§+a) (E.30)
LeZ 3

such that the restricted sum with » # 0 can be recognised as its last constant term using
Langlands constant term formula, giving

00 1 1) U+(%+a)2<%+a)
ool I
Z Z ( “+a, +CL) s 2eA; v(%—&-a,%-&-a)

r=1 (f,eg)Zj (1 + 77; 1+ RZy
£(25 —2¢— 1)E(2s +26—2) 5 _sr02) R
= yE Ry E.31
£(25 — 2€)€(25 +2¢ — 1) Ry Ezen, (v) + O ) (E-31)

One determines that this is the unique constant term coming out of the principal layer by
computing the scaling in R?y from the homogeneity of the Fourier transform.
Using (E.27) and (3.58), one can compute in this way the constant term contribution

RN S

vyeP;\Es (1)) k=1 peS4

el
(k,p)=1
U P& 2 g ]
L L
1
(i iD\y? o~ =

mezz g \92\2 EDY? 4 (y + SEDY 8 u(p, p) + L rulivp, #9) 3
detm;é(]
m(e/r)eZ?

BAEALICAL)
$C298Qe ) pSLO) [T Ry
y(y+ 250) T2 vitertae

y

- 20@ Z ZZ Z — R

— _
0.0 2 " o~ A~ o~ A\
vep7\E8 =1 pesy  (B+2)7 + (v + S2) Su, p) + b, pvp)) 2
p'VpeH55
(k:,p):l

(t+a)(t+a)
§(=20)8(2¢ — 1)€(2e — 5)(2e — S EIAY | —L—
20< €1\1 \/@
= R20 Z ZZ 2y

1+

YEP\Es (rf) k=1 £(2€)€(3 + 2€)y1+2¢(1 + M)2674
_20¢(3 )R22 Z (26 — 9)§(6e — 10)&(—2€)€(2€ — 1)€(2€ — 5)&(2€ — S)Efj\(f)(v)
I~ £(2¢ — 8)¢(6e — 9)€(2c)€(3 + 2)y*
_ 20¢(3) R22£(26 —9)¢(6e — 10)&(—2¢)&(2e — 1)E(2e — 5)E(2¢e — S)EE7
T £(2¢ — 8)&(6e — 9)&E(2€)&(3 + 2¢) 2A7
—  —40¢(2)E(6)E(11) R (E£32)
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In the third equality we carried out the sum over p and k using (E.28), and in the fourth equality
the sum over ¢ and r using (E.31). This is the term that appears in the decompactification
limit (4.1), except for the sign. The sign will be resolved in considering the renormalised coupling
(1.31). Indeed, this contribution drops out in (1.28) because the constant term 5¢(3 )VZEstL(IQ)( )
n (3.58) also appears in the constant terms of the Siegel-Eisenstein series (D.4) at & = 0.
After these cancellations, the only remaining contribution in (1.28) is the one from the adjoint
Fisenstein series coming from the Siegel-FEisenstein series constant term %@V”Qe that gives

instead

2m2€(3 + 2¢)
) S PSS

yEP;\Eg (r/f) k=1 peSy

pwaH55
(k,p)=1
/d392 Q| R2e —m9 Roggmitm,?
s EZ? G |92 (( + BN 4 (y 4 YD) B0, p) + L eu(yp, p))?
etm;é()
m(e/r)eZ?
RA—4e £(20)8(2¢—1)
N D> V> s il
- 3
v u(p. U s+
9¢(4 + 2¢) P ) ot pﬂee% (1+ (M> n (J%> +211R(41;v+p”1312)))2 e
5,5
(k,p)=1
A(3+20) . £(20)6(26 — 1E(2e — 5)E(2e — 8)
9¢(4 + 2¢) P Es o) o1 E(2006(3 + 26)y(1 + (7y+a)) —4

_ 4%25(3 + 2¢) R22-4c Z £(2e — 9)&(2e — 10)£(2€)&(2e¢ — 1)&(2¢ — 5)E(2e — 8)
£

96(442¢) e PEs (26 — 8)&(2e — 9)&(2€)&(3 + 2¢)
AT oo 4 &(2e — 10)€(2e — 1)€(2e — 5)
- 7322 4 412 =, 40¢(2)¢(6 6)¢(11)R?2 . (E.33)

