
SciPost Physics Submission

Finite temperature and quench dynamics in the Transverse
Field Ising Model from form factor expansions

Etienne Granet1?, Maurizio Fagotti2 and Fabian H. L. Essler1,

1 The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford OX1
3PU, UK
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Abstract

We consider the problems of calculating the dynamical order parameter two-
point function at finite temperatures and the one-point function after a quan-
tum quench in the transverse field Ising chain. Both of these can be expressed
in terms of form factor sums in the basis of physical excitations of the model.
We develop a general framework for carrying out these sums based on a de-
composition of form factors into partial fractions, which leads to a factoriza-
tion of the multiple sums and permits them to be evaluated asymptotically.
This naturally leads to systematic low density expansions. At late times these
expansions can be summed to all orders by means of a determinant represen-
tation. Our method has a natural generalization to semi-local operators in
interacting integrable models.
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1 Introduction

As a consequence of the existence of extensive numbers of conservation laws with local
densities the dynamical properties of quantum integrable models at finite energy densities
are both rich and unusual. The two main settings of interest are finite temperature
equilibrium response and time evolution after quantum quenches. In the first setting the
aim is to determine two-point functions of the form

χAB(x, t) =
1

Z(β)
Tr
[
e−βHA(x, t)B(0, 0)

]
, (1)

where Z(β) = Tr(e−βH) and A(x, t) is a Heisenberg picture operator, while in the quench
setting one is interested in equal time expectation values

〈Ψ|O(x, t)|Ψ〉, (2)

where |Ψ〉 is an initial state that is a linear superposition of an exponentially (in system
size) large number of energy eigenstates.

1.1 Finite temperature dynamics

Early work on determining (1) focussed on the spin-1/2 XY chain in a magnetic field,
which can be mapped to a non-interacting model of free fermions [1]. In [2, 3] it was
shown that two-point functions fulfil systems of nonlinear differential equations, which in
the transverse-field Ising limit can be efficiently solved numerically [4]. The dynamics at
the Ising critical point was obtained in [5, 6]. The long time and distance asymptotics of
two-point functions in the XX limit was obtained from the solution of a Riemann-Hilbert
problem in [7] arising from a Fredholm determinant representation [8, 9].A Fredholm de-
terminant representation was also derived for the Ising field theory [10]. A semiclassical
approach to the low temperature regime in interacting integrable models was pioneered
in [11] and has proved very useful [12–14] due to its relative simplicity. It is however limited
in that it applies only to very low temperatures and cannot be easily extended. Perhaps
the most direct approach to evaluating (1) or (2) is by introducing spectral representations,
e.g.

χAB(`, t) =
1

Z(β)

∑
n,m

e−βEn〈n|A(0, 0)|m〉〈m|B(0, 0)|n〉 eit(En−Em)−i`(Pn−Pm), (3)

where |n〉 are normalized eigenstates of energy En and momentum Pn. Early investigations
of (3) focussed on integrable quantum field theories in the infinite volume [15–20], where
the spectral representations need to be regularized. This problem was solved in [21–23]
and a systematic low temperature expansion of dynamical two point functions in Fourier
space was obtained [23–26]. For some correlators this expansion exhibits divergences close
to the zero temperature mass shell and needs to be summed to all orders is an open
problem. A similar approach was formulated for the case of the Ising field theory in [27]
and used to obtain the late-time asymptotic behaviour of the order parameter two-point
function [28].
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In order to go beyond the low temperature regime in interacting integrable models it is
useful to work in the micro-canonical ensemble and employ typicality ideas. This provides
a more efficient spectral representation of the form

χAB(`, t) =
∑
m

〈Eβ|A(0, 0)|m〉〈m|B(0, 0)|Eβ〉 eit(Eβ−Em)−i`(Pβ−Pm), (4)

where Eβ is a typical energy eigenstate at the energy density corresponding to inverse
temperature β [9,29]. The representation (4) can be analyzed numerically for finite systems
[29]. Moreover, in particular limiting cases it appears to be very efficient in that only a
small number of states need to be summed over [34]. In the zero temperature case it has
proved possible to formulate, and evaluate asymptotically, a form factor expansion in the
thermodynamic limit [30–33]. Very recently an axiomatic approach aimed at extending
these ideas to formulate form factors between states at finite energy densities in the infinite
volume limit was proposed [35] and used to formulate a spectral representation. Using
this representation to obtain explicit results for dynamical two-point functions remains an
open problem.

An alternative approach to finite temperature dynamics is based on the Quantum
Transfer Matrix approach [36, 37]. The latter is highly efficient for determining static
properties [38–42] and can be extended to dynamical correlation functions [43]. Very
recently this method has been successfully applied to the XX model [44–46] and state-of-
the-art results have been obtained. The generalization to determine dynamical two-point
functions in interacting integrable models is an open problem.

The late time asymptotics of certain finite temperature two-point functions can also
be accessed by applying generalized hydrodynamics [47,48] to the linear response regime,
see [49,50].

1.2 Quench dynamics

Early work on quench dynamics again focussed on models that can be analyzed by means
of free fermion techniques [51–59]. Notably, in [56, 57] exact results for the late time
behaviour of one and two point functions of the order parameter in the transverse field
Ising model (TFIM) after quantum quenches were obtained. One way of going beyond
free theories is to employ a spectral representation

〈Ψ|O(x, t)|Ψ〉 =
∑
n,m

〈Ψ|n〉〈m|Ψ〉〈n|O(0, 0)|m〉 ei(En−Em)t−i(Pn−Pm)x . (5)

This was used to obtain the late time behaviour for small quenches in the TFIM [56, 57,
60–63] and the sine-Gordon model [64–66]. The small quench regime is also accessible
by semiclassical methods [67–71], which have the advantage of being significantly simpler
to implement. A much more efficient spectral representation is provided by the Quench
Action Approach [72]. For translationally invariant initial states this allows one to express
expectation values of local operators after a quantum quench from an initial state |Ψ〉 as

lim
L→∞

〈O (t)〉 = lim
L→∞

(
〈Ψ |O (t)|Φs〉

2 〈Ψ|Φs〉
+
〈Φs |O (t)|Ψ〉

2 〈Φs|Ψ〉

)
, (6)

where |Φs〉 is a representative state fixed by two requirements: first, it is a simultaneous
eigenstate of the Hamiltonian and of the (quasi)local conservation laws I(n) of the theory
under consideration, and, second, it correctly reproduces the expectation values

lim
L→∞

〈Ψ|I(n)|Ψ〉
L

= lim
L→∞

〈Φs|I(n)|Φs〉
L

. (7)
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Expression (7) affords a more efficient spectral representation involving only a single sum
over energy eigenstates as

〈Ψ|O (t) |Φs〉 =
∑
n

〈Ψ|n〉〈n |O (0)|Φs〉 eit(En−Es) . (8)

The behaviour in the steady state reached in the limit t→∞ is given by the expectation
value in the representative state and this has been analyzed in a number of cases [76–81].
The time dependence is significantly more difficult to obtain. So far results are restricted
to a particular one-point function for small quenches in the sine-Gordon model [64] and
density correlations at late times after a quench in the repulsive Lieb-Linger model [82].

1.3 Local vs semi-local operators

Locality properties of the operator of interest have important implications in both finite
temperature and quench contexts. For quantum quenches this was emphasized in [54, 55]
and clarified through explicit calculations in Refs [56, 57, 64, 72]. A precise definition
of the mutual locality index ω(A,B) of two operators exists in the context of relativis-
tic integrable quantum field theory, see e.g. [83]; specifically, the product of operators
A(x, τ)B(0, 0) as a function of (x, τ) has the property

AC
[
A(x, τ)B(0, 0)] = e2πiω(A,B)A(x, τ)B(0, 0), (9)

where AC denotes the analytic continuation along a counter-clockwise contour C around
zero. Let us for simplicity consider the case of a diagonal scattering theory with only a
single “elementary” particle excitation created by the field Ψ(x). A convenient basis of
energy eigenstates is given in terms of scattering states of elementary excitations

|θ1, . . . , θn〉 , (10)

where θj are rapidity variables related to the energy and momentum of a single-particle
excitation by ε(θ) = M cosh(θ) , p(θ) = M

v sinh(θ). Spectral representations of correlation
functions (in the infinite volume) involve form factors like

〈θ1, . . . , θN |A(0, 0)|θ′1, . . . , θ′M 〉 . (11)

As we will see below the case M = N is of particular interest. Local operators have
vanishing mutual locality index with Ψ(x). As a consequence of kinematic poles [84] the
form factors become singular when rapidities in the set {θj} approach those in {θ′j}. In
the case N = M the structure of singularities is [22]

〈θ1 + ε1, . . . , θN + εN |A(0, 0)|θ1, . . . , θN 〉 =
N∑

iN=1

· · ·
N∑
i1=1

ai1...iN (θ1, . . . , θN )
εi1 . . . εiN
ε1 . . . εN

+ . . . (12)

In contrast, for semi-local operators B with ω(B,Ψ) = 1 one has instead

〈θ1 + ε1, . . . , θN + εN |A(0, 0)|θ1, . . . , θN 〉 =
2N 〈0|A(0, 0)|0〉

ε1 . . . εN
+ . . . (13)

This shows that form factors of such semi-local operators are much more singular than
the ones for local operators. Form factors in integrable lattice models have analogous
structures of singularities.
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1.4 One and two-point functions of semi-local operators

The nature of singularities for semi-local operators (13) has been exploited previously to
obtain results for 1-point functions after small quantum quenches [64, 72]. The aim of
this work is to extend this approach to general quantum quenches as well as to dynamical
two-point functions at finite temperatures. We focus on the case of the order parameter
in the TFIM because the form factors are particularly simple in this case. This allows
us to exhibit in considerable detail which states in the respective spectral representations
contribute to the late time asymptotics of one and two-point functions. These considera-
tions can be generalized to interacting integrable models, as will be shown in a following
publication.

1.5 Outline and summary of the main results

We conclude our introduction with an outline of the following sections and a brief summary
of our key results.

• In Section 2 we briefly summarize a number of well known results on the TFIM and
then define in detail the two problems we study in this paper, namely dynamical
correlation functions at finite temperature and time evolution of the order parameter
after a quantum quench. Although these two problems are of a very different physical
nature, we explain how they can both be formulated in terms of sums over form
factors and thus be addressed with similar techniques.

• In Section 3 we develop a novel framework for organizing and (analytically) carrying
out the sums over form factors in both problems. It is based on a partial fraction
decomposition of the form factors, which organizes the sums according to the de-
gree of the poles the various terms exhibit, and naturally leads to an expansion of
the correlation functions in terms of the density of particles D =

∫
ρ(x)dx of the

thermal/non-equilibrium stationary state of interest, where ρ is its particle density.
We present in detail how this calculation works at order O(D2) in the case of finite
temperature equilibrium dynamics. In order to make the expansion uniform in space
and time it is necessary to sum certain contributions to all orders in D. In this way
we obtain explicit expressions for the dynamical spin-spin correlation function in an
arbitrary macro-state |φ〉, in particular thermal states. For a transverse magnetic
field h < 1 the results reads

〈φ|σx` (t)σx0 (0)|φ〉 ≈ C exp

(
−2

∫ π

−π
ρ(x)(1 + 2πρ(x))|tε′(x)− `|dx

)
,

C = ξ exp

(
−2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
(x−y

2

)dxdy) . (14)

The various quantities ε, ξ entering this expression are defined below in Section 2.
This result is exact at order O(D2), which means in particular that higher orders in
the expansion will contribute additive terms in the exponents that involve third and
higher powers of the particle density ρ(p). The expansion can be pursued to higher
orders in D within the framework developed in Section 3.

We then turn to the time evolution of the order parameter after a quantum quench.
By combining our framework for carrying out form factor sums with the quench
action approach to quantum quenches [72] we obtain a systematic expansion of the
order parameter one-point function in powers of the particle density.
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A key insight derived from our approach is that the late time behaviour in both
problems arises from processes that involve an arbitrary number of particle-hole
excitations over respectively the thermal and non-equilibrium steady state, but each
of them is “small” in a sense that we make precise below. We argue that this
is a general feature of form factor expansions involving semi-local operators, and
represents a qualitative difference to the case of local operators.

• In Section 4 we return to the quantum quench problem and show how to determine
the exact exponent that characterizes the exponential decay of the order parameter
at late times. This calculation is based on approximations valid at late times that
allow the spectral sum to be cast in the form of a determinant. This representation
is similar to one obtained for the impenetrable Bose gas in Ref. [90]. The late time
asymptotics can be extracted from the determinant representation and leads to the
result

〈σx` 〉 = C exp

(
|t|
π

∫ π

0
|ε′(x)| log(1− 4πρ(x))dx

)
+ . . . , (15)

where the constant C is known up to order O(D2). This exponent is in agreement
with the exact expression of the decay time obtained in a very different way in
Ref. [57], while our result for C is new.

• In Section 5 we generalize the approach of Section 4 to the case of the dynamical
spin-spin correlation function in an arbitrary macro state |φ〉 described by a density
ρ(p). We obtain the following expression of the late time asymptotics

〈φ|σx` (t)σx0 (0)|φ〉 = C exp

(
1

2π

∫ π

−π
|tε′(x)− `| log(1− 4πρ(x))dx

)
+ . . . . (16)

Here the exponent represents an exact result, while the constant C is again only
known to order O(D2). This result is to the best of our knowledge new. We com-
pare (16) to numerically exact results obtained using the representation of the finite
temperature correlator as a Pfaffian and find perfect agreement.

