
SciPost Physics Submission

Classification of magnetohydrodynamic transport
at strong magnetic field

B. Benenowski1, N. Poovuttikul2*,

1 Instituut-Lorentz for Theoretical Physics, ∆ITP, Leiden University, Niels Bohrweg 2,
Leiden 2333CA, The Netherlands

2 University of Iceland, Science Institute, Dunhaga 3, IS-107, Reykjavik, Iceland
* nickpoovuttikul@hi.is

Abstract

Magnetohydrodynamics is a theory of long-lived, gapless excitations in plas-
mas. It was argued from the point of view of fluid with higher-form symmetry
that magnetohydrodynamics remains a consistent, non-dissipative theory even
in the limit where temperature is negligible compared to the magnetic field. In
this limit, leading-order corrections to the ideal magnetohydrodynamics arise
at the second order in the gradient expansion of relevant fields, not at the first
order as in the standard hydrodynamic theory of dissipative fluids and plasmas.
In this paper, we classify the non-dissipative second-order transport by con-
structing the appropriate non-linear effective action. We find that the theory
has eleven independent charge and parity invariant transport coefficients for
which we derive a set of Kubo formulae. The relation between hydrodynam-
ics with higher-form symmetry and the theory of force-free electrodynamics,
which has recently been shown to correspond to the zero-temperature limit of
the ideal magnetohydrodynamics, as well as simple astrophysical applications
are also discussed.
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1 Introduction

Hydrodynamics is a theory of gases, fluids and other collective systems at long time scales
and long distances [1, 2]. The framework in which it is formulated is that of a gradient
expansion written in terms of local hydrodynamic fields, resulting in an infinite series
of zeroth-order hydrodynamics, first-order hydrodynamics, second-order hydrodynamics
[3, 4], and higher orders [5–7].

In the absence of dissipation, one can formally attempt to write a hydrodynamic theory
in the language of the standard action and use the variational principle to derive the
dynamical equations of motion. Such approaches have been successfully implemented in
the study of equilibrium fluids [8,9] and can even be used out-of-equilibrium to compute, for
example, the thermodynamical transport coefficients, which generate no entropy [10, 11].
Beyond equilibrium, however, standard field theory necessarily fails as it is unable to
correctly account for dissipative effects, which generate entropy. What has transpired in
recent years, however, is that hydrodynamics can be consistently formulated as an effective
dissipative field theory by using the language of the Schwinger-Keldysh formalism [12–21].

The question of whether a non-dissipative fluid could in principle exist arose with the
work of [11], which analysed constraints on conformal second-order transport imposed by
the absence of dissipation (or entropy production). A natural example of such a system
is the holographic fluid dual to the Einstein-Gauss-Bonnet theory. In this theory, it is
known that a “formal” limit exists that takes the shear viscosity to zero, η → 0 [22].
Since the entropy production in a conformal fluid is dominated by a single first-order
term proportional to η, this implies that in such a limit, only subleading effects, if any,
could generate entropy. The fact that even in the absence of first-order effects, second-
order hydrodynamics can indeed continue to generate entropy was observed through a
detailed, non-perturbative analysis of second-order transport coefficients in this theory in
Refs. [23–25]. These investigations pointed to the fact that a genuine nondissipative fluid
requires additional structure in order for it to be realisable. In this work, we propose that
such scenario could exist in the context of plasma physics at extremely strong magnetic
field regime.

Plasma is an ionised gas described by the theory of magnetohydrodynamics (MHD)
[26–28]. In the standard language, MHD is a collective theory of coupled hydrodynamic
and electromagnetic degrees of freedom. In the work of Ref. [29,30], MHD was recently re-
formulated and generalised to describe any plasma by using the language of higher-form (or
generalised global) symmetries [31]. The theory uses the fact that beyond conserved energy
and momentum, the conserved number of magnetic flux lines crossing a two-dimensional
spatial surface gives rise to a conserved two-form current, or ∇µJµν = 0, where Jµν is
an antisymmetric tensor. This two-form current is the Noether current of a U(1) one-
form symmetry, that is ensured by the absence of magnetic monopoles, and is treated in
the same footing as energy-momentum tensor in the hydrodynamic gradient expansion
scheme. The conservation for the electric flux, on the other hand, is explicitly broken
by the presence of ionised medium and is irrelevant in the hydrodynamic setup3. The
connection between this formalism and the one where the derivative expansion procedure
is applied to the gauged ordinary U(1) current jµ ∼ ∇νF νµ in [33] can be found in [34,35].

Unlike in an ordinary relativistic fluid, ref. [30] argued that their formulation allowed
one to take the zero temperature limit (T → 0) of MHD and end up with a consistent,

3In other words, we assume that the life-time of the electric field excitation is much shorter than the
characteristic time scale set by temperature and magnetic field. For higher-form symmetry formalism
where the conservation of electric flux is only slightly broken, or equivalently when the mentioned life-time
is comparable to the macroscopic time scale, see e.g. [32]
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hydrodynamic theory of a dissipationless plasma. Since the only dimentionless parameter
is B/T 2, where B is the strength of the magnetic field, one can equivalently think of
this limit as the limit of an extremely strong magnetic field, B → ∞. In this limit,
the theory enjoys enhanced spacetime symmetry, which is manifest in emergent boost-
invariance along the magnetic field lines. This additional symmetry, along with other
symmetries of the plasma allow one to write down hydrodynamic constitutive relations,
which permit no first-order gradient terms and no (vector) entropy current. Transport
beyond the ideal limit is dominated by second-order hydrodynamics. In effect, Ref. [30]
predicted that all first-order transport coefficients in a plasma necessarily have to vanish
as T 2/B → 0. This prediction was verified in a dual holographic model by [36].

Motivated by the question of better understanding this enhanced symmetry limit of
the cold plasmas, in this paper, we extend the work of [30] and construct a fully non-
linear theory of a zero temperature plasma. We do this by writing down a dissipationless
effective action, which automatically ensures that the system is closed and produces no
entropy. Beyond the verification of the linearised sector of the theory from [30] and the
constraints that appeared there, here we will obtain the full set of (non-linear) second-
order transport coefficients as well as the relevant Kubo formulae. Due to the complexity
of the combinatorics involved in constructing the relevant set of tensors, we will implement
a computer algebra algorithm — an extensions of the one used to construct third-order
hydrodynamics in [5] — which employs the xAct library in Wolfram Mathematica [37].

The second motivation for this work is an interesting connection between the T = 0
theory of magnetohydrodynamics and Force-free Electrodynamics (FFE) known mainly
from astrophysics [38–40]. Beyond the observation that both theories posses the same
global symmetries, the fact that the equations of motion of FFE are identical to the zero-
temperature limit of magnetohydrodynamics with a one-form global U(1) symmetry was
recently shown in Refs. [41, 42].

FFE has been widely used to describe the phenomenology of the magnetospheres of
compact astrophysical objects such as neutron stars, Kerr black holes [43], active galactic
nuclei and, more recently, binary black holes [44]. In these scenarios, one can think of the
magnetosphere as consisting of an electromagnetic field coupled to plasma. The plasma is,
on the one hand, dilute enough so that its contribution to the equation of state is negligible.
For example, its energy density is about fifteen order of magnitude lower than the one of
the electromagnetic field in the pulsar’s magnetosphere (see e.g. [45] for a review of the
astrophysical setup). At the same time, the plasma density is high enough to screen the
electric field. In the language of global symmetries, this means that the conservation of the
electric flux is explicitly broken so that the only conserved charges in the IR dynamics are
energy, momentum and magnetic flux as in the above hydrodynamic setup. The equations
of motion for FFE, however, are not written in terms of the conservation laws but in the
following way:

∇µ (εµνρσFρσ) = 0 , jµFµν =
(
∇λF λµ

)
Fµν = 0 , εµνρσFµνFρσ = 0. (1.1)

The first equation is the conservation of the magnetic flux, which upon the standard
identification of the two-form current associated with a one-form symmetry, i.e. Jµν =
1
2ε
µνρσFρσ, becomes the conservation equation ∇µJµν = 0 used in the construction of

MHD by [30]. The second equation is the force-free condition indicating that the force
jµFµν exerted on the plasma by the electromagnetic field vanishes, with jµ ∝ ∇νF νµ being
the gauged U(1) current. The last equation, called the degeneracy condition, indicates that
a probe charge cannot be accelerated along the magnetic field lines in the magnetosphere
(since E ·B = 0). The degeneracy condition together with the condition that the magnetic
field dominates, FµνFµν = −|E|2 + |B|2 > 0, allows one to write Fµν = ∂[µσ

1∂ν]σ
2, where
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{σ1, σ2} are the coordinates orthogonal to the “worldsheet” of the magnetic field lines.
This treatment of the magnetic field lines as of strings was implemented in the context
of FFE by [39]. A more formal geometric approach to this formalism, as well as various
astrophysical applications of it, can be found in a review by Gralla and Jacobson [46].
Note also that FFE description neither depends on the microscopic details of the charge
sector jµ nor on how it is coupled to the electromagnetic sector. This already hints at
the connection between FFE and hydrodynamics as they are both macroscopic effective
theories that are independent of the microscopic details.

