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Abstract

We demonstrate the power of machine-learned likelihood ratios for resonance
searches in a benchmark model featuring a heavy Z ′ boson. The likelihood ratio
is expressed as a function of multivariate detector level observables, but rather
than being calculated explicitly as in matrix-element-based approaches, it is
learned from a joint likelihood ratio which depends on latent information from
simulated samples. We show that bounds drawn using the machine learned
likelihood ratio are tighter than those drawn using a likelihood ratio calculated
from histograms.

1 Introduction

A primary focus of the physics program at the Large Hadron Collider is the search for
beyond the standard model (BSM) physics. Many BSM models predict the existence of
heavy, short lived particles that rapidly decay to familiar standard model particles, leaving
a telling experimental signature known as a resonance. Historically, the discovery of
new resonances has revolutionized our understanding and confidence in models of particle
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physics [1, 2, 3, 4, 5, 6, 7]. A similar discovery made in the current age would likely have
a similar impact.

Typical searches for BSM resonances involve fitting signal and background spectra in
the invariant mass of the final state particles, allowing one to construct a likelihood ratio
[8, 9, 10, 11]. Recently, this has been greatly improved by utilizing machine learning at
various steps in the process [12, 13, 14, 15, 16, 17]. However, relying solely on the invariant
mass neglects a great deal of the available information when determining the likelihood
ratio of an event. The full event information is given by the set of four-momenta of every
particle in the final state. Summarizing this relatively high dimensional information with
invariant mass plausibly results in a significant amount of information loss.

Certain methods have been developed that aim to overcome this information loss
[18, 19]. The matrix-element method searches for new particles by approximating the
detector response with a simple transfer function and marginalizing matrix elements over
the unseen detector degrees of freedom [20, 21, 22]. This approach uses multivariate
detector level output in determing the likelihood ratio, but critically relies on the choice
of transfer functions and can often be very computationally expensive to perform.

In this paper, we implement a new method of analysis, originally applied to effective
field theories (EFTs), which machine learns a likelihood ratio from latent information that
is extracted from simulations [23, 24, 25, 26]. Similar to the matrix element method, this
new method utilizes multivariate output of a detected event and so it is expected to provide
similar improvements in performance. However, it removes the need to approximate the
detector using transfer functions, and thus may be viewed as a direct improvement over
the matrix element method.

Transferring the methods of Refs. [23, 24, 25, 26] from EFTs to resonance searches is
non-trivial for several reasons. First, EFTs have a morphing structure, allowing squared
matrix elements to be written as simple polynomials of the parameters of the theory
[23, 27]. Consequently, by evaluating the squared matrix element of an event at a handful
of “benchmark” points in the parameter space, one is able to infer the squared matrix ele-
ment for arbitrary theory parameters, affording significant improvements in computational
efficiency. However, resonanace searches do not have a complete morphing structure, as
the squared matrix element typically has a non-polynomial dependence on mass. As such,
the squared matrix element of an event must be evaluated at every point in the parameter
space.

Additionally, the most successful methods for EFTs rely on using the derivative of the
log likelihood ratio with respect to the theory parameters, known as the score, to success-
fully train the machine learning models. Scores are readily available in EFT calculations,
but must be numerically calculated for resonance searches, which greatly increases the
computational cost of the analysis. As a result, we are constrained to use the less sample
efficient methods, which do not rely on this information during training. This work is
the first to show that these difficulties can be overcome, and that these methods may still
provide substantial improvements over traditional methods beyond the context of EFTs.

In Section II, we review the theory behind performing a resonance search and review
the new method that we use to calculate the likelihood ratio. In Section III, we will
introduce a simple BSM model and detail how the new framework will be used to search
for a resonance in the model. In Section IV, we show the results of our resonance search.
In Section V, we discuss the implications of this work and possible future directions.
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2 Method

Let θ denote a set of theory parameters. Using a standard suite of programs, we can
easily produce a set of events X = {x ∼ p(x|θ)}, where x denotes detector level observ-
ables. However, the inverse problem of determining which θ produced a set of events X
is extremely difficult. The Neyman-Pearson lemma shows that the optimal discriminator
between two competing theories, parameterized by θ and θ0 respectively, is the likelihood
ratio:

r(x|θ, θ0) =
p(x|θ)
p(x|θ0)

=

∫
dz p(x|z)p(z|θ)∫
dz p(x|z)p(z|θ0)

, (2.1)

where z is the latent parton level four momenta of all particles in the final state, which is
unobservable in experiment.

