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Abstract

We consider a model of two tunnel-coupled one-dimensional Bose gases with hard-wall bound-
ary conditions. Bosonizing the model and retaining only the most relevant interactions leads to
a decoupled theory consisting of a quantum sine-Gordon model and a free boson, describing re-
spectively the antisymmetric and symmetric combinations of the phase fields. We go beyond this
description by retaining the perturbation with the next smallest scaling dimension. This pertur-
bation carries conformal spin and couples the two sectors. We carry out a detailed investigation of
the effects of this coupling on the non-equilibrium dynamics of the model. We focus in particular
on the role played by spatial inhomogeneities in the initial state in a quantum quench setup.
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1 Introduction

The study of one-dimensional quantum many-body systems out of equilibrium has seen great
progress in the past decades. Long-standing questions concerning the equilibration of observables,
spreading of correlations and entanglement, and the emergence of statistical mechanics from mi-
croscopics have been successfully tackled using a range of innovative theoretical ideas [1–9], whilst
spectacular advances in the ability to realize archetypical one-dimensional quantum many-body
sytems using cold atoms [10–14] have made it possible to test many of these theoretical develop-
ments using tabletop experiments [15–20]. However, such experimental engineering of quantum
many-body Hamiltonians relies on certain assumptions to make the experiments map onto a model
of physical interest. These assumptions often include having a low energy density, at which an
effective low-energy theory holds, and translational invariance, which can generally simplify the
problem and specifically play an important role in the integrability of the low-energy theory. When
studying non-equilibrium problems in finite quantum many-body systems, these two assumptions
are sometimes brought into question.

We here study a situation where both the successes and challenges described above are clearly
present: we consider pairs of tunnel-coupled, elongated Bose gases, as realized in the Vienna
experiments [13, 14, 17–19, 21–24]. An interesting feature of these experiments is that in certain
limits, density measurements after matter-wave interference [13, 25] correspond to projective von
Neumann measurements of the relative phase field [26]. This allows for the reconstruction of
full distribution functions of quantum mechanical observables [21–23], which is of considerable
theoretical interest [27–41] in general. In the case at hand, situations without tunnel-coupling can
be modelled by a two-component Luttinger liquid [42–44]. This description in terms of a quadratic
quantum critical model has yielded theoretical results for the full fluctuation statistics of the
relative phase field [28,45,46] which show a satisfying match with experimental results [17,19].

Our interest lies in the effect of a finite tunnel barrier between the gases [14, 47–49]. This
introduces a relevant perturbation and at sufficiently low energies leads to a decoupled theory of a
Luttinger liquid describing the symmetric combination of Bose gas phases (“symmetric sector”) and
a sine-Gordon model [50] describing the relative phase (“antisymmetric sector”). The sine-Gordon
model is of great theoretical importance as it is an exactly solvable, Lorentz invariant quantum
field theory that exhibits a rich range of physical phenomena like dynamical mass generation and
topological excitations and moreover has important applications to electronic degrees of freedom
in solids [51]. Its behaviour out of equilibrium has received a lot of attention in the past decade.
To be able to study dynamics, the very weakly interacting limit is amenable to a simple harmonic
approximation [52–54], while the free fermion point can also be used to obtain exact results [52].
Integrability-based methods were used in Refs. [55–58] to study quenches from “integrable” initial
states, whereas semiclassical methods [59,60] were applied to the study of the time-dependence of
one and two-point functions as well as the probability distribution of the phase. The truncated
conformal space approach [61] was employed in Ref. [62] to analyse the time evolution of two and
four-point functions after a quantum quench. A first litmus test for the experimental realization of
the sine-Gordon model using split Bose gas experiments was performed in an equilibrium situation:
high order equilibirum correlation functions extracted from projective phase measurements in the
classical limit have been found to agree well with classical field simulations [23]. A quantum many-
body treatment of some such correlation functions is available as well, with possible generalizations
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to non-equilibrium situations [63]. For non-equilibrium initial conditions, however, experimental
studies [24,64,65] have shown puzzling behaviour: when preparing two elongated Bose gases with
an initial phase difference, applying a tunnel-coupling between them sets Josephson oscillations
of density and phase in motion. These oscillations show a rapid damping, accompanied by a
narrowing of the distribution function of the phase. To date, no satisfying theoretical explanation
of this damping is known [66]. The damping seems incompatable with a description in terms of a
translationally invariant sine-Gordon model, which fails to provide a mechanism for the observed
strong and rapid damping in both a self-consistent harmonic treatment [67] and in a combination
of truncated Wigner and truncated conformal space approaches [68].

In this work, we go beyond previous studies of the low-energy physics in two important ways:

1. We take into account the next most relevant perturbation at low energies. This perturbation
induces an interaction between the symmetric and antisymmetric sectors.

2. We drop the assumption of translational invariance. To this end we place the model in a
hard-wall box geometry and consider inhomogeneous initial conditions.

We stress that our focus is on the vicinity of the scaling regime, which is approximately described
by a sine-Gordon model as discussed above. This means that we consider energy densities that
are small compared to the cutoff of the field theory, which can be taken as the inverse coherence
length of the underlying Bose gas. In addition the energy density is of the same order as the
mass scale induced by the tunnel-coupling between the Bose gases. Translating these requirements
into parameters relevant to the existing experiments gives an energy scale of roughly 5 nK. This
is lower than typical energy scales realized in current experimental set-ups, which operate above
18 nK, but sufficiently close to make this regime interesting in light of possible future experiments.

Our strategy is to treat the resulting perturbed sine-Gordon model in the self-consistent time-
dependent harmonic approximation (SCTDHA) as described in [67]. We consider the dynamics
after initializing the system in a state in which the sectors are uncorrelated and observe how the
new coupling term causes correlations between the two sectors to develop over time. In addition
to this, energy starts to oscillate between the sectors. Depending on the initial density profile
imprinted on the gas, Josephson oscillations of density and phase are affected by the presence of
the additional term, showing modulations of the amplitude that differ from the ones observed in
the SCTDHA treatment of isolated sine-Gordon dynamics [67].

This paper is organized as follows. In Sec. 2, we introduce the low-energy effective theory in
a box geometry, the additional interaction term and the observable relevant for experiment. We
also establish some notational conventions. In Sec. 3, we recapitulate the self-constistent time-
dependent harmonic approximation as well as the framework to compute observables and some
important distribution functions. In Sec. 4, we apply our formalism to an initial state which is
commonly used in the literature, and present results on energy flow and growth of correlations be-
tween the sectors, along with the effect on Josephson oscillations, due to the additional interaction
term. Sec. 5 summarizes our conclusions and discusses questions for further study.