2 Transverse Field Ising Model

The TFIM Hamiltonian on a ring with L sites reads

H(h) = −J
L∑
j=1

(
σxj σ

x
j+1 + hσzj

)
, (17)

where σαj acts like the corresponding Pauli matrix at sites j and like the identity elsewhere.
We assume J, h > 0 and consider periodic boundary conditions. We refer the reader to
Appendix A of [56] for details about the diagonalization of this Hamiltonian. We simply
recall here that it can be expressed in terms of free fermions αk as

H(h) =
∑
k

ε(k)

(
α†kαk −

1

2

)
, ε(k) = 2J

√
1 + h2 − 2h cos k , (18)

and that the Hilbert space is divided into a Neveu Schwartz (NS) sector with states of the
form

|q1 . . . q2n〉 = α†q1 . . . α
†
q2n |0〉NS , qi =

2π

L

(
ni +

1

2

)
, ni = −L

2
, . . . ,

L

2
− 1 , (19)
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and a Ramond (R) sector

|p1 . . . p2m+1〉 = α†p1 . . . α
†
p2m+1

|0〉R , pi =
2πni
L

ni = −L
2
, . . . ,

L

2
− 1 , (20)

where the energy E ({qi}) and momentum P ({qi}) of such states are given by

E ({qi}) =
2n∑
i=1

ε (qi) , P ({qi}) =
2n∑
i=1

qi , (21)

with an identical relation for the Ramond sector.
We will be interested in two problems involving the summation of form factors of the

order parameter over the full Hilbert space, which are given by [86–89]

NS〈q1, ..., q2n|σx` |p1...pm〉R = e−i`(
∑2n
j=1 qj−

∑m
l=1 pm)ibn+m/2c(4J2h)(m−2n)2/4

√
ξξL

×
2n∏
j=1

(
eηqj

Lε(qj)

)1/2 m∏
l=1

(
e−ηpl

Lε(pl)

)1/2 2n∏
j<j′

sin
qj−qj′

2

εqjqj′

m∏
l<l′

sin
pl−pl′

2

εplpl′

2n∏
j=1

m∏
l=1

εqjpl

sin
qj−pl

2

.
(22)

Here ξ = |1− h2|1/4, m is even (odd) for h < 1 (h > 1), and

εab =
ε(a) + ε(b)

2
. (23)

The terms ξL and eηk do not depend on the momenta (except k) and for large L approach
1 with exponential accuracy

ξL ≈ 1 , eηk ≈ 1 ; (24)

thus, they will be set to 1 in the following.

2.1 Quenches in the quench action framework

We consider the following quantum quench setup [56, 57]: at time t = 0 we prepare the
system in the ground state of the TFIM (17) at a magnetic field h0 < 1

|Ψ〉 = |0;h0〉NS . (25)

At times t > 0 we evolve the system with Hamiltonian H(h) with h0 6= h < 1. As |Ψ〉
is not an eigenstate of H(h) this results in interesting dynamics. The order parameter
one-point function at time t > 0 is given by (6), where the representative state |Φs〉 is
characterized by the root density [72]

ρ (k) =
1− cos ∆k

4π
,

cos ∆k =
hh0 − (h+ h0) cos k + 1√

1 + h2 − 2h cos k
√

1 + h2
0 − 2h0 cos k

. (26)

For later convenience we define the density of particles in the representative state

ρQ =

∫ π

−π
ρ(x)dx , (27)

where the index Q stands for ’quench’. In a large finite volume L we may choose [72]

|Φs〉 = |q1,−q1, ..., qN ,−qN 〉NS , (28)

8
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where the momenta qi are distributed according to the root density ρ(k). The time-evolved
initial state is given by

|ψ (t)〉 =
∏
p>0

1 + ie−2itε(p)K(p)α†−pα
†
p√

1 +K2(p)
|0〉 , (29)

with K(p) = tan(∆p/2).
Equation (6) thus provides the following representation for the order parameter one-

point function

〈σx` (t)〉 = Re

[ ∞∑
M=0

(−1)M

iM−NM !

∑
0<p1,...,pM
∈R

R〈p1,−p1, ..., pM ,−pM |σx` |q1,−q1, ..., qN ,−qN 〉NS

×
N∏
j=1

e−2itε(qj)

K(qj)

M∏
j=1

K(pj)e
2itε(pj)

]
,

(30)
that is a sum of form factors over states that are expressed in terms of pairs of momenta.

2.2 Dynamical correlation functions at finite temperature

In the TFIM, the density of momenta q of the representative state |Eβ〉 in (4) is

ρ(q) =
1

2π

1

1 + eβε(q)
. (31)

For later convenience we define the corresponding density

ρβ =

∫ π

−π
ρ(x)dx . (32)

In practice a representative state is constructed from ρ(q) as follows. We first construct
the particle counting function z(q) by integrating the root density

z(q) =

∫ q

−π
ρ(y)dy . (33)

We then solve the equations

z(q
(0)
j ) =

2πj

L
, j = 1, . . . , N , (34)

where N is fixed by the requirement that |q(0)
j | ≤ π. Finally we set

qj =
2π

L

(⌊ L
2π
q

(0)
j −

1

2

⌋
+

1

2

)
, j = 1, . . . , N. (35)

Inserting a resolution of the identity between the two spin operators in (4) leads to the
following spectral representation

χxx (`, t) =
+∞∑
M=0

1

M !

∑
p1,...,pM
∈R

|〈p1, ..., pM |σxl |q1, ..., qN 〉|2eit(E({q})−E({p}))+i`(P ({p})−P ({q})) .

(36)
The terms in the sum depend on the regime of the TFIM: in the ordered phase, h < 1,
M has the same (even/odd) parity as N , whereas in the disordered phase, h > 1, it has
opposite parity. Moreover, in contrast to the quench case, (36) involves modulus squares
of form factors, and the intermediate states do not have a structure where momenta only
appear in pairs {−pi, pi}.
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3 Systematic approach to form factor expansions for semi-
local operators

In this section we present a general framework for carrying out the form factor sums (30)
and (36) analytically at late times Jt � 1. It is based on decomposing the form factors
(22) into partial fractions so that the sums over the p’s decouple and can be evaluated
exactly. The key observation is then that an oscillatory sum with a pole of order d like∑

n
eint

(n+1/2)d
grows as td−1, so that the leading poles give the leading time behaviour,

and the terms in the partial fraction decomposition can be organized according to the
total number of poles. This naturally leads to an expansion in the number of particles
per unit site – N/L – in the representative state, which has already been proven very
efficient for simpler quantities such as the free energy in Bethe ansatz solvable interacting
models [73,74].

In Sections 3.1 and 3.2 we consider the application of this framework in the context
of the finite temperature case (36), due to the more canonical sum over form factors that
it involves. Since the form factors differ for h < 1, h > 1 and h = 1, we will treat these
cases separately.

We will be interested in large time or space asymptotics of correlation functions, gener-
ically defined as requiring the phase it(E ({q})− E ({p})) + i`(P ({p})− P ({q})) in (36)
to be large. This is in particular the case of the large time and distance asymptotics at
fixed

α =
t

`
, (37)

on which we will focus. However, the static correlations case t = 0 and large ` is also
covered by our calculations; we refer the reader to Section 3.5.3 for details on this case.
For later convenience we introduce the following notations

ε(x) = ε(x)− x

α
,

vmax = max
|x|≤π

ε′(x) , (38)

where vmax is the maximal group velocity of the elementary fermion excitations in the
TFIM. According to whether there exists an x0 such that ε′ (x0) = 0 (’time-like region’,
tvmax > ` for t, ` ≥ 0) or not (’space-like region’, tvmax < ` for t, ` ≥ 0), the next-to-
leading terms in our expansions differ. We will in the following compute these terms in
the space-like region. Their calculation in the time-like region is more involved and will
be reported elsewhere.

In Section 3.4 we briefly present the application of our framework to the dynamics
after quantum quenches.

3.1 Case h < 1: identical number of particles

In this subsection we treat the case h < 1, for which the sum (36) includes intermediate
states with the same number N of particles as the representative state. We will show in
Section 3.2 that the contributions of intermediate states with different particle numbers
M 6= N is always subleading in time. We exploit this result right away and focus on states
with M = N in this subsection.

10
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3.1.1 Partial fraction decomposition of form factors

We recall that the partial fraction decomposition of a ratio of two polynomials P (X)∏
i(X−xi)

ai

with distinct xi’s is the writing

P (X)∏
i (X − xi)ai

= P0(X) +
∑
i

ai∑
ν=1

Bi,ν
(X − xi)ν

, (39)

with P0(X) a polynomial of degree deg(P ) −
∑

i ai and Bi,ν independent of X, given by

Bi,ν = 1
(ai−ν)!

(
d
dX

)ai−ν
(P (X) (X − xi)ai)|X=xi .

The squared form factor appearing in (36) can be written as

|NS〈q1, ..., qN |σxl |p1, ..., pN 〉R|2 =
ξ

L2N
F
{qi}
{pi} (40)

with1

F VU =

∣∣∣∣ ∏
u6=u′∈U

sin

(
u− u′

2

) ∏
v 6=v′∈V

sin

(
v − v′

2

) ∣∣∣∣
∏

u6=v∈U,V
sin2

(
u− v

2

)
∏

u,v∈U,V
ε2
uv∏

u,u′∈U
εuu′

∏
v,v′∈V

εvv′
. (41)

The ε(p1) factors are not polynomial in p1 but are nevertheless bounded and with-
out zeros. Seen as a function of p1, the square of the form factor can thus be written∑

i
Ai

sin2
(
p1−qi

2

) + Bi

sin
(
p1−qi

2

) + C with Ai, Bi independent of p1 and C a bounded function

of p1. Repeating the operation for the other momenta, one can write

|NS〈q1, ..., qN |σxl |p1, ..., pN 〉R|2 =
ξ

L2N

2∑
ν1,...,νN=0

∑
{f~ν}

A ({q} , {p}, {ν} , f~ν)
N∏
j=1

sinνj
(
pj − qf~ν(j)

2

) , (42)

where the second sum is over a complete set of functions f~ν : {i ∈ {1, . . . , N} |νi 6=
0} 7→ {1, . . . , N}, and where A ({q} , {p}, {ν} , f~ν) is a bounded function of pj if νj = 0,
and independent of pj otherwise. In Fig. 1 we show examples of such functions f~ν . The
important feature of (42) is that each p appears at most once (however, the q’s may appear
several times).

ν1 = 2 ν2 = 2 ν3 = 1 ν4 = 0 ν5 = 2 ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 1 ν5 = 2

Figure 1: Sketch of two examples of a function f from p’s in red to q’s in black.

1In FVU the sets U and V can contain arbitrary momenta and are not meant to be each in the sectors
R and NS (this freedom will be indeed useful in Section 3.1.6 below). For this reason we impose in the
denominator that the momenta are different u 6= v, which is automatically satisfied if they are in different
sectors, but not otherwise.

11
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3.1.2 Carrying the sum over the momenta pi

Let us briefly anticipate the method that we will use to carry out the sum over p in (36).
If there is a νi = 0 then the sum over pi is an oscillatory Riemann sum of a bounded
function, hence it decays to zero with time. Thus the leading behaviour is obtained for
νi > 0 for all i. Then (and only in this case) the coefficients A ({q} , {p}, {ν} , f~ν) are
independent of the p’s and the maps will no longer depend on {νj}. These coefficients will
be denoted by A ({q} , {ν} , f) and are obtained as

A ({q} , {ν} , f) =

∏
j

(
2
d

dpj

)2−νj
sin2

(
pj − qf(j)

2

)F
{qi}i=1,...,N

{pi}i=1,...,N

 ∣∣∣∣∣
{pj=qf(j)}

. (43)

This follows from the partial fraction decomposition, with a factor 2 because of the 1/2
inside the sinus.

From here on we will only consider terms in the partial fraction decomposition such
that νi > 0 for all i, so that (43) applies. We denote the corresponding contribution to
the spectral representation (36) of χxx(`, t) by S

S =
ξ

N !L2N

∑
p1,...,pN
∈R

{[ 2∑
ν1,...,νN=1

∑
{f}

A ({q} , {ν} , f)
N∏
j=1

sinνj
(
pj−qf(j)

2

)
]

× eit(E({q})−E({p}))+i`(P ({p})−P ({q}))

}
, (44)

where the third sum is over a complete set of functions f : {1, ..., N} 7→ {1, ..., N}.
In this form one can perform the sums over pj using the following relations proven in

Appendix A

χ1(q) ≡
∑
p∈R

e−it
(
ε(p)−ε(q)

)
L sin

(p−q
2

) = −i sgn (tε′(q)) +O(L0t−1/2) , (45)

χ2(q) ≡
∑
p∈R

e−it
(
ε(p)−ε(q)

)
L2 sin2

(p−q
2

) = 1− 2 |tε′(q)|
L

+O(L−1t−1/2) , (46)

with q ∈ NS, to obtain

S =
ξ

N !

2∑
ν1,...,νN=1

∑
{f}

A ({q} , {ν} , f)
N∏
i=1

χνi(qf(i))

L2−νi
eit(ε(qi)−ε(qf(i))) . (47)

Equations (46) are valid only when ε′(q) 6= 0. If there is a point where ε′(q) = 0, i.e.
if we are in the time-like region, corrections in time to (46) have to be taken into account,
and they are expected to modify significantly the subleading corrections in the correlation
function. We leave this matter of discussion for future work.

3.1.3 Constraints on the functions f

The set of functions f over which we need to sum is actually quite constrained. First,

since F
{qi}i=1,...N

{pi}i=1,...N
= 0 whenever pi = pj we must have f (i) 6= f (j) whenever νi = νj = 2.

12
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We also need f (i) 6= f (j) if νi = 1 and νj = 2. Indeed, if f(i) = f(j) then in

(43) there is a sin2 pi−pj
2 factor in the numerator of F

{qn}n=1,...,N

{pn}n=1,...,N
, but as there is only

one derivative with respect to pi and none with respect to pj this factor will make the
coefficient A({q}, {ν}, f) vanish upon taking pi = qf(i) = qf(j) = pj .

