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Abstract: We study correlation functions in the complex fermion SYK model. We focus,

specifically, on the h = 2 mode which explicitly breaks conformal invariance and exhibits

the chaotic behaviour. We explicitly compute fermion six-point function and extract the

corresponding six-point OTOC which exhibits an exponential growth. Following the program

of Gross-Rosenhaus, we estimate the triple short time limit of the six point function. Unlike

the conformal modes with high values of h, the h = 2 mode has contact interaction dominating

over the planar in the large q limit.
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1 Introduction

A generic dynamical system is inherently chaotic[1]. For classical systems, chaos can be

easily characterized by the sensitivity of trajectories with respect to initial conditions. For

quantum systems, lacking in the concept of trajectories, the notion of chaos is more subtle.

Often, quantum chaos can be characterized in terms of properties of the spectrum of the

Hamiltonian. In the semi-classical approach, there is a relatively simple definition of chaotic

behaviour, directly adopted from the sensitivity of classical trajectories with respect to initial

conditions.

For classical dynamical systems, characterized by phase space coordinates {q(t), p(t)}, where

q(t) and p(t) are generalized positions and generalized momenta. A particular trajectory is
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represented by q(t). High sensitivity of the late time trajectory with respect to the initial

condition can be quantified as:

exp (λLt) =
∂q(t)

∂q(0)
≡ {q(t), p(t)} , (1.1)

where λL is the so-called Lyapunov exponent and the right-most expression above is the

Poisson bracket[1]. By virtue of the correspondence principle, we obtain a quantum mechan-

ical characterization, by replacing the Poisson bracket with a commutator: {q(t), p(t)} →
−i~[q(t), p(t)][2]. Instead of computing the commutator, one calculates the squared commu-

tator, so that there is no spurious cancellation due to destructive phases. This argument,

however, is limited and does not necessarily imply that allowing for such phases will always

cancel the chaotic growth. In this article, we will calculate the cubic power of the commutator,

which will explicitly display the exponential growth behaviour.

Thus, we can define a generic function for the diagnostic of chaos:

C(n)(t1, t2) ≡ 〈[V (t1),W (t2)]n〉 , (1.2)

where n ∈ Z+, and V and W are two self-adjoint operators and the expectation value is

defined with respect to a particular state of the system. Note that, in defining the chaos

diagnostic in (1.2), we have recast the chaotic property as a feature of n-point correlation

function of the system. A straightforward analogy with the classical limit does not preclude

a two-point function from displaying the exponential growth, but we know of no explicit

example of the same. In this article, we will explicitly discuss the case for n = 3 in a thermal

state.

Before doing so, let us briefly look at the n = 2 case. Written explicitly, the commutator con-

tains various four-point functions with no particular time-ordering, since t1 and t2 are defined

without any ordering. For a thermal state expectation value, using the KMS conditions1, it is

further possible to rearrange the various four-point functions in terms of two pieces: one time-

ordered four-point function and another out-of-time-ordered correlator (OTOC). These are

given by 〈V (0)V (0)W (t)W (t)〉 and 〈V (0)W (t)V (0)W (t)〉, respectively, choosing t1 = 0 and

t2 = t. The time-ordered correlator does not display the exponential growth, it is contained

in the four-point OTOC.

For n = 3, upon using the KMS condition, the chaos diagnostic in (1.2) has one time-ordered

and two OTOC pieces. These are simply, 〈V (0)V (0)V (0)W (t)W (t)W (t)〉 (time-ordered) and

〈V (0)W (t)V (0)W (t)V (0)W (t)〉, 〈V (0)W (t)V (0)V (0)W (t)W (t)〉, 〈W (t)V (0)V (0)W (t)V (0)W (t)〉,
etc, which are OTOC. While a complete understanding of the behaviour of (1.2) for arbitrary

1KMS condition is simply the Euclidean periodicity condition on thermal correlators. For example, for

two operators V (0) and W (t), the KMS condition on the two-point function reads:

tr
(
e−βHW (t)V (0)

)
= tr

(
e−βHV (0)W (t+ iβ)

)
. (1.3)

Here β is the inverse temperature. Evidently, this condition can be used to interchange the order of the

operators inside a thermal correlator.
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n is desirable, we will explore an exact calculation for n = 3 in this article, with a particularly

simple model.

The model we consider is a simple generalization of the so-called Sachdev-Ye-Kitaev (SYK)

system[3–6], in which one considers fermionic degrees of freedom with an all-to-all interaction.

The interaction coupling is drawn from a random Gaussian distribution with a zero mean

value and a given width. In the large N limit, in which the number of fermionic degrees

of freedom becomes infinite, the system becomes analytically tractable in the sense that the

corresponding Schwinger-Dyson equations can be explicitly determined. The solution of this

equation readily determines the two-point function, as a function of the coupling strength, in

general. In particular, in the low energy limit, this Schwinger-Dyson equation is analytically

solvable and yields a two-point function with a manifest SL(2, R) symmetry. In the infra-red

(IR), this is described by a conformal field theory (CFT), and the two-point function breaks

the conformal group into the SL(2, R) subgroup. In the large N limit, further, the four-point

correlator can be explicitly calculated, which yields the corresponding Lyapunov exponent:

λL = 2πT , where T is the temperature of the thermal state. Here, we are working in natural

units. This Lyapunov exponent saturates the so-called chaos bound[7]. Intriguingly, the

chaos bound saturation also occurs for black holes, in which the local boost factor at the

event horizon determines the corresponding Lyapunov exponent as well as the corresponding

Hawking temperature. Only extremal black holes have an SL(2, R) global symmetry, due to

the existence of an AdS2 sector near the horizon. Correspondingly, the low energy conformal

system coming from the SYK model can be shown to capture the essential physics of the

AdS2[8].