2 Tunnel-coupled bose gases in a hard-wall box

An appropriate model for the experiments carried out by the Vienna group is an interacting Bose
gas confined in three-dimensional space by a tight harmonic potential in the z-direction, a double-
well potential V⊥(y) in the y-direction and a shallow harmonic potential in the x-direction. We will
refer to the x-direction as longitudinal, and to the remaining directions as transverse. To simplify
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the problem, we take the longitudinal potential to be an infinite square well

V||(x) =

{
0 if 0 < x < L ,

∞ otherwise.
(1)

Just like a shallow harmonic potential this breaks translational invariance in the longitudinal
direction, but has the advantage to be considerably simpler to analyze. Our starting point is thus
the following Hamiltonian

H3d =

∫
dx dy dz

{
Ψ†(x, y, z)

[
−∇

2

2m
+ V||(x) + V⊥(y) +

mω2
z

2
z2

]
Ψ(x, y, z)

+c
(
Ψ†(x, y, z)

)2(
Ψ(x, y, z)

)2
}
, (2)

where Ψ(x, y, z) are complex Bose fields obeying the usual bosonic commutation relations.

2.1 Low-energy effective theory

In situations where the transverse potentials are sufficiently tight, the dynamics in the y- and z-
directions can be integrated out, in a way analogous to Ref. [71]. Details of this procedure will be
reported elsewhere [72]. Projecting to the lowest two states of the transverse potential, and taking
appropriate linear combinations of these, we obtain a Hamiltonian for two species of bosons, Ψ1,2,
which are approximately localized in wells 1 and 2:

H1d =

∫ L

0
dx

[ ∑

j=1,2

1

2m
∂xΨ†j(x)∂xΨj(x) +

∑

j,k,l,m=1,2

Γjklm Ψ†j(x)Ψ†k(x)Ψl(x)Ψm(x)

−
(
T⊥Ψ†1(x)Ψ2(x) + h.c.

)]
. (3)

Here the Bose fields Ψ(x) have commutation relations
[
Ψi(x),Ψ†j(x

′)
]

= δi,jδ(x − x′). The two

Bose gases are coupled by a tunnelling term as well as contact interactions. The corresponding
coupling constants Γjklm follow from the details of the low-energy projection [72]. For our purposes,
we will assume the diagonal elements to be equal to the usual Lieb-Liniger interaction constant,
Γjjjj = g ∀ j. Hard-wall boundary conditions are imposed by restricting our problem to states |Φ〉
where the density at the boundary has a vanishing eigenvalue:

Ψ†j(L)Ψj(L) |Φ〉 = Ψ†j(0)Ψj(0) |Φ〉 = 0. (4)

The one-dimensional model (3) gives an accurate description of the full theory H3d at energies
that are small compared to the energy E⊥,2 of the second excited state of the transverse confining
potential. In the actual experiments this is a large energy scale. The physics of interest occurs at
energies that are small compared to v/ξ � E⊥,2, where ξ is the coherence length and v the speed
of sound. This enables us to make a second low-energy projection by employing bosonization [42]

Ψ†j(x) ∼
√
ρ0 + ∂xθj/π e

−iφj(x)
∞∑

n=−∞
Bne

2ni(xπρ0+θj) . (5)

This provides a low-energy description of (3) in terms of phase fields φj and θj with a cutoff length
scale set by the coherence length of the gases, which for weak interactions is given by ξ = π/mv
(the sound velocity v is defined below). The hard-wall condition is encoded in the boundary
conditions of the θ-fields in a way that is described in Sec. 2.3. Let us first consider the case
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where interactions and tunnelling between the two gases are absent, meaning that both T⊥ and
the non-diagonal elements of Γ are zero. This leaves us with two Lieb-Liniger models in a hard-wall
box, with interaction strength g. Under the mapping (5), the low-energy physics of this model
maps to a pair of Luttinger liquids

Hj =
v

2π

∫ L

0
dx

[
1

K
(∂xθj(x))2 +K (∂xφj(x))2

]
, j = s, a. (6)

Here we have defined (anti)symmetric combinations of the phase fields by

φs/a = φ1 ± φ2 , ∂xθs/a =
∂xθ1 ± ∂xθ2

2
. (7)

These fields are compact φ = φ+ 2π, θ = θ + π and fulfil commutation relations

[∂xθj(x), φl(y)] = iπδj,lδ(x− y). (8)

This implies that the canonically conjugate fields to φs/a are given by

Πj(x) ≡ ∂xθj(x)

π
. (9)

For weak interactions, the sound velocity v and Luttinger parameter K are related to the param-
eters in the Lieb-Liniger model in a simple way [73]

v =
ρ0

m

√
γ

(
1−
√
γ

2π

)1/2

, K =
π

2
√
γ

(
1−
√
γ

2π

)−1/2

. (10)

Here γ = mg/ρ0 is the dimensionless interaction strength and ρ0 the average density of each of
the two Bose gases.

In the next step we take into account the tunnelling term in (3) as well as “off-diagonal”
interaction terms proportional to Γijkl with not all indices being equal. These introduce relevant
perturbations (in the renormalization group sense) with respect to the critical Hamiltonian (6).
Inserting the bosonization identity (5) and assuming Γ to be real, permutation symmetric and
symmetric under 1↔ 2, we find that the perturbations with the lowest scaling dimensions can be
written in the form

H⊥ = −2t⊥

∫ L

0
dx [ρ0 + σΠs(x)] cosφa(x) , (11)

where t⊥ and σ depend on the microscopic parameters in (3). Importantly, the two terms in (11)
get generated independently and we therefore will treat t⊥ and σ as independent phenomenological
parameters in the following. The Hamiltonian Hs + Ha + H⊥ should be viewed as the result of
integrating out high energy degrees of freedom in a renormalization group sense. As t⊥ grows
much faster than t⊥σ under the renormalization group it would be unphysical to consider very
large values of σ. We have therefore restricted the numerical analyses reported below to the range
0 ≤ σ ≤ 2. In addition to (11) there are other perturbations with higher scaling dimensions. Their
systematic derivation as well as an analysis of their effects will be presented elsewhere [72]. In
the case σ = 0 the full low-energy theory decouples into symmetric and antisymmetric sectors
H = Hs +H ′a, where H ′a is the Hamiltonian of a quantum sine-Gordon model [50]