More generally, if f takes k times the same value at points with νi = 1, then all the
k(k − 1)/2 terms sin2 pi−pj

2 contribute to a zero of order k(k − 1); since the number of
derivatives is equal to k, we must have k = 2.

These arguments show that the sum over f can be replaced by a sum over three disjoint
subsets I0, I1, I2 ⊂ {1, . . . , N}, where Ik is the set of points with ν = 1 attained k times by
f . The remaining points {1, ..., N}− (I0∪ I1∪ I2) all have ν = 2. There is a combinatorial
factor N !

2|I2|
corresponding to the number of such functions with this precise ouput. It

follows that A ({q} , {ν} , f) depends only on the sets I0, I1, I2 and we have

S = ξ
∑

I0,I1,I2⊂{1,...,N}
|I0|=|I2|, all disjoint

A(I0, I1, I2)2−|I2|e
it(
∑
i∈I0

ε(qi)−
∑
i∈I2

ε(qi))

×
∏
i∈I1

χ1 (qi)

L

∏
i∈I2

χ2
1 (qi)

L2

∏
i/∈I0,1,2

χ2 (qi) .

(48)

The expression for the coefficients A(I0, I1, I2) can be simplified as follows. We observe
that, whenever we have νi = 2 in (43), the various factors depending on pi and qf(i)

precisely compensate one another. Hence we can work with a reduced form factor involving
only momenta in I0, I1, I2

A (I0, I1, I2) =

n+2m∏
j=1

(
2
d

dpj

)
sin2

(
pj − qf(j)

2

)F
{qi}i∈I0∪I1∪I2
{pi}i=1,...,n+2m

 ∣∣∣∣∣
{pj=qf(j)}

, (49)

for any function f such that {f(i)}i=1,...,n = I1, {f(i)}i=n+1,...,n+m = I2,
and {f(i)}i=n+m+1,...,n+2m = I2. The set I2 does appear twice by construction, and I0 does
not appear at all. The decomposition of {1, ..., n+ 2m} into {1, ..., n}, {n+ 1, ..., n+m},
{n+m+ 1, ..., n+ 2m} is arbitrary, and it needs only to involve one set with n elements
and two sets with m elements.

The sum of all the terms in (48) with |I1| = n, |I0| = |I2| = m will be denoted by
Sn,2m. We can factorize S0,0 and, using the explicit expression for χ1(q) and χ2(q), write

Sn,2m =
(−i)nS0,0

(−2)mLn+2m

∑
I0,1,2⊂{1,...,N}
|I0|=|I2|=m
|I1|=n

all disjoint

A(I0, I1, I2)

∏
i∈I1

sgn (tε′(qi))∏
i∈I0,1,2

(
1− 2|tε′(qi)|

L

)

× eit(
∑
i∈I0

ε(qi)−
∑
i∈I2

ε(qi)) .

If n and m stay finite in the limit L → ∞ we have
∏
i∈I0,1,2

(
1 − 2|tε′(qi)|

L

)
= 1 + O(L−1)

and hence

Sn,2m =
(−i)nS0,0

(−2)mLn+2m

∑
q01<...<q

0
m

q11<...<q
1
n

q21<...<q
2
m

all distinct

A({q0}, {q1}, {q2})eit
∑m
i=1 ε(q

0
i )−ε(q2i )

n∏
i=1

sgn (tε′(q1
i ))

+O(L−1) .

(50)
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Since the momenta selected by the sets I0,1,2 are drawn from the momenta {qj |j =
1, . . . , N} of the representative state with density ρ, the term Sn,2m is of order (N/L)n+2m

times S0,0. Hence this expansion naturally leads to an expansion in N/L.

3.1.4 Example: correlation function at O(ρβ) uniformly in t at large t

Let us give some examples. With I0 = I1 = I2 = {} we have A(I0, I1, I2) = 1 hence the
term

S0,0 = ξ
N∏
i=1

(
1− 2 |tε′ (qi)|

L

)
=ξ exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
+O(L−1) , (51)

where, for a function f(x), we used

lim
L→∞

L−1∏
k=0

(
1 +

f(k/L)

L

)
= exp

∫ 1

0
f(x)dx . (52)

This term is the correlation function at order 1 in ρ uniformly in t at large t.

ν1 = 2 ν2 = 2 ν3 = 2 ν4 = 2 ν5 = 2

Figure 2: Sketch of configurations contributing to S0,0.

3.1.5 Example: correlation function at O(ρ2
β)

With I1 = {i, j} and I0 = I2 = {} we have

A(I0, I1, I2) =
2

sin2
(
qi−qj

2

) +
8ε′ (qi) ε

′ (qj)

(ε (qi) + ε (qj))
2 . (53)

This term leads to

S2,0 = −S0,0

L2

∑
i<j

 2

sin2
(
qi−qj

2

) +
8ε′ (qi) ε

′ (qj)

(ε (qi) + ε (qj))
2

 sgn (ε′(qj)ε
′(qi)) . (54)

ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 2 ν5 = 2

Figure 3: Sketch of configurations contributing to S2,0.

For the choice I1 = {} and I0 = {i}, I2 = {j} we have

A(I0, I1, I2) = − 2

sin2
(
qi−qj

2

) , (55)

14
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and

S0,2 =
S0,0

L2

∑
i 6=j

eit(ε(qj)−ε(qi))

sin2
(
qi−qj

2

) sgn (ε′(qj)ε
′(qi)) . (56)

ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 2 ν5 = 2

Figure 4: Sketch of configurations contributing to S0,2.

Although they are individually both divergent in L in the scaling limit L→∞, their
sum is not divergent and is, see Appendix A,

S2,0 + S0,2 = −S0,0

(
4π

∫ π

−π

∣∣tε′(x)
∣∣ ρ2(x)dx+ c

)
, (57)

with the following value in the space-like regime where sgn (ε′(x)) is constant

c =2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
(x−y

2

)dxdy . (58)

Contrarily to the previous case, this order ρ2 of the correlation function at fixed large t
cannot be uniform in t, since it diverges for t→∞. In fact, the summation of other simple-
pole contributions will lead to an exponentiation of this ρ2 term and hence a correction of
the exponent in the exponential decay.

We remark that in the very different context of the master equation approach for zero-
temperature ground state correlations of a local operator in the XXZ spin chain, chains of
double poles arising in some cycle integrals were observed to yield sub-leading exponential
behaviours as well [75], which could suggest some yet not clear structural commonalities.

3.1.6 Recursive structure of A(I0, I1, I2)

In the general case the amplitudes A(I0, I1, I2) are obtained from (49), but the sums over
momenta associated with the index sets I0, I2 in (50) cannot be carried out as simply as
in the cases treated above. In fact, as we noted earlier, the derivatives corresponding to
I2, I0 in (49) have to be applied on the double zero sin2 pi−pj

2 in the numerator to give a
non-vanishing result, so that one actually has

A(I0, I1, I2) = (−2)|I2|
[(∏

i∈I1

(
2
d

dpi

)
sin2 pi − qi

2

)
F
{qi}i∈I1∪I0
{pi}i∈I1∪{qi}i∈I2

]∣∣∣∣∣
pj=qj ,j∈I1

. (59)

The form factor F
{qi}i∈I1∪I0
{pi}i∈I1∪{qi}i∈I2

can itself be decomposed into partial fractions. One

obtains

A(I0, I1, I2) = (−2)|I2|
∑

νi∈{0,1,2}
i∈I1∪I2

νi=1 if i∈I1

∑
f :{i∈I1∪I2|νi>0}

7→I1∪I0
f(i)=i if i∈I1

A({qi}i∈I1∪I0 , {ν}, f)∏
j∈I2 sinνj

qj−qf(j)
2

. (60)

We observe that the sum over {q2} in (50) will play a similar role to the sum over p’s in
(36), with however the important difference that they are drawn from the original q’s of
the representative state and are not arbitrary momenta as is the case for the p’s in (36).
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3.1.7 Partial fraction in A(I0, I1, I2) leading in density

Relation (60) reveals a recursive structure in the calculation of A(I0, I1, I2). However, we
will not develop this recursion further here, but will rather focus on the leading partial
fractions of (60) obtained with a set {ν} such that νi = 2 for i ∈ I2 and νi = 1 for i ∈ I1,
and functions f : I1 ∪ I2 7→ I1 ∪ I0 that map I2 to I0 in a one-to-one fashion and fulfil
f(i) = i for i ∈ I1.

ν′1 = 2 ν′2 = 2 ν′3 = 1

ν1 = 1 ν2 = 1 ν3 = 2 ν4 = 1 ν5 = 1 ν6 = 2 ν7 = 2 ν8 = 1

Figure 5: Sketch of the two functions f after one step of recursion. In red are indicated
the p’s, in blue the q’s that play the role of the p’s after the first step of the recursion,
that are those with index in I1 or I2. The ’new’ q’s on the last row are those with index
in I1 or I0.

The coefficient then reads

A({qi}i∈I1∪I0 , {ν}, f) =

[(∏
i∈I1

(
2
d

dpi

)
sin2 pi − qi

2

)
F
{qi}i∈I1
{pi}i∈I1

]∣∣∣∣∣
pi=qi,i∈I1

. (61)

Let us select one i ∈ I1 and introduce a reduced set I ′1 = I1−{i}. Performing the derivative
with respect to pi gives

A({qi}i∈I1∪I0 , {ν},f) =

∏
k∈I′1

(
2
d

dpk

)
sin2 pk − qk

2


2

∑
k∈I′1

1

tan
qi−pk

2

− ε′(qi)
εqipk

−
∑
k∈I′1

1

tan
qi−qk

2

− ε′(qi)
εqiqk

F
{qk}k∈I′1
{pk}k∈I′1

∣∣∣∣∣
pk=qk,k∈I′1

.

(62)
We observe that the first factor in the second line has to be differentiated precisely one
more time for the result not to vanish (the fact that f is one-to-one on I1 to I1 is essential
for this), so that

A({qi}i∈I1∪I0 , {ν}, f) =
∑
j∈I′1

(
2

sin2 qi−qj
2

+ 2
ε′(qi)ε

′(qj)

ε2
qiqj

)

×

∏
k∈I′′1

(
2
d

dpk

)
sin2 pk − qk

2

F
{qk}k∈I′′1
{pk}k∈I′′1

 ∣∣∣∣∣
pk=qk,k∈I′′1

,

(63)
with I ′′1 = I1 − {i, j}. Applying the same reasoning to the remaining momenta yields

A({qi}i∈I1∪I0 , {ν}, f) =
∑

P pairings of I1

∏
(i,j)∈P

(
2

sin2 qi−qj
2

+ 8
ε′(qi)ε

′(qj)

(ε(qi) + ε(qj))2

)
≡ φ(I1) .

(64)
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3.1.8 Result: correlation function at O(ρ2
β) uniformly in t at large t

In analogy with our notations for the first level of the recursive structure we denote by
Sn,2m|0,0 all contributions to (50) that arise by specifying νi = 2 for i ∈ I2 in (60). We
observe that in (59) the form factor vanishes if there are coinciding momenta in I0 and in
I2, or momenta that occur both in I1 and I0 or I2. Hence one only has to impose that
momenta in I1 are distinct among themselves, and that momenta in I0 are distinct from
those of I2. This gives

Sn,2m|0,0 =
(−i)nS0,0

n!(m!)2Ln+2m
×

∑
q11 ,...,q

1
n

all distinct

∑
q01 ,...,q

0
m

q21 ,...,q
2
m

q0 distinct from q2

φ({q1})
∑

f :{q2}→{q0}
one-to-one

eit
∑m
i=1 ε(q

0
i )−ε(q2i )∏m

j=1 sin2 q2j−q0f(j)
2

n∏
i=1

sgn (tε′(q1
i )) . (65)

The two sets of sums factorize. We have

1

(m!)2L2m

∑
q01 ,...,q

0
m

q21 ,...,q
2
m

q0 distinct from q2

∑
f :{q2}→{q0}

one-to-one

eit
∑m
i=1 ε(q

0
i )−ε(q2i )∏m

j=1 sin2 q2j−q0f(j)
2

=
1

m!

 1

L2

∑
qi 6=qj

eit(ε(qi)−ε(qj))

sin2 qi−qj
2

m

(66)
As for the terms in the sum over {q1}, they vanish for n odd, while for even n = 2p they
are

(−i)n

n!Ln

∑
q11 ,...,q

1
n

all distinct

φ({q1})
n∏
i=1

sgn (tε′(q1
i ))

=
(−1)p

(2p)!

(2p)!

p!2p

 1

L2

∑
qi 6=qj

sgn (ε′(qi)ε
′(qj))

(
2

sin2 qi−qj
2

+ 8
ε′(qi)ε

′(qj)

(ε(qi) + ε(qj))2

)p

.

(67)

It follows that the infinite volume limit of the sum of all Sn,2m|0,0 reads

∑
n,m≥0

Sn,2m|0,0 = S0,0 exp

 1

L2

∑
qi 6=qj

Σij sgn (ε′(qi)ε
′(qj))


Σij ≡

eit(ε(qi)−ε(qj)) − 1

sin2 qi−qj
2

− 4
ε′(qi)ε

′(qj)

(ε(qi) + ε(qj))2
.

(68)

We note that it involves the same sums as in S0,2 and S2,0 above. We obtain

∑
n,m≥0

Sn,2m|0,0 = S0,0 exp

(
−c− 4π

∫ π

−π
ρ(x)2|tε′(x)|dx+O

(
t−

1
2
))

, (69)

where S0,0 has been computed in (51). We have thus obtained the orderO(ρ2
β) contribution

to the correlation function uniformly in t

χxx(t, `) ≈ C exp

(
−2

∫ π

−π
ρ(x)(1 + 2πρ(x))|tε′(x)− `|dx

)
, (70)
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with

C = ξ exp

(
−2

∫ π

−π

∫ π

−π

ρ(y)ρ′(x)

tan
(x−y

2

)dxdy) . (71)

In the time-like region, the exponent would be the same, but the constant would differ.
This result should be compared to the semiclassical approach of Sachdev and Young

[11,85], which gives

χxxSY(t, `) ≈ ξ exp

(
−
∫ π

−π

dk

π
e−βε(k)|tε′(k)− `|

)
. (72)

As expected our result reduces to the semiclassical one in the limit βJ � 1.