The low energy effective action for the SYK model is simply given by a Schwarzian effective

action, which can also be shown to arise from the two-dimensional Jackiw-Teitelboim theory

in [8, 9](In fact, exact derivation of the Schwarzian effective action has been done using

the fluid/gravity correspondence[6]). However, in this context, the non-trivial statements of

holography necessitates keeping a leading order correction away from the purely AdS2 throat,

as well as from the purely CFT1 in the IR, hence it goes by the acronym of NAdS/NCFT. From

the geometric perspective, AdS2 appears in the following two cases: (i) in the extremal limit of

a black hole in asymptotically flat background, (ii) in the deep IR of an asymptotically AdSd+1-

background. Often, in the second case, the deep IR results from an RG-flow connecting a

UV CFTd to an IR CFT1, as a result of a relevant density perturbation in the UV CFT.

Holographically, such operators correspond to turning on a bulk U(1)-flux, in the simplest

case. A standard example of this is the AdS–Reissner-Nordstrom black hole: It asymptotes

to an AdS geometry and the extremal limit consists of an AdS2 in the IR, which is supported

by the flux. In the AdS2 throat, the flux is a simple scalar field, and the boundary theory has

a natural notion of a conserved charge and therefore a non-vanishing chemical potential.

The SYK model which is defined with N Majorana fermions, ψi (i = 1, ..., N) in (0 + 1)

dimensions, cannot have a charge density and correspondingly a non-vanishing chemical po-

tential. If we, instead, consider N complex fermions, ψi and ψ†i , it is natural to introduce a

ψ†iψi term in the Lagrangian, with chemical potential as the coupling. Similar to the SYK
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model, we consider a q-body interaction term, with q/2 number of ψ and q/2 number of ψ†,

whose couplings are chosen from a Gaussian distribution, with a standard deviation denoted

by J . In the limit q � 1, this system becomes exactly solvable in an (1/q)-expansion[4],

which is what we will use in evaluating the explicit correlation functions. Motivated from the

previous paragraph, it is therefore natural to consider a particular generalization of the SYK

model with a U(1) global symmetry.

The standard SYK theory, with Majorana fermions, has a particular operator at the conformal

fixed point, whose four point OTOC displays chaotic behavior with Lyapunov exponent λL =
2π
β

[3–6, 10–37]. The generalization of this model to complex fermions was done in [38–40]. In

[38], the low energy effective action of an SYK-model with complex fermions was discussed.

It was shown that the presence of a non-vanishing chemical potential does not break the

conformal symmetry in the deep IR, as long as one amends the conformal transformations

with a gauge transformation. Thus, the resulting low energy effective action is simply a

Schwarzian action along with a free bosonic theory with a standard kinetic term[14, 17].

Therefore, from a strict IR perspective, the maximal chaos holds for any non-vanishing value

of the chemical potential.

The non-triviality comes from the order of limits. The exponential growth of the four-point

OTOC holds for a larger regime compared to the long-time (and therefore, deep IR) limit. For

sufficiently large time, one recovers the maximal chaos. However, there exists an intermediate

regime in which the exponential growth takes place with a different Lyapunov exponent. This

is physically equivalent to staying in a medium energy scale and finding a chaotic behaviour

of the correlation function at this energy scale. This associates naturally an RG-flow of the

Lyapunov exponent itself.

In the standard SYK model, in the large q limit, the relevant scale in the system is provided

by an effective coupling:

J =
qJ2

2q−1
,

which has mass dimension one. The IR CFT resides in the J → ∞ limit, but the exponential

growth of OTOC and subsequently the Lyapunov exponent can be obtained as a perturbation

series in 1/J . This naturally gives an RG-flow of the Lyapunov exponent[4]. In [40] we studied

the SYK model with complex fermions in the large q limit in the presence of a chemical

potential µ. Here, in the UV Hamiltonian, we have two natural parameters: βµ and βJ and

the effective coupling in the IR is given by

J 2
eff =

q

2

J2

(2 + 2 cosh (µβ))
q
2
−1

. (1.4)

The strict IR is located at Jeff →∞ limit, and one can calculate systematically the RG-flow

of the Lyapunov exponent in a perturbation series in 1/Jeff . This RG-flow shows sensitive

behaviour for the Lyapunov exponent as the UV parameter βµ is dialled up[40].

In keeping with the theme, in this article, we further compute higher point OTOC for complex

fermion SYK-model, with a non-vanishing chemical potential. Our analyses follow closely the
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analyses in [41], in the large q limit. However, our analyses are performed in the complemen-

tary regime in that we completely focus on the operators that display chaotic nature and away

from the conformal limit. In spirit of the NAdS/NCFT picture, this is rather natural regime

to consider; in the context of chaotic properties of many body systems, this is an example of

a tractable and explicit higher point OTOC which displays the expected exponential growth.

In this paper, after computing the fermion six point function with a non-vanishing chemical

potential, we take the triple short time limit to estimate the the bulk three point correlator,

away from the conformal limit. In this regard, we compute bulk three point function(triple

short time limit of the fermion six point correlators, neglecting the Schwarzian mode) of the

modes satisfying conformal invariance as well as the Schwarzian mode, using the techniques

employed by Gross and Rosenhaus[41].