H ′a =
v

2π

∫ L

0
dx

[
1

K
(∂xθa(x))2 +K (∂xφa(x))2

]
− 2t⊥ρ0

∫ L

0
dx cosφa(x). (12)

The non-equilibrium dynamics of this model was analyzed for the translationally invariant case
in the framework of a SCTDHA in our recent work [67]. The additional σ-term in (11) couples
the sine-Gordon model to the Luttinger liquid Hamiltonian Hs. In the following we extend the
analysis [67] to

H = Ha +Hs +H⊥. (13)
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2.2 Time-of-flight measurements

In the Vienna experiments [13, 14, 17–19, 23, 24, 74, 75] measurements are performed by turn-
ing off the trapping potential at some time t0, letting the gas expand freely and imaging the
three-dimensional boson density after a time-of-flight t1. The outcome of each such “single-

shot” measurement is determined by the eigenvalues e
i
2
ϕa,s(x,t) of the bosonic vertex operators

e
i
2
φa,s(x,t0) [26,28]. As shown in [26], the result of a single measurement of the boson density after

a time-of-flight t1 in the regime relevant for the Vienna experiments can be well approximated by

%tof(x,~r, t1, t0) ' ρ0

∣∣∣f(~r, t1)
∣∣∣
2
×

∣∣∣
∫
dx′G(x− x′, t1)

[
e
i m
2t1

~r·~d
e
i
2

(ϕs(x′,t0)+ϕa(x′,t0)) + e
−i m

2t1
~r·~d
e
i
2

(ϕs(x′,t0)−ϕa(x′,t0))
]∣∣∣

2
. (14)

Here ~d is the distance between the minima of the double well, x, x′ and ~r = (y, z) respectively denote
longitudinal and transverse coordinates, and G(x, t) is the Green’s function for a free particle

G(x, t) =

√
m

2πitγ
exp

(
i
m

2tγ
x2

)
. (15)

The function f(~r, t) is an overall envelope whose precise from follows from the details of the
trapping potential. By measuring %tof , the system collapses to a simultaneous eigenstate of all

e
i
2
φa,s(x,t). The outcome of such measurements can be simulated if one has access to distribution

functions of the corresponding eigenvalues e
i
2
ϕa,s(x,t). Such distribution functions will be computed

in Sec. 3.4. In principle, the observable (14) also contains small contributions from the density
fields Πa,s(x) [26]. In order to treat these, the above description of a projective measurement has to
be preceded by a diagonalization of the full observable, which now contains noncommuting fields.
We do not pursue this further here because these effects are expected to be small in the regime
where our low-energy approximation applies.

Experiments typically report results related to the quantity

R(x0, ~r, t1, t0) =

∫ x0+`

x0−`
dx %tof(x,~r, t1, t0)

= ρ0

∣∣∣f(~r, t1)
∣∣∣
2
∫ x0+`

x0−`
dx

[
|g+(x)|2 + |g−(x)|2 + 2Re

(
g+(x)g∗−(x)e

im~r·
~d

t1

)]
, (16)

where we have defined

g±(x) =

∫
dx′G(x− x′, t1)e

i
2

(ϕs(x′,t0)±ϕa(x′,t0)) . (17)

2.3 Mode expansions for the two-component Luttinger liquid

The free boson Hamiltonians Ha,s are diagonalized by the mode expansions (see e.g. [73])

θj(x) = θj,0 +
πx

L
δNj + i

∑

q>0

(
πK

qL

)1/2

sin qx
(
bj,q − b

†
j,q

)
, (18)

φj(x) = φj,0 +
∑

q>0

(
π

qKL

)1/2

cos qx
(
bj,q + b†j,q

)
, (19)

where q = πn
L , n ∈ Z,

[
bq, b

†
k

]
= δq,k and [δNj , φl,0] = iδj,l. The zero modes δNj have integer

eigenvalues. The Hamiltonians then take the form

Hj =
vπ

2LK
δN2

j +
∑

q>0

vq b†j,qbj,q, j = a, s. (20)
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Going back to Eq. (5), we see that the hard-wall condition (4) is guaranteed by choosing the
c-number θ0 such that

θ(0) = θ0 /∈ Z. (21)

It turns out to be useful in what follows to rewrite the mode-expansions in the form

φl(x, t) =
∑

ν

u(l)
ν (x)

(
bν(t) + b†ν(t)

)
, (22)

∂xθl(x, t)/π =
∑

ν

w(l)
ν (x)

(
bν(t)− b†ν(t)

)
, l = a, s . (23)

Here we have introduced a multi-index ν = (l, q) that runs over all positive momenta q ≥ 0 and
the two sectors l = a, s and we have defined

u
(l)
(j,q)(x) = δj,l





(
π

qKL

)1/2
cos qx, if q 6= 0 ,

1
2

√
1
K if q = 0 ,

(24)

w
(l)
(j,q)(x) = δj,l




i
(
qK
πL

)1/2
cos qx, if q 6= 0 ,

i
L

√
K if q = 0 ,

(25)

bj,0 =
√
Kφj,0 −

i

2

√
1

K
δNj . (26)

3 Self-consistent time-dependent harmonic approxiation

Our aim is to determine the non-equilibrium evolution after a quantum quench: the system is
prepared in a density matrix ρ(0) that does not commute with the Hamiltonian (13). We moreover
take the density matrix to be Gaussian for simplicity. The ensuing time evolution is described in
the Schrödinger picture via the time evolving density matrix

ρ(t) = e−iHtρ(0)eiHt. (27)

As our Hamiltonian of interest (13) is not solvable we resort to an analysis by means of a SCTDHA
[41,67,76–78]. Below we generalize the analysis of [67] to include the nonlinear interaction between
the symmetric and antisymmetric sectors. The SCTDHA amounts to replacing the exact time
evolution operator with

e−iHt −→ USCH(t) = Te−i
∫ t
0 HSCH(τ)dτ , (28)

where

HSCH(t) = Ha +Hs +

∫
dx

[
f(x, t) + φa(x)g(1)(x, t)

+ Πs(x)g(2)(x, t) + φ2
a(x)h(1)(x, t) + φa(x)Πs(x)h(2)(x, t)

]
. (29)

Here the functions g(1,2)(x, t) and h(1,2)(x, t) are determined self-consistently. In order to derive
(29) we decompose the fields into their space and time dependent expectation values and their
fluctuations

φl(x, t) = 〈φl(x, t)〉+ χl(x, t), (30)

Πl(x, t) = 〈Πl(x, t)〉+ πl(x, t) , l = a, s. (31)
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Substituting this decomposition into the interaction part of the Hamiltonian (11) gives