3.2 Case h > 1: different numbers of particles

We now turn to the case h > 1. Here the sum (36) involves only intermediate states
with numbers of particles that are different from that of the representative state. Hence
we must study form factor sums with M 6= N . We will compute the prefactors at order
O
(
ρ1
β

)
in the space-like region, and because of saddle points effects only at order O

(
ρ0
β

)
in the time-like region.

3.2.1 General structure

We start by considering the general structure of contributions with N 6= M . This dis-
cussion applies also to the h < 1 case and in particular shows that there the dominant
contributions arise from N = M . As in the case M = N , the form factor
|NS〈q1, ..., qN |σxl |p1, ..., pM 〉R|2 can be decomposed into partial fractions

|NS〈q1, ..., qN |σxl |p1, ..., pM 〉R|2 =
ξ(2J

√
h)(M−N)2

LN+M

2∑
ν1,...,νM=0

∑
{f~ν}

A ({q} , {p}, {ν} , f~ν)∏M
j=1 sinνj

(
pj−qf~ν (j)

2

) ,

(73)
with f : {i ∈ {1, . . . ,M} |νi 6= 0} 7→ {1, . . . , N} any function, and A ({q} , {p}, {ν} , f~ν) is
a bounded function of pj if νj = 0, and independent of pj otherwise.

The important difference from the case M = N is that we cannot always neglect
the contributions with νj = 0. Indeed, let us denote by k the number of νj = 0. The
corresponding contributions give rise to k oscillatory bounded integrals that will each
decay with time. On the other hand each of the M − k sums over the other momenta pi
will generate an oscillating factor e−itε(qf~ν (j)) according to (46), while N factors eitε(qk) are
already present. The resulting oscillatory sums may have singularities, but according to
(46) summing these singularities does not consume any oscillatory factor, it only lowers
the number of singularities. Hence in the end we will be left with |N −M + k| oscillatory
bounded integrals to perform. In total, there are thus k + |N −M + k| of such integrals.
Hence if M ≤ N the case k = 0 is still dominant at late times, but if M > N then all the
cases 0 ≤ k ≤ M − N are a priori of the same order. In both cases these leading terms
involve |M − N | oscillatory bounded integrals, so that we can conclude that the terms
M 6= N are exponentially smaller than the case M = N in the space-like regime, and
typically around2 t−|M−N |/2 smaller in the time-like regime.

2Clearly, there are specific degenerate cases where the stationary phase approximation will give a
different factor than 1√

t
. Due to the possible time-dependence of the integrand apart from the oscillatory

term this factor may also be marginally corrected by logarithms.
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It follows that for h > 1 the dominant terms in (36) are obtained for M = N ± 1,
which we now consider in turn.

3.2.2 Case M = N − 1

For M = N − 1 the dominant contribution in density in (73) is obtained with νi = 2 for
all i = 1, ..., N − 1. The function f : {1, ..., N − 1} 7→ {1, ..., N} has to be injective so
there is one qi not attained by f , leaving (N − 1)! possible equivalent choices for f once
qi is chosen. Then one has A ({q} , {p}, {ν} , f~ν) = 1

ε(qi)
. Using (46), the corresponding

contribution to (36) is

S−0,0 =
2Jξ
√
h

L

N∑
i=1

eitε(qi)

ε(qi)

∏
j 6=i

χ2(qj) . (74)

This term is of order ρ, so in the time-like region it vanishes at the order of our computa-
tion. In the space-like region we have

S−0,0 = 2Jξ
√
h

(∫ π

−π

eitε(x)

ε(x)
ρ(x)dx

)
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
. (75)

There, ε(x) is monotonous and eitε(x) is periodic (because the distance ` is an integer)
so the first integral decays with time faster than any power-law and cannot be simplified
further.

ν1 = 2 ν2 = 2 ν3 = 2 ν4 = 2

Figure 6: Sketch of the leading configurations contributing to M = N − 1.

3.2.3 Case M = N + 1 and k = 1

For M = N + 1 with one νi = 0, the dominant contribution in (73) is obtained with the
remaining νj = 2 for j 6= i. Thus f : {1, ..., N +1}−{i} 7→ {1, ..., N} has to be one-to-one,
leaving N ! equivalent choices. Then one has A ({q} , {p}, {ν} , f~ν) = 1

ε(pi)
. Using (46), the

corresponding contribution to (36) is

S+
0,0 =

2Jξ
√
h

(N + 1)L

N+1∑
i=1

∑
pi

e−itε(pi)

ε(pi)

N∏
j=1

χ2(qj) . (76)

In the infinite volume limit we obtain the following result in the space-like regime

S+
0,0 = 2Jξ

√
h

(∫ π

−π

e−itε(x)

2πε(x)
dx

)
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
, (77)

where the prefactor is accurate to first order in the density ρβ. In the time-like region the
prefactor is only accurate to O(ρ0

β), because saddle point effects arise at order O(ρβ). A
saddle point approximation gives in this regime

S+
0,0 =

2Jξ
√
h√

2π|t|

(∑
s∈SP

e∓iπ/4

ε(s)
√
|ε′′(s)|

e−itε(s)

)
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
, (78)
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where SP = {s, ε′(s) = 0} denotes the set of saddle points and ± the sign of tε′(s).

ν1 = 2 ν2 = 2 ν3 = 2 ν4 = 0 ν5 = 2

Figure 7: Sketch of the leading configurations contributing to M = N + 1 and k = 1.

3.2.4 Case M = N + 1 and k = 0

For M = N + 1 and all νi 6= 0, the dominant contribution in (73) is obtained by {ν}, f~ν
such that νi = νj = 1 with f~ν(i) = f~ν(j), and the remaining νl = 2 for l 6= i, j. Once
qk = qf~ν(i) = qf~ν(j) are chosen, there are

(
N+1

2

)
N ! possibilities for f~ν . All of these lead to

A ({q} , {p}, {ν} , f~ν) = −2
ε(qk) . Using (46), the corresponding contribution to (36) becomes

S+
0,2 = −2Jξ

√
h

L

N∑
k=1

e−itε(qk)

ε(qk)
χ2

1(qk)
N∏
j 6=k

χ2(qj) . (79)

Taking the infinite volume limit we obtain

S+
0,2 = −2Jξ

√
h

(∫ π

−π

e−itε(x)

ε(x)
χ2

1(x)ρ(x)dx

)
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
. (80)

In the space-like region χ1(x) = i sgn (ε′(x)) and one has with the prefactor at order ρ1

S+
0,2 = 2Jξ

√
h

(∫ π

−π

e−itε(x)

ε(x)
ρ(x)dx

)
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
. (81)

In time-like region, this term vanishes at order ρ0.

ν1 = 2 ν2 = 2 ν3 = 1 ν4 = 1 ν5 = 2

Figure 8: Sketch of the leading configurations contributing to M = N + 1 and k = 0.

3.2.5 Result: correlation functions for h > 1 at leading order in ρβ

Putting everything together, in the space-like regime and at leading order in density we
obtain the following result

χxx(`, t) ≈ 2Jξ
√
h

[∫ π

−π
dx
e−itε(x)

2πε(x)

(
1 + 4πρ(x)

)]
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ (x) dx

)
, (82)

In the time-like regime we have instead

χxx(`, t) ≈ 2Jξ
√
h√

2π|t|

(∑
s∈SP

e∓iπ/4

ε(s)
√
|ε′′(s)|

e−itε(s)

)
exp

(
−2

∫ π

−π

∣∣tε′(x)
∣∣ ρ(x)dx

)
, (83)
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where the sum is over the saddle points s of ε(x).
This result should be compared to the semiclassical approach of Sachdev and Young

[11,85], which gives

χxxSY(t, `) ≈ 2Jξ
√
h

∫ π

−π

dx

2π

e−itε(x)

ε(x)
exp

(
−
∫ π

−π

dk

π
e−βε(k)|tε′(k)− `|

)
. (84)

As expected our result reduces to the semiclassical one in the limit βJ � 1.

3.3 Case h = 1

In the case h = 1 the structure of the form factor (22) is modified compared to the case h 6=
1: since ε(0) = 0, there are additional poles. The nature of these poles is moreover different
from those appearing in the partial fraction decomposition of the previous sections, since
they involve pairs of momenta: for εpp′ to vanish we must have p = p′ = 0.

We note that at zero temperature the model becomes critical at h = 1 and correlation
functions should exhibit power-law decays. These issues are beyond the scope of this work.

3.4 Quantum quench case

We now turn to the time evolution of the order parameter one-point function after a
quench of the transverse field within the ordered phase. Our aim is to evaluate the spectral
representation (30) obtained in the framework of the quench action approach.

3.4.1 Generalities

The sum over form factors appearing in the context of quantum quench dynamics (30)
differs from the finite temperature case (36) notably because now in both states of the
form factors the momenta come in pairs pi,−pi. One can then write

R〈p1,−p1, ..., pN ,−pN |σx` |q1,−q1, ..., qN ,−qN 〉NS =
(−4)N

√
ξ

L2N

N∏
j=1

sin qj sin pj

×
N∏

i,j=1

ε4
qjpi

ε2
qjqiε

2
pjpi

N∏
i 6=j=1

(cos qi − cos qj)(cos pi − cos pj)

N∏
i,j=1

(cos qi − cos pj)
2

.

(85)

Focusing again on M = N in (30), we have

〈σx` (t)〉 = Re

[ √
ξ

N !L2N

∑
0<p1,...,pN
∈R

N∏
j=1

4
f(pj)

f(qj)
sin pj sin qje

2it(εpj−εqj )

×
∏
i,j

ε4
qjpi

ε2
qjqiε

2
pjpi

∏
i 6=j(cos qi − cos qj)(cos pi − cos pj)∏

i,j(cos qi − cos pj)2

]
,

(86)

with

f(p) ≡ K(p) =

√
2πρ(p)

1− (2πρ(p))2
. (87)
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3.4.2 Differences from the finite temperature case

We apply a partial fraction decomposition to the second line of (86), seen as a ratio of
polynomials in the cos pj . The procedure is the same as in Section 3.1. More precisely, we
define

F̃ VU =

∣∣∣∣ ∏
u6=u′∈U

(
cosu− cosu′

) ∏
v 6=v′∈V

(
cos v − cos v′

) ∣∣∣∣∏
u6=v∈U,V

(cosu− cos v)2

∏
u,v∈U,V

ε4
uv∏

u,u′∈U
ε2
uu′

∏
v,v′∈V

ε2
vv′

, (88)

which we decompose into partial fractions with cosu taken to be the relevant variables.
This gives

F̃
{qi}
{pi} =

2∑
ν1,...,νN=0

∑
{f~ν}

A ({q} , {p}, {ν} , f~ν)
N∏
j=1

(cos pj − cos qf~ν(j))
νj

,
(89)

where the second sum is over any function f : {i ∈ {1, . . . , N} |νi 6= 0} 7→ {1, . . . , N}, and
where A ({q} , {p}, {ν} , f~ν) is a bounded function of pj if νj = 0, and independent of pj
otherwise.

There are however some noteworthy differences from Section 3.1 brought by the pres-
ence of factors involving the function f(p) and the fact that there is still a pi dependence
in the sum (86) outside the partial fraction decomposition. In place of (46) we now have

4

L

∑
p>0,∈R

sin p sin q′f(p)/f(q′)

cos q − cos p
e2itε(p) = 2i sgn (tε′(q)) sin q′

f(q)

f(q′)
e2itε(q) +O(L0t−1/2)

4

L2

∑
p>0,∈R

sin p sin qf(p)/f(q)

(cos q − cos p)2
e2itε(p) =

(
1− 4t|ε′(q)|

L
+

2i sgn (ε′(q))

L

f ′(q)

f(q)

)
e2itε(q)

+O(L−1t−1/2) ,
(90)

as shown in Appendix A. The analog of equation (50) is given by

Sn,2m =
(2i)nS0,0

(−2)mLn+2m

∑
q01<...<q

0
m

q11<...<q
1
n

q21<...<q
2
m

all distinct

A({q0}, {q1}, {q2})
m∏
j=1

(
4 sin q0

j sin q2
j

f(q2
j )

f(q0
j )

)

× e2it
∑m
i=1 ε(q

2
i )−ε(q0i )

n∏
i=1

sin q1
i sgn (ε′(q1

i )) ,

(91)

with

S0,0 =
√
ξ exp

(
−4

∫ π

0

∣∣tε′(x)
∣∣ ρ(x)dx

)
. (92)

Here we used that f(p) (87) fulfils∫ π

0

f ′(x)

f(x)
ρ(x)dx = 0 . (93)

22



SciPost Physics Submission

The possibility of differentiating f(p) also modifies the derivation of (64), which now takes
the form

A({qi}i∈I1∪I0 , {ν̃}, f̃) =∑
K⊂I1

∏
k∈K

f ′(qk)

f(qk)

∑
P pairings of I1−K

∏
(i,j)∈P

(
1

(cos qi − cos qj)2
+ 4

∂cos kε(qi)∂cos kε(qj)

(ε(qi) + ε(qj))2

)
.

(94)
Because of (93), however, only K = {} remains after the sum over qk.