What is apparent from the above discussion is that both the extreme limit of MHD and
FFE work at negligible temperatures, have the same conserved charges and are indepen-
dent of the microscopic details. However, the formulation with higher-form symmetries
provides us with several advantages. Firstly, it allows us to systematically couple a plasma
to the external background field bµν (which parametrises the external charge injected into
the system). The other potential improvement comes from the fact that FFE has a built-in
assumption: the degeneracy of the magnetic field lines parametrised by P ∼ εµνρσFµνFρσ,
vanishes. While this makes the system of equations in (1.1) well-behaved and relatively
easy to solve, it fails to describe many of the phenomena that happen in the magneto-
spheres of compact astrophysical objects. In particular, the inability to accelerate charged
particles implies that the magnetosphere in FFE description cannot lose its energy in
terms of photons. This contradicts the fact that we do observe radio-wave emissions from
pulsars (see e.g. [47]). In addition, it also means that FFE cannot account for the observed
phenomena such as jets and cosmic ray bursts. In the astrophysics literature, the condi-
tion P > 0 is lifted by phenomenologically introducing resistivity to the system by various
approximations, resulting in multitudes of models, see e.g. [45] for discussion on origin of
the emission and [48] for a review of various models of this type. On the other hand, the
systematic gradient expansion of conserved currents in hydrodynamics with higher-form
global symmetries allows the possibility of having non-zero P from derivative corrections,
namely P = P(∂, ∂2, ...). This possibility was pointed out in [42]. Additionally, as already
discussed above, if one constrains the temperature of the system to be low compared to
the scale of interest, it was argued in [30] that the first derivative corrections must vanish
as well. With the classification of second-order transport, we can systematically single
out terms which are responsible for the charge acceleration along the field lines. Together
with the Kubo formulae, the transport coefficients (analogous to the viscosity) can then be
obtained from microscopic theory. Given that FFE also makes appearance in various situ-
ation other than compact astrophysical objects (such as solar corona [49] and topological
insulators [41]), we hope that the classification presented here will provide a systematic
way to analyse force-free electrodynamics and its connection to the underlying microscopic
theory.

The remaining sections of the paper are organised as follows. We start by briefly re-
viewing the construction of the hydrodynamic effective action and discuss how to organise
the derivative expansion in section 2. We explain the relevant hydrodynamic variables
which are analogous to the fluid velocity and the chemical potential in an ordinary fluid
as well as how to organise them into the effective action in section 2.1. And we outline the
procedure and algorithm we use to classify all the possible terms in the effective action with
two derivatives in section 2.2. There are eleven possible terms in the effective action that
contribute to the conserved currents Tµν , Jµν . This is our main result and it is presented in
the same section. We then study how these new second-order transport coefficients affect
the correlation functions in section 3. In subsections 3.1 and 3.2, we study the long-lived
modes analogous to Alfvén and magnetosonic waves in the strong magnetic field limit and
identify the correlation functions which encode the corresponding sound poles. The Kubo
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formulae, which relate the transport coefficients controlling the second-derivative terms to
the two-point and three-point functions, are presented in section 3.3. A short discussion
on the applications of this formalism, including the transport coefficient responsible for
the aceeleration along the field lines of a simple model of the magnetosphere is presented in
section 4. We conclude our work and discuss some immediate open problems in section 5.
Four appendices containing useful formulae and computational details are also provided.

2 Effective action

Effective action is an organised way to construct hydrodynamics given the global sym-
metries. In this work, where we consider a theory of a conserved energy and momentum
Tµν as well as a conserved two-form current Jµν , the generating function is obtained by
coupling the theory to a background metrics gsµν and the two-form background gauge
fields bsµν in the Schwinger-Keldysh formalism,

Z[gsµν , bsµν ] =

〈
exp

i ∑
s=1,2

(−1)s+1

∫
d4x
√
−gs

(
1

2
Tµνs gsµν + Jµνs bsµν

)〉
SK

. (2.1)

Here the label s = 1, 2 denotes the source which couples to two sets of degrees of freedom,
one evolving forwards on the complex time contour while the other one evolving backwards.
This generating function is the result of integrating out the soft degrees of freedom from
the effective action W̃ , namely

Z[gsµν , bsµν ] =

∫
SK
D[Φs] exp

(
iW̃ [gsµν , bsµν ,Φs]

)
, (2.2)

where Φs denotes two sets of soft hydrodynamic degrees of freedom. In the classical limit,
where one can ignore the statistical fluctuations (such as in large N theories), the path
integration can be performed with the saddle point approximation. The coupling between
Φ1 and Φ2 results in dissipative effects (such as viscosity) and in their absence one can
split W into two pieces that only depend on s = 1 and s = 2 fields, respectively,

W̃ = W [g1µν , b1µν ,Φ1]−W [g2µν , b2µν ,Φ2] . (2.3)

We will argue that the action for the theory with strong dynamical magnetic field can be
written in the above form and this will be justified in the next section.

The variables {gsµν , bsµν ,Φs} are to be combined into objects which are invariant under
diffeomorphisms and gauge transformations of the background fields,

gsµν → gsµν + 2∇(µξsν), bsµν → bsµν + 2∇[µλsν] , (2.4)

as well as internal symmetries of Φs. These objects will be referred to as hydrodynamic
variables. Demanding that the action can only depend on such variables, one can proceed
to write down all the possible combinations of them that form scalars to construct the
effective action, up to the desired order in the derivative expansion. Once W is obtained,
the constitutive relations can be obtained in the following way:

Tµν =
2√
−g

δW

δgµν
, Jµν =

1√
−g

δW

δbµν
. (2.5)

The invariance of the generating function Z under the background field transformations
in Eq. (2.4) implies that these two currents satisfy the following Ward identities:

∇µTµν = Hν
ρσJ

ρσ , ∇µJµν = 0 , (2.6)
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where H ≡ db is the 3-form field strength of the 2-form background field bµν . Note that
since we are not working with two copies of the hydrodynamic variables, we will drop the
subscript s for the rest of this work. We would also like to point out that, as apparent
from the above equation (2.6), the hodge dual of (db)µνλ plays the role of the external
vector current jµexternal that is injected into the system (see e.g. section II.A. of [30] for
more details).

With this formalism in place, let us summarise our strategy for constructing the hy-
drodynamic theory of MHD in the strong magnetic field limit. Firstly, we identify the
hydrodynamic variables, constructed from (a single copy of) gµν , bµν and Φ. Then we
write down all possible scalars which constitute the effective action W up to the second
order in the derivative expansion. And the constitutive relations are obtained by varying
this effective action. This procedure has also been applied to obtain the effective action
for dissipationless relativistic fluid in [11], which we follow. Once this is done we can then
use the effective action to find the linearised and non-linear solutions of the theory.

This approach implies that the theory is dissipationless and we shall justify this as-
sumption in the next section. In the following sections, we will show that the strong
magnetic field limit B/T 2 → ∞ forbids terms at the first order in the derivative expan-
sion. Moreover, the entropy current vanishes thus justifying the decoupling between the
two sets of Schwinger-Keldysh degrees of freedom in (2.3) as well as our construction with
non-dissipative effective action.

2.1 Formalism for non-dissipative fluid with one-form global symmetry

There are several ways to arrive at the dynamical variables for the zero temperature
MHD employed in this work. From the point of view of a fluid with conserved number of
strings [30] (see also [29]), the constitutive relations at the zeroth order in the derivative
expansion are:

Tµν = (ε+ p)uµuν + pgµν − µρhµhν , (2.7a)

Jµν = ρ (uµhν − uνhµ) , (2.7b)

where uµ is the fluid four-velocity and hµ is a unit vector parametrising the direction of
the string. The thermodynamic quantities satisfy the first law and extensivity condition,

dp = sdT + ρdµ , ε+ p = sT + µρ , (2.8)

where besides the usual energy density ε, pressure p, temperature T and entropy s, we have
an equilibrium string/magnetic flux density ρ and its corresponding chemical potential µ.
As one enters the regime where the temperature T is negligible, the usual fluid variables
can be combined into a specific form which preserves the SO(1, 1) rotation between uµ

and hµ, namely

Tµν = −εΩµν + pΠµν , Jµν = ρuµν (2.9)

where, in terms of the original variables, we have:

uµν = uµhν − uνhµ , (2.10a)

Ωµν = −uµuν + hµhν = uµαu
αν , (2.10b)

Πµν = gµν − Ωµν . (2.10c)

It is postulated in [30] that the corrections to MHD at low temperature can therefore be
obtained by writing down the higher-derivative tensors constructed from uµν , Ωµν and Πµν

which preserve the boost symmetry between uµ and hµ. Insisting on using these variables
has several physical consequences:

7
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• there is no first derivative rank-two tensor (both symmetric and anti-symmetric) that
can be constructed out of {uµν ,Ωµν ,Πµν}. This is in agreement with the fact that the
system which remains at zero temperature does not dissipate heat. This observation
is also confirmed in the case of strongly interacting holographic plasma [36] where
all the transport coefficients at the first order in the derivative expansion vanish.
Consequently, the leading-order corrections to the system can only appear at the
second order in the derivative expansion.

