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Abstract

Clifford circuits are insufficient for universal quantum computation or creat-
ing t-designs with t ≥ 4. While the entanglement entropy is not a telltale
of this insufficiency, the entanglement spectrum is: the entanglement levels
are Poisson-distributed for circuits restricted to the Clifford gate-set, while
the levels follow Wigner-Dyson statistics when universal gates are used. In
this paper we show, using finite-size scaling analysis of different measures of
level spacing statistics, that in the thermodynamic limit, inserting a single T
(π/8) gate in the middle of a random Clifford circuit is sufficient to alter the
entanglement spectrum from a Poisson to a Wigner-Dyson distribution.

1 Introduction

In the past few years, the dynamics of entanglement growth in non-equilibrium settings
have been intensively explored, unveiling rich structures and universality classes analogous
to equilibrium phenomena [1–5]. Recently, studies along this direction have been extended
from entropic measures to the full entanglement spectrum (ES) [6], which captures the
finer structure of entanglement. It has been shown that the dynamics of ES is able to
distinguish between random unitary circuits of different complexities [7–9], as well as
thermalization and localization phases of the underlying Hamiltonian [10–13]. Moreover,
the onset of level repulsion in the ES signals the spreading of operator fronts, which serves
as an important diagnostic of quantum chaos and information scrambling [14–16].

A crisp example that the ES reflects the complexity of the states generated by a quan-
tum circuit is provided by the analysis of Clifford circuits. These circuits can be efficiently
simulated classically and hence are not sufficient for universal quantum computation, due
to restricted single-qubit rotations [17, 18]. Although Clifford circuits can generate states
with the same maximal entanglement entropy as Haar random states [19], the ES of such
states is either flat (for stabilizer initial states) [4, 20] or Poisson distributed (for random
initial product states) [8] as opposed to Wigner-Dyson (W-D) distributed as in the case
of Haar random states. Moreover, as shown in [6, 8], the transition between Poisson and
W-D is connected to the reversibility and learnability of random quantum circuits.

A related important problem is that of derandomization, e.g., phase retrieval and
quantum state distinguishability. These tasks require the construction of a t−design, that
is, a set of gates that reproduces the first t moments of the Haar measure [21]. A random
circuit based on the Clifford group can construct a 3−design but fails to be a 4−design,
which is what one needs for several protocols of derandomization. It is known, though,
that Clifford group generates a good approximation of a 4−design [22]. In other words, it
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Figure 1: A schematic of the setup considered in this work. Initial product states are
first evolved under random Clifford circuits UCl until their entanglement entropy reaches
maximum. A certain number of T gates in one layer are then inserted in the circuit,
followed by a second stage of random Clifford evolution U ′Cl. In the thermodynamic limit,
the entanglement spectrum flows to Wigner-Dyson distribution upon inserting a single T
gate, and the Poisson fixed point is unstable.

takes very little for the Clifford group to become something that is capable of reproducing
the fluctuations of observables evolved with a universal quantum circuit.

In this paper we answer the question of what density of T gates one needs to add
to a Clifford circuit to alter the ES from a Poisson to a W-D distribution, a necessary
condition for universal quantum circuits. Moreover, we put forward a conjecture about
the transition to unlearnability and higher t−designs.

Consider the setup as shown in Fig. 1. We first evolve random product states using
random Clifford circuits, until their entanglement entropy reaches maximum. Then we
insert a layer of T gates acting on a certain number of randomly chosen qubits into
the circuit, and continue evolving with random Clifford circuits. Since the entanglement
entropy has already saturated prior to the insertion of T gates, it cannot further increase.
However, the ES may change following the second stage of time evolution. We ask the
question: how many T gates are needed in the thermodynamic limit to alter the ES from
a Poisson to a W-D distribution? Remarkably, we find, using finite-size scaling analysis
of various ES statistics measures, that a single T gate is sufficient to poison the Poisson
statistics of pure Clifford circuits in the thermodynamic limit. The deviation from W-D
distribution for systems of N qubits scales as e−γnTN , where γ is a constant of order
one and nT is the number of T gates inserted. This indicates that the ES flows to W-D
distribution in the infinite system size limit for any non-zero nT . In addition, we also
consider two different cases in which either: (1) the initial states are chosen as stabilizer
states; or (2) the time evolution following the insertion of T gates is given by the inverse
of the initial evolution. The latter scenario has a natural interpretation in terms of either
the noise threshold for reversibility in quantum circuits, or the operator spreading under
Clifford dynamics. We find that in the latter case one needs order O(