Note that in both cases we have used formal identities for divergent sum or integrals. In
the first sum for I(5a), we integrated the logarithmically divergent integral over V by analytic
continuation of le‘ie at € = 0. For the second sum we have the formal Poincaré sum of 1 over
P;\ Eg, which we consider equal to one by analytic continuation of the Eisenstein series Eg £y We
encounter these divergences because we have neglected the cut-off L on the fundamental domain
F in the computation, in particular when we used the orbit method in (E.27). We expect that
a proper handling of the cut-off L in the orbit method should be equivalent to introducing such
parameter € as in (3.21). Although this computation is not rigorous, the fact that the same
method reproduces correctly three of the constant terms of the two-parameter Eisenstein series

in (D.7) provides a strong consistency check of our result.

For d = 7 both the counterterm and the three-loop contribution are finite, so one may
wonder why one needs the renormalised coupling to get the right answer. The point is that

If: (Eai(g))m, 5+ 26) includes a non-analytic factor in ggg;gg ~ gfgi near (d,¢) = (0,0), such

that the finite value at (d,€) = (0,0) depends on direction in which it is approached in C2.

109



E.2 Abelian Fourier coefficients

We now consider the abelian Fourier coefficients coming from the sixth layer, since the contribu-
tions from the other layers were already discussed in Section 4.2. Combining the results of the
last section, and using the same method as in Section 3.3 for the weak coupling limit in D = 4,
one concludes that they take the form

. RY s 1
DVl D S S S

YEPs\E7 QEZ2® 15 5 ACZ2*2/GL(2,Z) d|A~1Q-QTA-T =1 (14 o)
A(Q)21  ATIQeZ*®II5 5 72
ged(r,0)=1
r|A71Q
d3Qy [47A 5
<> 2<” Dy (st tr[QzQ-QT]))
k>1 woll \ L5, 0 70l \L(p, 0P L(p, 1)
peSy
ged(k,p)=1
_1@"65,
AR er
rOALBDQT 0 Ay NG @ S )t e e
27ri(Q aA+cA'y(E+a+lcj(ﬁ+aﬁ))+c([iJraA))
X e YT 2 r 143 r i (E.34)
¥
where
AQ) = det[n”QiQp)] (E.35)
= G L 57 11 u(pyp, pyp)
L(p,t) = 14+ —wv,f)+ uw(p,p) + — .
70 \/ ey R%y> P 4 Rty + R?u(l, )

To exhibit the Fourier expansion, we still need to decompose the sum over (k,p) into p mod
k and the integral part p’, and to use the Poisson formula on the sum over p’. We define the

function
N d30 <47‘(‘A(Q) 5 1 >
P L N _ 2
L) = + e tr]Q - QT E.36
fQ(Ry% Ry%) /’}-[+|Q2| (p’ ) 7T‘92| ( ( )3 (ﬁ ) [ 2Q Q ]) ( )
— e[ (L(3D)Q-QT+(1+ 7 v(0.0)) ﬁgg{j@ 51— V” — [ e (v 74 0T )eT]
X e 2

which can be evaluated in terms of matrix variate Bessel functions [80,50] if so desired, and its

/d2f/d16p fQ 27r1 X,P)+2mi(A, é) (E37)

where we have rescaled variables such that fQ(X, A) does not depend on y. While we do not

Fourier transform

have an explicit formula for fQ(X, A), we note that the integral is absolutely convergent. The
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generic Fourier coefficients can be written as®®

(6c) _ p22 3/ AQ)
7 = R? Y ( > 2 > S aAY)
YEPs\Br \QEZ2®1T; 5 XES+ ACZ?*?/GL(2,7) d|A~1Q-QTAT

AQ21 ACZ? A~'QEZ2®Ils 5

% Z 627ri(%,x) Z 6271'1(%,)\)

k>1 r>1
pESt mod kS 172 rnold rZ?
(PQ";CP) 6115,5 7”|A7 Q
-1
4 Bveg
A" lpap
oi2 €Z

> fQ (Ry% (X _ @ici), Ry% ()\i N CiX + %Cj@jci o cha))6271'1(Q,a)+27ri(x,a)+27ri(£,a)) (E38)

v

where the coefficients é(n) were defined in (A.12). As expected for a generic Fourier coefficient
saturating the Gelfand—Kirillov dimension of the automorphic representation, these Fourier co-
efficients decompose into a measure factor

m@xN= XY ) X e s e

A€Z2*2/GL(2,Z) d|A71Q-QTA™T k>1 r>1
A~1QeZ2®1l5 5 pES4 mod kSt VA mod rz2
7@;;@15,5 rATIQ
Alancg
A pap
Sa LEL