3.4.3 Result: O(ρ2
Q) uniformly in t at large t

The final result of the above calculation for the time evolution of the order parameter
one-point function after a quench of the transverse field within the ordered phase is

〈σx` (t)〉 = C exp

(
−4

∫ π

0
ρ(x)(1 + 2πρ(x))|tε′(x)|dx

)
, (95)

where

C =
√
ξ exp

(
−4

∫ π

0
dx

∫ π

0
dyρ(y)

[ ρ′(x) sin y

cos y − cosx
− 2

|ε′(x)ε′(y)|
(ε(x) + ε(y))2 ρ(x)

])
. (96)

This result holds at the second order in the density O(ρ2
Q). The reader may have noted

that, since ε′(0) = ε′(π) = 0, the quantum quench dynamics is a ’time-like region’ case,
so the saddle point effects might modify this prefactor at order ρ1. It turns out, however,
that ρ(0) = ρ′(0) = ρ(π) = ρ′(π) = 0, so the saddle point corrections are higher order in
time and do not affect the prefactor.

3.5 Comments on the form factor summation

Having carried out form factor summations to obtain the leading late-time asymptotics in
the low-density regime in both the finite temperature and the quantum quench contexts
it is useful to take stock and stress some features that we expect to be of a general nature.

3.5.1 Which states govern the late time dynamics?

The leading late time behaviour follows from equations (46) that enter the sum over p’s
of the partial fraction decomposition (42). These formulas are obtained by isolating the
singularity and dropping the integral of an oscillatory bounded function, cf. Appendix A.
The singular part involves momenta pj in (36) that are at distance O(L−1) of any of the
qi. The aim of this section is to quantify more precisely the number of pj that have to
be summed in order to recover the late time dynamics. In other words, we would like to
know the smallest function η(L) such that

Lη(L)∑
n=−Lη(L)

eit(ε(q)−ε(pn))

L2 sin2
(pn−q

2

) =

(
1− 2 |tε′(q)|

L

)
+O(L−1t−1/2) +O(L−2) , (97)

with pn = q + 2π
L (n+ 1/2). We first observe that if Lη (L) → N0 remains finite when we

take L→∞, then

Lη(L)∑
n=−Lη(L)

eit(ε(q)−ε(pn))

L2 sin2
(pn−q

2

) ≈ Lη(L)∑
n=−Lη(L)

1

L2 sin2
(pn−q

2

) +O(t2/L2)

≈
N0∑

n=−N0

1

π2(n+ 1/2)2
<

∞∑
n=−∞

1

π2(n+ 1/2)2
= 1 .

(98)
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As our spectral representation involves N ∝ L sums of this kind we obtain an infinite
product over factors that are strictly smaller than 1 and obtain a vanishing answer. Hence
retaining only a finite number of pj ’s in our sum is clearly insufficient.

Conversely, if η(L) = η stays finite we do have (97) at leading order in time because
the terms we drop compared to having limits ±∞ contribute to an oscillatory integral of
a bounded function ∫ ∞

η

eitx

x2
dx+

∫ −η
−∞

eitx

x2
dx , (99)

that vanishes at large times.
What if now η(L)→ 0 with Lη(L)→∞? We have, by turning the sum into an integral

with Euler-Maclaurin correction terms

∑
n>η(L)L

ei
θ
L

(n+1/2)

(n+ 1/2)2 =
1

L

∫ ∞
η

eiθx

x2
dx+O

(
1

Lnηn
, n ≥ 3

)
, (100)

and ∫ ∞
η

eiθx

x2
dx =

1

η
E2(−iθη) =

i

η2θ
eiηθ +O

(
1

θn+2ηn+3
, n ≥ 0

)
, (101)

obtained from the expansion of the exponential integral E2(x) =
∫∞

1
e−xu

u2
du. If we want

this term to become negligible compared to (46) at late times in the scaling limit, then
we need Lηn+2(L) → ∞ for all n ≥ 0 in order to ensure that both the Euler MacLaurin
correction terms in (100) and (101) are negligible. Hence any power-law η(L) = L−ν with
ν > 0 will not suffice. Stated differently, the number Lη(L) has to be larger than any Lν

for 0 < ν < 1, but any macroscopic fraction εL with ε > 0 is sufficient. We will denote
by mesoscopic this number of states (in contrast with microscopic O(1) and macroscopic
O(L)).

Finally, it is clear from e.g. (51) that in order to recover an exponential decay in time,
one should multiply a O(L) number of terms like (46), and to recover the right exponent
one should take into account ’almost all’ these terms at each momentum q.

We conclude that if the sum over the pj in (36) is viewed in terms of particle-hole
excitations over the qi, the leading late time behaviour emerges from a mesoscopic number
(i.e. larger than any Lν for 0 < ν < 1, but smaller than εL for any ε > 0) of particle-
hole excitations around each qi. It represents an exponential number of states, but still
sub-entropic, in the sense that it includes only states whose macroscopic state is the
representative state itself. We expect this to be a general feature of form factor expansions
of semi-local operators that holds also in interacting theories.

. . . . . . . . . . . . . . . . . . . . .

Figure 9: Sketch of the states contributing to the leading asymptotics: position of the
momenta of the representative state (empty circles), position of the momenta of the in-
termediate state (filled circles), and position of the holes (dots).

3.5.2 Non-vanishing low-density limit of form factors

The leading order term both in time and density (51), obtained by keeping only the double
poles in the partial fraction decomposition (42), has an interesting physical interpretation
in terms of low-density limit of the form factor (22). This limit consists in assuming that
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ρ(x) is small everywhere, i.e. that L(qi+1 − qi) → ∞ when L → ∞ in the scaling limit3.
One can observe then that the square of the form factor (40) vanishes in the scaling limit
L → ∞ unless each p is at a distance of order O(L−1) from a q, and because of the
low-density assumption this q becomes unique in the limit L→∞. Thus one can write

pi = qi +
2π

L
(ni + 1/2) , (102)

with ni an integer. In the low-density limit we have

lim
L→∞

sin
qj−qj′

2 sin
pj−pj′

2

sin
qj−pj′

2 sin
qj′−pj

2

= −1 , lim
L→∞

εqjpj′εqj′pj

εqjqj′εpjpj′
= 1 , for j < j′ , (103)

and so in the scaling limit

|〈q1, ..., qN |σxl |p1, ..., pN 〉|2 =
ξ

π2N

N∏
j=1

1

(nj + 1/2)2 , (104)

which constitutes the low-density approximation of the form factor in the case it is not
vanishing in the scaling limit.

Now, we trade the 1/N ! in (36) for an ordering p1 < ... < pN and choose an ordering
q1 < ... < qN . In the low-density limit, we have L(qi+1 − qi) → ∞ in the large L
limit: Hence whenever the integers ni in (102) are O(L0) the constraint on the p′s is
automatically satisfied, and one can sum, in the large L limit, on arbitrary integers. The
fact that both the 1/N ! and the constraint p1 < ... < pN are removed in the low-density
limit is a simplifying feature very specific to this regime.

Hence in the low density limit we have

χxx (`, t) =
∞∑

n1=−∞
...

∞∑
nN=−∞

ξ

π2N

N∏
j=1

e−2iπt
∑N
j=1 ε

′(qj)
(nj+1/2)

L

(nj + 1/2)2 . (105)

This expression factorizes and can be computed along (51) with formulas (161).

3.5.3 Static correlations

Results (70), (82), (83) and their analogues hereafter (143), (150) for the finite temperature
correlations are obtained in the regime `, t → ∞ at fixed α = t/`. In their derivation,
however, we have only used that the phase it(E ({q})−E ({p})) + i`(P ({p})−P ({q})) in
(36) is large, therefore our calculations are also applicable to static correlations t = 0 at
large `. It amounts to replacing tε(x) by −`x in all the phases e−itε(x). All the oscillatory
integrals that we neglected because of their large time behaviour ∼ t−1/2 will now decay
at large distances at least as `−1 (and in general much faster). In particular (46) still hold,
but with corrections O(L0`−1) and O(L−1`−1) respectively. Static correlations are then
obtained by replacing |tε′(x)| (i.e., |tε′(x)− `|) by |`| in the final results.

3Strictly speaking, this is a different limit than merely N/L� 1, since this latter one does not require
ρ(x) = O(N/L) everywhere. For example, a ground state at zero temperature and high chemical potential
would have N/L� 1 but not ρ(0)� 1.
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4 Quantum quench dynamics beyond low densities

The framework presented in Section 3 is general and permits us to compute the late time
behaviour and subleading corrections of form factor sums, order by order in ρQ = N/L.
In particular, it yields the expression of the observables of interest as Ce−t/τ , where both
C and τ are the exact expressions at a given order (here second order) in ρQ. The
computation of a generic order in the density is however rather involved. In this section
and in the following one we focus on the exponent τ of the exponential decay, for which
another more efficient but less general approach can be used to calculate it at all orders
in ρQ, i.e. writing the correlation function as e−t/τ where τ includes all orders in ρQ.

This first section treats the quantum quench problem introduced in Section 2.1.

4.1 Determinant representation

As shown in Section 3.2, the leading contribution in (30) is obtained for N = M , on which
we will focus. The starting observation is that the last term of (85) can be written as a
Cauchy determinant. Indeed we have∏

i 6=j(cos qi − cos qj)(cos pi − cos pj)∏
i,j(cos qi − cos pj)2

= (detC)2 = detCTC , Cij =
1

cos pi − cos qj
.

(106)
Let us define M̄ = CTC and M j

ik = CijCkj , so that M̄ik =
∑

jM
j
ik. The determinant of

M̄ can be expanded as follows

det M̄ =
∑
τ∈SN

sgn (τ)M̄1τ(1)...M̄Nτ(N)

=
∑

j1,...,jN∈{1,...,N}

∑
τ∈SN

sgn (τ)M j1
1τ(1)...M

jN
Nτ(N) .

(107)

The term M ja
aτ(a)M

jb
bτ(b) is invariant under the replacement τ → τ · (a b) if ja = jb, whereas

the sign of the permutation changes. Hence the sum over τ vanishes unless all the j’s are
distinct, i.e., if they are a permutation of 1, ..., N . In conclusion we find

det M̄ =
∑
σ∈SN

detMσ , (108)

with Mσ
ik = M

σ(i)
ik . This relation permits one to eliminate the 1/N ! factor in (86), which

then reads

〈σx` (t)〉 = Re

[ √
ξ

L2N

∑
0<p1,...,pN

N∏
j=1

4
f(pj)

f(qj)
sin pj sin qje

2it(ε(pj)−ε(qj))
∏
i,j

ε4
qjpi

ε2
qjqiε

2
pjpi

detM

]
,

(109)
where f(p) is defined in (87) and M is explicitly given by

Mij =
1

cos qi − cos pi

1

cos qj − cos pi
. (110)

4.1.1 Approximation

In order to proceed we now drop one of the factors in (109), which we argue is justified at
late times. The factor involving the εk,k′ in (109) is a function

g{q1,...,qN}(p1, ..., pN ) =
∏
i,j

ε4
qjpi

ε2
qjqiε

2
pjpi

(111)
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such that for σ ∈ SN

(i) g{q1,...,qN}(p1, ..., pN ) is regular, symmetric and has no poles in p1, ..., pN ;

(ii) g{q1,...,qN}(qσ(1), ..., qσ(N)) = 1;

(iii) ∀k = 1, ..., N, g{q1,...,qN}(p1, ..., pN )|∀j=k+1,...,N, pj=qσ(j) = g{qσ(1),...,qσ(k)}(p1, ..., pk);

(iv) ∀i = 1, ..., N, ∂pig{q1,...,qN}(p1, ..., pN )|∀j pj=qσ(j) = 0 . (112)

The first two properties (i) and (ii) follow immediately from the definition (23). The
third one (iii) means that if some p’s are set to some q’s in a one-to-one fashion, then one
recovers the same function g with the remaining p’s and q’s. As for property (iv), it means
that (ii) holds at order (pi − qσ(i))

2.
We will now argue that by virtue of these properties setting g to 1 does not affect the

leading behaviour at late times t. First, property (i) ensures that g does not modify the
general structure (42) by allowing e.g. for higher order poles, or poles at other momenta.
Property (ii) ensures that g does not modify the values A(I0, I1, I2) when I1 = {}, because
in these cases there is always a double zero to differentiate and g is then evaluated at a
permutation of the momenta. When I1 6= {}, the function g does change A(I0, I1, I2),
but, because of property (iv), it will not modify the pairing structure of (64), and will
only modify the factors in (64) by an extra additive term. Finally, property (iii) allows
one to repeat these steps recursively in (59). We now observe that the resulting partial
fraction decomposition will always boil down to evaluating sums of the form (188). The
contribution of g is an additional term to (188), and so the leading time behaviour will
never depend on g.

Based on these arguments we now make the approximation of setting g = 1

〈σx` (t)〉 ≈ Re
4N
√
ξ

L2N

∑
0<p1,...,pN
∈R

det
i,j

∣∣∣∣∣eit(2ε(pi)−ε(qi)−ε(qj)) sin pi sin qjf(pi)/f(qj)

(cos qi − cos pi)(cos qj − cos pi)

∣∣∣∣∣
=
√
ξdet

(
A
)
,

(113)

where the matrix A is given by

Aij =
4

L2

∑
0<p∈R

eit(2ε(p)−ε(qi)−ε(qj)) sin p sin qjf(p)/f(qj)

(cos qi − cos p)(cos qj − cos p)
, i, j = 1, . . . , N . (114)

We note that the above analysis is very similar to the one employed by Korepin and
Slavnov in their work on the single-particle Green’s function in the impenetrable Bose
gas [90].

4.2 Asymptotic forms of the matrix elements

In the next step we work out the large-L asymptotics of the matrix elements Aij .