For typical showering and detector simulations, p(x|z) is intractible due to the ex-
tremely large number of ways an event may shower and be detected. For this reason,
r(x|θ, θ0) is typically calculated by attempting to approximate p(x|θ) and p(x|θ0) directly,
using histograms of x. The number of data points required to adequately populate the
bins of the histogram scales exponentially with the dimension of x, which is known as the
curse of dimensionality. As a result, this approach becomes impractical as the dimension
of x becomes moderately large. As such, histograms usually are constructed in only one
or two summary statistics of x, which may result in information loss relative to higher
dimensional approaches.

A recent study with effective field theories has offered an alternative method of cal-
culating r(x|θ, θ0) as a function of the detector level output [23]. The remainder of this
section follows the discussions in Refs. [23, 24, 25, 26] very closely. We first consider the
joint likelihood ratio:

r(x, z|θ, θ0) =
p(x|z)p(z|θ)
p(x|z)p(z|θ0)

=
p(z|θ)
p(z|θ0)

. (2.2)

All intractable parts of the joint likelihood ratio cancel, and for simulated events, we can
calculate r(x, z|θ, θ0) in terms of tractible matrix elements as

r(x, z|θ, θ0) =
σ(θ)−1|M(z|θ)|2

σ(θ0)−1|M(z|θ0)|2
, (2.3)

where σ gives the cross section as a function of theory parameters and M gives the
matrix element as a function of parton level momenta and theory parameters. The joint
likelihood ratio cannot be calculated for observed data, as it requires knowledge of z which
is not well defined in experiment. However, in the following paragraphs, we demonstrate
that machine learning the joint likelihood ratio of simulated events will result in the true
likelihood ratio in Eq. (2.1) under a specific set of conditions.

Consider a function r̂(x|θ, θ0) that attempts to predict r(x, z|θ, θ0) given only infor-
mation of x. We can quantify the error of the function when evaluated on a set of data
(x, z) ∼ ptrain(x, z) with the functional:

L[r̂] =

∫ ∫
dx dz ptrain(x, z) |r̂(x|θ, θ0)− r(x, z|θ, θ0)|2 . (2.4)

It can be shown that minimizing this loss functional with data drawn from ptrain(x, z) =
p(x, z|θ0) will yield the desired likelihood ratio. Thus, using a deep neural network to
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represent r̂(x|θ, θ0), we can use standard optimization techniques employed in machine
learning to train an estimator that will converge such that

r̂(x|θ, θ0) =
p(x|θ)
p(x|θ0)

(2.5)

in the limit of infinite data, an infinitely large neural network, and perfect loss optimiza-
tion. In realistic implementations, deviations from the true likelihood ratio may occur due
to the effect of finite datasets, finite neural networks, and inefficient optimization. This
likelihood depends only on x, and so it can be evaluated for simulated and observed events
alike.

We can use the joint likelihood ratio to construct alternative, more complicated loss
functionals that similarly converge to the true likelihood ratio. A summary of these
methods as well as their different properties is found in the references [23, 25]. In this work,
we find the ŝ(x|θ, θ0) that minimizes the ALICE (approximate likelihood with improved
cross-entropy estimator) loss functional, which is given by:

L[ŝ] = −
∫ ∫

dx dz p(x, z|θ0)
[
s(x, z|θ, θ0) log(ŝ(x|θ, θ0))+

(1− s(x, z|θ, θ0)) log(1− ŝ(x|θ, θ0))
]
, (2.6)

where we have defined

s(x, z|θ, θ0) =
1

1 + r(x, z|θ, θ0)
. (2.7)

With ŝ(x|θ, θ0), we can form an estimator for the likelihood ratio

r̂(x|θ, θ0) =
1− ŝ(x|θ, θ0)
ŝ(x|θ, θ0)

, (2.8)

which similarly converges to the true likelihood ratio. The minimization is performed over
a balanced training set, with an equal number of events drawn from p(x|θ) and p(x|θ0).

Given the likelihood ratio of each event, the likelihood ratio over X is trivially found:

r(θ, θ0) =
∏
x∈X

r(x|θ, θ0) (2.9)

3 Experiment

We consider collisions qq̄ → qq̄ in the standard model with a massive Z ′ boson included
[28, 29]. The θ that parameterizes this theory is θ = (MZ′ , gZ′), where MZ′ is the mass
of the Z ′ boson and gZ′ is its coupling to standard model quarks. We attempt to find the
Z ′ resonance using two different methods of calculating the likelihood ratio: the ALICE
approach described above and the benchmark histogram-based approach, utilized in many
current LHC searches [30, 31, 32, 33].