This paper is organized as follows. In Section 2, we briefly review the SYK model with

complex fermions. In Section 3, we compute the six point fermion correlator in the triple

short time limit. We then interpret it in terms of the bulk three point correlator in the IR

limit of the conformal modes and check that we do indeed find them to be of the form of

conformal three-point function, in the triple short time limit. We apply this technique in

Section 4 to compute the six point function and take the triple short time limit to determine

the three point correlation function of fermion bilinears away from the conformal limit. We

carry out this computation in the presence of a chemical potential µ. We conclude with the

discussion of our results, and possible future directions.

2 SYK model with complex fermions

The SYK model with complex fermion in 0+1 dimensions is defined by the Hamiltonian with

all to all random interaction between q fermions,

H =
∑

Ji1i2···iq/2iq/2+1···iqψ
†
i1
ψ†i2 · · ·ψ

†
iq/2
ψiq/2+1

· · ·ψiq . (2.1)

An exhaustive study of this model is done in [39], we will mention some of the essential features

that will be necessary for our analysis. In addition to the higher dimensional operators of

the form On = 1
N

∑
i ψ
†
i∂

2n+1
t ψi which behave in a manner similar to those found in the SYK

model with Majorana fermions; we also have the operators of the form Õn = 1
N

∑
i ψ
†
i∂

2n
t ψi.

The lowest lying mode of these operators give the Schwarzian mode and the U(1) charge

respectively. In absence of a mass like term in the action the two point function of the

particle and anti-particle are the same in the free case as well as the low energy limit of the

interacting theory.

Gfree(τ) =
1

2
sgn(τ), Gc(τ) = b

sgn(τ)

|τ |
2
q

, (2.2)

where, Gc(τ) is the propagator in the conformal limit. In the low energy, i.e., IR limit it is

possible to obtain the four point function of the fermions using the expansion in the eigen-

basis of the quadratic Casimir operator. Skipping the details we state here only the results.
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Since we have complex fermions, i.e., ψi = ξi+ iηi in case of the correlation functions we have

contribution of two different kinds,

〈ψ†(t1)ψ(t2)...〉 = 〈(ξ(t1)ξ(t2) + η(t1)η(t2))...〉+ i〈(ξ(t1)η(t2)− η(t1)ξ(t2))...〉 . (2.3)

While the first piece, namely, the real part is anti-symmetric under the exchange of t1 and t2,

the second piece is symmetric.

In case of the four point function if we consider the time reversal invariant contribution this

leads to two different contributions namely FA(τ1, τ2, τ3, τ4) and F S(τ1, τ2, τ3, τ4) which are

respectively anti-symmetric and symmetric under t1 ↔ t2 and t3 ↔ t4. The first term i.e.,

FA(τ1, τ2, τ3, τ4) is identical to the SYK with Majorana but the second term is new and occurs

in the complex fermion model. From [39] we have,

FA(τ1, τ2, τ3, τ4)

G(τ12)G(τ34)
= α0

∫ ∞
0

sds

π2

kA(1
2

+ is)

coth(πs)(1− kA(1
2

+ is))
ΨA

1
2

+is
(χ)

+α0

∑
2j>0

2j − 1
2

π2

kA(2j)

1− kA(2j)
ΨA

2j(χ), (2.4)

F S(τ1, τ2, τ3, τ4)

G(τ12)G(τ34)
= α0

∫ ∞
0

sds

π2

kS(1
2

+ is)

coth(πs)(1− kS(1
2

+ is))
ΨS

1
2

+is
(χ)

+α0

∑
2j+1>0

2j + 1
2

π2

kS(2j + 1)

1− kS(2j + 1)
ΨS

2j+1(χ) , (2.5)

where

χ =
τ12τ34

τ13τ24

, (2.6)

is the conformal cross ratio and ΨA and ΨS are linear combinations of the eigen-functions of the

quadratic Casimir. They are antisymmetric, respectively symmetric under the transformation,

χ→ χ

χ− 1
, (2.7)

which effectively exchanges the first two or last two arguments of four point function. Finally

kA and kS are eigenvalues of the retarded kernels (for antisymmetric and symmetric) which

commute with the Casimir.

2.1 Large q limit

We now augment this q-point interaction with a quadratic coupling term by introducing a

chemical potential µ which couples to the conserved charge
∑

i ψ
†
iψi. The fermion propagator

in the Fourier space derived from the quadratic part of the action is

G0(µ, ω) =
1

iω + µ
. (2.8)
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Once we take the interaction terms in the Hamiltonian into account it gives the dressed

propagator. In the large N limit, the melonic diagrams contribution dominates. If we also take

large q < N limit then the loop corrected propagator is amenable to analytic computations.

G(µ, τ) = G0(µ, τ)

(
1 +

g(µ, τ)

q
+ · · ·

)
, (2.9)

where, G0(µ, τ) is the free propagator in real space. To compute the two-point function in

the interacting theory one sets up the Schwinger-Dyson equation and seeks a solution in the

large q limit. This Schwinger-Dyson equation at finite inverse temperature β can be cast in

the form of a differential equation

(∂τ − µ)2 [G0(µ, τ)g(µ, τ)] =
qJ2G0(µ, τ)

(2 + 2 cosh(µβ))q/2−1
exp

(
1

2
{g(µ, τ) + g(µ,−τ)}

)
. (2.10)

The solution to this equation in given by[40]

eg(µ,τ) =
cos2

(
πν
2

)
cos2

(
πν
(
|τ |
β
− 1

2

)) , where βJeff =
πν

cos
(
πν
2

) , (2.11)

where Jeff is defined in (1.4).