(E.39)
and a real part given by the function R?? fQ of R and the Levi factor v acting on the charge
I' =(0,0,Q,x,A) only. Note indeed that the dependence of the function in y and the axions
¢, ¢q is manifestly covariant under Ps. The main complication in this formula is the Poincaré
sum over Pg\E7. One must still determine the set of (Q,x,\) mapping to the same charge
'eM ,57 under the Poincaré sum.

The computation simplifies drastically if the charge I' is projective according to the definition
given in [69]. Any primitive charge I" € M," (with ged(I') = 1) can be rotated by E7(Z) to a
doublet of vectors (Q1,Q2) € Iz (corresponding to the so-called STU truncation with a single
magnetic charge p? = 1)

Q1 =e1+ +qrei—, Q2 = qe24 + qze2— + qoe1— (E.40)
for a specific basis of light-like vectors e;+ normalised such that
(€it,ejx) =0, (€it,ej—) = dij . (E.41)
A primitive charge is moreover projective if and only if (where gr43 = qr)

ged(qo, r; qr1qr+2) =1 for I =1,2,3. (E.42)

38The condition d|@ - QT is a shorthand notation for d|(Q1,Q1)/2, (Qz2, Q2)/2, (Q1,Q2).
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If A(T') =1 mod 4 (i.e. go odd), a charge is projective if and only if ged($A/(I')) = 1 [69], with

—qoe1+ + qoqie1— + 2q1q2e2+ + 2q1q3€2—
(Q1,Q2) = ( N * : (E.43)
—2q2q3e1+ + (45 — 2q1G293)e1— + qogeea+ + qogzea—

Considering the representative (I.40), one finds that (E.40) for ¢ = 1 gives that ged(Q;-Q;) =1
and (E.40) for i = 2 implies ged(@Q1 A Q2) = 1. Since ged(Q) = 1, it follows that the only matrix
that divides (Q1, Q2) is the identity A = 1, and the only integer dividing the norms are d = 1 and
k = 1. In this case there is no sum over p and the measure reduces to é(A(Q)) = 6(A(Q, X, )\))
where the first A is the quartic invariant of SO(5,5), while the second is the one of E;. Since
the measure factor is the same for all representatives, the Poincaré sum will not modify the
measure in this case, and one recovers the expected index of BPS black holes in four dimensions
determined in [51-53].
A slightly more general orbit of charges is defined by primitive charges with ged(I' x I')" =

where (I' x ') includes all components of T" x T', except for the possibly half-integer Fg singlet,
i.e. for the representative (F.40)

I'xT = {qo,qr, qr+191+2, 390 | I = 1,2,3} , (I'xD) = {qo,q1, qr+191+2| 1 = 1,2,3} . (E.44)

Note that the condition ged(I'x ')’ = 1 is E7(Z) invariant [69]. The helicity supertrace counting
1/8-BPS states with such charges was determined in [81] as
QuI) = S de(BR) . (E.45)

cd(I)=
gfi(r(x%) /=1 dIPALA/(T)

For a charge I' = (0,0, @, 0,0), it can be written in a way similar to (E.39), namely

14(Q) £odT)= 2 ; Z | |dc( A ) - (E.46)
ecd(DxT)’ - AeZ 2 /GL(2,2Z) dA-1Q-QTA-T

AT QeZ®Is5 5

Indeed, the set of matrices modulo GL(2,Z) that divides (Q1,Q2) is restricted in this case to
diagonal matrices parametrised by one integer k£ such that k divides Q2. They are the same as
the integers dividing

Q1 N Q2 = (g2,43, 90, 9192, 9193) - (E.47)

The second condition on d dividing A=1Q - QTA™T is that it divides (g1, €@, %) but since ¢ is
coprime to ged(qe, g3, 0, 9192, q1g3) by the assumption that ged(I' x T')’ = 1, d must be coprime
to k and divide ged(ge, g3, 90, 91G2,9193). The sum over d is then over the integers dividing
(1,90, 92q3), independently of k dividing (g2, g3, g0, 4192, ¢1¢3). This sum is then the same as the
one over all the integers d’ = dk dividing I' A $A’(T) in (E.45).