We sample 104 events at every point on a grid in θ-space spanningMZ′ ∈ [275, 325] GeV
and gZ′ ∈ [0, 2], with grid spacing ∆MZ′ = 5 GeV, ∆gZ′ = .2, yielding a total of 1.21 ×
106 weighted events. We use a constant width ΓZ′ = 2.4 GeV for every theory in the
grid. Events are sampled using MadMiner [26], which generates, showers, and detects
events using MadGraph v2.6.5, Pythia8 and Delphes, respectively [34, 35, 36]. Jets are
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Table 1: Table of hyperparamaters used to the train neural network

Hyperparameter Value

Activation function tanh
Number of hidden layers 3

Neurons per hidden layer 12
Initial learning rate 2.2× 10−3

Final learning rate 10−4

Learning rate decay schedule Linear
Optimizer AMSGrad
Batch Size 128

Validation Split .25
Number of Epochs 100

Training Samples (unweighted) 106

θ0 (300 GeV, 2.0)

reconstructed using the anti-kT algorithm with distance parameter R = .5. Events where
more or fewer than two jets are detected are discarded [37]. For each event, our observables
x consist of the four-vector of each reconstructed jet. A cut is placed on the invariant mass
so that mjj ∈ [150, 450] GeV and on the jet transverse momenta such that pT > 20 GeV.
For each sample, we calculate the tree-level joint likelihood ratio at every other grid point,
which MadMiner performs by using Madgraph’s reweight feature [38]. The joint likelihood
ratios are then used to unweight the samples in preparation for machine learning.

In this work, we focus initially on a qualitative assessment of the application of machine
learned likelihood ratios to resonance searches. As such, we neglect additional complica-
tions that may arise in an experimental setting that are not expected to affect qualitative
results, such as pile up interactions, trigger strategies, the dependence of ΓZ′ on MZ′ ,
or additional diagrams that may contribute to the detected final state. An interesting
direction for future study would be to incorporate these effects into the analysis.

We use MadMiner to train a neural network capable of calculating r(x|θ, θ0) using
the ALICE loss functional. We parameterize the dependence on θ, as described in Refs.
[23, 39], which allows us to evaluate r(x|θ, θ0) at any θ in the parameter space using a
single neural network. The neural network is trained with hyperparameters given in Table
1 to minimize the loss in Equation 2.6. We fix θ0 = (300 GeV, 2.0), though results should
be independent of this choice.

We also calculate the likelihood ratio from histograms. For this method, we bin events
sampled from p(x|θ) and p(x|θ0) in invariant mass, and the likelihood ratio is again given
by the ratio of normalized counts in each bin. We use a fixed bin size of 20 GeV at all
points in the parameter space.

We separately generate a test dataset Xtest of 10000 events with θtest = (285 GeV, 1.2)
and compare the results of a resonance search using our machine learned r̂(x|θ, θ0) to one
using r(x|θ, θ0) calculated from histograms. The test set is used to calculate expected
p-values for N test events in the asymptotic limit. In this work, we take N = 50. To
demonstrate the limit setting abilities of these methods, we follow the example in Ref.
[23]. We assume an asymptotically large test set and calculate

pθ = exp (N〈log r(x|θ, θMLE)〉x∈Xtest) , (3.1)

where θMLE is the parameters of the maximum likelihood estimate, which is the θ that
maximizes r(θ, θ0). This expression takes a simple form because the dimension of our
parameter space is two.
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Figure 1: Distributions of invariant mass plotted for events drawn from θ = (285 GeV, 1.0)
(orange) and θ0 = (315 GeV, 1.0) (blue). We use these histograms to calculate the likeli-
hood ratio, given by the ratio of counts in each bin.

Figure 2: A comparison between the log likelihood ratio (grey, calculated using histograms
in Figure 1), the expected machine learned log likelihood ratio (blue), and the expected
log joint likelihood ratio (magenta) for events sampled from θ = (285 GeV, 1.0) (solid) and
θ0 = (315 GeV, 1.0) (dashed). Expectations are calculated with respect to all events that
lie within the given invariant mass bin. We remark that the expected value of rhist(x|θ, θ0)
in a bin does not depend on the distribution from which an event is sampled, as only the
number of events within each bin will change. The expected machine learned likelihood
ratio is closer than the histogram approach to the expected joint likelihood ratio, which
represents the optimal expected log likelihood ratio if given complete parton information
of every event.
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Figure 3: We show the expected p values plotted against mass and coupling for an Asimov
test set drawn from the theory (285 GeV, 1.2). The p values are calculated using our
machine learned likelihood ratio. The true value of θ is marked with a black x. In
comparison to Figure 4, p values are more peaked around the true value of θ.

