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Abstract1

We demonstrate three-dimensional sculpting of laser beams using two-dimensional2

holograms. Without relying on initial guesses of the analytic properties or the3

Fourier transform of the desired light field, we show that an improved numeri-4

cal phase retrieval algorithm can produce continuous three-dimensional inten-5

sity distributions of arbitrary shapes. We benchmark our algorithm against6

optical bottle beams and double-helix beams and then show the extension to7

complex optical structures.8

1 Introduction9

Holographic beam shaping has developed into a powerful technique wherever laser light10

needs to be tailored to the special requirements of its respective application. The ability11

to engineer the spatial intensity profile of a light field has empowered novel and sophis-12

ticated methods of microscopy, optical trapping and optical manipulation. For example,13

absorptive microparticles have been confined in single-beam optical bottles [1] or colloidal14

spheres have been steered along curved trajectories with Airy beams [2]. Equally, beam15

shaping has served to achieve single-beam, three-dimensional imaging utilizing engineered16

point spread functions in super-resolution microscopy [3, 4].17

However, the creation of advanced light fields with arbitrary three-dimensional inten-18

sity distribution remains a challenging problem. Commonly they are created from ana-19

lytic solutions or closed-form expressions for the electric field (rather than the intensity),20

thereby restricting the set of realizable beams. For instance, the abruptly autofocussing21

beams derived from the Airy solution [5] can form three-dimensional structures [6] or even22

single-beam optical bottles [7]. These approaches have in common that either the exact23

desired optical field or its Fourier transform have to be known, which is much more restric-24

tive than specifying the intensity distribution. Often this requires simplifying assumptions25

such as cylindrical symmetry [8,9] or an analytic mode basis [3]. Therefore, the properties26

of beams created with the aforementioned approaches are intrinsically limited.27

Numerical approaches using iterative projection algorithms have already established28

arbitrary two-dimensional beam shaping with remarkable capabilities [10]. Demanding29

light to form a continuous three-dimensional structure of pre-designed arbitrary intensity30

profile on the other hand still remains a challenging goal to accomplish. There are existing31

approaches to create a stack of multiple two-dimensional patterns at different distances32

along a propagating beam [11], nevertheless the intensity between these discrete planes33

evolves randomly. Gaining control over the field evolution between the target layers marks34

an important progress in order to achieve truly arbitrary three-dimensional beam shaping35

capabilities.36

In this paper, we demonstrate spatially continuous three-dimensional intensity sculpt-37

ing using an improved numerical phase retrieval. The appeal of this approach is based38
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on its overall simplicity while allowing for high flexibility. We show that our approach39

cannot only reproduce complex beams but it is even capable of modifying their beam40

profile during propagation in a predictable manner. We demonstrate our approach at41

the examples of a single-beam optical bottle [9] and a rotating double-helix point spread42

function [3] without providing any analytical input. We then show that the methodology43

can be extended beyond cylindrical symmetry and beyond simple scaling transformations.44

2 Experimental setup and volumetric phase retrieval45

The experimental setup (see Figure 1) composes of a spatial light modulator at location46

z = 0, which is illuminated by a collimated Gaussian laser beam of waist w0=6.3mm and47

a wavelength of λ=735nm. The phase-only spatial light modulator [12] imprints a phase48

pattern φSLM onto the Gaussian beam. The beam after phase modulation is imaged by49

a thin lens (f=250mm) in a 2f -configuration onto the focal plane P2f , which projects50

the Fourier transform of the front focal plane P0 onto P2f . We compensate aberrations51

from non-perfect optical elements, including the spatial light modulator itself, by a Shack-52

Hartmann wavefront correction algorithm [13]. The sculpted intensity is measured with a53

CCD camera mounted on a linear translation stage in several target planes Pj , covering54

∆z ∈ (−12, 12)mm around the focal plane P2f .55

ϕ
r̂
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Figure 1: Working principle of the setup with the spatial light modulator located at P0.
Cylindrical coordinate system in red (z-axis coincides with optical axis). (a) cubic phase
pattern displayed on the spatial light modulator to control the beam around the back focal
plane P2f sampled at Pj to form an Airy beam. (b) ray simulation of 2f -setup with phase
(a) applied.

