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Abstract1

We demonstrate three-dimensional sculpting of laser beams using two-dimensional2

holograms. Without relying on initial guesses of the analytic properties or the3

Fourier transform of the desired light field, we show that an improved numeri-4

cal phase retrieval algorithm can produce continuous three-dimensional inten-5

sity distributions of arbitrary shapes. We benchmark our algorithm against6

optical bottle beams and double-helix beams and then show the extension to7

complex optical structures.8

1 Introduction9

Holographic beam shaping has developed into a powerful technique wherever laser light10

needs to be tailored to the special requirements of its respective application. The ability11

to engineer the spatial intensity profile of a light field has empowered novel and sophis-12

ticated methods of microscopy, optical trapping and optical manipulation. For example,13

absorptive microparticles have been confined in single-beam optical bottles [1] or colloidal14

spheres have been steered along curved trajectories with Airy beams [2]. Equally, beam15

shaping has served to achieve single-beam, three-dimensional imaging utilizing engineered16

point spread functions in super-resolution microscopy [3, 4].17

However, the creation of advanced light fields with arbitrary three-dimensional inten-18

sity distribution remains a challenging problem. Commonly they are created from ana-19

lytic solutions or closed-form expressions for the electric field (rather than the intensity),20

thereby restricting the set of realizable beams. For instance, the abruptly autofocussing21

beams derived from the Airy solution [5] can form three-dimensional structures [6] or even22

single-beam optical bottles [7]. These approaches have in common that either the exact23

desired optical field or its Fourier transform have to be known, which is much more restric-24

tive than specifying the intensity distribution. Often this requires simplifying assumptions25

such as cylindrical symmetry [8,9] or an analytic mode basis [3]. Therefore, the properties26

of beams created with the aforementioned approaches are intrinsically limited.27

Numerical approaches using iterative projection algorithms have already established28

arbitrary two-dimensional beam shaping with remarkable capabilities [10]. Extending the29

beam shaping to a finite volume requires three-dimensional beam sampling and constraint30

application. Sampling the volume on a three-dimensional grid allows to retrieve complex31

structures [11, 12] but extensive volumetric sampling comes along with a high computa-32

tional load. Sampling only at multiple axially shifted target planes helps to reduce the33

problems complexity still allowing for highly versatile beam shaping [13]. Decreasing the34

axial sampling rate can result in an uncontrolled intra-plane beam propagation [13]. Re-35

taining sufficient control over the intra-plane field propagation marks an important step36

towards efficient still highly versatile continuous beam shaping.37
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In this paper, we demonstrate spatially continuous three-dimensional intensity sculpt-38

ing using an improved numerical phase retrieval method. The appeal of this approach is39

based on its overall simplicity while allowing for high flexibility. We show that our approach40

cannot only reproduce complex beams but it is even capable of modifying their beam pro-41

file during propagation in a predictable manner. We demonstrate our approach using the42

examples of a single-beam optical bottle [9] and a rotating double-helix point spread func-43

tion [3] without providing any analytical input. We then show that the methodology can44

be extended beyond cylindrical symmetry and beyond simple scaling transformations.45

2 Experimental setup and volumetric phase retrieval46

The experimental setup (see Figure 1) is composed of a spatial light modulator at location47

z = 0, which is illuminated by a collimated Gaussian laser beam of waist w0=6.3mm and48

a wavelength of λ=735nm. The phase-only spatial light modulator [14] imprints a phase49

pattern φSLM onto the Gaussian beam. The beam after phase modulation is imaged by50

a thin lens (f=250mm) in a 2f -configuration onto the focal plane P2f , which projects51

the Fourier transform of the front focal plane P0 onto P2f . We compensate aberrations52

from non-perfect optical elements, including the spatial light modulator itself, by a Shack-53

Hartmann wavefront correction algorithm [15]. The sculpted intensity is measured with a54

CCD camera mounted on a linear translation stage in several target planes Pj , covering55

∆z ∈ (−12, 12)mm around the focal plane P2f .56

ϕ
r̂
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z

∆z

Figure 1: Working principle of the setup with the spatial light modulator located at P0.
Cylindrical coordinate system in red (z-axis coincides with optical axis). (a) cubic phase
pattern displayed on the spatial light modulator to control the beam around the back focal
plane P2f sampled at Pj to form an Airy beam. (b) ray simulation of 2f -setup with phase
(a) applied.