H⊥ = −2t⊥

∫ L

0
dx [ρ0 + σ 〈Πs〉+ σπs] [cos 〈φa〉 cosχa − sin 〈φa〉 sinχa] . (32)

In the next step we expand the Hamiltonian to quadratic order in fluctuations following [67], which
gives

H⊥ ≈ −2t⊥

∫
dx

[(
ρ0 + σ πs −

1

2
(ρ0 + σ 〈Πs〉)χ2

a − σ 〈χa πs〉χa
)

cos 〈φa〉 (33)

−
(

(ρ0 + σ (πs + 〈Πs〉))χa −
σ

2
〈χa πs〉χ2

a

)
sin 〈φa〉

]
e−

1
2〈χ2

a〉 + const

After re-expressing this in terms of the original fields φa and Πs, we arrive at Eq. (29), where the
functions h(j)(x, t) and g(j)(x, t) are determined self-consistently by

h(1)(x, t) = ReF (x, t)/2,

h(2)(x, t) = σImF (x, t),

g(1)(x, t) = ImF (x, t)− 2 〈φa(x, t)〉h(1)(x, t)− 〈Πs(x, t)〉h(2)(x, t),

g(2)(x, t) = −σReF (x, t)− 〈φa(x, t)〉h(2)(x, t). (34)

Here we have defined two functions

F (x, t) = 2t⊥Tr

[
USCH(t)ρ(0)U †SCH(t)eiφa(x)

]
,

F (x, t) = 2t⊥Tr

[
USCH(t)ρ(0)U †SCH(t)eiφa(x) (ρ0 + σΠs(x))

]
. (35)

One subtlety associated with the SCTDHA concerns the zero mode φa,0. The spectrum of φa,0
originally reflected the compact nature of the phase field φa(x) = φa(x) + 2π. The latter feature
is lost in the SCTDHA, where fluctuations are assumed to be small but the fields themselves take
arbitrary real values.

3.1 Gaussian initial states

In order to investigate the effects of the σ-term that couples the symmetric and antisymmetric
sectors we want to start from a factorized state and study how correlations develop over time. An
important requirement is related to our use of the SCTDHA: its accuracy strongly depends on the
initial state obeying Wick’s theorem. These two considerations lead us to consider the same class
of initial states previously used in the literature [43–46]

ρ(0) = ρa(0)⊗ ρs(0) , (36)

where ρa(0) = |V, r, ϕ〉aa〈V, r, ϕ| is a Gaussian pure state

|V, r, ϕ〉a = N exp


∑

pq

Vp
(
sech rT

)
pq
b†a,q +

∑

p,q,k

1

2
b†a,p (tanh r)pq e

iϕq,kb†a,k


 |0〉a. (37)

It is useful to define new annihilation operators αa,k satisfying

αa,k |V, r, ϕ〉a = 0 , (38)

8
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which are related to the b-operators via the canonical transformation

ba,q =
∑

k

(cosh r)qk [αa,k + Vk] +
(
sinh reiϕ

)
qk

[
α†a,k + V ∗k

]
. (39)

In previous works it has been assumed that the symmetric sector is initialized in a thermal state
[46]. We will follow this assumption, but in order to study the effects of spatial inhomogeneity we
take our initial state to be given by a “displaced” thermal density matrix

ρs = D(R)
e−βHs

Tr e−βHs
D†(R) , (40)

where the displacement operators are defined via

D†(R)bj,kD(R) = bj,k +Rj,k , j = a, s . (41)

This suggests the definition of displaced annihilation operators αs,k via a constant shift

bs,k = αs,k +Rs,k , (42)

so that

〈αs,k〉 = 0 (43)

on the initial state. Since ρs(0) satisfies Wick’s theorem, it is then completely fixed by the vector
Rs,k along with connected two-point functions of the fields. Using the mode expansion of Hs from
Eq. (20) we simply find bosonic occupation numbers for q > 0,

〈
b†s,qbs,k

〉
c

=
δq,k

eβvq − 1
≡ n(s,q), (44)

the anomalous expectation values 〈bs,qbs,q′〉c being zero. For the zero mode, the only expectation
values on ρs(0) that we will need are

〈δN2
s 〉c =

∑
n e
−β vπ

2KL
n2
n2

∑
n e
−β vπ

2KL
n2 , 〈δNs〉 = 0, (45)

where the second identity implies ImRs,0(0) = 0. As will become clear in the next section, ex-
pectation values involving the field φs,0 will never be required for the computation of physical
quantities.

3.2 Equations of motion

The SCTDHA allows for a closed-form expression of the equations of motion. We will work in the
Heisenberg picture from here onwards. The SCTDHA guarantees that time evolving annihilation
operators can always be written as

bν(t) = Rν(t) + Sνµ(t)αµ + T ∗νµ(t)α†µ (46)

where αµ are a set of bosonic creation and annihilation operators. We choose these to be given by

αν =

{
αa,k if ν = (a, k)

αs,k if ν = (s, k)
, (47)

9
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where the αa,k are defined in (39) and the αs,k in (42). For (46) to be a canonical transformation
we require

SS† − T ∗T T = 1 , ST † − T ∗ST = 0 . (48)

The initial condition on R,S and T are given by

Rµ(0) =

{∑
q(cosh r)pq Vq + (sinh reiϕ)pq V

∗
q if µ = (a, p),

0 else,

Sν,µ(0) =





(cosh r)pq if ν = (a, p), µ = (a, q),

δpq if ν = (s, p), µ = (s, q),

0 else,

(49)

T ∗ν,µ(0) =

{
(sinh reiϕ)pq if ν = (a, p), µ = (a, q),

0 else.

We note that the αµ’s satisfy Wick’s theorem on the initial state, along with 〈αµ〉 = 0 for all µ.
The time evolution of any operator is then encoded in the time-dependence of the tensors R,S

and T , which we will now determine. To this end, we write the SCTDHA Hamiltonian in the
generic form

HSCH(t) = b†νAνµ(t)bµ +
1

2

(
b†νB

†
νµ(t)b†µ + bνBνµ(t)bµ

)

+ C(t) +Dν(t)
(
bν + b†ν

)
+ Eν(t)

(
bν − b†ν

)
. (50)

The matrices A,B and vectors D,E depend on the self-consistency functions g(1,2) and h(1,2), cf.
Eqs. (34), and are given in Appendix A. Inserting the expansion (46) into the Heisenberg equation
of motion

i
d

dt
bν(t) = USCH(t) [bν , HSCH(t)]U †SCH(t) (51)

yields a system of coupled, first order differential equations

iṘν(t) = Aνµ(t)Rµ(t) +B†νµ(t)R∗µ(t) +Dν(t)− Eν(t)

iṠνµ(t) = Aνλ(t)Sλµ(t) +B†νλ(t)Tλµ(t) (52)

−iṪνµ(t) = A∗νλ(t)Tλµ(t) +BT
νλ(t)Sλµ(t).