It is reasonable to expect that upon taking into account the different representatives of
the same charge I' = (0,0,Q,0,0) under the Poincaré sum FPg\E7, the measure (E.39) will
be modified to (E.46). However, the latter is not invariant under triality (permutations of
I = 1,2,3) for more general charges, so that it depends on the chosen representative charge
(E.40) in general and it is therefore too naive to hope that the Poincaré sum over Pg\E7 gives
simply (E.46) out of (E.39) for ged(I' x ')’ # 1.
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F V'R*in D >38

In this section, we briefly discuss the explicit form of the VOR? coupling at small d < 2, in
relation to earlier proposals in the literature.

F.1 D =10 type IIB

In [31] it was proposed that the exact VOR* coupling in ten-dimensional type IIB string theory
is given by the two-loop amplitude in 11D supergravity compactified on 72, with metric 9ij =

/deie [ 1
?]e;g (U | 5‘12>, where U is identified with the type IIB axiodilaton. In the notation of the
1

present paper, this amounts to

/

ol = 8W/ W dndn 4y 37 M 0o ()]

3 Ve 12 Mg
812 ~

where A, was introduced in (2.43). The weak coupling expansion can be obtained from (B.25)
and reproduces the known perturbative terms, as well as the instanton and anti-instanton effects
which were inferred in [32] by solving the Poisson equation (B.15).

F.2 D=9
The exact VOR?* coupling in D = 9 was proposed in [22] to be given by

20

el = v H €0 + 0@ ELY + Rt + oo (WFELY 1Y) )

where

r 7/4 \/ T
u:<£> Vo, U=0Co+i /ts (F.3)

and 8((§’>1)(U ) is the function (F.1) which governs the VOR?* term in ten-dimensional type I1B
string theory. In our formalism, the last two terms come from the 1-loop exceptional field theory
amplitude

4 N
]_—<(01,)1) _ C(2><(5) [1/175ESL(2) _@

63 Ay ’ (F.4)

while the two-loop amplitude in exceptional field theory accounts for the term

\1\00

EDITT = =R, + <( )2v (F.5)

The remaining contribution %C (2)¢(3) V7 Egi(f) does not appear as a 1/2-BPS particle state

sum and instead resembles a string multiplet state sum.
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F.3 D=8

The exact VOR?* coupling in D = 8 was proposed in [22], using results from [33], as

£ = gSLO) 4 gSLO) %C(2)C(3) Egi(lz«:) ESLe) waé )E 3)Jr e o 2>+<(92)
442(7) BV B (F.6)
where Egﬁ()?) and Sf)ﬁ()?’) are solutions to Poisson-type equations
(Av —12) €507 = —(1K@EN?)?,
(Agre — 12)E00 = —(24(3)E§i<13>)2 : (F.7)

with suitable asymptotics. The last term is recognised as the homogeneous solution (1.11),

4¢ SL
FO = ( ) foiet o D B (F.8)

To see the origin of the other terms, note that the particle multiplet transforms as (3,2) under
SL(3) x SL(2). The double lattice sum therefore decomposes into

/

Y (T T
§ e Q5 G(T;,I'y) (Fg)
FiEZQXS
FiXFJ‘ZO
( E : E : o~y G aia) E : E : o~ Y 2G(pipi)
-
u€Z? YEP\SL(3) pi€Z® YEPI\SL(2)
i Ng;#0 PiAp; 70
/ ..
ni €22 ~EPy\SL(3)x P1\SL(2) 7

The first two terms can be further decomposed into an unconstrained sum minus the sum over
collinear charges that can be computed using (B.25) as

d3Qs G s 82 ~ 16m26(2€)2 5100
8 i B @ F.10
" [ et = (G—29(3+20) 2 (10
quAqﬁO
dSQQ QY G(p: s 87T2 ~ 167T2§(26)2 SL(3)
877/ ot e~ ™ Glpipi)  — E A - E .
2—e€ _ 2eMo
g || et e (42206 +29
pl/\p]7£0
These combinations are finite as € — 0, as can be checked using (B.25) for the first, and
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2 2
-5 d QQ (pKZ Z eiﬂ.Q ]G(pl,pz) o 87'[' _QEAE(T) 167 5(26) —4+42¢