The complex transfer functions of Fourier optics provide a full description of linear57

optical systems [16]. Based on this foundation, phase retrieval algorithms calculate a two-58

dimensional phase corresponding to a target intensity distribution for a given incident59

field [17]. To obtain intensity control over a single target plane Pj the phase φSLM is opti-60

mized by iterative projection between the incident plane and the target plane. Applying61

constraints in the target plane P2f and in the front focal plane P0 guides the optimization62

towards the target intensity. These constraints are implied by the available intensity and63

the desired target intensity. However, the solutions are not necessarily unique.64

Describing the propagation characteristics of an optical beam in a finite volume re-65

quires volumetric intensity information. We obtain this information by sampling the66
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beam’s intensity at discrete planes Pj around the focal plane P2f . The phase φSLM is67

then calculated with a Gerchberg-Saxton based phase retrieval algorithm [13] (see Figure68

3). An important subtlety of this algorithm design is that there is no cross-talk between69

adjacent target planes Pj and Pj+1. Hence, in each iteration the algorithm solves for all70

Pj individually and performs a weighted average on the back projected fields at P0. This71

may lead to a randomly evolving intra-plane intensity [13], which is not suitable for the72

creation of optical beams.73

P1P2 P3 P4 P5 P6 P7 P8P9

adaptive target sampling

numerical
phase retrieval

P1P2 P3 P4 P5 P6 P7 P8P9

continuous evolution

Figure 2: Adaptive real-space target sampling: Creating an overlap between adjacent
target planes to avoid random evolution. Solid black lines indicate the sample planes Pj
with binary target (blue). The sample planes are distanced such that adjacent planes
share some overlap (shaded red). The numerical phase retrieval algorithm is guided to the
continuous structure (solid red line).

Realizing continuously evolving patterns requires an adjusted target design compen-74

sating the algorithms mentioned behavior. We have found that the random evolution75

between adjacent planes can be removed by a proper target sampling. A great discrep-76

ancy in the target beam profile between adjacent planes result in ambiguous solutions for77

the intra-plane field. Hence, choosing an adaptive real-space target sampling, tailored to78

the requested beam, guides the algorithm to converge towards a continuous solution.79

To influence the optimization as discussed, we choose the target beam sampling such80

that the intensity at sample plane Pj propagated to Pj+1 and the intensity at Pj+1 share81

an overlap. However, this requirement is not yet strict enough: we have found that we82

specifically need to create the overlap at the edge of the beam profile. Intuitively, this83

can be understood as a series of apertures so closely stacked, that the individual rays84

form the desired contour. Figure 2 illustrates this concept. A two-dimensional bottle85

beam is formed from a small number of binary beam samples. Ensuring an overlap at86

the beams edge between adjacent sample planes leads to unambiguous paths for the intra-87

plane field. This intuitive geometric interpretation also serves to determine the required88

minimal number of sample planes N and their positions zj . Of course the target beam89

could be sampled at a much higher rate. Deducing the minimal required N optimizes the90

computational complexity while still ensuring continuous beam evolution.91

A common issue with numerical optimization in general is the stagnation in local92

minima, which applies as well to numerical phase retrieval. A well chosen initial field,93

i.e., an initial phase guess φ0
SLM, can serve to improve convergence and avoid stagnation.94

There are multiple approaches to find an initial phase guess, but due to the huge diversity95

of the considered targets we choose a random superposition algorithm [13]. This algorithm96

propagates the three-dimensional target intensities Tj(~r) at zj back to the incident plane97

P0 and performs a weighted average on the back-propagated fields.98

3



SciPost Physics Submission

1: procedure Random superposition algorithm(zj , Tj)

2: return φRS =
∑

zj
P−1

2f P−1
z

√
Tj · exp

[
iφrand
j

]
3: procedure Global Gerchberg-Saxton(zj , Tj)
4: φ(0) ← φRS . random superposition phase

5: E
(0)
P0
← √Iin . initialization of field in P0

6: n← 0
7: while n < nmax do
8: n← n+ 1
9: E

(n)
P0
← E

(n−1)
P0

exp
[
iφ(n−1)