Before presenting the results to the full problem described above, we attempt to develop
an intuition regarding all of the likelihood ratios discussed thus far. For this, we limit our
analysis to the set of events drawn from θ = (285 GeV, 1.0) and θ0 = (315 GeV, 1.0). In
Figure 1, we show histograms in invariant mass for events drawn from θ and events drawn
from θ0. The ratio of counts in each bin gives the likelihood ratio if the invariant mass
is the only information available. The logarithm of this likelihood ratio is plotted as the
grey line in Figure 2.

The next step is to compare the likelihood ratio calculated from histograms to the
machine-learned likelihood ratio as well as the joint likelihood ratio, which benefits from
parton-level information. A neural network is used to discriminate between events sampled
from θ and θ0 by minimizing the ALICE loss functional. To compare this to the benchmark
result, we show the expected value of the machine learned log likelihood ratio within each
invariant mass bin. A full justification of this comparison is provided in the appendix.
This expectation is plotted for events sampled from p(x|θ) (solid) and p(x|θ0) (dashed)
in blue. The neural network uses multivariate detector level information, which allows it
to make more powerful predictions than the histogram based approach, which only uses
invariant mass.

We also plot the expected log joint likelihood ratio within each invariant mass bin
in magenta for events drawn from p(x|θ) (solid) and p(x|θ0) (dashed). The expected
joint likelihood ratio represents the most powerful expected likelihood ratios possible, as
it requires knowledge of all considered parton level event information. We see that the
machine learning approach is able to use the extra available information to modestly
outperform the histogram approach.

4 Results

In Figure 3, we plot p values as a function of mass and coupling, calculated using the
ALICE likelihood ratio. In Figure 4, we show the same plot, calculated using histogram
based likelihood ratios. While both approaches are capable of selecting the correct region
of θ-space, the results are significantly less constrained for the histogram approach than
when using the ALICE based likelihood ratio.
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Figure 4: We show the expected p values plotted against mass and coupling for an Asimov
test set drawn from the theory (285 GeV, 1.2). The p values are calculated using our
likelihood ratio derived from histograms. The true value of θ is marked with a black x. In
contrast to Figure 3, p values are more dispersed around the true value of θ.

Figure 5: We show the expected p values plotted against mass and coupling for an Asimov
test set drawn from the theory (285 GeV, 1.2). The p values are calculated using our
machine learned likelihood ratio trained only on invariant mass. The true value of θ is
marked with a black x.
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We remark that only kinematic information is used to form the likelihood ratios used
in Figures 3 and 4. A full analysis would include total rate information. However, the
contribution of rate information to the log likelihood ratio is independent of the method
used to calculate the kinematic portion of the log likelihood ratio, and thus is unable to
change the relative ordering of the methods.

We believe that the ALICE likelihood ratio is able to outperform histogram based
approaches due to the increased information utilized by ALICE. That is, the ALICE
likelihood ratio uses information of the full four-momenta of both final state jets. On
the other hand, the histogram based approach only has access to the invariant mass of
the jet pair and cannot be extended to use additional observables due to the curse of
dimensionality.

A possible critique of this interpretation is that the histogram based approach does not
perform as well as ALICE because it requires use of a binned PDF, which may result in
information loss. To address this concern, we also train a neural network using the ALICE
loss functional to predict the likelihood ratio as a function of only invariant mass, instead
of the full eight-dimensional dimensional jet four-momenta. This can be considered the
continuous limit of the histogram based likelihood ratio, as it avoids the need for binning
while only using the information in invariant mass. The expected p values plotted over
θ are shown in Figure 5 and the hyperparameters used to train our neural network are
shown in Table 2.

We see that the machine learned likelihood ratio trained only on invariant mass per-
forms very similarly to the histogram result. This indicates there is not a substantial
difference in available information due to binning effects.

In a final attempt to uncover the extra information used by the fully multivariate
ALICE likelihood ratio, we train an additional neural network with the ALICE loss func-
tional, but provide the detected invariant mass as well as the difference in pseudorapidity
of the two final state jets, denoted ∆yjj . The input is thus two dimensional. The hyper-
parameters used to train the neural network are the same as those in Table 2, with the
initial and final learning rates adjusted to 2.3× 10−3 and 4× 10−5, respectively.