T0L12—€ _ 93
g || ot 3 (6 — 2¢)(1 + 2¢)

8 4
+ i5(2 —20€(3 — 2095 2B, + i§(2 +20)6(6 — 202 E5 )+

T |V +TN
1672 C—e ! 0'2,26(]\7) 9 Klff(f]isl 1\/T2 2‘)
S DD ged ()2 %) W Ty e

Nez? ( V1o
2m |[N1+TNa|
gS 0-24*26( ) K1+6( 1o ) 2mi(N,a) F.11
T 66— 20— e . (F11)
6 gcd(N) (#)

for the second. This expansion in turn follows from (3.13), (3.18), (3.22) and (3.66) up to
exponentially suppressed terms (represented by the dots) that are finite at ¢ — 0. Therefore
one can set € = 0 in the first term

d3Qy Ty d3Q i
- Y5 G (44,9:) _ SL(3) 2 tr —m Q5 G(qi,q:)
/|92’26 Z Z . 5 - E2eA2 |Q |2 ESOKZ € 2
g i €Z? vEP\SL( ) g G EZ?
qiNg; #0 quqﬁEO
d3Q I Gl
:0/ Q 2Pz e Glaa) [ (F.12)
€E—> g | 2| 5
¢ EZ
qiNg; 70

and the second

dsﬂg QY4 2G (0; s SL(2) d QQ
e 2 Yy (plvpl) = F SOKZ e WQ Gpl pz)
/9‘92’2_6 23 ’YGPE\;L 2) ! e Jg el Z

PiAD; #0 Pi /\p] 7&0

d3Qy o, _
0 /g 10227 Kz Z e TG (F13)

pz/\pg 750

As for the mixed term, we get, after integrating over the volume factor and using (B.2),

_ 167%¢(2¢)? SL(2) ~SL(3)
v (4—2€)(3 4 2¢) 21 T2eh2
(F.14)
As in (5.37), this function is divergent and one needs to take into account the contribution from
the supergravity amplitude and the R* form factor associated to the partly massless contribution,
s 39
giving

!

d392 i, 2, 2
tr =7 Y Yy
877[; 0,2 PKZ Z €

ni€Z2 vEP\SL(3)x P \SL(2)

16m26(2€)*  _sr2) nsn@) . ™ L(e) 72 T(e)? 1 F( )
E T ) 7( 290 ) e
(4 — 2¢)(3 4 2¢) " 2eM T2 T3 (mu2)e” @0 T3 5 +O()

4 SSL(3) BSL(2) 2/ SL(2) | pSLE) @ 117f2
6:;0 56(2)4(3) E%Al E + 8( sAq +ESA1 )|s:0 E (0,0) 108
4 2
+%log(27r,u) - Elog(Qw,u) (550”0 + g) . (F.15)

390bserve that the first term by itself produces %C(Z)C(?)) E\iﬁ(f) E\if@), which is twice the correct result.
2
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One can then identify the automorphic forms 5(%%1()2) and Ezﬁg?’) introduced above as

s _ (87 % 167°¢(2¢)? SL(2) 2 -SL(2) ™ ~sr2) . 13m?
Eon” = <7A T (A—2)(3+2¢) 2 )‘ 7‘9 Eqy oo + gC@ELT + 516
2
SL3)  _ d*Qs t —wQ ' G(ps,ps 2 ~SL(2) m ~sr(3) 13T
5(071) = 8r |Q |2QOI£Z (P p) a sA1 ‘S=O + §C(3)E%A1 + Tlﬁ .
G €Z3
piAp; 70
(F.16)

One checks using (B.25) that they have indeed the same constant terms as [2, (B.25)]. We
conclude that summing all contributions we reproduce the expected coupling S<0 )y in (F.6) with

!/

d3Q QG T
SW/Q |Qzl2—6901f§2 > RO L F

FiGZQXS
FiXFjZO

i F(ﬁ) (2) T((F(ﬁ)Q _|_1F( ) +O(€O)) —4e+ 5((2)) 2C(2)
6 me 00 9

3 (WM2)€ (0,0),€ 3

472 2 T
= Eohy + —5 log(2mp)* — =~ log(2mp) (5((3,%) + g) , (F.17)

where the last two terms in the second line are scheme dependent terms which can be reabsorbed
in the definition of the infrared cutoff u of the non-local component of the amplitude.
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