The complex transfer functions of Fourier optics provide a full description of linear56

optical systems [14]. Based on this foundation, phase retrieval algorithms calculate a two-57

dimensional phase corresponding to a target intensity distribution for a given incident58

field [15]. To obtain intensity control over a single target plane Pj the phase φSLM is opti-59

mized by iterative projection between the incident plane and the target plane. Applying60

constraints in the target plane P2f and in the front focal plane P0 guides the optimization61

towards the target intensity. These constraints are implied by the available intensity and62

the desired target intensity. However, the solutions are not necessarily unique.63

Describing the propagation characteristics of an optical beam in a finite volume requires64

volumetric intensity information. We obtain this information by sampling the beam’s in-65

tensity at discrete planes Pj around the focal plane P2f . The phase φSLM is then calculated66

with a Gerchberg-Saxton based phase retrieval algorithm [11]. An important subtlety of67

this algorithm design is that there is no cross-talk between adjacent target planes Pj and68
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Pj+1. Hence, in each iteration the algorithm solves for all Pj individually and performs a69

weighted average on the back projected fields at P0. This may lead to a randomly evolving70

intra-plane intensity [11], which is not suitable for the creation of optical beams.71

P1P2 P3 P4 P5 P6 P7 P8P9

adaptive target sampling

numerical
phase retrieval

P1P2 P3 P4 P5 P6 P7 P8P9

continuous evolution

Figure 2: Adaptive real-space target sampling: Creating an overlap between adjacent
target planes to avoid random evolution. Solid black lines indicate the sample planes Pj
with binary target (blue). The sample planes are distanced such that adjacent planes
share some overlap (shaded red). The numerical phase retrieval algorithm is guided to the
continuous structure (solid red line).

Realizing continuously evolving patterns requires an adjusted target design compen-72

sating the algorithms mentioned behavior. We have found that the random evolution73

between adjacent planes can be removed by a proper target sampling. A great discrep-74

ancy in the target beam profile between adjacent planes result in ambiguous solutions for75

the intra-plane field. Hence, choosing an adaptive real-space target sampling, tailored to76

the requested beam, guides the algorithm to converge towards a continuous solution.77

To influence the optimization as discussed, we choose the target beam sampling such78

that the intensity at sample plane Pj propagated to Pj+1 and the intensity at Pj+1 share79

an overlap. However, this requirement is not yet strict enough: we have found that we80

specifically need to create the overlap at the edge of the beam profile. Intuitively, this81

can be understood as a series of apertures so closely stacked, that the individual rays82

form the desired contour. Figure 2 illustrates this concept. A two-dimensional bottle83

beam is formed from a small number of binary beam samples. Ensuring an overlap at84

the beams edge between adjacent sample planes leads to unambiguous paths for the intra-85

plane field. This intuitive geometric interpretation also serves to determine the required86

minimal number of sample planes N and their positions zj . Of course the target beam87

could be sampled at a much higher rate. Deducing the minimal required N optimizes the88

computational complexity still ensuring continuous beam evolution.89

A common issue with numerical optimization in general is the stagnation in local90

minima, which applies as well to numerical phase retrieval. A well chosen initial field, i.e.,91

an initial phase guess φ0SLM, can serve to improve convergence and avoid stagnation. There92

are multiple approaches to a find an initial phase guess, but due to the huge diversity of93

the considered targets we choose a random superposition algorithm [11]. This algorithm94

propagates the three-dimensional target field back to the incident plane P0 and performs95

a weighted average on the back-propagated fields.96
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Figure 3: Experimental and numerical results for a single-beam optical bottle. (a) numer-
ically obtained phase pattern, (b)-(g) transverse intensity at the planes indicated in (h)
(dotted lines). (h) intensity in the y=0-plane including the pre-designed theoretical shape
(dashed lines) and its numerically simulated counterpart (i).