√
N) T gates to get

W-D distributed ES (for which the density still vanishes as 1/
√
N); whereas in the former

case, insertion of T gates in a single layer is not sufficient to obtain W-D distributed ES.
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2 Setup

We consider a “composite” quantum circuit consisting of three pieces, as depicted schemat-
ically in Fig. 1. The initial state is first evolved under a random Clifford circuit, for which
the corresponding unitary operator is denoted as UCl =

∏
k Uk, where Uk is the evolution

operator at k-th time step in the circuit. A random Clifford circuit is constructed by pick-
ing randomly any of the following three elementary gates with equal probability at each
time step: (1) H (Hadamard) gate, which takes |0〉 → 1√

2
(|0〉+|1〉) and |1〉 → 1√

2
(|0〉−|1〉);

(2) S (π/4) gate, which gives a state-dependent phase factor: |0〉 → |0〉 and |1〉 → eiπ/4|1〉;
and (3) CNOT (controlled-NOT) gate, which flips the second qubit conditioned on the
state of the first one: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉.

The initial state is evolved for sufficiently long time until the half-system entanglement
entropy saturates to its maximal value [19]. We then randomly apply to the state nT ≤ N
T gates acting on nT distinct qubits. The T gate generates a single-qubit rotation about
the σz-axis similar to the S gate, but with a different rotation angle: |0〉 → |0〉 and
|1〉 → eiπ/4|1〉. Remark that replacing S gate with T gate leads to a gate set that is
sufficient for universal quantum computation [18]. Finally, the state after applying T
gates is further evolved with another random Clifford circuit U ′Cl with the same depth as
UCL. We shall focus on the case where UCl and U ′Cl are distinct. However, we also consider
in what follows a special situation where U ′Cl = U−1Cl . As we will see, the result is quite
different in this special case, in contrast to a random U ′Cl.

The initial states are chosen to be random product states |ψ(0)〉 = ⊗Ni=1|ψi〉, where
|ψi〉 = cosθi|0〉 + sinθi|1〉 with random angles θi ∈ [0, π]. Notice that this initial state is
not a stabilizer state, and we will briefly comment on the situation of stabilizer initial
states at the end. Under random Clifford circuit evolution, the ES {pk = λ2k}, defined as
the eigenvalues of the reduced density matrix under an equi-bipartitioning of the system
ρA = trB|ψ〉〈ψ|, exhibits a Poisson level spacing distribution [8], which can be captured by
the ratio of adjacent gaps in the spectrum: rk = (λk−1−λk)/(λk−λk+1), with λk ≥ λk+1.
Poisson distributed level spacings lead to the following distribution for r: P (r) = 1/(1+r)2

with no level repulsion at r = 0. On the other hand, for levels of random matrix ensembles,
the distribution of r follows the W-D surmise [23]: P (r) = (r+ r2)β/[Z(1 + r+ r2)1+3β/2],
with Z = 4π

81
√
3

and β = 2 for the Gaussian unitary ensemble (GUE).

Since the entanglement entropy is already saturated to its maximum value prior to
inserting T gates, it cannot further increase as a result of subsequent time evolution.
Nevertheless, the structure of the state - in particular the ES - could still evolve as the
gates realizing U ′Cl are sequentially applied. Below, we construct a color map to visualize
the wavefunction. This map reveals the change of structure in the bipartite entanglement
under the insertion of T gates. We then extrapolate the evolution of the ES statistics
to the thermodynamic limit of N → ∞ as the number of T gates varies using numerical
simulations and finite-size scaling analysis,

3 Numerics

We numerically simulate the time evolution protocol of the composite quantum circuit in
Fig. 1 for different numbers of T gates inserted nT ≤ N . To visualize the structure of a
state, we bipartition the system into componentsA andB: |ψ〉 =