3 Correlation Functions

Let us begin with the short time i.e., τ1 − τ2 = τ12 → 0 limit of the four point function both

for the symmetric and anti-symmetric case,

FA(τ1, τ2, τ3, τ4) =G(τ12)G(τ34)
∞∑
n=1

c2
n

(
|τ12τ34|
|τ13τ14|

)hn
,

F S(τ1, τ2, τ3, τ4) =G(τ12)G(τ34)
∞∑
n=1

c̃2
n

(
|τ12τ34|
|τ13τ14|

)hn
,

(3.1)

When we calculate the the six point function of the complex fermions we go to different short

time limits, where the correlation function take some effective form. In the triple short time

limit we calculate it as an effective three point function of the fermion bi-linear operators.

This way one can compute the correlation function near points where different arguments

approach each other yielding poles and by the property of being analytic everywhere else we

get the full contribution.

In the remaining part of this article we calculate the O(1/N2) coefficient of the six point

function with respect to the 1/N expansion. To this order there are contributions from

the contact diagrams as well planar diagrams. We will now write down the corresponding

expressions:

S = S1 + S2 + S̃1 + S̃2. (3.2)
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Here the contributions of S1 (contact) and S2 (planar) are exactly same as in[41], namely the

result for the Majorana fermions. In case of the SYK model with complex fermions, if we

demand time reversal invariance, (since the Hamiltonian is itself time reversal invariant) we

have only two other contributions. Now,

S̃1

90
= (q − 1)(q − 2)J2

∫∫ ∞
−∞

dτadτbG(τab)
q−3F S(τ1, τ2, τa, τb)F

A(τ3, τ4, τa, τb)F
S(τ5, τ6, τa, τb) ,

(3.3)

is the contact diagram contribution. Here, we have written only one particular assignment

of the arguments; there are other possible assignments whose contributions account for the

factor of 1/90 on the left hand side. There are total 90 possible independent configurations.

We will use same symbol h to denote the conformal weight of the bi-linear operators both for

FA and F S, although the values are different for the two: for FA ⇒ hn = 2n+1+2∆+O
(

1
k

)
,

and for F S ⇒ hn = 2n+ 2∆ +O
(

1
k

)
. Also we have,

S̃2

90
=

∫ ∞
−∞

dτadτbdτcFSamp(τ1, τ2, τa, τb)FAamp(τ3, τ4, τb, τc)FSamp(τ5, τ6, τc, τa) , (3.4)

where,

FSamp(τ1, τ2, τ3, τ4) = J2

∫
dτ0F

S(τ1, τ2, τ3, τ0)G(τ40)q−1 . (3.5)

Using the Selberg integrals in its special and general forms, one obtains:

FSamp(τ1, τ2, τ3, τ4) = G(τ12)
∑
n

c̃2
nξ̃nsgn(τ12)sgn(τ43)

|τ12|hn|τ34|hn−1

|τ24|hn+1−2∆|τ23|hn−1+2∆
. (3.6)

Using the short time expansion of four point amplitudes, we get:

S̃1

90
=bq(q − 1)(q − 2)J2

∑
n,m,k

c̃ncmc̃k|τ12|hn|τ34|hm|τ56|hkG(τ12)G(τ34)G(τ56)I
(1)
nmk ,

S̃2

90
=bq(q − 1)(q − 2)J2

∑
n,m,k

c̃ncmc̃kξ̃nξmξ̃k|τ12|hn|τ34|hm|τ56|hk

×G(τ12)G(τ34)G(τ56)I
(2)
nmk ,

(3.7)

where explicit expressions of the constants c, ξ, c̃, ξ̃ are given in appendix A. The integrals

I(1) and I(2) are given by

I
(1)
nmk(τ1, τ3, τ5) = sgn(τ12)sgn(τ56)

∫ ∞
−∞

dτa dτb
sgn(τ1aτ1bτ5aτ5b)|τab|hn+hm+hk−2

|τ1a|hn|τ1b|hn|τ3a|hm|τ3b|hm|τ5a|hk |τ5b|hk
, (3.8)

I
(2)
nmk(τ1, τ3, τ5) = −sgn(τ12)sgn(τ56)

∫ ∞
−∞

dτa dτb dτc

[
sgn(τ3b)sgn(τ3c)

|τ3c|hm−1+2∆|τ3a|hm+1−2∆

× sgn(τab)sgn(τbc)|τab|hn−1|τca|hm−1|τbc|hk−1

|τ1a|hn−1+2∆|τ1b|hn+1−2∆|τ5b|hk−1+2∆|τ5c|hk+1−2∆

]
.

(3.9)
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The integral (3.8), can be simplified by the change of variables, τa → τ1 − (1/τa), and τb →
τ1−(1/τb). The simplification is done by first decomposing the integral into sums of integrals.

Namely the integration from −∞ to∞ will be written as a sum of two, an integral from −∞
to 0 and an integral from 0 to ∞. We implement the change of variables on each fragment

separately, simplify each of them before recombining them back. At the end of this exercise,

we get

I
(1)
nmk(τ1, τ3, τ5) = sgn(τ12)sgn(τ56)

∫ ∞
−∞

dτa dτb

[
1

|τ31|2hm|τ51|2hk

× |τab|
hn+hm+hk−2sgn(τ51τa + 1)sgn(τ51τb + 1)

|τa + 1
τ31
|hm|τb + 1

τ31
|hm|τa + 1

τ51
|hk |τb + 1

τ51
|hk

]
.