]
10: for z ∈ zj do

11: E
(n)
Pj
← PzP2f

[
E

(n)
P0

]
. propagation to Pj

12: E
(n)
Pj
←
√
Tj · exp

[
i · arg

(
E

(n)
Pj

)
φn

]
. constraint at Pj

13: E
(n)
P0,j
← P−1

2f P−1
z

[
E

(n)
Pj

]
. back propagation to P0

14: φ(n) ← arg
[∑

j E
(n)
P0,j

]
15: return φ(n)

Figure 3: Pseudo code of the Gerchberg-Saxton phase retrieval algorithm adopted from
[13]. The target intensities Tj applied as a constraint in line 10 are obtained from the
adaptive beam sampling.

3 Results99

3.1 Optical bottle and helix beams: Benchmark100

A benchmark for arbitrary three-dimensional beam shaping by numerical phase retrieval is101

the creation of optical beams for which either analytical or closed-form expressions already102

exist, without actually using this knowledge.103

The single-beam optical bottle, for instance, can be realized as a superposition of104

Laguerre-Gaussian modes [18]. Characteristically, this beam transforms from a bright105

spot to a homogeneous ring and back to a spot when moving through its focus. Ad-106

vances in caustic beam engineering have established optical bottles composed of circular107

auto(de)focusing Airy beams [19] or convex trajectories [9, 20].108

As mentioned in the previous section, the number of sampling planes N and their109

positions need to be derived from the target beam. In order to deduce the number of110

sample planes N and their positions zj for an arbitrary intensity map T (x, y, z) consider111

the intensity overlap O(∆z) between two planes axially shifted by ∆z:112

O (∆z) =

∫∫
M

dxdy T (x, y, zi)T (x, y, zi + ∆z) (1)

where T (z) is the normalized target beam intensity at the axial position z andM denotes113

the focal volume. The steepest descent of O (∆z) takes place at114

∂2O(∆z)

∂(∆z)2

∣∣∣∣
∆zi

!
= 0 (2)
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Figure 4: Experimental and numerical results for a single-beam optical bottle. (a) numer-
ically obtained phase pattern, (b)-(g) transverse intensity at the planes indicated in (h)
(dotted lines). (h) intensity in the y=0-plane including the pre-designed theoretical shape
(dashed lines) and its numerically simulated counterpart (i).
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The vanishing second derivative of O(∆z) with respect to the axial shift ∆z defines the115

location of the next plane zi+1 = zi + ∆zi. Applying this procedure iteratively defines all116

sampling planes zj and the minimal required number of sample planes Nmin.117

The bottle beam’s annulus cross-section evolves on a spheroidal trajectory, given in118

polar coordinates by119

r(z) =
√

(rmax − r0)2 − (z − z̄)2 − r0. (3)

Here, rmax denotes the maximal radius of the bottle beam centered at z = z̄, while120

r0 is a radial offset. The length L and the maximal radius rmax are the bottle beams121

characteristic parameters. Hence, we choose the radial offset r0 such that r(±L/2) = 0.122

Consequently, the center of the spheroidal surface is located at (r0, z̄). Describing the123

bottle beam by a cylindrical symmetric Gaussian of width w moving on the trajectory124

paramtrized by equation 3 provides the full three-dimensional target beam. Applying the125

overlap criterion in equation 1 to the three-dimensional target beam yields the number of126

adaptive sample planes and their positions.127

Starting from φ0
SLM the phase retrieval algorithm calculates the phase pattern φSLM in128

Figure 4(a). The experimental measured and numerically simulated beam is also depicted129

in Figure 4. This bottle beam particular bottle beam was recovered from N = 15 sampling130

planes, having a maximal diameter of 2 · rmax = 220µm and a length of L = 10mm.131

As desired, the created bottle beam encloses a volume void of any light and the pre-132

designed trajectory matches the experimental data. The achieved contrast between the133

bottles surface and its inner region is suitable for manipulation and trapping applications.134

Apart from a weak intensity asymmetry (z ↔ −z) our result is consistent with bottle135

beams created from caustic engineering [9]. The creation of various bottle beams within136

a feasible parameter space (L ∈ (14, 54) zR, rmax ∈ (5, 13)w0, maximal aspect ratio 80:1,137

where zR and w0 denote the Rayleigh length and waist of the unmodulated beam) offers138

a first impression of the flexibility of the presented approach.139

As a second benchmark, we consider the double-helix point spread function commonly140

used in super-resolution microscopy [4]. Similar to the optical bottle beam the double helix141

point spread function can also be described and created by a superposition of Laguerre-142