At this point, one may proceed to write down all possible combinations of both sym-
metric and anti-symmetric rank two tensors constructed from the second derivatives of
{uµν ,Ωµν ,Πµν}. Note however, that not all tensors one can construct are independent as
derivatives of certain variables are related to one another via the conservation law (2.4) at
the zeroth order in the derivative expansion. In terms of hydrodynamic variables, these
relations are

∇λµ = µuαβΠλ
γ∇αuβγ −

ρ(µ)

ρ′(µ)
uλαΠβ

γ∇βuαγ +Hαβγu
αβΠλ

γ , (2.11a)

Πλ
γΩαβ∇αuβγ = 0 . (2.11b)

Procedure outlined above has been employed to construct the higher-derivative expansion
for charged neutral fluid [3–5]. A slight drawback of this approach is that one is also
required to construct the non-equilibrium entropy current which constrains certain combi-
nations of transport coefficients to either vanish or be positive definite (see e.g. [4,50,51]).
Instead, one can use an additional crucial property of the zero temperature MHD to bypass
this step, namely that

• The fact that the free energy is independent of temperature implies that the equi-
librium entropy density, s, vanishes. Moreover, the entropy current which can be
constructed from the Schwinger-Keldysh effective action is

sµ = V µ −
(uν
T

)
Tµν −

(
µhν
T

)
Jµν , ∇µV µ = LKMS − L (2.12)

where L is the effective Lagrangian associated to the Schwinger-Keldysh effective
action W̃ and LKMS is the Z2-KMS conjugate of the Lagrangian [16,52].

In the enhanced symmetry system, the entropy current is not invariant under the
SO(1, 1) rotation and has to vanish. This implies that there is no entropy production
(∇µsµ = 0) and the effective action (2.2) splits into two copies as in Eq. (2.3) due
to the general argument of [19,52] 4.

As a result, we argue that the effective action for strong magnetic field limit of MHD
can be described by the following effective action:

W =

∫
d4x
√
−gLeff =

∫
d4x
√
−g
(
p(µ) + L2

)
+O(∂3) (2.13)

where L2 is a combination of linearly independent two-derivative scalars constructed with
µ, uµν , Ωµν and Πµν . Here we assume that the theory admits a gradient expansion and
we will be focusing on the leading correction, which is at the second order in derivatives.

A sharper statement can be made using an effective action construction [42] (for the
discussion of the effective action for a more conventional hydrodynamics see e.g. [54,55]).

4While the vanishing of the entropy production generally implies the decoupling between Schwinger-
Keldysh copies, there are exceptions like a parity odd fluid or a system with an anomaly, as shown in [53].
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A first step in this approach is to specify the relevant light degrees of freedom Φ alluded to
in the introduction. The first relevant degrees of freedom are the two fiducial coordinates
σi = {σ1, σ2} which label the string/magnetic flux lines on the plane perpendicular to
them. Additionally, each magnetic flux line is associated with a phase, exp

(
i
∫
L aµdx

µ
)
,

where L is the spatial curve parametrising this flux line, as illustrated in Fig 1.

Figure 1: Labeling of the magnetic field lines by the coordinates σi on the plane perpen-

dicular to the “strings”. Each field line is parametrised by a U(1) phase exp
( ∫

L aµdx
µ
)

.

Here the phase aµ transforms together with the background field bµν , see (2.4), in the
following way:

bµν → bµν + (∂µΛν − ∂νΛµ) , aµ → aµ − Λµ . (2.14)

There are two advantages for choosing these light degrees of freedom. Firstly, it makes a
line operator which is charged under the one-form U(1) manifest. Namely, one can define

a ’t Hooft line W (L) ≡ exp
(
iq
∫
L aµ(y)dyµ

)
of charge q and show that it satisfies the

Ward identity 5

(
∂µJ

µν(x)
)
W (L) = iq

∂

∂xν
δ4(x− y)W (L) , where y ∈ L . (2.15)

Secondly, from a more practical point of view, the invariance of the effective action under
the shift (2.14) implies that Euler-Lagrange equation for aµ is nothing more than the
conservation of magnetic flux or the number of strings i.e. ∂µJ

µν = 0.
One can now construct the effecting action W from {σi, aµ}. Note however that these

variables cannot appear in an arbitrary form due to their spurious nature. This can
be taken into account by demanding that the effective action has to be invariant under
additional internal symmetries of the fields σi and aµ. This means that the effective action
can only contain certain combinations of {σi, aµ}, which turns out to be the hydrodynamic
variables µ, uµν , Ωµν and Πµν discussed at the beginning of this section. This procedure

5This is analogous to the Ward identity of the local operator O(y) with charge q under the ordinary
(zero-form) U(1) global symmetry i.e.(

∂µj
µ(x)

)
O(y) = i q δ4(x− y)O(y) ,

where jµ is the conserved current of the ordinary global symmetry. For more details on how this is related
to canonical quantisation see e.g. [56].
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has been done for similar construction of the effective action for superfluid [54], ordinary
fluid [55, 57, 58] and recently extended to fluid with higher-form global symmetry in [42].
For completeness, we summarise the setup in [42] in the remaining of this section where
the internal symmetries are:

(i) Reparametrisation symmetry : This is due to the fact that the physical quantities
cannot depend on the choice of parametrisation {σ1, σ2} in the plane perpendicular
to the strings. Thus, one demands that the action has to be invariant under the
following reparametrisation symmetry:

σi → σ′
i
(σj), (2.16)

This is analogous to the volume preserving diffeomorphisms for the ordinary fluid
[55]. From this one can define an object akin to the fluid velocity in the following
way:

uµν = εµνρσ

(
Sρσ√

SαβSαβ/2

)
, Sµν = 2∂[µσ

1∂ν]σ
2 . (2.17)

This definition has the same property as the one defined via uµ and hµ in Eq. (2.10a)
and satisfies uµνuµν = −2. However, it is only invariant up to a sign of det[∂σ′/∂σ].
Thus, only products of even numbers of uµν or combination with odd power of uµν

and µ can enter the effective action. The reason for the latter scenario will be
apparent in the discussion below. At zero-derivative order, the only two non-trivial
combinations of uµν are

Ωµν = uµαu
αν , Πµν = gµν − Ωµν . (2.18)

By construction, one can see that these hydrodynamic variables satisfy the following
relations:

Ωµ
αu

αν = uµν , Πµ
αu

αν = 0, Ωµ
αΠαν = Πµ

αΩαν = 0 (2.19)

and, of course, ΩµνΩµν = ΠµνΠµν = 2. One can therefore think of Ωµν and Πµν as
projectors of a vector onto a plane along and perpendicular to the string worldsheet,
respectively.

(ii) One-form chemical shift symmetry : Due to the fact that the ’t Hooft line W
is define via an integral along the string, one can shift the one-form phase aµ by
ωµ(σ1, σ2) that only depends on the coordinates perpendicular to the string:

aµ → aµ + ωµ(σ1, σ2) , (2.20)

which yields the line operator with the same charge, via (2.15). For the effective the-
ory to be independent of such ambiguity and the shift symmetry of the background
fields (2.14), W can only depend on the following combination:

f̃µν = ΩµαΩνβ
(
bαβ + 2∂[αaβ]

)
. (2.21)

One can then define a scalar quantity out of f̃µν , which turns out to be the chemical
potential µ for the one-form U(1) symmetry,

µ2 = −1

2
f̃µν f̃

µν . (2.22)

Notice that f̃µν/µ has the same property as uµν when acted upon by the projectors
Ωµν and Πµν . At the zeroth order in the derivative expansion one may concluded
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that they are identical. This is not generally true as they can differ by a derivative
correction. This is nothing but the manifestation of the fact that the fluid variables
are defined up to derivative corrections, commonly known as the frame choice [1]
(see also [2] for more recent discussion). It is nevertheless convenient to impose this
condition at all orders in the derivative expansion 6:

f̃µν = µuµν . (2.23)

Note that, from the definition in Eq. (2.21), f̃µν is invariant under σi → σ′i with
det[∂σi/∂σ

′j ] = −1. Thus, the combination µuµν is invariant under the reparametri-
sation of σi. This implies that the terms with odd number of uµν can be made
invariant if they are accompanied by odd powers of µ.

Before moving on, we shall comment on the relation between this choice of variables
and the more conventional FFE formulation in e.g. [39]. There, the field strength tensor
Fµν = (?f̃)µν is simply written as Fµν = Sµν = 2∂[µσ

1∂ν]σ
2, where Sµν appears in Eq.

(2.17) and the magnetic flux is trivially conserved. The key difference here is that, in the
formalism outlined here, there exists a conserved current Jµν representing the conservation
of magnetic flux but Jµν 6= f̃µν except at the zeroth order in the derivative expansion!
This allows one to go beyond the unrealistic assumption of E ·B = 0 in the conventional
FFE formulation.

To sum up, we argued that the dynamical variables Φ = {σi, aµ} have to appear in
the following combination: even number of uµν , projectors Ωµν and Πµν , the scalar µ2

or products of an odd number of µ with an odd number of uµν . The remaining steps
are to organise these quantities order by order in the derivative expansion. Following the
approach in [11], we write down all possible scalars at the second order in derivatives,
which is the leading-order correction, modulo terms that can be related to one another
via ideal limit equations of motion (2.11a)-(2.11b).