(3.10)

These change of variables are followed up by another pair of change of variables which are

carried out in a sequential manner. We will first implement τa → τa − (1/τ31), and τb →
τb − (1/τ31) and then we will rescale the integration variables τa → (τ53τa)/(τ31τ51) and

τb → (τ53τb)/(τ31τ51).

I
(1)
nmk(τ1, τ3, τ5) =

sgn(τ12)sgn(τ56)

|τ31|hn+hm−hk |τ51|hn+hk−hm|τ53|hk+hm−hn
× Ĩ(1)

nmk(hn, hm, hk) ,

Ĩ
(1)
nmk(hn, hm, hk) =

∫ ∞
−∞

dτa dτb
|τab|hn+hm+hk−2sgn(τa − 1)sgn(τb − 1)

|τa|hm|τb|hm |1− τa|hk |1− τb|hk
= S̃full2,2 (α, β, γ) ,

(3.11)

where, α = −hn + 1, β = −hk + 1, and γ = hn+hm+hk
2

− 1.

As in [41], we divide the Selberg integral, S̃full2,2 , into different parts. This is achieved by

decomposing the integral into three pieces [−∞, 0], [0, 1] and [1,∞] for each integration vari-

able. This results in six Selberg integrals with appropriately modified arguments. Carefully

keeping track of the signs, gives

S̃full2,2 (α, β, γ) = S2,2(α, β, γ) + S2,2(1− α− β − 2γ, β, γ)

+ S2,2(1− α− β − 2γ, α, γ) + 2S2,1(1− α− β − 2γ, α, γ)

− 2S2,1(α, β, γ)− 2S2,1(α, 1− α− β − 2γ, γ) .

(3.12)

The generalized Selberg integrals and some important results which are used above are given

in [41], but for completeness we give the relevant definitions here

Sn,n(α, β, γ) =

∫
[0,1]n

dτ1...dτn

n∏
i=1

|τi|α−1|1− τi|β
∏
i<j

|τij|2γ ,

Sn,p(α, β, γ) =

∫
[0,1]p

∫
[1,∞)n−p

dτ1...dτn

n∏
i=1

|τi|α−1|1− τi|β
∏
i<j

|τij|2γ .
(3.13)

In a similar fashion one can manipulate I
(2)
nmk to bring it in a form of the conformal three

point function. This computation, however, is considerably more involved so we instead do
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the analysis in the large q. The I
(2)
nmk in our case differs from that obtained in [41] by only

the sgn functions while the rest of the integrand has exactly the same form. So for us also at

large q, I
(2)
nmk takes the form,

I
(2)
nmk(τ1, τ2, τ3) ≈ s̃

(2)
nmk

|τ31|hn+hm−hk |τ51|hn+hk−hm|τ53|hk+hm−hn
+ · · · (3.14)

In our case of course s̃
(2)
nmk is different from s

(2)
nmk obtained by Gross and Rosenhaus[41].

4 Away from the Conformal Limit

In this section we carry out the calculation of correlation functions away from the conformal IR

fixed point. In our earlier work [40] we studied the effect of introducing a chemical potential

µ, in the SYK-model with complex fermions. We found that a non-zero µ takes us away

from the conformal limit since it explicitly introduces a scale in the problem. The effect of

introduction of this scale parameter is reflected in the chaotic behavior of the model, namely,

it brings down the value of the Lyapunov exponent. We computed the required quantities

and studied the maximally chaotic mode(in the large q limit where things can be handled

analytically).

We write below the relevant expressions in the large q limit. The two point function(to the

leading order in large N) in the region τ > 0 is given by,

G(µ, τ) = G0(µ, τ)

1 +
1

q
log

 cos
(
πν
2

)
cos
[
πν
(

1
2
− τ

β

)]
+ ..

 , (4.1)

where,

G0(µ, τ) = − eµτ

eµβ + 1
, 0 ≤ τ ≤ β , (4.2)

G0(µ, τ) =
eµτ

e−µβ + 1
,−β ≤ τ ≤ 0 . (4.3)

The above relation can be written in a compact manner by,

G0(µ, τ) = −sgn(τ)
eµτ

eµβsgn(τ) + 1
, 0 ≤ τ ≤ β (4.4)

We now aim at calculating the enhanced contribution to the four point function slightly away

from the conformal limit with the chemical potential µ. Note that since we want to be slightly

away from the IR, we will keep µβ to be small and expand all functions in this variable. Then

it can be interpreted that we move slightly away from the IR by turning on a small chemical

potential.

To this end we need to first calculate the shift in the eigenvalue of the Kernel for the h = 2

mode. For this we incorporate the technique used in [4]. We begin with the equation,

KΨ = kΨ, ⇒
∫ ∫

K(τ1, τ2, τ3, τ4)Ψ(τ3, τ4)dτ3dτ4 = kΨ(τ1, τ2) . (4.5)
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The Kernel is given by,

K(τ1, τ2, τ3, τ4) = −(−1)q/2J2(q − 1)G(µ, τ13)G(µ,−τ24)G(µ, τ34)q/2−1G(µ,−τ34)q/2−1 (4.6)

We will work in the large q limit. Substituting the Kernel in equation (4.5) gives

−qJ2

∫
dτ3dτ4

sgn(τ13)sgn(τ24)eµτ13e−µτ24

(eµβsgn(τ13) + 1)(e−µβsgn(τ24) + 1)

cos2
(
πν
2

)
sin2

(
x̃34

2

)
× Ψ(τ3, τ4)