This system of ODE’s is nonlinear : as a result of the self-consistency functions (34) on which
the tensors A,B,D and E depend, these tensors are themselves functions of R,S and T , which
therefore enter the system (52) in nonlinear combinations. To simplify some of the following
equations we introduce linear combinations

Qνµ(t) = Sνµ(t) + Tνµ(t), Qνµ(t) = Sνµ(t)− Tνµ(t) . (53)

In terms of these functions mode expansions of the time evolved fields take the form

φa(x, t) =
∑

ν

u(a)
ν (x)

(
2ReRν(t) +

∑

µ

[
Qνµ(t)αµ +Q∗νµ(t)α†µ

])
, (54)

Πl(x, t) =
∑

ν

w(l)
ν (x)

(
2iImRν(t) +

∑

µ

[
Qνµ(t)αµ −Q

∗
νµ(t)α†µ

])
. (55)

10
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The functions (35) can then be computed using Wick’s theorem for the α-operators, based on the
above expressions. This closes the system of ODE’s (52). The zero mode in the symmetric sector
φs,0 reflects the compact nature of the phase field φs and therefore needs to be treated separately
from the finite momentum modes. We therefore define a field

φ̃s(x) ≡ φs(x)− φs,0, (56)

which time evolves as

φ̃s(x, t) =
∑

ν 6=(s,0)

u(s)
ν (x)

(
2ReRν(t) +

∑

µ

[
Qνµ(t)αµ +Q∗νµ(t)α†µ

])
. (57)

Importantly the zero mode φs,0 does not get generated under Heisenberg time evolution of other
fields. This is easily checked by inspection of the Hamiltonian (13) which is seen to not involve
φs,0. This in turn implies that the zero mode cannot appear on the rhs of the Heisenberg equation
of motion (51). Since we can express the zero mode at t = 0 as

φs,0 =
(
α(s,0) + α†(s,0)

)
/
√

4K, (58)

we conclude that this linear combination of α-operators does not appear in the sums over modes
in (54,55) except in the expansion for φs(x, t), where it occurs in the term with ν = (s, 0). This
directly leads to

ReQν,(s,0)(t) = 0 ∀ ν 6= (s, 0), ImQν,(s,0)(t) = 0 ∀ ν. (59)

3.3 Self-consistent expectation values

3.3.1 One-point functions

As all relevant one-point functions of αν and δNs are zero we have
〈
φ̃s(x, t)

〉
= 2

∑

ν 6=(s,0)

u(s)
ν (x)ReRν(t) , (60)

〈φa(x, t)〉 = 2
∑

ν

u(a)
ν (x)ReRν(t) , (61)

〈Πl(x, t)〉 = 2i
∑

ν

w(l)
ν (x)ImRν(t). (62)

3.3.2 Two-point functions

Comparing the definitions from Section 3.1 to the initial conditions (49), we find that for any
ν, µ 6= (s, 0),

gν,µ =
〈
α†ναµ

〉
=
〈
ανα

†
µ

〉
− δν,µ = δν,µ

{
0 if ν ∈ {(a, q), (s, 0)}
n(s,q) if ν ∈ {(s, q)|q 6= 0}

. (63)

If we define P
(s)
0 to be the projector on the symmetric zero modes, along with its complement

1̃ = 1− P (s)
0 , we then find the following connected two-point functions

〈φj(x, t)φl(y, t)〉c = u(j)(x)

(
2Re(Q∗gQT ) +Q1̃Q† +

〈δN2
s0〉

K
ImQP

(s)
0 ImQT

)
u(l)(y) ,

〈φj(x, t)Πl(y, t)〉c = −u(j)(x)

(
2iIm(QgQ

†
) +Q1̃Q

†
+ i
〈δN2

s0〉
K

ImQP
(s)
0 ReQ

T
)
w(l)(y) . (64)

11
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In the above, indices on all matrices and vectors have been suppressed for conciseness. If we want
to consider the field φ̃s instead of φs, we need leave out the symmetric zero mode term. This leads,
for instance, to

〈
φ̃s(x, t)Πl(y, t)

〉
c

= u(j)(x)
(
P

(s)
0 − 1

)
×

×
(

2iIm(QgQ
†
) +Q1̃Q

†
+ i
〈δN2

s0〉
K

ImQP
(s)
0 ReQ

T
)
w(l)(y) , (65)

and analogous modifications for
〈
φ̃s(x, t)φ̃s(y, t)

〉
c

and
〈
φ̃s(x, t)φa(y, t)

〉
c
.

3.4 Full distribution functions

Individual measurement outcomes in interference experiments of interest [24] are fully determined

by the eigenvalues ϕa and ϕ̃s of the phase fields φa and φ̃s [26], cf. Eq. (14). To model the
outcomes of such measurements we therefore require the time-dependent distribution functions for
ϕa and ϕ̃s. These can be determined in the framework of the SCTDHA [41, 67]. For the case at
hand, we first expand the eigenvalues of the phase fields as Fourier series,

ϕ̃s(x, t) =
∑

µ6=(s,0)

u(s)
µ (x)fµ,t , ϕa(x, t) =

∑

µ

u(a)
µ (x)fµ,t . (66)

Here we have again used our multi-index notations µ = (j, q), where j = a, s labels the sector and
q the momentum. Each measurement selects a particular set of Fourier coefficients and we denote
the averages over many measurements by

fµ,t , fµ,t fν,t etc. (67)

The mean values for the Fourier coefficients can be read off from the one-point functions calculated
earlier, cf. Eqs. (60,61)

fµ,t = 2ReRµ(t) . (68)

The object of interest is then the time-dependent joint probability distribution P of Fourier coef-
ficients {fµ}. Within the SCTDHA all cumulants of φa,s other than the variance vanish, so that
this probability distribution is Gaussian

P ({fµ}, t) =
1

(2π)N/2
1√

detM(t)
exp

(
−1

2

∑

µ,ν

(
fµ − fµ,t

)
M−1
µν (t)

(
fν − fν,t

)
)
. (69)

Here N is the total number of Fourier modes retained in (66). Noting that

〈φj(x, t)φl(y, t)〉c = u(j)
µ (x)

(
fµ,tfν,t − fµ,t fν,t

)
u(l)
ν (y), j, l ∈ {a, s} (70)

and comparing to Eq. (64), we can directly read off the covariance matrix as well:

M(t) = 2Re(QgQ†) +QQ† +
〈δN2

s0〉
K

ImQP
(s)
0 ImQT . (71)

Having obtained a time-dependent probability distribution for the coefficients {fµ,t}, we can di-
rectly model experiments: we draw coefficients {fµ,t} from the distribution (69), reconstruct the
corresponding eigenvalues (66), and insert these in the time-of-flight density (14) to compute the
measured density profile. We note that in the notations used above the set {fµ} contains the
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non-physical Fourier coefficient f(s,0). This quantity does not enter the observable (14), and can
simply be discarded, whenever a set of coefficients is drawn from P ({fµ}, t).