Gaussian modes [21] or Bessel beams [22].143

Since this pattern deviates substantially from the bottle beam discussed earlier, we144

need to deduce N and the zj again. The two Gaussian spots are designed to rotate rigidly145

on a helical trajectory r(z) = rrot = const, which implies equidistantly spaced zj along146

the pattern length L which coincides with the sampling deduced from condition 2.147

The phase pattern obtained from the numerical phase retrieval is shown in Figure148

5(b). It shows very similar structures to the analytical phase of the Laguerre-Gaussian149

superposition [3]. Most intensity of the helix beam is concentrated in the two Gaussian150

spots. Figures 5(b)-(g) depict the rigid rotation of the equidistant spots. The entire151

beam propagates shape-invariant throughout the considered volume. Notably our result152

is obtained without an initial phase guess assuming a Laguerre-Gaussian superposition.153

The investigated helix beam can be classified as a beam with radially self-accelerating154

intensity [23]. Hence, there exist a rotating reference frame, in which the beam propagates155

in a quasi-nondiffractive way. Nondiffractive beams are resilient to small perturbations156

[23, 24]. This is valid for perturbations smaller or comparably sized to the characteristic157

beam size, which is the Gaussian spots’ waist in our case. Due to their robustness such158

beams are suitable for many applications where propagation does not take place in vacuum.159

To prove the quasi-nondiffractive nature of the helix beam, we verify the self-healing after160

an opaque obstacle. The self-healing properties of the generated beam are tested by a161

small opaque object placed in the beam path to block one of the two rotating spots near162

the first target plane z0. The original beam profile was recovered shortly after the obstacle.163
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Figure 5: Experimental and numerical results for two Gaussian spots rotating rigidly on
a helical trajectory covering a total rotation of ∆ϕ = π: (a) calculated phase pattern
for counter-clockwise rotation, (b)-(g) transverse intensity at planes indicated with dotted
lines in (h). (h) Experimental integrated intensity

∫
I(x, y, z)dy and (i) numerical coun-

terpart with theoretical trajectory projected onto the y = 0 plane (dashed and dashdotted
lines).

The presented results show that our numerical approach combined with an adaptive164

target sampling is capable of complex beam reconstructions, even when starting from a165

randomized initial phase guess. The overlap condition implied by equation 2 provides166

a proper sampling to overcome the random evolution between discrete sampling planes167

leading to continuously evolving beams. Moreover, it is possible to reproduce beams168

that exhibit quasi-nondiffractive propagation. Transverse and longitudinal scaling of the169

created beams can be easily achieved by altering the target beam profile.170

3.2 Realizing arbitrary beam shaping in three dimensions171

We now show that numerical phase retrieval combined with adaptive target sampling172

provides access to arbitrary three-dimensional intensity sculpting. Not being bound by173

analytic expressions enables us to create new types of beams with tailored propagation174

and symmetry properties.175

The creation of optical bottles with the discussed analytic approaches commonly ex-176

ploits its cylindrical symmetry, solving for a trajectory r(z) to calculate a phase φSLM(r)177

[9]. After the benchmarks in the previous section we go a step further and create a178

structured intensity surface of the optical bottle beam, that does not obey cylindrical179

symmetry. To accomplish this we explicitly do not use the bottle beam phase as an initial180

guess but instead we design a new target beam with the desired properties and apply181

the phase retrieval algorithm to the adaptively sampled target. The designed surface is182

structured with a periodic azimuthal intensity gradient and still envelopes a volume of183
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vanishing intensity. It is possible to create this type of beam with our approach. However,184

the created azimuthal intensity gradient is of static nature, meaning it does not change185

when moving through the focus. Additionally adding a rotation to the azimuthal gradient186

also breaks the symmetry with respect to the focal plane. Although the intensity gradi-187

ent rotates similarly to the Gaussian spots of the helix beam, these are different types188

of beams. The spheroidal surface beam emerges from a bright spot, forms a structured189

annulus and collapses again into a spot, while the rotating helix beam propagates shape190