3 Results97

3.1 Optical bottle and helix beams: Benchmark98

A benchmark for arbitrary three-dimensional beam shaping by numerical phase retrieval is99

the creation of optical beams for which either analytical or closed-form expressions already100

exist, without actually using this knowledge.101

The single-beam optical bottle, for instance, can be realized as a superposition of102

Laguerre-Gaussian modes [16]. Characteristically, this beam transforms from a bright103

spot to a homogeneous ring and back to a spot when moving through its focus. Ad-104

vances in caustic beam engineering have established optical bottles composed of circular105

auto(de)focusing Airy beams [17] or convex trajectories [9, 18].106

As mentioned in the previous section, the number of sampling planes N and their107

positions need to be derived from the target beam. The bottle beam’s annulus cross-108

section evolves on a spheroidal trajectory, given in polar coordinates by109

r(z) =
√

(rmax − r0)2 − (z − z̄)2 − r0. (1)

Here, rmax denotes the maximal radius of the bottle beam centered at z = z̄, while110

r0 is a radial offset. The length L and the maximal radius rmax are the bottle beams111

characteristic parameters. Hence, we choose the radial offset r0 such that r(±L/2) = 0.112

Consequently, the center of the spheroidal surface is located at (r0, z̄). To ensure an113

overlap of the intensities in consecutive planes at zj and zj+1, we sample the bottle beam114

at the positions zj such that115

∆r = r(zj)− r(zj+1) = const ≤ wa, (2)
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where wa indicates the annulus’ width. This results in the minimal number of sample116

planes N ≥ rmax
wa

to achieve some overlap between adjacent planes. The target planes’117

positions zj can be obtained from the inverse function of equation 1 and rj = rmax
n with118

n ∈ [0, N ].119

The initial phase guess φ0SLM is constructed from the obtained target intensities Tj(~r)120

at zj by the random superposition algorithm [11]. This applies to all beams in this paper.121

Starting from φ0SLM the phase retrieval algorithm calculates the phase pattern φSLM in122

Figure 3(a).123

In Figure 3, we show our experimental results for a bottle beam with rmax=110µm re-124

covered from N=15 target layers. As desired, the created bottle beam encloses a volume125

void of any light and the pre-designed trajectory matches the experimental data. The126

achieved contrast between the bottles surface and its inner region is suitable for manipu-127

lation and trapping applications. Apart from a weak intensity asymmetry (z ↔ −z) our128

result is consistent with bottle beams created from caustic engineering [9]. The creation of129

various bottle beams within a feasible parameter space (L ∈ (14, 54) zR, rmax ∈ (5, 13)w0,130

maximal aspect ratio 80:1, where zR and w0 denote the Rayleigh length and waist of the131

unmodulated beam) offers a first impression of the flexibility of the presented approach.132

As a second benchmark, we consider the double-helix point spread function commonly133

used in super-resolution microscopy [4]. Similar to the optical bottle beam the double helix134

point spread function can also be described and created by a superposition of Laguerre-135

Gaussian modes [19] or Bessel beams [20].136

Since this pattern deviates substantially from the bottle beam discussed earlier, we137

need to deduce N and the zj again. The two Gaussian spots are designed to rotate rigidly138

on a helical trajectory r(z) = rrot = const, which implies equidistantly spaced zj along the139

pattern length L. The crucial part about this pattern is the rotation ϕ(z). To ensure the140

overlap between spots of adjacent target planes, we need to fulfill ∆ϕ ≤ arcsin
(
wspot

rrot

)
,141

where wspot denotes the spots radius.142

The phase pattern obtained from the numerical phase retrieval is shown in Figure143

4(b). It shows very similar structures to the analytical phase of the Laguerre-Gaussian144

superposition [3]. Most intensity of the helix beam is concentrated in the two Gaussian145

spots. Figures 4(b)-(g) depict the rigid rotation of the equidistant spots. The entire146

beam propagates shape-invariant throughout the considered volume. Notably our result147

is obtained without an initial phase guess assuming a Laguerre-Gaussian superposition.148

The investigated helix beam can be classified as a beam with radially self-accelerating149

intensity [21]. Hence, there exist a rotating reference frame, in which the beam propagates150

quasi-nondiffractive. Nondiffractive beams are resilient to small perturbations [21, 22].151