By repeating the above procedure for modelling a measurement many times over we can recon-
struct the full distribution function of any observable that depends only on the phase fields φa,s.
In what follows, we will focus on the “interference term” in the spatially integrated density after
time-of-flight Rtof(x0, ~r, t1, t0) defined in (16). The eigenvalues of this observable are proportional
to

I` ({fµ}, x0, t0, t1) =
1

`

∫ x0+`/2

x0−`/2
dx g+(x)g∗−(x) (72)

where g±(x) are defined in (17) and are related to the coefficients fµ via (66). Motivated by the
experimental data analyses of Refs [21,22,66] we parametrize the interference term (72) as

I` ({fµ}, x0, t0, t1) = C`(x0, t0, t1, {fµ})eiΦ`(x0,t0,t1,{fµ}) . (73)

By drawing many sets {fµ} of coefficients from the distribution function P ({fµ}, t) and plotting
the resulting values of Φ` or C` in a normalized histogram, we converge to probability distributions
PΦ`,C` for these quantities. These distribution functions can formally be written as

PΦ`(α, t0, t1) =

(∏

µ

∫
dfµ

)
δ (α−Arg I` ({fµ}, x0, t0, t1))P ({fµ}, t0) , (74)

PC`(γ, t0, t1) =

(∏

µ

∫
dfµ

)
δ (γ −Abs I` ({fµ}, x0, t0, t1))P ({fµ}, t0) . (75)

4 Results for experimentally relevant initial states

4.1 Choice of initial state

We now specialize to an initial state that is often used in the literature, see e.g. [43–46]. In [43], a
quasi-classical argument is used to conjecture how the state of a pair of elongated Bose gases follows
from the splitting process of a single gas. It is reasoned that when splitting a gas, each particle
has an equal probability to end up in well 1 or in well 2. The relative particle number resulting
from this poisson process is thus a stochastic variable with mean zero and variance proportional
to the particle density. Assuming short-range correlations, one arrives at

〈Πa(x, 0)Πa(y, 0)〉c =
ηρ0

2
δξ(x− y), (76)

with η a phenomenological parameter which we will set to 1. Following [46], the delta function
above is understood as a flat sum over plane waves running up to momentum π/ξ. To reproduce
this initial two-point function, it suffices to use the initial state (37), with r a real and diagonal
matrix and ϕ = 0. The resulting initial condition on Q,

Q(0)(a,j)(a,k) = δjke
−rjj , (77)

then leads to

〈Πa(x, 0)Πa(y, 0)〉c =
K

L2
e−2r00 +

∑

j>0

qK

πL
cos (qjx) cos (qjy) e−2rjj . (78)
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Comparing Eqs. (76) and (49), we can thus read off

e−2rjk = δjk

{
Lηρ0
2K if q = 0 ,
πηρ0
qK if q > 0 ,

(79)

for the antisymmetric sector.
For the symmetric sector, we again follow Refs. [44–46]: the above quasiclassical splitting

argument applies to the relative degrees of freedom, leaving the symmetric combinations of densities
and phases unaltered. In [46], the symmetric sector is therefore taken to be in a finite temperature
equilibrium state. We adhere to this conjecture here and use the thermal density matrix described
in Section 3.1, thereby fixing the initial conditions for both T and S in conjunction with the above
discussion. Finally, the initial conditions for R can be used to enforce various initial profiles on
the density and phase fields in both sectors, which we will explore in Sec. 4.3 below.

4.2 Experimental parameters

We fix the parameters for our plots by following Ref. [21]: the one-dimensional density is taken to
be ρ0 = 45µm−1, the coherence length is ξ = ~π/mv = π × 0.42µm, the sound velocity is given
by v ≈ 1.738 · 10−3 m/s and the Luttinger parameter in our conventions is K ≈ 28. We take the
one-dimensional box size as large as we can achieve for a given value of the cutoff length scale,
which amounts to L = 80µm. This is comparable to the size reported in [21]. In all figures, time
is measured in units of the traversal time [4], ttr = L/2v, which is the time it takes for a light cone
to reach the edge of the system from the centre of the box. We work at a temperature of 5 nK
throughout. This ensures that we are well in the scaling regime, at an energy density that is 1/8
times the cutoff energy εc = vπ/ξ, with ξ the coherence length. We have chosen t⊥ = 15 Hz, which
guarantees that the gap is of the same order as the temperature for the above parameters. The
only exception to this choice is Fig. 2, where we take t⊥ ≈ 1.17 Hz following Ref. [67], to enable a
comparison with the case of periodic boundary conditions as presented in that paper.

4.3 Time evolution

We now consider time evolution under the SCTDHA Hamiltonian (29), with the initial condition
described in Sec. 4.1. Throughout, we choose R(0) such that

〈φa(x, 0)〉 = 0.2, 〈Πa(x, 0)〉 = 0. (80)

The one-point functions
〈
φ̃s(x, 0)

〉
and 〈Πs(x, 0)〉 will be given different spatial profiles, to inves-

tigate the effects of broken translational invariance.

4.3.1 No coupling between symmetric and antisymmetric sectors (σ = 0)

We will start from the situation where
〈
φ̃s(x, 0)

〉
= 0 = 〈Πs(x, 0)〉 . (81)

and σ = 0. This will serve as our benchmark, as it most closely resembles the translationally
invariant scenario described in [67] in which the (anti)symmetric sectors remain uncorrelated. It
is characterized by Josephson oscillations between density and phase, see Fig. 1(a), with a phase
variance that initially grows, and then shows oscillating behavior, see Fig. 1(b).