∑
xA,xB

Ψ(xA, xB)|xA〉|xB〉,
and display |Ψ(xA, xB)| by employing a color map with xA in horizontal axis and xB in
vertical axis. In Fig. 2, we plot the magnitude of the amplitudes of three states: (1) a
state evolved with a Clifford circuit, whose ES is Poisson distributed; (2) a state evolved
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Figure 2: (Color Online) Color Map of the matrix Ψ(xA, xB), for system size N = 12, for
(1) a state evolved with a Clifford circuit; (2) a state evolved with the composite quantum
circuit in Fig. 1 for 12 T gates; (3) a random state drawn from a Gaussian distribution.
Blue (darker) corresponds to lower weights and yellow (lighter) corresponds to higher
weights.

with the composite quantum circuit in Fig. 1 for nT = N T gates, whose ES is W-D dis-
tributed; (3) a random state with amplitudes drawn from a Gaussian distribution, whose
ES is W-D distributed. The existence of a global periodic structure is clearly visible for
state (1), but completely absent for the random state (3). The structure in state (1) is a
telltale that Clifford circuits cannot fully randomize the state, which is correlated with the
absence of level repulsion in the ES. For state (2) with a whole layer of T gates inserted, we
observe no global structure as seen in state (1); instead it resembles the smeared color map
shown in state (3), which indicates that adding T gates into Clifford circuit intrinsically
alters Clifford circuit’s computational power, and drives the system toward randomness.
The striking visual difference between the classical states that can be prepared by action
of Clifford gates and quantum states that require universal resources, suggests that such
phases can be identified by machine learning architectures based on neural networks [24].

We now can ask the question: how many T gates are sufficient for a system to realize
the transition from a well structured state to a random smeared state. We shall answer
below. For the purpose of finite-size scaling, it is favorable to characterize the level spacing
distribution of the ES using a single number. We compute a modified version of the r-ratio
introduced above: r̃k = min{δk, δk+1}/max{δk, δk+1}, where δk = λk−1 − λk is the gap
between adjacent eigenvalues [25]. The average value 〈r̃〉 ≈ 0.39 for Poisson distributed
spectrum, and 〈r̃〉 ≈ 0.6 for GUE distributed spectrum. In Fig. 3, we plot 〈r̃〉 for for
systems of N = 12, 14, 16, 18 and 20 qubits, and numbers of T gates inserted. Remarkably,
we find that the curves collapse to a universal scaling function of the form:

〈r̃〉 = f(nT ×N). (1)

In other words, r̃ is only a function of the product nTN . One immediately concludes that
in the thermodynamic limit, as long as nT 6= 0, 〈r̃〉 = f(∞) = r̃GUE, that is, all that one
needs in the thermodynamic limit is a single T gate to change the ES to random matrix
theory behaviors! Moreover, we find that the deviation from r̃GUE has the scaling form:

δr̃ ≈ r̃0 e−γ nT N , (2)

with r̃0 a constant, as shown in the inset of Fig. 3. Eq. (2) implies the following flow
equation for δr̃: dδr̃

dN ≈ −γ nT δr̃. The above equations indicate that the Poisson fixed
point is unstable, and that the ES in the infinite system size limit will be controlled by
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Figure 3: Left: The average 〈r̃〉 defined as r̃k = min{δk, δk+1}/max{δk, δk+1} with
δk = λk−1 − λk, versus nT ×N , for system sizes N = 10, 12, 14, 16, 18 and 20. All curves
collapse to a universal scaling function 〈r̃〉 = f(nTN) interpolating between r̃Poisson ≈ 0.39
and r̃GUE ≈ 0.6. Inset: deviations from r̃GUE in log-linear scale, indicating the scaling form
δr̃ ≈ r̃0e

−γnTN . Right:The KL divergence between the full ES level spacing distribution
and the W-D distribution. DKL for different curves also collapses to a universal scaling
function of the product nTN . Inset: DKL decays exponentially with nTN , similarly to
δr̃. The data are averaged over 3000 (N = 10), 2000 (N = 12), 1500 (N = 14), 1000
(N = 16), 500 (N = 18), and 150 (N = 20) realizations. When not visible, the errorbars
are smaller than the size of the data points.

random circuits with T gates, corresponding to the GUE fixed point. A single T gate
inserted into the Clifford circuit acts like a “poison pill” that completely randomizes the
final state and kills the Poisson distribution. This can be understood as follows. Although
the density of T gates is vanishing, it nevertheless changes the global phase structure of
the quantum state. The ES is a global property of the full wave function, hence the effect
of even a single T gate is not negligible.