This is valid for perturbations smaller or comparably sized to the characteristic beam152

size, which is the Gaussian spots’ waist in our case. Due to their robustness such beams153

are suitable for many applications where propagation does not take place in vacuum. To154

prove the quasi-nondiffractive nature of the helix beam, we verify the self-healing after an155

opaque obstacle. The self-healing properties of the generated beam are tested by a small156

opaque object placed in the beam path to block one of the two rotating spots near the157

first target plane z0. The original beam profile was recovered shortly after the obstacle.158

The presented results show that our numerical approach is capable of complex beam159

reconstructions, even when starting from a randomized initial phase guess. A proper target160

design can overcome the random evolution between discrete sampling planes leading to161

continuously evolving beams. Moreover, it is possible to reproduce beams that exhibit162

quasi-nondiffractive propagation. Transverse and longitudinal scaling of the created beams163

can be easily achieved by altering the target beam profile.164
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Figure 4: Experimental and numerical results for two Gaussian spots rotating rigidly on
a helical trajectory covering a total rotation of ∆ϕ = π: (a) calculated phase pattern
for counter-clockwise rotation, (b)-(g) transverse intensity at planes indicated with dotted
lines in (h). (h) Experimental integrated intensity

∫
I(x, y, z)dy and (i) numerical coun-

terpart with theoretical trajectory projected onto the y = 0 plane (dashed and dashdotted
lines).

3.2 Realizing arbitrary beam shaping in three dimensions165

We now show that numerical phase retrieval combined with adaptive target sampling166

provides access to arbitrary three-dimensional intensity sculpting. Not being bound by167

analytic expressions enables us to create new types of beams with tailored propagation168

and symmetry properties.169

The creation of optical bottles with the discussed analytic approaches commonly ex-170

ploits its cylindrical symmetry, solving for a trajectory r(z) to calculate a phase φSLM(r)171

[9]. After the benchmarks in the previous section we go a step further and create a struc-172

tured intensity surface of the optical bottle beam, that does not obey cylindrical symmetry.173

To accomplish this we do explicitly not use the bottle beam phase as an initial guess but174

instead we design a new target beam with the desired properties and apply the phase175

retrieval algorithm to the adaptively sampled target. The designed surface is structured176

with a periodic azimuthal intensity gradient and still envelopes a volume of vanishing in-177

tensity. It is possible to create this type of beam with our approach. However, the created178

azimuthal intensity gradient is of static nature, meaning it does not change when moving179

through the focus. Additionally adding a rotation to the azimuthal gradient also breaks180

the symmetry with respect to the focal plane. Although the intensity gradient rotates181

similarly to the Gaussian spots of the helix beam, these are different types of beams.182

The spheroidal surface beam emerges from a bright spot, forms an structured annulus183

and collapses again into a spot, while the rotating helix beam propagates shape invari-184

ant throughout all Pj . The minimal number of sample planes required for the demanded185

rotation is lower than the original N derived for a bottle beam with comparable rmax.186
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Therefore we do not need to adjust the sampling here.187

A typical result for an optical beam with a rigidly rotating structured spheroidal surface188

is shown in Figure 5. As demanded, the beam exhibits a periodic azimuthal structure that189

rotates during propagation. Figure 5(h) illustrates the evolution of the beam profile, which190

is still continuous despite the substantial complexity increase compared to the benchmark191

beams. The requested symmetry properties are also fulfilled. Being capable of shaping192

a beam to this extent separates our approach from techniques that exploit the beam193

symmetry for simplifying assumptions.194
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Figure 5: Experimental and numerical results for a single-beam optical bottle with a
rotating periodic transverse intensity gradient. (a) numerically obtained phase pattern,
(b)-(g) transverse intensity at the planes indicated in (h) (dotted lines) and indicated
rotation in (b). (h) Experimental integrated intensity

∫
I(x, y, z)dy and (i) numerical

counterpart with the theoretical trajectories of the intensity maxima projected onto the
y = 0 plane (dashed lines).