To connect with our previous work [67] we include a comparison between results from that
paper, where periodic boundary conditions were used, and the results derived for a box geometry
in the present paper. Fig. 2 shows that the two geometries give extremely similar results in the

14



SciPost Physics Submission

(a)
0.0 0.5 1.0 1.5 2.0

t/ttr.

−0.3

−0.2

−0.1

0.0

0.1

0.2

〈φa(x0, t)〉 ∼ 〈Πa(x0, t)〉

(b)
0.0 0.5 1.0 1.5 2.0

t/ttr.

0.025

0.050

0.075

0.100

0.125

0.150

0.175

〈
φ2
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Figure 1: (a) Josephson oscillations of relative density (arbitrary units) and phase (radians) at
the centre of the gas, x0 = L/2. (b) initial growth and oscillations of the variance of the relative
phase. The initial phase and density profiles are chosen according to Eqs. (80,81) and coupling
between the sectors is absent in these pictures, meaning σ = 0.
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t/ttr.
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〈φa(x0, t)〉Box 〈φa(x0, t)〉PBC

(b)
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〈
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〉
c,Box
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Figure 2: Comparison between results for box boundary conditions (blue) and periodic boundary
conditions (red). The curves are in perfect agreement until the traversal time ttr = L/2v, after
which deviations occur. (a) Josephson oscillations of phase (radians) at the centre of the gas,
x0 = L/2. (b) initial growth and subsequent oscillations in the variance of the relative phase.
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centre of the trap for times below the traversal time, whereas deviations do occur after this time.
It should also be noted that in [67] and Fig. 2, results are presented for smaller tunnel couplings
(t⊥ ≈ 1.17 Hz) than in the rest of this paper. The reason for choosing these values in [67] was
that for a relatively shallow field potential, the inharmonicity of the cosine in the sine-Gordon
model manifests itself more strongly, making deviations from the purely quadratic theory more
apparent. For the purposes of this paper, however, it is more interesting to look at relatively large
tunnel-couplings (t⊥ = 15 Hz, see Sec. 4.2), as this enhances the coupling between the sectors in
which we are interested.

4.3.2 Finite coupling between sectors (σ > 0) and homogeneous initial conditions

We next investigate different values of the coupling constant σ, and the resulting mixing between
the sectors. Fig. 3 shows results for σ = 0, 1/2, 1, 3/2, 2, starting from completely flat profiles,
as in Eqs. (80), (81). When increasing σ, the phase oscillations remain essentially unchanged. A

stronger effect is visible in the covariance between φa and φ̃s, however. To quantify this, we define

C(x, t) ≡
〈
φ̃s(x, t)φa(x, t)

〉
c√〈

φ̃s(x, t)φ̃s(x, t)
〉
c

〈
φa(x, t)φa(x, t)

〉
c

. (82)

As can be seen in Fig. 3(b), the covariance C(x, t) increases to appreciable values as σ is increased.
We also note that for larger values of σ, the variance of the relative phase increases somewhat for
times below the traversal time, see Fig. 4.
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0
,t

)〉

σ = 0

σ = 0.5

σ = 1

σ = 1.5

σ = 2

(b)
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t/ttr.
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0.00
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C
(x

0
,t
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Figure 3: (a) time evolution of the phase in the antisymmetric sector at the box centre x0 = L/2.
Curves are displayed for different values of σ, with a flat intial density profile 〈Πs(x)〉 = 0. A change
of σ has no appreciable effect on this observable. (b) a somewhat stronger effect is the development
of correlations between φa,s, where the normalized covariance from Eq. (82) is displayed, for
x0 = L/2.

It is also instructive to consider the energy flow between different terms in the Hamiltonian.
To this end we define the following quantities

ea,0(t) =
〈Ha〉
L

, ea,⊥(t) = −2t⊥ρ0

L

∫ L

0
dx 〈cosφa(x)〉 , esG(t) = ea,0(t) + ea,⊥(t) ,

eint(t) = −2t⊥σ

L

∫ L

0
dx 〈Πs(x) cosφa(x)〉 , es(t) = eint(t) + 〈Hs(t)〉 /L . (83)

We note that the total energy density, which is given by esG(t) + eint(t) + 〈Hs〉/L, is independent
of time, as required for a closed quantum system. Since we are interested in the time dependence
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Figure 4: Variance of the relative phase, for σ = 0 (blue) and σ = 2 (red). A slight increase in the
variance is visible for the larger value of σ for times below ttr = L/2v

of the various energy densities we subtract their values in the initial state and consider

∆ej(t) ≡ ej(t)− ej(0) . (84)

To quantify the effects of the σ-coupling on the flow of energy from and to the sine-Gordon model
we show ∆eSG(t) in Fig. 5. To ascertain which fraction of the energy change is due to the kinetic
and interaction parts of the sine-Gordon model we also show ∆ea(t) and ∆e⊥,a(t) in Fig. 5(a).
We observe that the change in ∆eSG(t) is very small, as significantly larger changes in ∆ea(t) and
∆e⊥,a(t) largely compensate each other. In Fig. 5(b) we show how much of the energy from the
sine-Gordon model ∆eSG(t) ends up in the new interaction term eint(t) and how much goes to
〈Hs(t)〉 /L.
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Figure 5: Energy flow between the different terms in Eqs. (83), as a ratio with the reference scale
er = 〈Hs(0)〉 /L.

4.3.3 Finite coupling between sectors (σ > 0) and inhomogeneous initial conditions

As a next step, we investigate the effect of initial density profiles 〈Πs(x)〉 that are spatially inho-
mogeneous. These profiles will evolve in time as is shown in Fig. 6 (a,b). The profiles 〈φa(x)〉
and 〈Πa(x)〉 are strongly affected by the strength of the σ-coupling to the inhomogeneous profile
〈Πs(x)〉 and develop inhomogeneities as a consequence. This is illustrated in Figs. 7(a,b) and has
repercussions for the Josephson oscillations. The latter now displays spatial variations, which are
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Figure 6: Examples of the time evolution of the density profile for σ = 0. The initial profile in (a)
is symmetric around the origin, while the one in (b) is not.
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Figure 7: (a) The time and position dependence of 〈φa(x)〉 corresponding to the same initial
condition as Fig. 6(a) with σ = 2. We see that the initially flat profile develops inhomogeneities
due to the sector coupling. (b) the same as panel (a), but showing 〈Πa(x)〉.

caused by an effective Josephson frequency that has become σ- and position-dependent due to the
presence of the space-dependent Πs(x)-field in the interaction term. This local and σ-dependent
Josephson frequency is illustrated in Fig. 8. The spatial average of the phase, which is equal to the
zero mode φa0, does not show any σ-dependence in its Josephson frequency, see Figs. 9,10. In this
case, however, a σ-dependent modulation in the amplitudes is visible: the Josephson oscillations
at different points in the box move out of phase due to the spatially varying Josephson frequency
mentioned above. This leads to a decrease in the spatial average.