4.2.1 Diagonal matrix elements

The diagonal matrix elements were already computed in (90), cf. Appendix A. They read

Aii = 1− |θi|
π

+
2i sgn (tε′(qi))

L

f ′(qi)

f(qi)
+O

(
L−1t−1/2

)
, (115)

where we have defined

θi =
4πtε′ (qi)

L
. (116)
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4.2.2 Off-diagonal matrix elements

To compute the off-diagonal elements, we write

1

(cos qi − cos p) (cos qj − cos p)
=

1

cos qi − cos qj

(
1

cos qj − cos p
− 1

cos qi − cos p

)
, (117)

and use the first equation in (90), see also Appendix A. We obtain

Aij =
2i sgn (tε′(qj)) sin qj
L(cos qi − cos qj)

[
eit(ε(qj)−ε(qi)) − f(qi) sgn (ε′(qj)ε

′(qi))

f(qj)
eit(ε(qi)−ε(qj))

]
. (118)

4.2.3 Approximate determinant representation

Combining (115) and (118) provides the following approximate determinant representation

〈σx` (t)〉 ≈ Re
√
ξ det(I − Ξ) , (119)

where

Ξij =δij

[ |θi|
π
− 2i sgn (tε′(qi))

L

f ′(qi)

f(qi)

]
+(1− δij)

2i sgn (tε′(qj)) sin qj
L(cos qj − cos qi)

[
eit(ε(qj)−ε(qi)) − f(qi) sgn (ε′(qj)ε

′(qi))

f(qj)
eit(ε(qi)−ε(qj))

]
+O

(
L−1t−1/2

)
.

(120)

4.3 Evaluating the determinant

We now write detM = exp tr logM and use the expansion

log(I − Ξ) = −
∑
n≥1

Ξn

n
. (121)

4.3.1 First order

The first order gives

tr Ξ = 4|t|
∫ π

0
|ε′(x)|ρ(x)dx+ 2i

∫ π

0

f ′(x)

f(x)
ρ(x)dx+O(L0t−1/2)

= 4|t|
∫ π

0
|ε′(x)|ρ(x)dx+O(L0t−1/2) .

(122)

4.3.2 Second order

Since
∑

i Ξ2
ii = O

(
L−1

)
the second order reads

tr (Ξ2) =
∑
i 6=j

ΞijΞji +O(L−1) = S1 + S2 +O(L−1) , (123)

where

S1 =
8

L2

∑
i 6=j

sin qi sin qj

(cos qi − cos qj)
2 , S2 = − 8

L2

∑
i 6=j

sin qi sin qj
f(qi)
f(qj)

(cos qi − cos qj)
2 e

2it(ε(qi)−ε(qj)) . (124)
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These sums are computed in Appendix A. We obtain

tr (Ξ2) = 4|t|
∫ π

0
dx |ε′(x)|4πρ(x)2 + 8

∫
dxdy

sin y

cos y − cosx
ρ′(x)ρ(y) +O

(
t−1/2

)
.

(125)
Once exponentiated in the determinant, we recognize the terms obtained earlier with the
partial fraction decomposition approach (95), (96), but without the contributions involving
the ε in the prefactor C. This difference is a direct consequence of our approximation g = 1.

4.3.3 Leading late-time contribution at all orders

In order to compute theO(t) term at higher orders in ρ, we first notice that it can only arise
from the second order poles in the matrix entries, hence by pairs of momenta separated
by o(L0). In this regime the matrix elements become

Ξij = δij
|θi|
π

+ (1− δij)
−i sgn (θ)

π

eiθiTi∆ij/2 − e−iθiTi∆ij/2

Ti∆ij
, (126)

with ∆ij = i− j. We obtain in this regime

tr (Ξn) =
∑

i1,i2,...,in

Ξi1i2 ...Ξini1

= −
∑
i

1

(i sgn (θi)π)nTni

∑
∆1,...,∆n−1 6=0

[ n−1∏
m=1

1− e−iθiTi∆m

∆m

]1− eiθiTi(∆1+...+∆n−1)

∆1 + ...+ ∆n−1
.

(127)
The sums over ∆j can be carried out using that for ∆′ 6= 0∑

∆ 6=0,−∆′

1− e−iθ∆

∆

1− eiθ(∆+∆′)

∆ + ∆′
= 2i(π − |θ|) sgn (θ)

1− eiθ∆′

∆′
, (128)

which is obtained from 1
∆(∆+∆′) = 1

∆′ (
1
∆ −

1
∆+∆′ ) and relations (161) by carefully treating

the cases ∆ = 0,−∆′. Using that θ = O(L−1) to neglect the |θ| term in (128) we arrive
at

tr (Ξn) = −
∑
i

(2i sgn (θi)π)n−2

(i sgn (θi)π)nTni

∑
∆1 6=0

(1− e−iθiTi∆1)(1− eiθiTi∆1)

∆2
1

+O(L−1)

=
∑
i

2n−1

π2Tni
(2 Li2 (1)− Li2 (eiθiTi)− Li2 (e−iθiTi)) +O(L−1)

=
∑
i

2n−1|θi|
πTn−1

i

+O(L−1)

= 4|t|
∫ π

0
|ε′(x)|(4πρ(x))n−1ρ(x)dx+O(L−1) .

(129)

4.3.4 Influence of the boundaries

In the discussion above the momenta p are constrained to be positive. In order to use
equations (46) we therefore had to neglect possible boundary effects for q’s close to zero.
We now verify that this does not influence the result. We have

η2L∑
n=−η1L

ei(n+1/2)w
L
t

(n+ 1/2)2 =

∞∑
n=−∞

ei(n+1/2)w
L
t

(n+ 1/2)2 −
1

η2L
E2 (−iwη2t)−

1

η1L
E2 (iwη1t) , (130)
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with E2(x) =
∫∞

1
e−xt

t2
dt the exponential integral function. Lη1,2 are the number of vacan-

cies between 0, π and qi. They are η1 = qi
2π and η2 = π−qi

2π . Hence the correction to tr Ξ is

− 2

π

∫ π

0

(
E2 (−2iε′(x)xt)

x
+
E2 (2iε′(x) (π − x) t)

π − x

)
ρ(x)dx , (131)

which goes to zero for large t because the density vanishes quadratically at 0 and π.

4.4 Result: late-time asymptotics of the order parameter after a quench

Substituting (122), (125) and (129) into (121) we arrive at the following result for the
late-time asymptotics of the order parameter one-point function after a quench within the
ferromagnetic phase

〈ΨN (t)|σx` |Ψs(t)〉
〈ΨN (t)|Ψs(t)〉

= C exp

(
|t|
π

∫ π

0
|ε′(x)| log(1− 4πρ(x))dx

)
≡ Ce−t/τ , (132)

with C given in (96) at order O(ρ2
Q). The decay rate reproduces the exact result obtained

in [56, 57]. However, the prefactor C differs from the one conjectured in [56, 57]. We
address this difference in Section 4.5 below.

4.5 Numerical Checks

We now present some numerical checks of equation (132) for the time evolution of the order
parameter. In the limit of large separations `� 2Jt, using the Lieb-Robinson bound and
the clustering properties of the initial state |Ψ〉, the two-point function factorizes into the
product of two one-point functions that are identical by translational invariance〈

Ψ|σx`+1 (t)σx1 (t) |Ψ
〉

= 〈Ψ|σx1 (t) |Ψ〉2 +O(e−γ(`−2Jt)) , (133)

with γ a constant of order 1. We can then obtain the one-point function 〈Ψ|σx1 (t) |Ψ〉 as
the square root of the two-point function

〈
σx`+1 (t)σx1 (t)

〉
in the limit `� 2Jt, which can

be efficiently computed numerically, as it can be expressed as the determinant of a block
Toeplitz matrix even in the thermodynamic limit [57].

Numerical checks of the exponential decay in (132) have already been reported in
[57]. Since our prediction (96) differs from the one conjectured in [57], we will focus on
the prefactor CxFF(α) of the asymptotic behaviour of the two-point function in the limit
`, t→∞, α = t/` fixed〈

Ψ|σx`+1 (t)σx1 (t) |Ψ
〉
' CxFF(α) exp

[
`

∫ π

0

dk

π
log |cos ∆k| θH

(
2ε′h(k)t− `

)]
× exp

[
2t

∫ π

0

dk

π
ε′h(k) log |cos ∆k| θH

(
`− 2ε′h(k)t

)]
. (134)

In [57] it was assumed that the constant CxFF(α) is independent of α. Calculating the
asymptotics of the correlator for α→∞ then leads to [58]

CxFF(∞) =
1− hh0 +

√
(1− h2)(1− h2

0)

2
√

1− hh0
4
√

1− h2
0

. (135)

From (96) it however follows C 6=
√
CxFF(∞), suggesting in turn that CxFF(α) is in fact α-

dependent. This is indeed supported by our numerical results, even though the difference
|C−

√
CxFF(∞)| is tiny. In Figs 10 we show that our results (132) and (96) are in agreement

with numerical calculations of the order parameter one-point function.
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Figure 10: Left: Numerical results for 〈σx1 (t)〉et/τ with τ defined in (132) as a function
of t for a quench from h0 = 0.1 to h = 0.5, corresponding to a density ρQ = 0.0218.
The prefactor at order O(ρ2

Q) (96) is shown in blue and is seen to be compatible with our

numerical results. For comparison we also show
√
CxFF(∞) = 0.96525. Right: Numerically

determined (red) and calculated leading order (blue) prefactor (96) divided by
√
ξ, for

quenches from h0 = 0.1 to h as a function of h. Because of the oscillations, the measured
value is an average of six points between times t = 75 and 100.

5 Dynamical correlation functions at arbitrary finite tem-
peratures

In this section we follow the same reasoning as in Section 4 but for dynamical correlation
functions at finite temperature. We again treat the two cases h < 1 and h > 1 separately.

5.1 Ordered phase h < 1

In the ordered phase, the sum in (36) involves states with the same number of particles
as in the quench case (30). However, it is not possible to express each term as a Cauchy
determinant as in Section 4. This can nevertheless be overcome for the leading late time
behaviour, where one can work with an approximate version of the form factor (22).

We focus again on intermediate states with M = N in (36), which were argued in
Section 3.2 to give the leading late time behaviour. As discussed in Section 4.1.1, the
dominant contribution to the correlation function arises from the sums (170), and the term
proportional to t on the right-hand side of (170) has its origin in the isolated singularity
1
x2

in 1
sin2 x

. Hence, replacing terms of the form 1
sin2 x

by 1
x2

in the form factor (22) will
not affect the leading behaviour at late times. It follows that if we define

χ̃xx (`, t) =
1

N !

∑
p1,...,pN
∈R

F̃
{q1,...,qN}
{p1,...,pN}e

it(E({q})−E({p}))+i`(P ({p})−P ({q})) , (136)

F̃
{q1,...,qN}
{p1,...,pN} =

ξ

L2N

∏
i 6=j

qi−qj
2

pi−pj
2∏

i,j

(
qi−pj

2

)2 , (137)

then we have
χxx(`, t) = χ̃xx(`, t)κ(`, t) , (138)
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with κ(`, t) a function that is subleading in `, t with respect to χxx(`, t).
The form factor F̃ has the same Cauchy determinant structure we encountered in the

quench case (106). Hence we can follow through the same steps and obtain

χ̃xx (`, t) = ξ det
i,j=1,...,N

 4

L2

∑
p∈R

ei
t
2 (ε(qi)+ε(qj)−2ε(p))

(qj − p)(qi − p)

 . (139)

The leading time behaviour of the coefficients of this matrix can be computed as in Section
4.2 with formulas (161). One obtains

χ̃xx (`, t) = ξ det(1− Ξ) , (140)

with

Ξij =δij
|2tε′(qi)|

L

+(1− δij)
2i sgn (tε′(qj))

L(qj − qi)

[
ei
t
2 (ε(qi)−ε(qj)) − sgn (ε′(qj)ε

′(qi))e
i
t
2 (ε(qj)−ε(qi))

]
+O

(
L−1t−1/2

)
.

(141)

Since one is interested only in the late time dynamics, we can focus on terms i, j such that
qi − qj = o(L0) as in (126). Then one obtains the same formula as in (126)

Ξij = δij
|θi|
π

+ (1− δij)
−i sgn (θ)

π

eiθiTi∆ij/2 − e−iθiTi∆ij/2

Ti∆ij
, (142)

with ∆ij = i− j, Ti = 1
2πρ(qi)

and θi = 2πtε′(qi)
L .

5.1.1 Two-point dynamical correlation functions in the ordered phase

Following through the same steps as in the quench case we arrive at

χxx(`, t) = C exp

(
1

2π

∫ π

−π
|tε′(x)− `| log(1− 4πρ(x))dx

)
, (143)

where, using the results of Section 3,

C =

ξ exp

(
−2
∫ π
−π
∫ π
−π

ρ(y)ρ′(x)

tan(x−y2 )
dxdy

)
in the space like-region at order ρ2

β

ξ in the time like-region at order ρ0
β .

(144)
As far as we know the result (143) has not previously been obtained in the literature.

5.1.2 Numerical checks

In order to check the accuracy of (143) at finite times we have carried out numerical
simulations following Ref. [91], where the finite temperature dynamical two-point function
for a finite open chain is computed exactly as a Pfaffian of a known matrix. As long as the
two points are sufficiently far from the boundaries, then they take almost the same values
as in an infinite chain. In Fig. 11 we compare (143) to numerical results in the space-like
region by considering the logarithm of the correlator

L(`, t) = log
(
〈σx`+1(t)σx1 (0)〉

)
. (145)
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For simplicity we take the extreme case α = 0, which corresponds to setting t = 0. We
recall indeed that static correlations are also covered by our calculations, as explained in
Section 3.5.3. In the left panel we plot (143) as a function of distance ` and mark by red
crosses numerical results obtained for a chain of L = 200 sites. We see that the asymptotic
result (143) is in excellent agreement for α = 0. In the right panel we test the accuracy of
the O(ρ2

β) value of the prefactor (144) by considering the quantity

Γ(β) =
ξ −

〈
σx`+1 (0)σx1 (0)

〉
e`
∫ π
−π

dx
2π

log(1−4πρ(x))

ξ − C
, (146)

where C is given by (144).
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Figure 11: Left: L(`, 0) for h = 0.5 and β = 2, 1, 0.25 (top to bottom). Numerical
results for a L = 200 site open chain are shown as red crosses and equation (143) by a
continuous blue line. Right: Numerically determined Γ(β) as a function of ρβ for ` = 30
and h = 3/4, 1/2, 1/4 from top to bottom; in blue is the expected value as ρβ → 0.