{(eµβsgn(τ34) + 1)(e−µβsgn(τ34) + 1)}q/2−1
= kΨ(τ1, τ2) , (4.7)

where ν is defined in (2.11) and x̃ij =
2πντij
β

+ π(1− ν). Multiplying (4.7) by e−µτ12 on both

sides of the equation, and differentiating twice, once with respect to τ1 and once with respect

to τ2 gives,

∂τ1∂τ2

(
sgn(τ13)sgn(τ24)

(eµβsgn(τ13) + 1)(e−µβsgn(τ24) + 1)

)
= 4δ(τ13)δ(τ24) (4.8)

Using the parametrization k = 2
h(h−1)

eq.(4.7) reduces to,

−
qJ2 cos2

(
πν
2

)
(2 + 2 cosh(µβ))q/2−1

× e−µτ12

sin2
(
x̃12

2

)Ψ(τ1, τ2) =
2

h(h− 1)
∂τ1∂τ2

(
e−µτ12Ψ(τ1, τ2)

)
(4.9)

If we substitute Ψ(τ1, τ2) = eµτ12e−in(τ1+τ2)ψn(τ12) then after some manipulation of eq.(4.9)

(also using (2.11)) we arrive at the differential equation,[
n2 + 4∂2

x −
ν2h(h− 1)

sin2
(
x̃
2

) ]
ψn(x) = 0 . (4.10)

Here, x = 2πτ
β

and we have suppressed the subscript on τ since everything is now a function

of the time difference τ12.

The solution to this equation with appropriate boundary condition is well known. In fact this

is the same equation as obtained in [4]. The solution is given by, (with ñ = n/ν)

ψh,n(x) =

(
sin

x̃

2

)h
2F 1

(
h− ñ

2
,
h+ ñ

2
,
1

2
; cos2

(
x̃

2

))
, n = even

ψh,n(x) = cos
x̃

2

(
sin

x̃

2

)h
2F 1

(
h− ñ+ 1

2
,
h+ ñ+ 1

2
,
3

2
; cos2

(
x̃

2

))
, n = odd .

The quantization condition on h is obtained by demanding that the wave function vanishes

at x = 0, i.e., x̃ = π(1− ν). As we approach the conformal limit ν → 1 this solution actually

diverges for generic values of h near 2 (we are interested in the h = 2 eigenfunctions). But we

want values of h such that the solutions are finite or vanishing, so the first or second argument

of the hypergeometric has to be a negative integer. This gives the quantization of h near 2

to be,

hn = 2 + |ñ| − |n|, hn = 2 + |n|
(

1− ν
ν

)
(4.11)
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This gives the shift in the eigenvalue k = 2
h(h−1)

to be,

k(2, n) = 1− 3|n|
2

(1− ν) +

(
7n2

4
− 3|n|

2

)
(1− ν)2 + ... (4.12)

This result is identical to the shift obtained in [4], only difference being that ν now depends

on the effective coupling βJeff instead of βJ .

4.1 The enhanced four point contribution

Let us now look at the four point function and use the above result to figure out the enhanced

contribution for the Schwarzian mode slightly away from the conformal limit. We begin with

the expansion of the four point function in the basis of eigenfunctions of the Kernel, (using

the variable θ = 2πτ
β

on the thermal circle and the period becomes 2π)

F(θ1, θ2, θ3, θ4)

G(θ12)G(θ34)
= 2

∑
h,n

k(h, n)

1− k(h, n)
Ψexact
h,n (θ1, θ2)Ψexact∗

h,n (θ3, θ4) . (4.13)

To find the enhanced contribution of the Schwarzian or h = 2 mode we use the eigenfunction

of the Casimir for h = 2 and the shifted eigenvalue in the denominator. In the numerator we

just use the eigenvalue with h = 2 in the IR. This is done to ensure that we are only slightly

away from the conformal limit driven by introducing a small chemical potential. Here we will

use all results for the large q limit,

F(θ1, θ2, θ3, θ4)

G(θ12)G(θ34)
=

2βJeff

π2

∑
|n|≥2

ein(y′−y)

n2(n2 − 1)

[
sin
(
nx
2

)
tan
(
x
2

) − n cos
(nx

2

)][sin
(
nx′

2

)
tan
(
x′

2

) − n cos

(
nx′

2

)]
.

(4.14)

Here,

x = θ1 − θ2, x′ = θ3 − θ4, y =
θ1 + θ2

2
, y′ =

θ3 + θ4

2
. (4.15)

We have used 1− ν ∼ 2
βJeff

for large βJeff.

We will now carry out the sum over n. The final expression after all simplifications is compli-

cated, and to get some sensible result for the six point function using these results we resort

to doing numerical computation. That is, we carry out the integration numerically to see the

behavior of the six point function. We also deduce the chaotic behavior of the OTO six point

correlator even though we do not have an analytic result.

4.2 The “Contact” and and “Planar” diagrams

What we want to now claim is that among the Contact diagrams and Planar diagrams, which

contribute to the six point function at leading order in∼ 1/N , the contact diagrams dominates

the planar ones by an order q4, for the enhanced non-conformal mode contribution to the four

point function. So at large q, the contact ones dominate over the planar ones, and hence we

will look at only the former. But let us show a brief argument for why that is true.
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The contact contribution goes as,

Sc = (q−1)(q−2)J2

∫
dτadτbG(τab)

q
2
−3G(−τab)

q
2F(τ1, τ2, τa, τb)F(τ3, τ4, τa, τb)F(τ5, τ6, τa, τb) .