For an inhomogeneous profile of 〈Πs(x, 0)〉, the covariance grows in time, in resemblance with
the homogeneous case. This happens to an extent that is roughly proportional to σ. The same can
be said of the energy flow between the (anti)symmetric sectors, as shown in Fig. 11. We see that
the effects of the sector coupling term become stronger when we increase σ, but in the window of
applicability of our bosonization based approach the effects remain small.

4.3.4 Distribution functions of the density after time of flight

As described in Sec. 3.4, our formalism allows the construction of distribution functions for the
measured density after time-of-flight expansion. As a proof of principle we present such distribution
functions in Fig. 12, for the observables Φ` and C` defined in Eq. (73).
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Figure 8: Time dependence of the relative phase in the centre of the box for the same initial
conditions as Fig. 6(a) and (b), respectively.
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Figure 9: Time dependence of the space-averaged relative phase and the covariance C(x0, t) (82)
in the centre of the box for the profiles shown in panel (a) of Fig. 6.
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Figure 10: Time dependence of the space-averaged relative phase and the covariance C(x0, t) (82)
in the centre of the box for the profiles shown in panel (b) of Fig. 6.

5 Conclusion

We have extended the theory for non-equilibrium dynamics in pairs of elongated, tunnel-coupled
Bose gases using a self-consistent time-dependent harmonic approximation (SCTDHA) in the low-
energy scaling limit (energy scales . 5 nK). In contrast to earlier works, we have studied the effect
of a relevant perturbation which couples the (anti)symmetric sectors describing (anti)symmetric
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Figure 11: Energy flow between different terms in Eqs. (83), as a ratio with the reference scale
er = 〈Hs(0)〉 /L. Results are shown for the density profile from Fig. 6(a), with σ = 1 (left panel)
and σ = 2 (right panel).

(a) (b)

Figure 12: Distribution functions PΦ`(α, t, t1) (a) and PC`(γ, t, t1) for the observables Φ` and C`
defined in Eq. (73). We choose a time of flight t1 = 15 ms and integration length ` = 20µm. The
density profile used for these plots is homogeneous, with σ = 1.

combinations of the two Bose gas phases. On top of this, we have dropped the assumtion of
translational invariance by placing the system in a box and by imposing inhomogeneous initial
density profiles.

Starting from an initial state in which these sectors are uncorrelated, the coupling of the
sectors under time evolution leads to a number of new but weak effects. First of all we observe the
development of correlations between the sectors over time. This effect is present for all initial states
we have considered, but the covariance between the sectors never reaches more than a few percent
of the geometric mean of the variances. Second, the spreading of correlations is accompanied by a
small transfer of energy between the sectors. And finally, the presence of the coupling term makes
the dynamics in the antisymmetric sector susceptible to the breaking of translational invariance
in the symmetric sector. The well-known Josephson oscillations of relative density and phase are
modulated when taking an inhomogeneous initial density profile of the symmetric sector. This
shows that the role of the trapping potential, which creates strong inhomogeneities, may play a
more important role in experiment than was previously assumed. However, the model presented
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here does not capture the puzzling damping phenomenon observed recently [24, 64, 65]. This is
not surprising given that our box potential is very different from the quadratic potential used in
experiment. In future experiments, however, the box potential is likely to be used, which adds to
the relevance of the calculations presented here.

We conclude that (i) the new term coupling the (anti)symmetric sectors leads to very weak
effects. This means that the simulation of a sine-Gordon model using the setup described in this
paper should not be severely hampered by the presence of this term. (ii) we have shown that
it is possible to treat states with broken translational invariance in the SCTDHA formalism as
presented in [67]. Combined with the sector coupling, we find that inhomogeneities in the density
can have weak but nontrivial effects on the amplitude of Josephson oscillations. This means that
the trapping potential is likely to have an effect on the dynamics probed in experiment. In a
forthcoming paper, we will present a study of the projected Hamiltonian (3) in a microscopic
analysis that takes a quadratic longitudinal potential into account. It would be interesting to
combine such a microscopic approach with low-energy effective field theory calculations in the
presence of such a quadratic trapping potential. However, the calculations using the box potential
presented here may gain additional relevance when more experiments using a box potential, such
as Refs. [69, 70], are performed.
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A Tensors occurring in HSCH(t)

The tensors occurring in HSCH(t) as written in Eq. (50) are given by

A =




. . .
...

. . .
...

vq δq,k + 2∆
(1)
q,k(t)u

(a)
a,q(0)u

(a)
a,k(0) ∆

(2)
q,k(t)u

(a)∗

a,q (0)w
(s)
s,k(0)

...
. . .

...
. . .

. . .
...

. . .
...

∆
(2)
q,k(t)u

(a)
a,k(0)w

(s)∗

s,q (0) vq δq,k
...

. . .
...

. . .




,

B =




. . .
...

. . .
...

−vπ
L δq,kδq,0 + 2∆

(1)
q,k(t)u

(a)
a,q(0)u

(a)
a,k(0) ∆

(2)
q,k(t)u

(a)
a,q(0)w

(s)
s,k(0)

...
. . .

...
. . .

. . .
...

. . .
...

∆
(2)
q,k(t)u

(a)
a,k(0)w

(s)
s,q(0) −vπ

L δq,kδq,0
...

. . .
...

. . .




,

D =




...

Γ
(1)
q (t)u

(a)
a,q(0)

...

...
0
...




, E =




...
0
...
...

Γ
(2)
q (t)w

(s)
s,q(0)

...




. (85)

The momentum indices q, k run within the blocks demarcated by solid lines, whereas the sector
indices j = a, s change from one block to the other. The functions occurring above are defined via

Γ(i)
q (t) =

∫ L

0
dx g(i)(x, t) cos (qx) , (86)

∆
(i)
q,k(t) =

∫ L

0
dxh(i)(x, t) cos (qx) cos (kx) =

1

2

(
h

(i)
q+k(t) + h

(i)
|q−k|(t)

)
(87)

h(i)
q (t) =

∫ L

0
dxh(i)(x, t) cos (qx) . (88)
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