The second example is a generalization of the double-helix beam. It is known that195

altering the individual contributions of a Lagerre-Gaussian superposition yields different196

rotation rates ∂ϕ
∂z and beam profiles [3, 19]. Yet, the Gaussian spots of the double-helix197

point spread function propagate on a trajectory with a circular cross-section (see Figure198

4). We now demonstrate that we can vary this cross-section from a circle to a polygon199

going beyond the Laguerre-Gauss superposition. As the trajectory (along the z–direction)200

of the Gaussian spots composing the intensity pattern is no longer rotational symmetric201

around the optical axis, the distance between the two Gaussian spots changes with the202

propagation distance. Due to its application in super-resolution microscopy the rotation203

rate of the double helix point spread function is usually fixed to ∂ϕ
∂z = π

L . Similar to204

the Laguerre-Gaussian superposition, we can continuously adjust this rotation rate. To205

show this we increase the rotation rate by a factor of two, in addition to the varied cross-206

section. Regarding the target sampling, we describe the polygonial cross-section in polar207
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coordinates, which leads to208

r(ϕ) = rmax ·
cos
(
π
n

)
cos
(
ϕ− 2π

n b
nϕ+π
2π c

) (3)

where n denoted the polygon order. To circumvent the complicated calculation of a inverse209

function we employ a equidistant sampling and estimate the minimal number of sample210

planes from the upper limit max [r(ϕ)] = rmax.211
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Figure 6: Experimental and numerical results for two Gaussian spots rotating rigidly
on a triangle trajectory covering a total rotation angle of ∆ϕ = 2π: (a) calculated
phase for a clockwise rotation, (b)-(g) transverse intensity at planes indicated in (h) with
the pre-designed triangular cross-section in (b). (h) experimental integrated intensity∫
I(x, y, z)dy and (i) numerical counterpart with theoretical trajectory projected onto the

y = 0 plane (dashed and dotted lines).

Typical results for a pair of spots moving on a triangular trajectory are shown in Figure212

6. Again the experimental measurements in Figure 6(h) coincides with the numerical213

simulations 6(i) and the varying distance between the two Gaussian spots can be observed214

clearly. Due to the increased rotation rate a full period of the circulation around the215

optical axis is visible now. The challenging sections of this beam are located at the216

corners of the polygon. Although we used a equidistant sampling, the spots’ propagation217

around the polygons corners suffices to recognize the altered cross-section. As well as the218

structured intensity surface, this beam serves very well to highlight the performance and219

functionality of our approach compared to established techniques. The additional effort220

associated with altering the cross-section and rotation rate is negligible compared to the221

creation of conventional helix beams.222

The presented beam shaping operations should be understood as examples, represent-223

ing only a subset of potential diversification. All patterns created in this paper show that224

a proper target sampling is key to obtain continuously evolving optical beams when using225

numerical phase retrieval in three dimensions. Although the considered three-dimensional226
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beam profiles are of complex nature, numerical simulation and experimental measurements227

coincide remarkably well, emphasizing the achievable predictability and control over the228

beam propagation.229

4 Conclusion and Outlook230

In this paper, we have shown that the three-dimensional intensity distributions of complex231

beams can be created by means of numerical phase retrieval. Our approach is capable of232

producing these optical beams with pre-designed non-trivially evolving transverse profiles233

without sacrificing the patterns fidelity. We have shown that our approach can repro-234

duce light patterns of different approaches. In addition, we have successfully created new235

complex beams that have not been generated by conventional techniques, showcasing the236

considerable sculpting possibilities of our approach.237

The requested target beam properties can be directly applied in real-space targets in-238

stead of tracking down their origin to the original beam or the generating phase pattern.239

These large degrees of freedom increase the applicability of advanced tailored optical fields.240

Furthermore, dynamic manipulation can be achieved by sequences of phase pattern only241

limited by the spatial light modulators pixel refresh rate. The remaining intensity inhomo-242

geneities along the propagation trajectory may be compensated by additional amplitude243

control of the incident field [18].244

Numerical phase retrieval for three-dimensional beam shaping may open the door to245

novel optical potentials build on top of already existing classes of optical beams. In the246

future our method could help to launch new developments in various fields: quantum gases247

confined to spatially curved potentials, particle manipulation and guiding along arbitrary248

trajectories or laser writing of new types of structures could be achieved adopting our249

approach. Given the flexibility and simplicity of the presented approach, it may be a250

valuable tool for applications, wherever precisely controlled optical potentials are essential.251
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