2.2 Classification of the second-order effective action

In this section, we will outline the procedure to construct the effective action for T 2 � B
MHD up to the second order in the derivative expansion and summarise the result. Using
the formalism outlined above, the resulting effective action build from σi, aµ and the
background fields gµν , bµν is

Leff = p(µ) + αs(α) +

2∑
i=1

βis
(β)
i +

8∑
i=1

γis
(γ)
i +O(∂3) , (2.24)

where p(µ) is a scalar function of the chemical potential µ, which turns out to be the
thermodynamic pressure. The higher derivative terms are composed of independent scalars

s(α), s
(β)
i and s

(γ)
i , each multiplied by a function α, βi and γi, respectively, referred to as

transport coefficients. To justify the gradient expansion, we shall restrict our setup to a
situation where there is a hierarchy of scales, namely the characteristic IR length scale set
by ∂ ∼ ω, k, the thermodynamic scale set by the chemical potential µ and a microscopic
length scale `micro satisfy:

ω
√
µ
,
k
√
µ

� 1 � 1
√
µ`micro

. (2.25)

6Similar choice has also been used in the construction of the effective action of the charge-neutral fluid
in [11] where the entropy current is chosen to have no derivative corrections. We will discuss the frame
choice for this setup again in section 2.3.
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Note that µ is the chemical potential for the magnetic flux density and therefore has
the dimension of [length]−2. In addition, for the gradient expansion to make sense, one
requires that the scalars {α, βi, γi} are nonsingular in the limit where

√
µ`micro → 0. In

short, we require that the transport coefficients are finite and only depend on µ in the limit
where the microscopic length scale is infinitesimally small. We will return to this issue at
the end of this section with an explicit example where the implication of this assumption
becomes more transparent.

We shall proceed to outline the derivation of the effective action (2.24). Let us first
consider the possible structures at the zeroth order in the derivative expansion. There is
only one scalar at this order, namely the chemical potential µ. Thus the effective action
can only be a scalar p(µ) at this order. As we proceed to higher-order corrections, it is
useful to write down all the possible (un-contracted) tensors at a given order. For the
first-order terms, we can build a scalar out of the following objects

{∇ρµ, ∇ρuµν , Hαβγ} . (2.26)

We can see that all of the first-order derivative-terms have an odd number of indices and
the terms without derivatives all have an even number of indices so there are no scalars at
the first order in T = 0 MHD. Note also that not all quantities listed above are independent
as the derivatives of thermodynamic quantities are related to certain divergences of uµν via
the equations of motion at the zeroth order (2.11a)-(2.11b). Note also that, because there
is no vector at the zeroth order, one cannot even build either symmetric or antisymmetric
rank-two tensor at the first order in the derivative expansion. This implies that all the
transport coefficients at this order must vanish as pointed out in [30].

The second-order terms are the main result of this work. Out of the list of all hydro-
dynamic variables, the second derivative scalars can be obtained by contractions of the
following tensors:

{∇ρµ∇σµ, ∇ρ∇σµ, ∇ρµ∇σuµν , ∇ρ∇σuµν , ∇ρuµν∇σuαβ,
∇ρµ Hαβγ , ∇ρuµνHαβγ , HαβγHρσλ, ∇ρHαβγ , Rαβγδ} .

(2.27)

Combinatorially, there are about over two hundred combinations of contractions. Of
course, not all of the scalars constructed in such a way are independent. One can reduce
the number of scalars by requiring that the scalars are not related to one another via ideal
limit Ward identity Eq. (2.11a) and that they do not differ from one another by a total
derivative. The latter condition came from the fact that the total derivative pieces do not
contribute to the constitutive relation and was also employed in [11] for charge neutral
fluid. In addition, one can use properties of hydrodynamic variables

(i) Normalisation and projective properties of uµν (see Appendix A.2)

(ii) Projective properties of H = db (see Appendix A.3)

(iii) Jacobi identities for uµν (see Appendix A.4)

(iv) We also impose that all the scalars are invariant under all the fundamental discrete
symmetries: the charge conjugation (C), time-reversal (T ) and parity (P). The
discrete charge assignments of the hydrodynamic variables is discussed in Appendix
B.2.

By implementing this procedure, we find that the effective action at the second order
is captured by eleven independent scalars (more details regarding this procedure are pre-
sented in Appendix B.1 while the Mathematica code used to implement these steps can
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be found in [59]). There is no first-order derivative terms and the second order derivative
pieces can be categorised into three classes with respect to the power of the three form field
strength of the 2-form source H = db. There is one scalar which depends quadratically in
H with the transport coefficient α,

s(α) = HαγλHβδκΠαβΠγδΩλκ . (2.28a)

Similarly, there are two terms which depend linearly on H with the corresponding trans-
port coefficients βi,

s
(β)
1 = Hβδκu

αβuγδΠλκ∇γuαλ ,

s
(β)
2 = HβδκΠαβΠγδΩλκ∇γuαλ .

(2.28b)

And lastly, there are eight scalars that do not depend on H whose transport coefficients
are γi,

s
(γ)
1 = Rαγβδu

αβuγδ , s
(γ)
2 = RαγβδΠ

αβΠγδ ,

s
(γ)
3 = RαγβδΠ

αβΩγδ ,

s
(γ)
4 = uαβuγδΠλκ∇βuδκ∇γuαλ , s

(γ)
5 = uαβuγδΠλκ∇βuαλ∇δuγκ ,

s
(γ)
6 = ΠαβΠγδΩλκ∇βuδκ∇γuαλ , s

(γ)
7 = ΠαβΠγδΩλκ∇βuαλ∇δuγκ ,

s
(γ)
8 = ΠαβΠγδΩλκ∇γuαλ∇δuβκ .

(2.28c)

The transport coefficients α, βi and γi associated to these higher-order derivative-terms
have to be determined by the microscopic correlation functions via Kubo formulae (derived
in section 3.3). These transport coefficients are dimensionful quantities whose units can
be easily determined from the effective action i.e.

α ∼ [length]2, β ∼ [length]0, γ ∼ [length]−2 (2.29)

In typical hydrodynamic setup e.g. [1, 3, 5], the transport coefficients only depend on the
thermodynamic quantities thus implying that combinations α|µ| ≡ ᾱ, βi and γi/|µ| ≡ γ̄i
are dimensionless quantities independent of µ. This assumption also implies that β1 =
β2 = 0 due to the fact that sβ1 and sβ2 are not invariant under the reparametrisation
symmetry (2.16).

This strict µ-dependence can be relaxed as one allows ᾱ, βi and γ̄i to also depend on
µ`2micro i.e. the microscopic theory’s length scale in the units of macroscopic length scale
7. However, one has to restrict how the transport coefficients depend on `micro for the
gradient expansion to be well-defined. For example, it could happen that

γi = |µ|
(

1

(µ`micro)n
+ ...

)
, for n > 0 (2.30)

which diverges in the limit where the microscopic energy scale 1/`micro → ∞. We shall
restrict our analysis to the case where this does not happen otherwise the gradient expan-
sion will breakdown. Consequently, one now allows sβ2 and sβ3 to be added to the effective
action, e.g.

β1 = µ`2micro

(
c2 +O(`2micro)

)
, β2 = µ`2micro

(
c3 +O(`2micro)

)
(2.31)

for some constants c2 and c3. It is important to note that these coefficients depend
explicitly on µ and not its absolute value. This is done so so that the combinations βis

β
i

are invariant under the reparametrisation symmetry (2.16) as pointed out in [42].

7This situation can happen in e.g. D3/D7 branes where the Landau pole scale can appear in the thermo-
dynamic quantities [60] and in the transport coefficients of weakly coupled QED at finite temperature [61].
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Lastly, we check how the second-order terms transform under the standard discrete
symmetries: the charge conjugation (C), parity (P) and time reversal (T ). It turns out
that all scalars listed above are invariant under all C,P and T . This property can be easily
derived using the discrete charge assignments for the hydrodynamic variables which we
report on in Appendix B.2.

These are the main results in this work so let us summarise them here. Assuming
that the gradient expansion can be performed, we find that there are eleven second-order
corrections to the effective action for plasma at strong magnetic field. They consist of one
term α which depends quadratically on H = db, two terms βi which depend linearly on H
and eight terms γi that only depend on the curvature and derivatives of the “fluid velocity”
uµν . All the terms presented here are invariant under all discrete C,P, T symmetries (the
rest of the allowed independent structures that are odd under these discrete symmetries
are also presented in Appendix B.1. The rest of this paper will explore the consequences
of these second-order transport coefficients.

2.3 Constitutive relation and frame choice

Upon varying the effective action with respect to the background metric gµν and the
two-form gauge field bµν , one finds the constitutive relations which can be written in the
following form:

Tµν = −(ε+ δε) Ωµν + (p+ δp) Πµν + tµνSO(1,1) + tµνSO(2) + tµνv⊗v ,

Jµν = (ρ+ δρ) uµν + sµνSO(2) + sµνv⊗v ,
(2.32)

where δε, δp, δρ, tµν , sµν are scalars and (traceless) rank-two tensors at the second order in
the derivative expansion. Different subscripts under the tensors tµν , sµν in (2.32) represent
how they transform under SO(1, 1) and SO(2) symmetries. More precisely, the tensors
tµνSO(1,1), t

µν
SO(2), t

µν
v⊗v transform as tensor representations of SO(1, 1) and SO(2), and a

vector representation of SO(1, 1)⊗SO(2), respectively. In practice, they can be obtained
from Tµν via the following projections:(

Ωµ
αΩν

β

)
Tαβ = −(ε+ δε)Ωµν + tµνSO(1,1), (2.33a)(

Πµ
αΠν

β

)
Tαβ = −(p+ δp)Πµν + tµνSO(2), (2.33b)

1

2

(
Ωµ

αΠν
β + Ων

αΠµ
β

)
Tαβ = tµνv⊗v , (2.33c)

and taking the trace of Eq.(2.33a) and Eq.(2.33b) enables us to separate δε, δp and the
traceless parts tµνSO(1,1) and tµνSO(2). Similar procedure can be used to obtain δρ, sµνSO(2) and

sµνv⊗v from Jµν 8. The full constitutive relations at non-linear level with curvature and the
background field bµν turned on can be found in Appendix D and the linearised constitutive
relations with flat metric and vanishing background field can be found in Appendix C.
These constitutive relations are cumbersome in practice and we believe that it is much
more convenient to work with the effective action directly.