invariant throughout all Pj . The number and position of sample planes derived from the191

overlap condition are nearly identical to original bottle beam. The target sampling is only192

marginally adjusted since the additional rotation is already sampled sufficiently by the193

bottle beam planes.194

A typical result for an optical beam with a rigidly rotating structured spheroidal surface195

is shown in Figure 6. As demanded, the beam exhibits a periodic azimuthal structure that196

rotates during propagation. Figure 6(h) illustrates the evolution of the beam profile, which197

is still continuous despite the substantial complexity increase compared to the benchmark198

beams. The requested symmetry properties are also fulfilled. Being capable of shaping199

a beam to this extent separates our approach from techniques that exploit the beam200

symmetry for simplifying assumptions.201
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Figure 6: Experimental and numerical results for a single-beam optical bottle with a
rotating periodic transverse intensity gradient. (a) numerically obtained phase pattern,
(b)-(g) transverse intensity at the planes indicated in (h) (dotted lines) and indicated
rotation in (b). (h) Experimental integrated intensity

∫
I(x, y, z)dy and (i) numerical

counterpart with the theoretical trajectories of the intensity maxima projected onto the
y = 0 plane (dashed lines).

The second example is a generalization of the double-helix beam. It is known that202

altering the individual contributions of a Lagerre-Gaussian superposition yields different203

rotation rates ∂ϕ
∂z and beam profiles [3, 21]. Yet, the Gaussian spots of the double-helix204
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point spread function propagate on a trajectory with a circular cross-section (see Figure205

5). We now demonstrate that we can vary this cross-section from a circle to a polygon206

going beyond the Laguerre-Gauss superposition. As the trajectory (along the z–direction)207

of the Gaussian spots composing the intensity pattern is no longer rotational symmetric208

around the optical axis, the distance between the two Gaussian spots changes with the209

propagation distance. Due to its application in super-resolution microscopy the rotation210

rate of the double helix point spread function is usually fixed to ∂ϕ
∂z = π

L . Similar to211

the Laguerre-Gaussian superposition, we can continuously adjust this rotation rate. To212

show this we increase the rotation rate by a factor of two, in addition to the varied cross-213

section. Regarding the target sampling, we describe the polygonial cross-section in polar214

coordinates, which leads to215

r(ϕ) = rmax ·
cos
(
π
n

)
cos
(
ϕ− 2π

n b
nϕ+π

2π c
) (4)

where n denoted the polygon order. The target beam is then created from two Gaussian216

spots propagating on the trajectory given by (r [ϕ(z)]), ϕ(z))T .217

(a)

(b) (c) (d)

(e) (f) (g)

−
30

0
30

x
/w

0

(h)

b c d e f g

0.2

0.4

0.6

0.8

−100 −50 0 50 100
z/zR

−
30

0
30

x
/w

0

(i)

0.2

0.4

0.6

0.8

Figure 7: Experimental and numerical results for two Gaussian spots rotating rigidly
on a triangle trajectory covering a total rotation angle of ∆ϕ = 2π: (a) calculated
phase for a clockwise rotation, (b)-(g) transverse intensity at planes indicated in (h) with
the pre-designed triangular cross-section in (b). (h) experimental integrated intensity∫
I(x, y, z)dy and (i) numerical counterpart with theoretical trajectory projected onto the

y = 0 plane (dashed and dotted lines).

Typical results for a pair of spots moving on a triangular trajectory are shown in Figure218

7. Again the experimental measurements in Figure 7(h) coincides with the numerical219

simulations, in Figure 7(i), and the varying distance between the two Gaussian spots can220

be observed clearly. Due to the increased rotation rate a full period of the circulation221

around the optical axis is visible now. The challenging sections of this beam are located222
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at the corners of the polygon. The sampling implied by the overlap condition does not223

deviate significantly from an equidistant sampling. Hence, a equidistant sampling was224

employed. Still the spots’ propagation around the polygons corners suffices to recognize225

the altered cross-section. As well as the structured intensity surface, this beam serves226

very well to highlight the performance and functionality of our approach compared to227

established techniques. The additional effort associated with altering the cross-section228

and rotation rate is negligible compared to the creation of conventional helix beams.229