We see that Γ(β) approaches 1 for small values of ρβ, which means that the prefactor
(144) is indeed correct to order O

(
ρ2
β

)
. The linear increase in ρβ shows that the correction

to our result for C is O
(
ρ3
β

)
.

We now turn to the time-like region. In Fig. 12 we compare numerical results for L(`, t)
as a function of t for different values of ` to (143). We recall that in the time-like region
equation (143) only gives the leading time behaviour, i.e. the exponent of the exponential
decay. Hence only the slope of our analytic result for L(`, t) has to match the numerics.
This is indeed seen to be the case in Fig. 12. In the space-like regime, i.e. at sufficiently
short times, (143) is again seen to be in very good agreement with the numerical results.
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Figure 12: L(`, t) as a function of t for h = 0.5 and β = 2, 0.5, 0.286, 0.2 from top to
bottom inside each panel, with ` = 0, 2, 5, 10 from top left to bottom right. Numerical
results for a L = 200 site open chain are shown by red crosses and equation (143) by a
straight blue line. The slopes of the numerical results are correctly reproduced by (143)
in the time-like region, i.e. for vmaxt > `.

In order to have a more quantitative check on the exponential factor in (143) it is
useful to consider the difference

L(`, t)− logχxx(`, t) , (147)

where χxx(`, t) is given by (143). If our exponential factor is exact, the difference should
decay at late times more slowly than exponential, i.e. supposedly as a power law. In
Figure 13 we plot (147) as a function of log Jt and indeed observe a linear behaviour. This
confirms that the exponential factor in (143) is exact and moreover establishes that the
subleading asymptotics is a power law in time.
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Figure 13: L(`,t) − logχxx(`, t) with χxx(`, t) given by (143) as a function of log Jt for
h = 0.5 and β = 0.5, 0.286, 0.2 from bottom to top inside each panel, with ` = 0 (left) and
` = 5 (right) in red. In green is indicated a linear fit in the time-like region vmaxt > `.

5.2 Disordered phase h > 1

5.2.1 An approximate mapping to the ordered case

In the disordered phase the form factors in (36) still differ from the finite temperature
ordered case by the fact that there are no intermediate states with the same number
of momenta as in the representative state. From Section 3.2 we know that the terms
M = N + 1 and M = N − 1 are equally important at late times, but the subleading terms
are dominant in ρβ for M = N + 1. Since we are interested in the leading time behaviour
only, with the order ρ0

β subleading corrections, we will restrict our analysis to the case
M = N + 1.

In this case the partial fraction decomposition (73) of |NS〈q1, ..., qN |σxl |p1, ..., pM 〉R|2
necessarily involves one νj = 0. To obtain the pj dependence of the corresponding A’s
in (73), it suffices to decompose the form factor |NS〈q1, ..., qN |σxl |p1, ..., pM 〉R|2 by start-
ing to write the partial fraction decomposition with respect to pj and retaining only
the νj = 0 part (which corresponds to P0(X) in (39)), and decomposing with respect

to the other momenta in the usual fashion. This part is

∏N
i=1 ε

2
pjqi∏N+1

i=1 εpjpi
, that is 1

ε(pj)
times∏N

i=1 ε
2
pjqi∏N+1

i=16=j εpjpi
. This latter factor satisfies the hypotheses of (112) which allows us to replace

it by 1 as long as we are interested only in the leading time behaviour. It follows that
under this approximation the νj = 0 terms in the partial fraction decomposition (73) of
|NS〈q1, ..., qN |σx` |p1, ..., pM 〉R|2 contribute to (36) as

2J
√
hξ

(N + 1)!L

∑
pj∈R

e−itε(pj)

ε(pj)

∑
pi∈R,i 6=j

|R〈p1, ..., pj−1pj+1, ..., pN+1|σx` |q1, ..., qN 〉NS|2

× eit[E({q})−E({p}−{pj})]+i`[P ({p}−{pj})−P ({q})] .

(148)

Taking into account all the possible j = 1, ..., N + 1 for which one can have νj = 0 in (73),
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we obtain

χxx(`, t) ≈

2J
√
hξ

L

∑
p∈R

e−itε(p)

ε(p)


× 1

N !

∑
p1,...,pN
∈R

|R〈p1, ..., pN |σx` |q1, ..., qN 〉NS|2eit(E({q})−E({p}))+i`(P ({p})−P ({q})) ,

(149)
where {p} = {p1, ..., pN} has now the same number of momenta as in the representative
state. The second factor in (149) is precisely of the same form as the one we considered
in the ordered phase.

5.2.2 Two-point dynamical correlation functions in the disordered phase

Putting everything together we obtain the following result for the leading late time be-
haviour of the two-point function

χxx(`, t) ≈ C(`, t) exp

(
1

2π

∫ π

−π
|tε′(x) + `| log(1− 4πρ(x))dx

)
, (150)

where (cf. section 3.2)

C(`, t) =

2J
√
hξ
∫ π
−π

(
e−itε(x)

2π + 2ρ(x) cos(tε(x))
)

dx
ε(x) if vmaxt < ` at O(ρβ)

2J
√
hξ
∫ π
−π

e−itε(x)

2πε(x) dx if vmaxt > ` at O(ρ0
β) ,

(151)
`, t ≥ 0, and vmax is defined in (38).

5.2.3 Numerical checks

We have checked the accuracy of (150) by comparing it to numerical calculations following
Ref. [91]. In the following we show results for

R(`, t) = Re
(
〈σx`+1(t)σx1 (0)〉

)
. (152)

In the space-like region vmaxt < ` we furthermore check our result for the prefactor C(`, t)
(151) by computing

Λ(`, β) =
R(`, 0)e−`

∫ π
−π

dx
2π

log(1−4πρ(x)) − C0(`, 0)

C(`, 0)− C0(`, 0)
, (153)

where C0(`, t) = J
√
hξ
π

∫ π
−π

dx
ε(x)e

−itε(x) is the O(ρ0
β) contribution to C(`, t). If and only if

the prefactor in (151) is correct at order O(ρβ), Λ(`, β)→ 1 when β → 0.
In Fig. 14 we compare our analytic expression (150) in the space-like region to numer-

ical results for R(`, t).
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Figure 14: Left: log
(
R(`, 0)

)
as a function of ` for h = 1.5 and β = 2, 0.5, 0.285, 0.2 from

top to bottom. Numerical results for a L = 200 site open chain are shown as red crosses
and equation (150) as straight blue lines. Right: numerical results for Λ(` = 30, β) as a
function of ρβ for h = 3/2 (red line). The expected result when ρβ = 0 is shown in blue.

Our analytic expression is seen to be in good agreement with the numerical results and
the remaining discrepancy is due to O(ρ2

β) corrections to the prefactor.
In Fig. 15 we present results for R(`, t) in the time-like region vmaxt > ` at low

temperatures. We see that the analytical result is in excellent agreement with the numerics.
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0.00

0.05
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(`
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)

Figure 15: R(`, t) as a function of t with h = 1.5 and β = 3 for ` = 0 (left) and ` = 5
(right). Numerical results for a L = 200 site open chain are shown as red crosses and
equation (150) as a solid blue line.

In order to check the accuracy of our result for the exponential decay of the two-point
function for intermediate and high temperatures we compare (150) to numerical results
log |R(`, t)| in Fig. 16. As our result for the prefactor C(`, t) only holds at low temperatures
we expect the numerical results to differ from our analytical prediction by an essentially
constant offset. This is indeed what we observe.
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Figure 16: log |R(`, t)| as a function of t for h = 1.5 and β = 2, 0.5, 0.286, 0.2 from top to
bottom inside each panel, with ` = 0 (left) and ` = 10 (right). Numerical results for a
L = 200 site open chain are shown as red crosses and equation (150) as a solid blue line.

6 Summary and Discussion

In this work we have considered two problems in the transverse field Ising model: (i)
The time dependence of the order parameter after a quantum quench; (ii) The dynamical
order parameter two point function in equilibrium at finite temperatures. Using the quench
action approach for (i) and a micro-canonical formulation combined with typicality ideas
for (ii) these problems can both be formulated in terms of spectral representations using
Hamiltonian eigenstates, i.e. sums over form factors.

These highly intricate sums over a macroscopic quantity of momenta of a form factor
with many singularities represent however a considerable technical challenge. We showed
that in the case of semi-local operators such as σxj in the TFIM, this difficulty can be
addressed by decomposing the form factor into partial fractions, which permits the sums
over momenta to be decoupled and the late time behaviour to be determined. These
partial fractions can be organized in terms of the degree and the position of their poles,
which naturally leads to an expansion in the density of particles of the representative
state. The leading behaviour at late times can be then computed at all orders in the
density through a determinant representation of these poles, which leads invariably to an
exponential decay.

Our analysis provides a precise characterization of the excitations over the representa-
tive state that contributes to the late time behaviour of correlation functions of semi-local
operators. We find that simultaneous particle-hole excitations of all particles in the repre-
sentative state contribute to the correlation function, and we altogether have to sum over
O
(
(εL)N

)
excited states, where ε is a fixed number that can be taken as small as desired

and N/L is the density. In particular, this implies that the appealing picture of an expan-
sion in terms of a finite number of particle-hole excitations over the full momentum space
fails for semi-local operators at finite temperatures. The form factor sum is dominated
by mesoscopic excitations (in the sense given in Section 3.5.1) around each single particle,
which is an exponential number of states, but subentropic in the sense that includes only
states whose macroscopic state is the representative state itself.

We have compared our analytic results to numerical computations in both the finite
temperature and quench contexts. In the absence of saddle points, thus where the sums
(46) are valid at all momenta, we find remarkable agreement at all times. In cases where
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saddle points occur our numerical results indicate the presence of a multiplicative power-
law behaviour as a subleading correction to the exponential decay. We believe that this
will emerge from saddle point effects of these classes of excitations, due to the fact that
(46) is not valid anymore close to the saddle point. Higher-order corrections in time will
also arise from contributions with νi = 0 in (42); in this case there is no singularity and
the full momentum space should be summed over to take them into account. We believe
that partial fraction decompositions for form factors of semi-local operators are not only
suited for extracting the late time asymptotics, but should also be useful for determining
intermediate and short time behaviours.

In interacting models, the singularity structure of the form factors of semi-local op-
erators is not fundamentally changed and a partial fraction decomposition will provide a
useful organizing principle as well. A notable difference is that the Bethe equations link
the different particles so that the momenta sums can never fully decouple. This will be
the subject of a subsequent paper.

For local operators however, the story is radically different. The singularity structure
of the form factors (12) is completely dissimilar and one cannot use partial fraction de-
composition related to an expansion in powers of particle density to extract the late time
behaviour. Excitations over the full momentum space and not only near the singularities
will play equally important roles. This will be discussed elsewhere.

Acknowledgements We are grateful to Jacopo de Nardis, Frank Göhmann and Karol
Kozlowski for very helpful discussions and comments. This work was supported by the
EPSRC under grant EP/S020527/1 (FHLE and EG) and by the ERC under Starting
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A Riemann sums of singular functions

Sums of form factors lead to Riemann sums of functions with a quadratic singularity of
the form

1

L

L∑
k=−L+1

f
(
k
L

)
with f(x) ∼

x→0

1

x2
. (154)

Since the integral of f(x) is divergent, the limit L → ∞ cannot be directly taken as for
regular functions and needs special treatment. The purpose of this appendix is to explain
techniques to compute them. We note that an alternative way of treating such sums is to
employ contour integral techniques [92].

A.1 One-dimensional sums

Oscillatory Riemann sums of functions with a quadratic singularity cannot be estimated
with the usual results on stationary phase approximation to obtain their large time be-
haviour. The principle is then to add and remove an elementary function with the same
singularity, but whose Riemann sum can be computed directly, so that the remaining func-
tion has no singularity and thus has an oscillatory Riemann sum that vanishes at large
times.
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A.1.1 Generic example

For concreteness, let us illustrate this procedure with the Riemann sum

SL (θ) =
1

L

L∑
k=−L+16=0

f
(
k
L

)
ei
k
L
θ , (155)

for f(x) a function such that f(x) = 1
x2

+ O(x0) for x → 0, f being regular otherwise.
Then

SL (θ) =
1

L

L∑
k=−L+16=0

(
L
k

)2
ei
k
L
θ +

1

L

L∑
k=−L+1

f̄
(
k
L

)
ei
k
L
θ , (156)

with f̄(x) = f(x)− 1/x2 a regular function. The second term on the right-hand side can
be turned into an integral, while we rewrite the first as follows

1

L

L∑
k=−L+16=0

(
L
k

)2
ei
k
L
θ = L

+∞∑
k=−∞, 6=0

1
k2
ei
k
L
θ − 1

L

+∞∑
k=L+1

(
L
k

)2
ei
k
L
θ − 1

L

−L∑
k=−∞

(
L
k

)2
ei
k
L
θ .