Because the neural networks for the machine learned likelihoods include θ as an in-
put, they offer a very natural interpolation in θ-space relative to the histogram approach.
In Figure 6, we use this property to compare the exclusion contours of the fully multi-
variate, eight dimensional machine learned likelihood ratio (blue), the two dimensional
machine learned likelihood ratio (green), and the machine learned likelihood ratio that
is only dependent on invariant mass (purple). We see that the neural network trained
on two dimensional input performs very similarly to the neural network trained on eight
dimensional input, and that both of these significantly outperform the one dimensional
approach.

This result demonstrates that the extra information used by the fully multivariate
approach is largely or nearly entirely captured in ∆yjj . While these exclusion contours
depend on the hyperparameter N and will also change if we included rate information into
the analysis, the relative ordering will not depend on these factors.

5 Conclusion

In this work, we have performed the first application of a novel likelihood-free inference
method, ALICE, beyond the scope of effective field theories. ALICE, along with most
methods from this new class of analysis techniques, relies on machine learning latent
information extracted from simulations in order to produce a useful likelihood ratio. We
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Figure 6: The 1σ (solid) and 2σ (dashed) exclusion contours for the machine learned
likelihood ratio calculated using the full input (blue), invariant mass and ∆yjj (green),
and only invariant mass (purple). The black x denotes the true value of θ. The fully
multivariate and two dimensional approaches perform very similarly, and both provide
more powerful exclusion contours than the approach that uses only invariant mass.

Table 2: Table of hyperparamaters used to the train neural network with invariant mass
as input.

Hyperparameter Value

Activation function tanh
Number of hidden layers 3

Neurons per hidden layer 8
Initial learning rate 10−3

Final learning rate 10−5

Learning rate decay schedule Linear
Optimizer AMSGrad
Batch Size 128

Validation Split .25
Number of Epochs 100

Training Samples (unweighted) 106

θ0 (300 GeV, 2.0)
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have compared the new method to the traditional histogram based approach of performing
a resonance search, and have seen dramatic improvement when multivariate detector level
event information is included.

ALICE outperforms the histogram approach by providing significantly tighter exclu-
sion contours. We believe that this improvement is similar to the improvement seen when
using the matrix-element method, and originates from the greater amount of information
that can be meaningfully utilized in multivariate analyses. Since we are now able to com-
pare lower dimensional analyses to a fully dimensional analysis, we were able to conclude
that nearly all information is captured in the observables mjj and ∆yjj for our simple
process. ALICE can be seen as an improvement over the matrix-element method, as it
does not require one to approximate the detector using transfer functions.

Possibilities for future work include utilizing the partial morphing structure with the
coupling to improve the computational efficiency of this work. One could also numerically
evaluate derivatives of the joint likelihood ratio with respect to the mass. In combination
with the partial morphing structure in the coupling, this would grant full access to the
derivative of the joint likelihood ratio with respect to the theory parameters, which is
known as the joint score. For EFTs, methods that include the joint score in the loss
function have been more successful than those that neglect this information. It is possible
that these results also generalize to resonance searches, and that even more information
can be extracted from the detector level four-momenta.

Additionally, one could study if these results generalize to the case where a full treat-
ment of systematic uncertainties in the input is performed. Finally, this work may be
applied to more complicated resonant processes. We expect that, since we already see
improvement in discovery potential in the relatively simple process considered here, more
complicated processes may see even greater benefit from the extra information present in
the multivariate approach.
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6 Appendix

Consider a test set of N events drawn from the distribution ptest(x) where N is large.
Using only invariant mass (denoted mjj) to find the log likelihood ratio, we have

log r(θ, θ0) = N

∫
dmjj ptest(mjj) log r(mjj |θ, θ0). (6.1)

A binned form of the expression log r(mjj |θ, θ0) is plotted as the grey line in Figure 2.
Using higher dimensional observations x = (mjj , x

′) to find the log likelihood ratio, we
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instead have:

log r(θ, θ0) = N

∫
dx ptest(x) log r(x|θ, θ0),

which can be manipulated to take the same form as Equation 6.1:

log r(θ, θ0) = N

∫
dmjj ptest(mjj)

[ ∫
dx′ p(x′|mjj) log r(x′,mjj |θ, θ0)

]
. (6.2)

The bracketed expression is approximated by taking the expectation within bins of
invariant mass using the same binning as the previous case. This is plotted as the blue
and magenta lines in Figure 2. We see that the bracketed expression is analogous to
log r(mjj |θ, θ0) when using higher dimensional data to calculate the log likelihood ratio.
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