Before discussing the advantages of this decomposition, let us discuss one subtle issue
of hydrodynamic description. As emphasised in the relativistic hydrodynamics’ literature
(see e.g. [1] and, for modern review [2, 62]), the out of equilibrium values of the chemical

8The constitutive relation for Jµν does not contain the sµνSO(1,1) part because it always vanishes. sµνSO(1,1)

would be the SO(1, 1) part of Jµν without the scalar part proportional to uµν so it can be defined
as sµνSO(1,1) ≡

1
2

(ΩµαΩνβ − ΩναΩµβ + uµνuαβ) Jαβ . But this projector vanishes because of the Jacobi

identity (A.21) so sµνSO(1,1) = 0.
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potential µ and the two-index velocity uµν have no unique definition. While in the effective
action construction we impose the condition that f̃µν = µuµν without any derivative
corrections for convenience, this is not a necessary condition 9. In fact, at the level of
the constitutive relations we have a freedom to redefine the chemical potential and uµν by
second-derivative quantities in the following way

µ→ µ+ δµF (∂2), uµν → uµν + δuµνF (∂2) (2.34)

where δµF and δuµνF are a scalar and a tensor of our choice, usually chosen to simplify the
constitutive relations. Let us first see what happens to the constitutive relations when we
redefine the chemical potential. It turns out that the only terms affected by the choice of
µ are scalars δε, δp and δρ, namely:

δε→ δε+
∂ε

∂µ
δµF , δp→ δp+ ρδµF , δρ→ δρ+

∂ρ

∂µ
δµF . (2.35)

This indicates that we can choose δµF to eliminate one second-order correction to ε, p or
ρ. The choice of uµν is more subtle. Firstly, one has to realise that δuµν transforms as
a product of vector representations in SO(1, 1) and SO(2) while uµν in equilibrium only
transforms under SO(1, 1), see [30] and Appendix A.2 . We find that the second-order
tensors that can be affected by this choice are

tµνv⊗v → tµνv⊗v − (ε+ p) (uµαδu
αν
F + δuµαu

αν
F ) , (2.36a)

sµνv⊗v → sµνv⊗v + ρδuµνF , (2.36b)

indicating that one can remove either tµνv⊗v or sµνv⊗v by appropriate choice of δuµνF . This
freedom is referred to as a frame choice and various choices of hydrodynamic variables
have been employed in the literature 10. In [30], the choice where R = ρ received no
second-order derivative-corrections was made. However, in the current work, it is more
convenient to use the constitutive relations obtained directly from the effective action
without making additional redefinition.

It is worth mentioning that the frame choice is not innocuous. As shown in the case of
the fluid with ordinary U(1) global symmetry, inappropriate frame choice yields unphysical
non-hydrodynamic mode that can lead to instabilities even in the stationary fluid [63] (see
also [64, 65] for recent discussion). We will soon see in Section 3 that here the linearised
perturbation also contains non-hydrodynamic modes but, fortunately, they do not lead to
instability. Furthermore, the pole we found cannot be removed by the frame choice.

For our purpose, the decomposition (2.32) singles out the terms that are unaffected
by the frame choice, namely sµνSO(2). This SO(2) component of Jµν is responsible for the
acceleration of the charged particle along the magnetic field P = E · B ∼ εµνρσJ

µνJρσ,
namely

εµνρσJ
µνJρσ = ρ εµνρσu

µνsµνSO(2) +O(∂3) (2.37)

as sµνSO(2) is the only component of Jµν that is orthogonal to uµν . This allows us to single
out the terms in the effective action that are responsible for P > 0 in a strong magnetic
field.

9Similar issues have been discussed in the context of the effective action for the charge-neutral relativistic
fluid in [11,55] (see also [16,21]) and equilibrium partition function of a fluid with one-form global symmetry
in [35]

10For example, in the case of a fluid with ordinary (zero-form) U(1) global symmetry, the choice of
temperature δTF , chemical potential δµF and fluid velocity δuµF is commonly used to eliminate δε, δρ so
that Tµνuν = −εuµ, and is known as Landau frame [1]. See also [2] for discussion concerning different
frame choices.
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3 Linearised perturbation and correlation functions

We follow the approach of extracting two-point (and three-point) correlation functions
of [66] (see also [2, 67]). This approach, known as variational method, can be done by
defining the one-point generating function

Tµν = 2
δSeff
δgµν

, Jµν =
δSeff
δbµν

. (3.1)

The retarded correlation functions are then obtained by varying the one-point generating
function. Following the convention of [66], we write down one-point generating functions
up to the cubic order in the perturbations δg, δb as

δTµν(x) = −1

2

∫
d4x′

(
Gµν,ρσTT (x, x′) δgρσ(x′) + 2Gµν,ρσTJ (x, x′) δbρσ(x′)

)
+

1

4

∫
d4x′d4x′′

(
Gµν,ρσ,αβTTT (x, x′, x′′)δgρσ(x′)δgαβ(x′′)

+
1

2
Gµν,ρσ,αβTTJ (x, x′, x′′)δgρσ(x′)δbαβ(x′′) +Gµν,ρσ,αβTJJ δbρσ(x′)δbαβ(x′′)

)
,

δJµν(x) = −1

2

∫
d4x′

(
Gµν,ρσJT (x, x′) δgρσ(x′) + 2Gµν,ρσJJ (x, x′) δbρσ(x′)

)
+

1

4

∫
d4x′d4x′′

(
Gµν,ρσ,αβJTT (x, x′, x′′)δgρσ(x′)δgαβ(x′′)

+
1

2
Gµν,ρσ,αβJJT (x, x′, x′′)δbρσ(x′)δgαβ(x′′) +Gµν,ρσ,αβJJJ δbρσ(x′)δbαβ(x′′)

)
,

(3.2)

where Gµν,ρσAB , Gµν,ρσ,αβABC with A,B,C = T, J are fully retarded two- and three-point corre-
lation functions evaluated in flat space with vanishing external background gauge field (for
the procedure to obtained different kind of real-time correlation functions see e.g. [68]).

The fluctuations and eigenmodes of the theory can be studied in two different ways.
A more conventional one is to vary the effective action w.r.t. the metric and gauge field
to obtain the stress-energy tensor Tµν and Jµν . Then one applies the Ward identity to
find the spectrum. The second way is to utilise the effective action formalism by writing
the fields σi and aµ as

σi = xi + πi(t, x, z) ,

aµ =
1

2
µzdt+ aµdx

µ ,
(3.3)

for i = x, y. Upon implementing (3.3) in the action and varying with the background
fields δgµν , δbµν , obtaining the Euler-Lagrange equations for πi and aµ becomes extremely
efficient. These two approaches compliment one another and, given the lengthly effective
action, serve as a good consistency check. It is also helpful to note the relations between
variables in these two approaches, namely

δµ = ∂taz − ∂zat , uti = −∂zπi , uzi = ∂tπ
i . (3.4)

3.1 Propagation along the magnetic field line

When the perturbation is a function of (t, z), the relevant equations of motion that contain
nontrivial modes are the Ward identities of the transverse channel, namely

∇µTµi = H iαβJαβ , ∇µJµi = 0 , (3.5)
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where i = {x, y}. The fluctuations of uµν that constitute the above equations of motion
are δuti and δuzi. Turning off the metric and the two-form gauge field fluctuations, we
find that the conservation of two-form current gives

∂tu
ti + ∂zu

zi = 0 . (3.6)

This equation is automatically satisfied in the effective action setup where

uti = −∂zπi , uzi = ∂tπi . (3.7)

The conservation of transverse momentum then yields the wave equation for the field πi

ρµ(∂2t + ∂2z )πi − 2(γ4 − γ5)(∂2t + ∂2z )2πi = 0 . (3.8)

The above equation can be obtained in two independent ways. One can either substitute
the solution (3.7) into the linearised constitutive relations in Appendix C and plug Tµi

into the Ward identity 11. Equivalently, one can find the Euler-Lagrange equation of the
effective action (2.24). The spectrum of this sector is

ω2 = k2z , ω2 =
µρ

2(γ4 − γ5)
+ k2z . (3.9)

This indicates that the first mode, which is the zero temperature limit of the Alfvén wave,
received no correction from the second-order derivative-corrections. On the other hand,
the new gapped mode sets the scale where the hydrodynamic expansion breaks down.

It is not uncommon that the second-order hydrodynamic contains non-hydrodynamic
modes. We can argue that the gapped mode is outside the regime of validity of hydro-
dynamics since, at kz = 0, the spectrum becomes ω/µ ∼ ρ/µ, assuming that (γ4 − γ5)/µ
is of O(1). It is also possible that this mode can be removed upon the field redefinition
procedure.