In order to assess the overall pattern quality of the presented beams more quantita-230

tively, consider the global mean square error ε̄ and the patterns mean diffraction efficiency231

η̄ defined by232

η̄ =
1

N

∑
∀zj

η(zj)NS(zj) with η(zj) =

∑
i∈S I

act
i (zj)∑

i∈M Iact
i (zj)

,

ε̄ =
1

N

∑
∀zj

ε(zj)NS(zj) with ε(zj) =
∑
i∈S

(
Iact
i (zj)− Ides

i (zj)

Ides
i (zj)

)2

,

(5)

where S and M represent the signal region and the complete focal region for one axial233

position z ∈ zj with NS(zj) being the number of sample points in the signal region of plane234

zj . I
act and Ides denote the actual and desired intensity. The signal region is defined by235

the 1/e2 contour of the target beam. To prevent the experimental setup from biasing the236

results and due to the coincidence between the simulated and the measured intensities,237

we compare the simulated data to the designed target intensities. Applying the metrics238

of equation 5, a clear differentiation between the helix and bottle beams becomes evident.239

The diffraction efficiency of the helix beams lies consistently below the bottle beams.240

Also the mean square error is higher for the helix patterns. Requiring the light to be241

focused along a point-like three-dimensional trajectory implies much stricter constraints242

to the light field then being distributed over a specific cross-section like a bottle beam [25],243

resulting in a reduced η̄. Remarkably, applying the surface structure to the bottle in Figure244

6 does not harm either diffraction efficiency or the mean squared error significantly. For245

the helix beam on a triangular trajectory however, an increasing ε̄ can be observed, which246

is closely connected to the sharp corners. The deviation from the designed trajectory in247

these regions was already visible in Figure 7.
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Figure 8: Global mean square error ε̄ and mean diffraction efficiency η̄ versus the number of
iterations. The number of sampling planes is fixed at N = Nmin for all patterns presented
in this paper (DHPSF in Figure 5, triangle helix in Figure 7, bottle beam in Figure 4 and
structured bottle beam in Figure 6).
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The presented beam shaping operations should be understood as examples, represent-249

ing only a subset of potential diversification. All patterns created in this paper show that250

a proper target sampling is key to obtain continuously evolving optical beams when using251

numerical phase retrieval in three dimensions sampled at multiple axially shifted planes.252

Although the considered three-dimensional beam profiles are of complex nature, numeri-253

cal simulation and experimental measurements coincide remarkably well, emphasizing the254

achievable predictability and control over the beam propagation.255

4 Quantitative evaluation of equidistant target sampling256

Considering each target beam profile individually and applying the introduced overlap257

criterion helped to deduce the two critical parameters of adaptive target sampling: the258

number of sample planes N and their positions zj . In the previous section we demonstrated259

the beam shaping capabilities that can be achieved using such an adaptive target sampling.260

Here we investigate the influence of these parameters separately. Looking at the results in261

Figures 4, 5, 6 and 7, the experimental measurement and theoretical simulation coincide262

well. However, experimental data can be flawed by several effects like finite diffraction263

efficiency, phase mask aliasing. To account for this we conduct our investigations based on264

the theoretical simulations of optical bottle beams. Please note, that these will also include265

the finite active region, and resolution of the used spatial light modulator. Following the266

previous calculations, we find Nmin = 16 for the considered bottle beam. The simulated267

results for this specific bottle beam sampled with different N ∈ {N1 = 1
2Nmin, N2 =268

Nmin, N3 = 3
2Nmin} using either adaptive or equidistant sampling are depicted in Figure269

9.270
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Figure 9: Simulation of the same bottle beam with different sample rates Ni. Upper row
is obtained from equidistant sampling, while lower row is based on the presented adaptive
target sampling.