(157)
The second and third Riemann sums can now be turned into integrals without any prob-
lems, which gives

SL (θ) = L
+∞∑

k=−∞, 6=0

ei
k
L
θ

k2
+

∫ 1

−1
f̄(x)eiθxdx−

∫ ∞
1

eiθx

x2
dx−

∫ −1

−∞

eiθx

x2
dx+O

(
L−1

)
. (158)

The three integrals are oscillatory integrals of bounded functions and hence vanish for
large θ. We conclude that

SL (θ) = L
+∞∑

k=−∞, 6=0

ei
k
L
θ

k2
+O

(
L0θ−1/2

)
+O

(
L−1

)
. (159)

A.1.2 Elementary oscillatory sums with singularities

The above analysis shows that the leading asymptotics of Riemann sums with simple or
double poles involves the following sums

∑
n∈Z

eiw(n+α)

(n+ α)
=

π

sinπα
eiπα sgn (w) , for − π < w ≤ π

∑
n∈Z

eiw(n+α)

(n+ α)2
=
( π

sinπα

)2
+

iπ

sinπα
weiπα sgn (w) , for − π < w ≤ π .

(160)

These are readily obtained by computing the Fourier series coefficients of the right-hand
sides multiplied by e−iwα and seen as a 2π-periodic function of w. In particular we have

∑
n∈Z

eiw(n+1/2)

(n+ 1/2)m
=

{
π2
(
1− |w|π

)
if m = 2 ,

iπ sgn(w) if m = 1 .∑
n∈Z\{0}

eiwn

nm
=

{
π2
(

1
3 −

|w|
π + w2

2π2

)
if m = 2 ,

i(π − |w|) sgn(w) if m = 1 .

(161)
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A.1.3 Sums arising in finite-temperature dynamics

Following the steps outlined above we obtain for q ∈ NS

∑
p∈R

e−itε(p)

L sin2
(p−q

2

) =L

+∞∑
k=−∞

e−itε(q+2π(k+1/2)/L)

π2(k + 1/2)2
−
∫ ∞
π

4e−itε(x)

(x− q)2

dx

2π
−
∫ −π
−∞

4e−itε(x)

(x− q)2

dx

2π

+

∫ π

−π
e−itε(x)

(
1

sin2 x−q
2

− 1

(x− q)2/4

)
dx

2π
+O

(
L−1

)
.

(162)
At leading order in time, one can Taylor expand the ε in the remaining sum to fall

back on an elementary oscillatory sum. The three integrals involve oscillatory bounded
functions and hence decay to zero with time.

Similarly we obtain for q ∈ NS

∑
p∈R

e−itε(p)

L sin
(p−q

2

) =

+∞∑
k=−∞

e−itε(q+2π(k+1/2)/L)

π(k + 1/2)
−
∫ ∞
π

2e−itε(x)

(x− q)
dx

2π
−
∫ −π
−∞

2e−itε(x)

(x− q)
dx

2π

+

∫ π

−π
e−itε(x)

(
1

sin x−q
2

− 1

(x− q)/2

)
dx

2π
+O

(
L−1

)
,

(163)
where the integrals are again integrals of oscillatory bounded functions and vanish at late
times.

Finally we use (161) to obtain the asymptotic values of the sums in (162) and (163)
for q ∈ NS and ε′(q) 6= 0

∑
p∈R

e−itε(p)

L sin
(p−q

2

) = −i sgn (tε
′
(q))e−itε(q) +O

(
L0t−1/2

)
+O

(
L−1

)
,

∑
p∈R

e−itε(p)

L2 sin2
(p−q

2

) =

(
1− 2 |tε′(q)|

L

)
e−itε(q) +O

(
L−1t−1/2

)
+O

(
L−2

)
.

(164)

A.1.4 Sums arising in quantum quench dynamics (90)

We now turn to momentum sums of the form

Σ(n)(q, q′, t) =
4

Ln

∑
0<p∈R

sin p sin q′f(p)

(cos q − cos p)nf(q′)
e2it(ε(p)−ε(q)) , n = 1, 2 , (165)

where f(q) is defined in (87). Using that sinxf(x)
cos q−cosx −

f(q)
x−q is a bounded function of x we

can proceed along the same lines as in Section A.1.3 to conclude that for q ∈ NS

Σ(1)(q, q′, t) =
4

L

∑
0<p∈R

sin q′

p− q
e2it(ε(p)−ε(q)) f(q)

f(q′)
+O(L0t−1/2) . (166)

At leading order in time we may then Taylor expand ε(p) around p = q, and write
p = q + 2π

L (n + 1/2) to fall back on one of the oscillatory sums in (161). In this way we
obtain our final result

Σ(1)(q, q′, t) = 2i sgn (tε′(q)) sin q′
f(q)

f(q′)
+O(L0t−1/2). (167)

41



SciPost Physics Submission

The analysis of the Σ(2)(q, q′, t) proceeds in complete analogy: we use that sinxf(x)
(cosx−cos q)2

−
f(q)

sin q(x−q)2 −
f ′(q)

sin q(x−q) is a bounded function of x to conclude that

Σ(2)(q, q′, t) =
4

L2

∑
p>0,∈R

e2it(ε(p)−ε(q))

(p− q)2
+

4

L2

∑
p>0,∈R

f ′(q)

f(q)

e2it(ε(p)−ε(q))

p− q
+O(L−1t−1/2) .

(168)
Taylor expanding ε(p) around p = q and using (161) we finally arrive at

Σ(2)(q, q′, t) = 1− 4|tε′(q)|
L

+
2i sgn (tε′(q))

L

f ′(q)

f(q)
+O(L−1t−1/2) . (169)

A.2 Two-dimensional sums

In this subsection we calculate the two-dimensional sums arising in Sections 3.1.5 and 3.4.
Apart from being two-dimensional, the sums treated in this section differ from the previous
section by the fact that they are performed over the particles of the representative state,
and not over arbitrary, regularly spaced momenta in the Ramond sector.

A.2.1 Sums arising in finite-temperature dynamics

We consider

Ω1(t) =
1

L2

∑
i 6=j

eit(ε(qj)−ε(qi))

sin2
(
qi−qj

2

) sgn (ε′(qj)ε
′(qi)) . (170)

This sum is divergent when L → ∞. It grows as ∝ L and the proportionality constant
depends on the realization of the root density ρ in finite-size through the qi’s, and as a
consequence cannot be written in terms of the root density. However, this prefactor does
not depend on t, and the difference Ω1(t) − Ω1(0) which appears in the main text is not
divergent in the thermodynamic limit.

We have by symmetrizing the sum over i, j

Ω1(t)− Ω1(0) =
1

2L2

∑
i 6=j

eit(ε(qj)−ε(qi)) + eit(ε(qi)−ε(qj)) − 2

sin2
(
qi−qj

2

) sgn (ε′(qj)ε
′(qi)) . (171)

The summand does not have poles anymore, so that the sum can be turned into an integral
in the L→∞ limit

Ω1(t)− Ω1(0) =

1

2

∫ π

−π

∫ π

−π

eit(ε(v)−ε(u)) + eit(ε(u)−ε(v)) − 2

sin2
(
u−v

2

) sgn (ε′(u)ε′(v))ρ(u)ρ(v)dudv +O(L−1) .
(172)

We now have to determine the large t behaviour of this expression. We first write

Ω1(t)− Ω1(0) = −2

∫ π

−π

∫ π

−π

sin2[t(ε(v)− ε(u))/2]

sin2
(
u−v

2

) sgn (ε′(u)ε′(v))ρ(u)ρ(v)dudv , (173)

and perform a change of variable v = u+ η/t

Ω1(t)− Ω1(0) =

− 2

∫ π

−π
du

∫ (π−u)|t|

(−π−u)|t|
dη

sin2[t(ε(u+ η
t )− ε(u))/2]

|t| sin2
( η

2t

) sgn (ε′(u)ε′(u+ η
t ))ρ(u)ρ(u+ η

t ) .

(174)
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At leading order in t, it yields

Ω1(t)− Ω1(0) = −8|t|
∫ π

−π
du

∫ ∞
−∞

dη
sin2[ε′(u)η/2]

η2
ρ(u)2 + o(|t|) . (175)

Using
∫∞
−∞

sin2 x
x2

dx = π, we obtain

Ω1(t)− Ω1(0) = −4π

∫ π

−π
|tε′(u)|ρ(u)2 + o(|t|) . (176)

Let us determine the sub-leading term o(|t|) in the space-like regime, i.e. when sgn (ε′(u))
is constant, and when the root density ρ is continuous. In this case, coming back to (172),
we integrate by part to obtain

Ω1(t)− Ω1(0) = 2t

∫ π

−π

∫ π

−π
ε′(v)

sin[t(ε(v)− ε(u))]

tan
(
u−v

2

) ρ(u)ρ(v)dudv

+ 2

∫ π

−π

∫ π

−π

1

tan
(
u−v

2

)ρ(u)ρ′(v)dudv

−
∫ π

−π

∫ π

−π

eit(ε(v)−ε(u)) + eit(ε(u)−ε(v))

tan
(
u−v

2

) ρ(u)ρ′(v)dudv ,

(177)

where the last two double integrals are understood in principal value.
Let us focus first on the last double integral, that we separate into two integration

regions, one with |u− v| > ε and one with |u− v| < ε for a small fixed ε > 0. In the first
region, the term is an oscillatory integral of a bounded function, hence decays to zero with
time. In the second region, the v integral at fixed u may be approximated by

≈ 2ρ′(u)

∫ f+(u)

−f−(u)

eitxε
′(u) + e−itxε

′(u)

x
dx , (178)

with 0 < f±(u) < ε, where f±(u) are some limits that depend on u. Assuming without loss

of generality f−(u) < f+(u), this integral is
∫ f+(u)t
f−(u)t

eiyε
′(u)

y dy −
∫ −f−(u)t
−f+(u)t

eiyε
′(u)

y dy, which
decays to zero when t→∞. Hence

Ω1(t)− Ω1(0) = 2t

∫ π

−π

∫ π

−π
ε′(v)

sin[t(ε(v)− ε(u))]

tan
(
u−v

2

) ρ(u)ρ(v)dudv

+ 2

∫ π

−π

∫ π

−π

1

tan
(
u−v

2

)ρ(u)ρ′(v)dudv

+ o(t0) .

(179)

We now focus on the first double integral. First, since in the space-like regime ε′(u) never
vanishes, ε(u) is one-to-one from [−π, π] to [εmin, εmax]. Hence one can perform a change
of variable x = ε(u), y = ε(v) to obtain∫ π

−π

∫ π

−π
ε′(v)

sin[t(ε(v)− ε(u))]

tan
(
u−v

2

) ρ(u)ρ(v)dudv =∫ εmax

εmin

∫ εmax

εmin

1

ε′(ε−1(x))

sin[t(y − x)]

tan
(
ε−1(x)−ε−1(y)

2

)ρ(ε−1(x))ρ(ε−1(y))dxdy .
(180)

We now make the following observation. For any regular function f(x, y), the integral∫ εmax

εmin

∫ εmax

εmin

sin[t(y − x)]f(x, y)dxdy (181)
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is o(t−1). Indeed, by integrating by part the y integral we make appear a 1/t, and the
remaining integrals are oscillatory integrals, hence decay to zero with time. By adding
and subtracting the appropriate term to the right-hand side of (180) so as to cancel the
pole, we conclude from this∫ εmax

εmin

∫ εmax

εmin

1

ε′(ε−1(x))

sin[t(y − x)]

tan
(
ε−1(x)−ε−1(y)

2

)ρ(ε−1(x))ρ(ε−1(y))dxdy

= 2

∫ εmax

εmin

∫ εmax

εmin

sin[t(y − x)]

x− y
ρ(ε−1(x))2dxdy + o(t−1) .

(182)

We now split the x integral into several pieces [xn, xx+1] with xn+1 − xn small enough so
that ρ can be approximated to be constant on these pieces. Then we have∫ xn+1

xn

dx

∫ εmax

εmin

dy
sin[t(y − x)]

x− y
= −1

t

∫ |t|(εmax−xn)

|t|(εmax−xn+1)
Si (u)du+

1

t

∫ |t|(εmin−xn)

|t|(εmin−xn+1)
Si (u)du ,

(183)
with Si (u) =

∫ u
0

sinx
x dx the sinus integral. Using the expansion at large u > 0

Si (u) =
π

2
− cosu

u
+O(u−2) , (184)

one obtains∫ xn+1

xn

dx

∫ εmax

εmin

dy
sin[t(y − x)]

x− y
= −π sgn (t)(xn+1 − xn) +O(t−2) . (185)

Summing over the windows [xn, xn+1] we obtain∫ εmax

εmin

∫ εmax

εmin

sin[t(y − x)]

x− y
ρ(ε−1(x))2dxdy = −π sgn (t)

∫ εmax

εmin

ρ(ε−1(x))2dx+O(t−2) ,

(186)
which yields in the space-like regime

Ω1(t)− Ω1(0) = −4π

∫ π

−π
|tε′(u)|ρ(u)2 + 2

∫ π

−π

∫ π

−π

1

tan
(
u−v

2

)ρ(u)ρ′(v)dudv + o(t0) .

(187)

A.2.2 Sums arising in quantum quench dynamics

We consider

Ω2(t) =
8

L2

∑
i 6=j

sin qi sin qj
(cos qi − cos qj)2

e2it(ε(qi)−ε(qj))

Ω̃2(t) =
8

L2

∑
i 6=j

sin qi sin qj
(cos qi − cos qj)2

f(qi)

f(qj)
e2it(ε(qi)−ε(qj)) .

(188)

Again, Ω2(t) and Ω̃2(t) diverge as L in the thermodynamic limit. But the coefficient of
the divergence does not depend on t and is the same for Ω2(t) and Ω̃2(t). The differences
Ω̃2(t) − Ω2(0) are well-defined in the thermodynamic limit. Using the same approach as
in the previous section, one obtains

Ω̃2(t)− Ω2(0) = −16π

∫ π

0
ρ(x)2|tε′(x)|dx− 8

∫ π

0

∫ π

0
dxdy

sin y

cos y − cosx
ρ′(x)ρ(y)

+ o(t0) +O(L−1) .

(189)
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