To compute the correlation functions for the fluctuations of this type, it is useful to
couple the theory to background metric and gauge field. The solution for πi, in Fourier
space, can be written in terms of the perturbations of gµν and bµν , namely

πi(ω, kz) =
i

2P⊥A (ω, kz)

{
(ωδgti + kzδgiz)− 2(ωδbzi + kzδbti)

− (ω2 − k2z)
[
2(γ4 − γ5) (ωδgti + kzδgzi)) + β1 (kzδbtx − ωδbxz)

]}
,

(3.10)

where the polynomial P⊥A is

P⊥A (ω, k) = (ω2 − k2)
(
µρ− 2(γ4 − γ5)(ω2 − k2)

)
(3.11)

With this information at hand, one can proceed to extract the correlation functions which
contain the pole describing the spectrum (3.9). Only the correlators involving J ti, Jzi, T ti

and T zi encode the propagating mode. This can be seen by considering the one-point
generating functions in the presence of small metric and gauge field fluctuations:

Tti =

(
p− k2(γ1 − γ4) +

ω2µρ

ω2 − k2

)
δgti − ωk

(
γ1 − γ4 +

µρ

ω2 − k2

)
δgxz

+
2ωρ

ω2 − k2
(kδbti + ωδbzi) ,

Jti =
k

ω2 − k2

[
(ωδgti + kδgzi)−

(
2ρ2 − β1(ω2 − k2)

4P⊥A (ω, k)

)
(kδbti + ωbzi)

] (3.12)

11This is consistent with the equation obtained in the linearised constitutive relations in flat space in [30]
where we can identify ν1 = 2(γ4 − γ5)
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We can extract the correlation functions which contain the pole using the prescription
(3.2). For example, we have

Gti,tiTT (ω, kz) = p− k2(γ1 − γ4) +
ω2µρ

ω2 − k2
, Gti,ziJT =

k2

ω2 − k2
. (3.13)

Interestingly, there is no pole in the energy density and one-form charge density corre-
lation functions. This may seem odd at first but it can be understood as a consequence of
string reparametrisation symmetry. Effectively, this symmetry freezes the temperature to
zero. This, together with the fact that there is no fluctuations in ”string number density”
along the direction of the string, indicates that there is no propagating mode in the longi-
tudinal channel. This can be explicitly seen as the only relevant degree of freedom in the
longitudinal channel, namely δµ = 2(∂zat− ∂taz), can be solved in terms of the sources as

δµ = 2δbtz +
1

2

(
µ− 2γ′1k

2
z

χ

)
δgtt +

ρ

2χ
(δgxx + δgyy) +

1

2

(
µ+

2γ′1ω
2

χ

)
δgzz −

2γ′1
χ
ωkzδgtz .

(3.14)
where χ denotes the susceptibility χ = ∂ρ/∂µ. One can see that, unlike πi, the solution
for δµ contains no pole for the propagating mode.

Before moving to a different perturbation channel, let us point out that the gapped
mode in (3.9) cannot be removed by the frame choice. This can be seen in the follow-
ing way. Instead of using the effective action, one can equivalently use the constitutive
relations for the linearised perturbation in Appendix C. We will find that for the second
derivative correction listed in Appendix C the only non-zero contributions are

ttiv⊗v = ν1
(
∂2t − ∂2z

)
δuiz , tziv⊗v = ν1(∂

2
t − ∂2z )δuti , (3.15)

for i = x, y in the transverse direction. The equations of motion for this system yield

∂µT
µi = (ε+ p)(∂tu

iz − ∂zuti) + ∂tt
ti
v⊗v + ∂zt

zi
v⊗v = 0 , (3.16a)

∂νJ
µi = ρ(∂tu

ti − ∂zuiz) = 0 . (3.16b)

These equations can be solved and one finds that the transverse mode’s spectrum is gov-
erned by

(ω2 − k2)
(

1− ν1
ε+ p

(ω2 − k2)
)

= 0 (3.17)

and one finds that the gapped mode is governed by 1/ν1. One might think that by choosing
Landau frame we will be able to get rid of this mode but this turns out not to be the case.
By changing the frame choice uµν → uµν + δuµνL where δuµνL is in the v⊗ v representation,
we find that the appropriate δuµνL that will remove the v ⊗ v part of the stress-energy
tensor according to (2.36a) is

δutiL =
ν1
ε+ p

(∂2t − ∂2z )δuiz , δuizL =
ν1
ε+ p

(∂2t − ∂2z )δuiz . (3.18)

This leads to the new additional structure in sµνv⊗v = ρδuµνL and the new equation of motion
in this new frame is

∂µT
µi = (ε+ p)(∂tu

iz − ∂zuti) = 0 , (3.19a)

∂νJ
µi = ρ

(
∂tu

ti − ∂zuiz
)

+ ρ
(
∂tδu

ti
L + ∂zδu

zi
L

)
= 0 , (3.19b)

yielding the same spectrum with the gapped mode in Eq. (3.17). In addition, one can
choose the frame in which δρ = 0 and sµνv⊗v = 0 as in [30] and obtain the same spectrum
discussed here.
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We should note that while the gapped mode is outside the regime of validity of hy-
drodynamics, it is a mode that generically appears in the gradient expansion of this type.
One example that shares close similarity with our construction is the effective theory of
long strings in the context of confining flux tubes in gauge theory (see e.g. [69, 70]). In
a formulation presented in e.g. [71, 72], the effective theory describes the dynamics of the
string displacement (analogous to σ1, σ2 in our context) which depends on the coordinates
along the string (which is a (t, z)-plane in this case). The derivative expansion for long-
string theory is then performed with ∂σ ∼ u chosen to be a zero-derivative object and the
mass gap is also generated by the higher-order derivative-terms similar to our setup.

3.2 Propagation perpendicular to the magnetic field line

As the fluctuations become functions of (t, x), one can show that the fluctuation of utx

decouples and the resulting equation of motion for the propagating mode in the ideal limit
is

ρ∂tδµ− (ε+ p)∂xu
zx = 0 ,

ρ∂tu
zx + ∂xρ = 0 .

(3.20)

This yields a simple wave equation with the speed v2M = ρ/(µχ), where the susceptibility
χ = ∂ρ/∂µ. Note that the v2M = 1 if we use the equation of state p ∝ µ2. The same
spectrum can be obtained with the effective action approach by varying the action w.r.t.
πx and az, which are the only two relevant degrees of freedom in this configuration. These
quantities can be related by

uzx = ∂tπx , δµ = −2∂taz . (3.21)

Similar procedure can be carried out with the second-order derivative. Note that, in
order to extract the correlation function, we couple the theory to the background metric
and gauge field. The solutions for πx and az can be written schematically as

πx =
1

P‖M (ω, kx)

(
Aµνπ δgµν + Bµνπ δbµν

)
, (3.22a)

az =
1

P‖M (ω, kx)

(
Aµνa δgµν + Bµνa δbµν

)
, (3.22b)

where the coefficients Aµνπ,a, Bµνπ,a are functions of ω, kx, thermodynamic quantities and
transport coefficients. It is also worth noting that only metric and gauge field perturbations
that are even under y → −y enter the above expressions. The important part is the zeroes

of the polynomial P‖M which encode the spectrum of the propagating mode. This can be
written explicitly as

P‖M = µρχω2 − ρ2k2 − 2χ(γ4 − γ5)ω4 + 2χ(γ6 + γ7 + γ8)ω
2k2 . (3.23)

The above polynomial has a wave-like solution which can be written as

ω = ±vMk

[
1 +

k2

µρ

(
v2M (γ4 − γ5)− (γ6 + γ7 + γ8)

)]
+O(k4. (3.24)
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This agrees with the spectrum derived from the linearised constitutive relations in [30],
further discussed in appendix C. One may also notice that there is a non-hydrodynamic,
gapped mode at ω2 = ±µρ/2(γ4 − γ5). This is the same gapped mode discussed in the
previous subsection which lies beyond the regime of validity of hydrodynamics.

In the parity odd channel, the relevant hydrodynamic degree of freedom is uzy = ∂tπy.
The correlation functions in this channel have no hydrodynamic poles. This can be seen
athrough the solution for uzy in the presence of the background sources which is

uzy = ∂tπy =
1

2P⊥M (ω, kx)

[(
− µρ+ 2ω2(γ4 − γ5)− k2x(2γ2 + 2γ3 − γ6 − γ7 − γ8)

)
δgty

+ ωkx(−2(γ2 + γ3) + γ6 + γ7 + γ8)δgxy − kxβ1(kxδbty + ωδbxy)− 2ρδbyz

]
.

(3.25a)
The spectrum encoded in the polynomial

P⊥M (ω, kx) = ω2(γ4 − γ5)−
1

2
µρ− γ8k2, (3.25b)

indicates that there is only a gapped, non-hydrodynamic mode.

3.3 Kubo formulae

In this section, we will utilise the resulting generating one-point functions to extract a list
of simple Kubo formulae. The general scheme will be to substitute the solution for πi and
aµ obtained in (3.10), (3.14), (3.22) and (3.25a) into the generating one-point functions
so that they can be expressed in terms of the sources. Then, applying the definition of
two- and three-point functions in (3.2) to obtain the two point correlation functions. The
transport coefficients can be extracted from the derivative with respect to ω, kx or kz of
these correlation functions in the limit where ω, ki → 0. It is convenient to consider the
correlation functions which have no poles.