Despite that all bottle beams are created from the same target, the beneficial influence271

of adaptive sampling combined with an appropriately sized N is clearly visible. First,272

consider the equidistant sampled bottle beam in Figure 9(a-c). The bottle beams surface273
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is composed of mutliple segments of high intensity and exhibits a strong asymmetry for z ↔274

−z. For N = Nmin these high intensity segments seem to merge into a more continuous275

surface, but even at the highest sample rate N3 there is no transition to a closed intensity276

surface like in Figure 9(f). The observed segmentation is most prominent at regions of277

low/vanishing overlap being the opening and closing points of the bottle beam (see Figure278

9(c)). Such an beam propagation would be expected for non proper sampling resulting279

in ambiguous intra-plane intensities. Arguably these beams created with the equidistant280

sampling could be considered to be bottle beams, having a higher intensity at the edge281

then in the center. Due to the degree of discontinuity and the high number of artifacts282

penetrating the inner volume the applicability of these bottle beams is very restricted.283

For all sampling rates depicted in Figure 9 the pattern quality of the adaptive sampled284

bottle beams exceeds the equidistant sampled bottle beams. Also its surface homogeneity285

improves significantly when increasing number of sample planes N ≥ Nmin. Notably the286

trajectory r(z) in equation 3 can already be identified even at the lowest sampling rate287

N1. In Figure 9(d-f) the transition from an discontinuous surface with artifacts in the288

inner volume to a true bottle beam enclosing a volume is observed around N ≈ Nmin.289

Investigating the diffraction efficiency and mean square error of an optical bottle beam290

for different number of adaptive sample planes yields the results in Figure 10. To add291

more consistency to these results we used the same initial phase guess since it is generated292

with some random phase offset between the target planes. The transition observed in 9(d,293

e, f) is also present in Figure 10. Around N ≈ Nmin the improvement gained from a higher294

number of sample planes stagnates to ∂η̄
∂N = 9.56·10−4

sample plane and ∂ε̄
∂N = − 5.71·10−4

sample plane . Hence,295

increasing the number of sample planes above the minimal required N ≥ Nmin effects296

the diffraction efficiency and the mean square error only marginally compared to the297

additional computation time. However, the idea of a multi-layer design algorithm based298

on two-dimensional Fourier transforms would become obsolete by increasing the number299

of sample planes to comparable values of other approaches build around three-dimensional300

Fourier transformations and sampling on a three-dimensional grid with O(N) = 100.301
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Figure 10: Mean diffraction efficiency η̄ and global mean squared error ε̄ versus the number
of sampling planes when employing adaptive target sampling. (a) absolute values with a
linear fit for N > Nmin and (b) relative improvements compared to N = Nmin.
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Summarizing the evaluation of the adaptive target sampling applied to the bottle302

beam by means of the error metrics in equation 5 and their beam profile in Figures 9303

and 10, the proposed method yields the expected improvements. We have shown that304

adaptive sampling enhances the overall pattern quality. Additionally the minimal number305

of sampling planes was calculated based on the target pattern and reproduced by numerical306

simulation. As intended the value of Nmin marks a characteristic point for the algorithms307

convergence. For N exceeding Nmin only minor improvements take place. Hence, Nmin308

can be considered the optimum number of sample planes for a minimal algorithm running309

time.310

5 Conclusion and Outlook311

In this paper, we have shown that the three-dimensional intensity distributions of complex312

beams can be created by means of multi layer numerical phase retrieval. Despite the multi-313

layer sampling the obtained beam profiles evolve continuously throughout the focal volume.314

Our approach is capable of producing these optical beams with pre-designed non-trivially315

evolving transverse profiles without sacrificing the patterns fidelity. We have shown that316

our approach can reproduce light patterns of different approaches.In addition, we have317

successfully created new complex beams that have not been generated by conventional318

techniques, showcasing the considerable sculpting possibilities of our approach.319

The requested target beam properties can be directly applied in real-space targets in-320

stead of tracking down their origin to the original beam or the generating phase pattern.321

These large degrees of freedom increase the applicability of advanced tailored optical fields.322

Furthermore, dynamic manipulation can be achieved by sequences of phase patterns only323

limited by the spatial light modulators pixel refresh rate. The remaining intensity inhomo-324

geneities along the propagation trajectory may be compensated by additional amplitude325

control of the incident field [20].326

Numerical phase retrieval for three-dimensional beam shaping may open the door to327

novel optical potentials built on top of already existing classes of optical beams. In the328

future our method could help to launch new developments in various fields: quantum gases329

confined to spatially curved potentials, particle manipulation and guiding along arbitrary330

trajectories or laser writing of new types of structures could be achieved adopting our331

approach. Given the flexibility and simplicity of the presented approach, it may be a332

valuable tool for applications, wherever precisely controlled optical potentials are essential.333
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