(4.16)

While the planar contribution goes as,

Sp =

∫ ∞
−∞

dτadτbdτcFamp(τ1, τ2, τa, τb)Famp(τ4, τ3, τc, τa)Famp(τ5, τ6, τb, τc) , (4.17)

where,

Famp(τ1, τ2, τ3, τ4) = −
∫ β

0

dτ0F(τ1, τ2, τ3, τ0)

∫
dω4

2π
e−iω4τ40

1

G(µ, ω4)
,

is the amputated four point function. We can use the SD equations to write,

1

G(µ, ω4)
= −iω4 + µ− Σ(µ, ω4) . (4.18)

Since we are working at finite temperature, we have to do a Matsubara sum. Notice that

the iω + µ term has no poles, so when we evaluate the sum using the contour integration

prescription, this part vanishes and we are left with,

Famp(τ1, τ2, τ3, τ4) =

∫ β

0

dτ0F(τ1, τ2, τ3, τ0)Σ(µ, τ40) ,

Famp(τ1, τ2, τ3, τ4) = J2

∫ β

0

dτ0F(τ1, τ2, τ3, τ0)G(τ40)q/2−1G(−τ40)q/2 . (4.19)

Now we can convert the τ integrals to θ integrals via appropriate scaling and we get,

Sc ∼
q(βJeff )3

(2π)2
, (4.20)

where,

Famp(τ1, ..., τ4) ∼ βJeff
2πqβ

. (4.21)

In terms of the θ variable we have,

F(θi, θj, θa, θb) ∼ βJeffG(θij)G(θab) , (4.22)

and in the large q limit, for large but finite βJeff,

(G(θab))
q
2 (G(−θab))

q
2 ∼ 1

(βJeff)2 sin2
(
θab
2

) . (4.23)

Here we have put ν = 1 inside the sine function which is consistent to the leading order with

ν → 1 as βJeff → ∞. As a consequence the (βJeff)2 coefficient of the “Contact” diagram

as well as the amputated four point function cancels out due to the (βJeff)2 appearing in

the denominator of (4.23). Now since the planar diagram is given by the product of three
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amputated four point functions hence, when we take the product and convert the τ integrals

to θ integrals in (4.17), we finally get,

Sp ∼
(βJeff)3

q3(2π)6
. (4.24)

Taking the ration of Sc with Sp we see that,

Sc
Sp
∼ (2π)4q4 . (4.25)

So in the large q limit as one can easily see that the contact diagram is far more dominant

compared to the planar ones and hence it is justified to consider the contribution of the

contact diagrams only.

4.3 The six point function

Although one can get an analytic answer for the enhanced four point contribution slightly

away from the conformal limit, calculation of the full six point function becomes somewhat

messy to carry out analytically. We therefore compute the six point function using numerical

methods.

Let us first summarize the results, we will then we state all the relevant values used in carrying

out these computations.

• We first compute the six point contribution with three h = 2 mode keeping all the time

arguments to be separate and then we take the short time limit θ1 → θ2 or θ3 → θ4.

We see that the six point function decreases in this limit for various small values of µβ

keeping βJ fixed at some large value.

• We then reverse the order, that is we first take the triple short time limit and then carry

out the integrals numerically for all the possible nonconformal contributions, i.e.,

Fh=2FcFc, Fh=2Fh=2Fc, Fh=2Fh=2Fh=2 . (4.26)

We find that among the three terms listed above, the first contribution almost vanishes

up to any order in µβ that we are working with, whereas the other two terms are small

but are of the same order and they go as (µβ)2 with small coefficients. These will get

corrected as we go to higher orders.

• To benchmark the code we compute λ
(1)
11k (as was done in [41] for all three conformal

modes) for the contact diagrams and plot it against k, where for large k, hk = 2k+ 1 +

1/2∆ +O(1/k). We find the similar fall off behavior at large k.

Let us now look at some details of the analysis. One of the things that we have to keep in

mind is that we are slightly away from the conformal limit because we have turned on a small
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µβ. We need to be careful while working with the conformal modes. Due to explicit scale in

the theory, the modes may not be conformal anymore. In other words, the normalized four

point contributions of these modes may not be a function of only the cross ratio χ anymore.

However, for small βµ, the conformal perturbation theory makes sense and within this limit

using the conformal basis is justified.

If we recall the eigenvectors of the Kernel then we see that,

Ψ(θ1, θ2) = e
µβ
2π

(θ12)ein
θ1+θ2

2 ψn(θ12)

and to obtain the conformal modes one has to go to the IR, do the sum over n in the four point

function to obtain the sum over integer values of h as well as the integral over the principle

continuous series. One then deforms the contour to pick up the poles at kc = 1, eigenvalue

of the kernel in the conformal limit. In the IR limit the exponential µβ factor becomes equal

to 1, but since it has no n dependence it plays no role when we carry out the sum over n.

Therefore, slightly away from the conformal limit we will have (small µβ),

Fh6=2(θ1, θ2, θ3, θ4)

G(θ12)G(θ34)
= e

µβ
2π

(θ12+θ34)

∞∑
m=1

c2
mχ

hm
2F 1(hm, hm, 2hm, χ) (4.27)

=
∞∑
m=1

c2
mχ

hm
2F 1(hm, hm, 2hm, χ) +

µβ(θ12 + θ34)

2π

∞∑
m=1

c2
mχ

hm
2F 1(hm, hm, 2hm, χ)

+

(
µβ

2π

)2
(θ12 + θ34)2

2!

∞∑
m=1

c2
mχ

hm
2F 1(hm, hm, 2hm, χ) + · · · .

The above expression breaks conformal invariance and this is the four point function we will

be working with away from the conformal limit.

Since βJeff appears as an overall factor we strip of this factor and look at the integrals only.