Although the average value of 〈r̃〉 reaches that of GUE in Fig. 3 (left panel), it
only characterizes the first moment of the full distribution. To further substantiate
that the ES level spacing statistics follows a W-D distribution, we numerically com-
pute the distance between the full distribution of the ES of the final states and the
W-D distribution (GUE in particular), defined as the Kullback-Leibler (KL) divergence:
DKL[P (r)||PGUE(r)] =

∑
i P (ri) ln [P (ri)/PGUE(ri)]. As shown in Fig. 3 (right panel),

the KL divergence between the ES level spacing distribution and W-D distribution also
collapses to a universal scaling function of the product nTN . Therefore, the KL divergence
goes to zero in the thermodynamic limit for any nonzero nT , confirming that even the full
ES level spacing distribution reaches the W-D distribution with the insertion of a single T
gate. The full distribution P (r) corresponding to a particular point where 〈r̃〉 = r̃GUE is
presented in Fig. 4, showing that the full distribution of ES level spacing statistics follows
W-D.

So far we have been considering the general situation where UCl and U ′Cl are different
and uncorrelated. It is nonetheless interesting to look at a special case in which U ′Cl = U−1Cl ,
i.e the Clifford evolution in the second stage is the exact inverse of the initial evolution
operator. This particular example is interesting for several reasons. In the absence of any
T gate inserted in the middle, UCl and U−1Cl will cancel exactly, bringing the final state back
to the original product state. However, this cancellation ceases to happen as more and
more T gates are inserted in between. If one views the insertion of T gates as a particular
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Figure 4: The ES level spacing distribution P (r) for N = 20 with nT = 8 T gates inserted.
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Figure 5: The average 〈r̃〉 versus nT /
√
N for the special case in which U ′Cl = U−1Cl , for

systems sizes N = 12, 14, 16, 18 and 20. All curves collapse to a universal scaling function
〈r̃〉 = g(nT /

√
N) interpolating between r̃Poisson ≈ 0.39 and r̃GUE ≈ 0.6. The numbers of

realizations are the same as in Fig. 3. When not visible, the errorbars are smaller than
the size of the data points.

kind of noise in the circuit, this example gives the noise threshold for reversibility in a
quantum circuit. Second, the composite quantum circuit in this particular case coincides
with the spreading of T operators under random Clifford dynamics in the Heisenberg
picture. How many T gates are needed such that their spreading under random Clifford
circuit evolution is sufficient to generate W-D distributed ES when acting on a random
product state?

In Fig. 5, we plot the average 〈r̃〉 for different system sizes and numbers of T gates
inserted. In contrast to the previous case, here we find instead that different curves collapse
to another universal scaling function:

〈r̃〉 = g(nT /
√
N). (3)

The difference between Eq. (3) and Eq. (1) drastically changes the behavior in the ther-
modynamic limit. From Fig. 5, we find that the average 〈r̃〉 reaches r̃GUE when nT /

√
N ∼

O(1). Therefore, in the infinite system size limit, one needs number nT ∼ O(
√
N) T gates

to alter the ES from Poisson to W-D distribution. Notice that even in this case, since nT
is only subextensive in sytem size, the required density of T gates still vanishes as 1/

√
N .
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To elucidate how the insertions of the T gates alter the ES, let us consider explicitly
their spreading:

UCl

(
nT∏

k=1

Tik

)
U−1Cl = UCl

[
nT∏

k=1

(cosθ11 + isinθZik)

]
U−1Cl

=

nT∏

k=1

(
cosθ11 + isinθZ̃ik

)
(4)

where θ = π
8 for the T gate, and Zik is the Pauli-Z operator acting on site ik. In the

second line of Eq. (4), we have used the property that, under Clifford dynamics, a Pauli
operator evolves into a single string of Pauli operators Z̃ik rather than a superposition of

Pauli strings [18]. Upon averaging over circuit realizations, one expects that the Z̃ik are
essentially random Pauli strings, regardless of the original positions of the inserted T gates.
When acting on a product state, each Pauli string operator (and the products of which)
Z̃ik simply produces another product state, with each qubit being flipped or not depending
on the particular type of Pauli operator on each site. Therefore, the time-evolved operator
in the above equation will generate a superposition of 2nT product states, when applied to
a random product state, and the entanglement entropy is thus upper-bounded by nT ln2.
In this situation the insertion of O(1) T gates is insufficient to discern statistical properties
of the ES, since the rank of the density matrix is too low to yield a spectrum with enough
non-vanishing eigenvalues. Therefore, when U ′Cl = U−1Cl , one needs more than O(1) T
gates to alter the ES.