3.3.1 Kubo formulae from two-point functions

Firstly, the one-point functions involving stress-energy tensor expanded up to the order
k2x and k2z are

lim
ω→0

lim
kx→0

Txy =
(
−p+ k2z (γ2 − γ3 − γ6 − γ8)

)
δgxy +O(k3z) , (3.26a)

lim
ω→0

lim
kx→0

Txx =
p

2
δgzz +

(
−p

2
+ k2z

(
γ1 −

ργ′1
χ

))
δgtt (3.26b)

−
(
p

2
+
ρ2

2χ
+ k2z

(
ργ′3
χ

+ γ6 + γ7 + γ8

))
δgxx

+

(
p

2
− ρ2

2χ
− k2z

(
γ2 − γ3 + γ7 +

ρ

χ
γ′3

))
δgyy ,
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lim
ω→0

lim
kx→0

Ttx =
(
p+ k2z(γ1 + γ3 + γ4)

)
δgtx , (3.26c)

lim
ω→0

lim
kz→0

Tty =
(
p− µρ− k2x(γ2 − γ3 − γ6 − γ8)

)
δgty , (3.26d)

− 2

(
ρ+

k2x
µ

(2γ2 − γ3 − γ6 − γ8)
)
δbyz ,

lim
ω→0

lim
kz→0

Ttt =
1

2

(
ε+ µ2χ− 2k2x(γ4 − γ5 − µγ′3)

)
δgtt +

1

2
ε δgxx (3.26e)

+
1

2

(
ε− 2k2x(γ2 − µγ′2

)
δgyy

+
1

2

(
ε− µ2χ− 2k2x(γ1 + γ3 + γ5 − µγ′3)

)
δgzz

+ (2µχ− k2xβ1 − 2k2xγ
′
3)δbtz .

The two-form current one-point functions relevant for Kubo formulae are

lim
ω→0

lim
kx→0

Jtx = −ρδgxz + 2

(
ρ

µ
+ k2z

(
β1
µ
− 1

µ2
(γ4 − γ5)

))
δbtx , (3.27a)

lim
ω→0

lim
kx→0

Jxy = 8αk2zδbxy , (3.27b)

lim
ω→0

lim
kz→0

Jty = −β1
µ
k2xδbyz − 2k2xαδbty −

β2
2
k2xδgyz , (3.27c)

lim
ω→0

lim
kz→0

Jtz =

(
µχ− k2x

(
γ′3 −

β1
2

))
δgtt + ρδgxx (3.27d)

+
(
ρ+ 2k2xγ

′
2

)
δgyy +

(
−µχ+ k2x

(
γ′3 +

β1
2

))
δgzz ,

lim
ω→0

lim
kz→0

Jyz = −
(
ρ− k2x

µ
(2γ2 − γ3 − γ6 − γ8)

)
δgty +

1

2
k2xβ1 δgyz (3.27e)

− 1

µ
k2xβ1 δbty + 2

(
−ρ
µ

+ 2
k2x
µ2

γ8 + k2x α+ k2x
β2
µ

)
δbyz .

These one point functions can be combined and immediately give us the following
seven Kubo formulae. Note that the r.h.s. are evaluated at kx = 0 or kz = 0, after taking
the derivatives:

α = −1

2
∂2kxG

ty,ty
JJ (ω = 0, kx, kz = 0) , (3.28a)

β1 =
1

4

(
∂2kxG

tz,tt
JT + ∂2kxG

tz,zz
JT

)
, (3.28b)

β2 = −∂2kx G
ty,yz
JT (ω = 0, kx, kz = 0) , (3.28c)

γ2 = −µ
2
∂2kxG

ty,yz
TJ (ω = 0, kx, kz = 0) + ∂2kxG

ty,ty
TT (ω = 0, kx, kz = 0) , (3.28d)

γ7 = −γ2 +
1

4
∂2kzG

xx,yy
TT (ω = 0, kx = 0, kz) , (3.28e)

γ8 =
µ2

4
∂2kxG

yz,yz
JJ (ω = 0, kx, kz = 0)− µ

2
(µα+ β2) . (3.28f)

There are five remaining transport coefficients that cannot be determined by the above
two-point functions. These remaining coefficients γ1, γ3, γ4, γ5, γ6 enter the two-point
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functions only in the following linear combinations which cannot be disentangled:

γ′3 =
1

8

(
∂2kxG

tz,zz
JT (ω = 0, kx, kz = 0)− ∂2kxG

tz,tt
JT (ω = 0, kx, kz = 0)

)
, (3.29a)

γ3 + γ6 = γ2 − γ8 −
1

2
∂2kxG

xy,xy
TT (ω = 0, kz = 0, kx) , (3.29b)

γ4 − γ5 = µβ1 −
µ2

2
∂2kzG

tx,tx
JJ (ω = 0, kx = 0, kz) , (3.29c)

γ1 + γ3 + γ4 =
1

2
∂2kzG

tx,tx
TT (ω = 0, kx = 0, kz) . (3.29d)

At this point, the assumption about the form of γ3 can be of use. If one assumes that
the transport coefficient γ3 can only depend on µ, one immediately finds that γ3/|µ| = γ′3.
One may also relax this assumption and allow the transport coefficient to depend on the
additional microscopic length scale `, namely γ3/|µ| = γ̄3(µ`

2). Still, this requires that γ̄3
cannot be singular when µ`2 → 0 allowing us to fully determine γ3 from γ′3. Once this is
obtained, one can determined γ6 using Eq.(3.29b). This leaves us with the two remaining
linear combinations γ1 + γ4 and γ4 − γ5 which can be computed via

γ1 + γ4 = −γ3 +
1

2
∂2kzG

tx,tx
TT (ω = 0, kx = 0, kz) , (3.30a)

γ4 − γ5 = µβ1 −
µ2

2
∂2kzG

tx,tx
JJ (ω = 0, kx = 0, kz) . (3.30b)

This indicates that if one manages to find one of the coefficients among γ1, γ4, γ5 we can
use the two above equations (3.30a) and (3.30b). Unfortunately, we cannot find any of
these transport coefficients individually from the two-point functions.

3.3.2 Three-point correlation functions

It turns out that the Kubo formula for γ1 can be obtained by considering the three-point
function of the stress-energy tensor. As the three-point correlation functions are much
more involved than the two-point functions, we will simplify the situation slightly. Firstly,
it is sufficient to set all the fields to be only z−dependent (namely ω = 0 and kx = 0).
Secondly, we wish to turn off the background fields which source the fluctuations πi and
aµ in this channel. Using the solutions in Eqs. (3.10) and (3.14), one can see that the
sources for these modes at ω, kx = 0, kz 6= 0 are

{δgtt, δgxx, δgyy, δgzz, δgxz, δgyz} and {δbtx, δbty, δbtz} . (3.31)

As a result, we can turn off these background fields and consistently turn off πi and aµ.
The next step is to express the one-point generating functions Tµν and Jµν up to

the second order in the (remaining) background field perturbations. The required Kubo
formula can be obtained from Ttt, which can be written as

Ttt(z) = ...+
1

2
(p− µρ) δgxy(z)

2 − 2(α− µα′)δbxy(z)2+

+
1

2

(
4γ1 + 2µγ′3

)
(∂zδgxy)

2 + (2γ1 + µγ′3)δgxy∂
2
zδgxy +O(∂3z ) ,

(3.32)

where the ellipses denote the terms linear in the perturbations of the background fields
and the contact term. Applying the definition of the three-point function (3.2) and Fourier
transforming into the momentum space, we find that

Ttt =
1

2
Gtt,xy,xyTTT (kz, qz) δgxy(kz)δgxy(qz) =

= −(2γ1 + µγ′3)

(
kzqz +

1

2

(
q2z + k2z)

))
δgxy(qz)δgxy(kz) .

(3.33)
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The coefficient γ3 can be obtained via the two-point function (3.29a) and therefore, we
find that the Kubo formula for γ1 is

2γ1 = −γ′3 −
1

2
∂kz∂qzG

tt,xy,xy
TTT (kz, qz) . (3.34)

Once this is known, one can immediately obtaine the transport coefficients γ4 and then
γ5 directly from Eq. (3.30). We thereby conclude the computation for the Kubo formulae
for the second-order transport coefficients, which consist of seven transport coefficients α,
β1, β2, γ2, γ3, γ7, γ8 obtained solely from two-point functions and three coefficients γ1,
γ4, γ5 which require one three-point function.

4 Applications: Force-free Electrodynamics and the accel-
eration by a magnetosphere

In this section, we will discuss how the second-order derivative-corrections improve the
description of the conventional FFE. The most transparent way to compare the two setups
is to look at the effective action. Firstly, the FFE action can be written as [39]

LFFE = −1

4

(
∂µσ

1∂νσ
2 − (1↔ 2)

)2
, (4.1)

which is nothing but F 2 = FµνF
µν when the field strength is written as Fµν = 2∂[µσ

1∂ν]σ
2.

There is no one-form U(1) phase aµ in this formulation and thus the higher-form global
symmetry is not manifest in the FFE formalism. In the formulation presented in this
work, we can see that the Lagrangian in (4.1) is nothing but L = 1

2µ
2 with the one-form

chemical potential µ2 defined in Eq. (2.22) of section 2.1. With the new hydrodynamic
framework, we consistently identify all the possible ways to couple the external charge

jexternal = ?db , up to the second order in the derivative expansion (via s(α) and s
(β)
i in

(2.28a) and (2.28b), respectively). And there are also nontrivial terms at the higher orders
in the derivative expansion. In terms of the above conventional FFE language, the action
presented in Section 2.2 can be written (schematically) as

L = LFFE +
4γ1(F

2)

F 2
RµνρσF̃

µνF̃ ρσ + ... , where F̃µν = εµνρσ∂[ρσ
1∂σ]σ

2 (4.2)

and (...) denotes the other ten structures in the effective action. This should come as no
surprise since FFE is applicable to a system which is not a free Maxwell theory but a
strong dynamical magnetic field coupled to charged matter. The Lagrangian in (4.2), and
Section 2.2, should therefore be thought of as the most general effective Lagrangian for
such plasma obtained after integrating out the massive degrees of freedom that are not
the fluctuations of the string, {σ1, σ2} and the degrees of freedom describing the one-form
phase aµ.