For small µβ this factor is large but finite. µβ is kept to be ∼ 7.4× 10−4.

4.4 The Short time and OTO behavior of the Six point function

Since this is a part of the non-conformal piece, we will first compute it by keeping all times

different and then taking one time approaching another for example τ1 → τ2, and look at how

it behaves. In Figure 1, we see the behavior of the six point as we take the short time limit.

It is easy to check that when we compute the six point function in the triple short time limit

vanishes.

The contribution to the non-conformal piece coming from the product of three h = 2 modes

is shown in Fig. 1. In computing the contribution for one or two h 6= 2 modes, we have to be

careful as what happens to the “Planar” diagrams as well. For more details see, Appendix B.

For calculating the OTO correlation function we have to first set a specific configuration of

operators, which is then analytically continued to real time. However, we do not have the

analytic expression so we use the following procedure. We modify the times that are to be
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Figure 1. The plot of the six point function vs τ1 as τ1 → τ2.

analytically continued keeping their relative positions to be the same. This effectively corre-

sponds to changing only one time independently. We observe the behavior of the correlator

and compare it with the behavior of the enhanced four point function (for which we already

know that there is a chaotic behavior) under the same operation. From the results plotted in
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Figure 2. The OTO six point and four point function response for changing τ1.

fig. 1 and fig. 4.4 above it is easy to see that the six point OTO correlation function actually

does exhibit chaotic behavior when we analytically continue to real time. The chaos exponent

can be estimated by fitting the data with an oscillatory function. We choose an ansatz

a+ b sin(λτ) + c cos(λτ) . (4.28)

We find that the data is fitted for the following values of a, b, c, and λ,

a = −0.68904 ,

b = 0.56662 ,

c = 0.63927 ,

λ = 1.4364 .

(4.29)

The maximal value of the Lyapunov is 3/2 but the fitted value of λ is less than the maximal.

This is because we are away from the conformal point due to small but non-vanishing value

of the chemical potential µ. Here we would like to mention that upto small errors this value

of λ is in agreement with [42], as the maximal chaos exponent for the six point OTOC.
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5 Conclusion

We have computed the fermion six point function in the SYK model with complex fermions

in the presence of a non-vanishing chemical potential. We then took triple short time limit

of this correlation function so that it appears as a three point function of fermion bilinears.

We show that the three point function of fermion bilinears, for h 6= 2 modes, have the scaling

property of conformal field theory three point function, as is expected as a generalisation of

the results of [41] to the complex fermion case. Like in [41], we find that the contribution

of the contact three point graphs in the large q limit is subleading compared to that of the

planar graphs.

We also compute three point function of fermion bilinears for the h = 2 mode. This mode

is known to break the conformal invariance of the SYK model, both spontaneously as well

as explicitly. This mode is known to exhibit chaotic behaviour with the Lyapunov exponent

λL that saturates the chaos bound. The three point function of bilinears in this case has a

behaviour different from those of the conformal, i.e., h 6= 2 modes. In this case we find that in

the large q limit, the contribution of the planar graphs is subleading compared to the contact

graphs.

As a future direction to explore further, since the couplings of the SYK model are chosen from

random gaussian distributions, it is tempting to ask if one can apply techniques of stochastic

quantisation to reconstruct the bulk description. We hope to report on this soon.

Acknowledgments: We would like to thank Subhroneel Chakrabarti for participating in the

initial stages of this work and for many discussions. RB would also like to thank Kasi Jaswin

for important discussions related to the OTOC behavior. This research was supported in part

by the International Centre for Theoretical Sciences (ICTS) during a visit for participating

in the program - AdS/CFT at 20 and Beyond (Code: ICTS/adscft20/05) during the course
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A Appendix A

In this appendix we collect the expressions of the constants that appear in six point amplitude.

cn =
2q

(q − 1)(q − 2) tan(π∆)

(hn − 1
2
)

tan
(
πhn

2

) Γ2(hn)

k′A(hn)Γ(2hn)
, (A.1)

c̃n =
2q

(q − 1)(q − 2) tan(π∆)

(hn − 1
2
)

cot
(
πhn

2

) Γ2(hn)

k′S(hn)Γ(2hn)
, (A.2)

ξn = bqπ1/2 Γ(1−∆ + hn
2

)Γ(1
2
− hn

2
)Γ(∆)

Γ(1
2

+ ∆− hn
2

)Γ(hn
2

)Γ(3
2
−∆)

, (A.3)

ξ̃n = bqπ1/2 Γ(1
2
−∆ + hn

2
)Γ(1− hn

2
)Γ(∆)

Γ(∆− hn
2

)Γ(1
2

+ hn
2

)Γ(3
2
−∆)

. (A.4)

B Appendix B

If we consider the behavior of Famp for the h = 2 mode as we take two times to be closer to

each other, then we find the results shown in Figure 3 below.

As we can see from the graph the value of Famp is quite large when the times are well separated.

But computing the six point “Planar” diagram in the triple short time limit numerically one

finds that the contribution is small i.e of the same order as the “Contact” integrals hence

using the fact that the coefficient of the “Contact” diagrams are much dominant over the

“Planar” ones, we are justified in considering the contribution of the former only. Although

one has to be careful when considering the “Planar” contribution when h 6= 2 modes are

taken but since the numerics is pretty involved and takes very long time we do not present

those results here.

2 4 6 8 10

200

400

600

800

1000

Figure 3. Plot of Famp against θ1 as it is taken towards to θ2. Along the θ1 axis we mark the

number of steps while the actual interval is 0− 1 in steps of 0.1
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