In Fig. 6, we plot the ES statistics of states generated by applying the operator in
Eq. (4) to random product states, but with the specific Z̃ik operator associated with the
spreading of Zik replaced by a random string of Pauli operators. On the left panel, we use
θ = π

8 , corresponding to insertion of T gates, and find that the ES is W-D distributed, in
agreement with what was obtained by directly simulating the composite random circuit
evolutions. In contrast, if we use θ = π

4 instead, corresponding to insertion of S gates,
the ES exhibits a Poisson distribution shown in the right panel, which is consistent with
known results for random Clifford circuits [8]. These results indicate that replacing the
Z̃ik by a random string of Pauli operators in itself does not affect the ES. Instead, it is the
angle θ associated to the specific single-qubit rotation that alters the relative amplitudes
of the superposition of 2nT product states that affects the ES spectrum. We thus conclude
that replacing the specific Z̃ik operator associated with Zik by a random string of Pauli
operators has no effect in the ES. Instead, it is the angle θ associated to the specific single-
qubit rotation that alters the relative amplitudes of the superposition of 2nT product states
to yield the ES associated with the gate set.

We remark that the above results hold when we choose as initial states random product
states, where each qubit points along different directions on the Bloch sphere to begin with.
Instead, if one starts from stabilizer states, for which random Clifford dynamics yields a
flat ES as opposed to Poisson, insertion of T gates in the same manner as in Fig. 1 does
not lead to W-D distributed ES. Therefore, the random angles imprinted in the initial
states, although by themselves cannot produce Haar random states under Clifford circuit
evolution, turns out to be essential for the T gates to wipe off the Poisson distributed ES.

4 Conclusion

In this work, we study the critical density of T gates needed in a random Clifford circuit
to alter the ES statistics from Poisson to W-D distribution, a necessary condition for
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Figure 6: ES statistics of states generated by applying Eq. 4 to random product states.
Left: W-D distribution for θ = π

8 (inserting T gates); right: Poisson distribution for θ = π
4

(inserting S gates). The data are obtained for system size N = 12 with nT = 12 T or S
gate inserted, and averaged over 800 realizations of initial states and random Pauli strings.

the underlying circuit to be universal. We construct a composite quantum circuit as
in Fig. 1 with T gates inserted in the middle, and show that a single T gate is in fact
sufficient to obtain W-D distributed ES, as is the case for Haar random states. Our results
suggest that the critical density of T gates needed for universal quantum computation
might be vanishing in the thermodynamic limit. Given the difficulties in realizing T gates
within various experimental platforms for quantum computing (e.g. topological quantum
computing based on Majorana zero modes), this result points to a new direction where
one may compress the non-universal part of the circuit (e.g. the Clifford circuit), while
adding only a small number of T gates at largely spaced layers for universal quantum
computation, as shown in Fig. 7. While this may lead to an overhead in the circuit depth,
it is advantageous in cases where implementations of T gates are hard.

In closing, we would like to ask the question of whether the transition driven by the
density of non-Clifford gates also characterizes the transition to 4−designs and unlearn-
ability of random quantum circuits. As shown in [6,8], the transition to W-D for ES level
spacing statistics corresponds to the impossibility of reversing the circuit by means of a
Metropolis algorithm. This reversal corresponds to learning the circuit, so this is also a
learnability-unlearnability transition. We conjecture that learnability is due to the struc-
ture of temporal fluctuations in 2−Rényi entropy. This would imply that the transition to
the W-D ES is also a transition from 3−design to (at least) 4−design. The Clifford group
falls short of being a 4−design but it is a very good approximation of it [22]. In particular,
it has the same 2−Rényi entropy [26] but not the same fluctuations. We conjecture that
the transition to 4−design, W-D and unlearnability are one and the same.

Note Added: The conjecture we put forward in this paper about the critical density of T
gates to drive a Clifford circuit to a 4-design has been recently proved in arxiv:2002.09524.
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Figure 7: A potential architecture for universal quantum computing, where only a small
number of T gates are added at largely spaced layers.
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