As already pointed out in [42], the framework of higher-form symmetries allows us to
move away from the limit where the acceleration along the magnetic field line parametrised
by P ∼ E ·B vanishes. In the relativistic notation, this comes from the fact that

P ∼ εµνρσJµνJρσ = ρ εµνρσu
µνsρσSO(2) ,

where sµνSO(2) is the second-order correction to Jµν which transforms as a tensor in the

SO(2)-representation, see Section 2.3. This enables us to address the regime beyond the
simplistic approximation of FFE and has phenomenological consequences as discussed
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in the introduction. We shall focus on the two configurations considered in [42]: uniform
magnetic field and the Michel monopole solution. The latter is a toy model approximation
to the magnetosphere of compact, conducting objects (such as pulsars). This improves the
analysis in [42] as we classify all the possible terms that can enter the effective action at
the second order. Note also that sµνSO(2) is the only component of the constitutive relations

(2.32) that, by itself, is independent of the frame choice (discussed in Section 2.3).
It turns out that the transport coefficients which govern sµνSO(2) originate from only

three terms in the effective action, namely the term with coefficient α in Eq.(2.28a) and the
terms with coefficients βi in Eq.(2.28b), see Appendix D for the expressions. Additionally,
in the absence of the external charge represented by bµν , we find that only the term with
coefficient β2 controls the electric field parallel to the magnetic field line P ∼ E ·B. This
result greatly simplifies our analysis and, as a result, we find that (i) the uniform magnetic
field has P = 0 up to the second order in the derivative expansion and (ii) E ·B for the
Michel monopole is non-zero and has the same form as in [42] 12.

4.1 Plane wave

In this case, the dynamical variables have the profile as those in the Section 3, namely

σ1 = x, σ2 = y, aµ =
1

2
µdzdt (4.3)

The solution is time-independent and, as expected, sµνSO(2) = 0 along with the whole
second-order derivative-correction to Jµν . One can also study perturbations around this
equilibrium solution, like in Section 3. Substituting the solution for the perturbation, both
with the propagation along and perpendicular to the magnetic field line yields sµνSO(2) = 0
in the absence of sources for the background fields gµν , bµν . This statement can also be
made for a linearised perturbation aligned in any direction w.r.t. the magnetic field line
and is consistent with the analysis that used linearised constitutive relations in [30].

4.2 Michel monopole

Michel monopole [73] is a toy model for a magnetosphere of a rotating compact object,
such as a star or a pulsar, and serves as a starting point for more realistic setups such as
a rotating black hole [43]. In the FFE framework (equivalently, the zero derivative case of
our setup), this solution is nothing but a rotating monopole whose magnetic flux can be
written in the spherical coordinates in the following way (see e.g. [46]):

?J = F = q sin θ dθ ∧ d
(
dφ− Ωd(t− r)

)
, (4.4)

where the current is trivially conserved. Before analysing the effects of the second-order
transport in this system, let us pause to discuss its physical implications. To make this
solution realistic one typically constructs a magnetic dipole by replacing F → F sign[cos θ]
which flips the sign of the monopole charge between the upper and lower hemispheres 13.
The magnetosphere is assumed to be far from the compact object and the spacetime is
approximated to simply be the Minkowski space. By replacing the metric to be that of
the Kerr black hole and the time coordinate t in Eq. (4.4) to the outgoing Eddington-
Finkelstein coordinate u, one recovers the Blandford-Znajek solution [43] (see also [46]

12The authors of [42] considered only a single derivative-correction in the effective action, which is

∇αεβγ(db)αβγ , in their notation. In our notation this term translates to Hαβγ∇αuβγ = 2(s
(β)
2 − s(β)3 ).

13This procedure results in a non-zero current along the equator known as current sheet [74], see also [46]
for discussion in the language of exterior derivatives.
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for other solutions of this class). In the effective action language, the Michel monopole
solution translates into the following solution [42]:

σ1 = θ , σ2 = φ− Ω(t− r) , a =
q

2r
dt . (4.5)

In terms of the hydrodynamic variables µ and uµν , we have the following non-zero com-
ponents:

µ = q/r2 , utr = 1 , utφ = −Ω , urφ = −Ω , (4.6)

with uµν = −uνµ.
We will now show that the second-order derivative-term sµνSO(2) is non-zero for this

solution with the source bµν turned off. This results in a non-zero electric field along
the “magnetosphere”. The parameter P can be easily computed with the help of the
projective properties of δuµν . First of all, we assume that the transport coefficients α, βi
and γi are small parameters so that the Michel monopole solution in the presence of the
second derivative corrections can be written as

µ =
q

r2
+ δµ(α, β, γi) , uµν = uµν0 + δuµν(α, β, γi) , (4.7)

where uµν0 is the Michel monopole solution at the zeroth order in Eq.(4.6) and δuµν is
in v ⊗ v representation of SO(1, 1) ⊗ SO(2). One notices immediately that altering the
profile of hydrodynamic variables according to (4.7) does not affect the SO(2) component
of Jµν , see discussion in Section 2.3 (alternatively, one can check this statement directly
from non-linear constitutive relations in Appendix D.3). In addition, the wedge product
of δu ∧ sSO(2) simply vanishes as δu has a component in the SO(2) representation. Thus
the P ∼ E ·B at the second order in the derivative expansion is

P ∼
(
ρ0 +

∂ρ

∂µ
δµ
)
εµνρσ

(
uµν0 + δuµν

)
sρσSO(2) = ρ0εµνρσu

µν
0 sρσSO(2) +O(α2, β2, ...) (4.8)

where, ρ0 = ∂p/∂µ obtained at the zeroth order in the derivative expansion and the
ellipsis denote the other products of the second-order transport coefficients. All in all, this
means that the parameter P for the Michel monopole at the leading order in the transport
coefficients can be obtained from the zeroth-order solution Eq.(4.6).

The above analysis is rather general and we expect the same argument to be applicable
to more realistic solutions. Nevertheless, let us return to the Michel monopole solution.
The component sµνSO(2) can be obtained either by varying effective action w.r.t. bµν and ap-

plying the appropriate SO(2) projections or simply read off from the expressions presented
in the Appendix D. Contracting it with the uµν0 and Levi-Civita tensor in the spherical
coordinates yields the following expression for the magnetic flux per unit flux density:

P/ρ ∼ 4

r3
qΩ

(
∂β2
∂µ

)
cos θ . (4.9)

This result has the same form as proposed in [42]. The Kubo formula which relates this
transport coefficient to the microscopic correlation function can be found via the two-point
correlation function (3.28c). This result implies that the non-zero E · B is strongly tied
to the existence of an additional length scale `micro in the transport coefficients. In other
words, if the transport coefficients βi can only depend on the thermodynamic variables,
it will imply that ∂βi/∂µ = 0. The way out of this conundrum is that there exists an
additional length scale `miro so that βi can be a nontrivial function of |µ|`2micro. This
possibility has already been discussed in [42] and what we did here is to point out the
precise terms in all possible second-order derivative-structures that are responsible for this.
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5 Discussion

There are two ways to read this work. The first story can be seen as an investigation
of the strong magnetic field limit µ/T 2 � 1 in the higher-form symmetry formulation
of magnetohydrodynamics of [30]. At the ideal limit, there is a symmetry enhancement
corresponding to the SO(1, 1) boost along the magnetic field line which alters the hy-
drodynamic degrees of freedom. If one insists that such a symmetry persists through the
higher orders in the derivative expansion one finds that the leading-order corrections come
from the second-derivative terms, as all the first-order structures are not invariant under
the emergent SO(1, 1) symmetry. In addition, it forces the entropy current to vanish iden-
tically, making it a genuine non-dissipative theory in hydrodynamic framework. The goal
of this work is therefore to classify the leading-order corrections to the “ideal fluid” limit
by utilising the framework of hydrodynamic effective action . We then further explore
how they affect the correlation functions and provide the Kubo formulae which link the
macroscopic EFT to the data from a microscopic theory.

The other way to read this story is through the lens of force free electrodynamics
and its application to magnetospheres of astrophysical objects. These systems have the
same global symmetries and exist also in the regime where the temperature is negligible
compared to the magnetic flux density. The common way to describe these systems strictly
implies that the P ∼ E ·B is zero which contradicts the fact that we observe the energy
emission form objects such as pulsars. As proposed in [42], the second-order derivative-
corrections to the fluid with one-form global symmetry may provide a path for a more
realistic EFT for this family of systems. To this end, using the classification of the second-
order transport, we single out the transport coefficients which are responsible for the
non-zero P of the magnetosphere of the Michel monopole solution and their corresponding
Kubo formulae. One key result is that the non-zero E·B requires the transport coefficients
to depend on at least one additional length scales. This came from the second-order terms
similar to the one proposed in [42] and we show that there is no other structures at this
order in the derivative expansion that affect this process. It would be very interesting to
compute these transport coefficients from a known microscopic theory to better understand
the role of such length scale as well as compare it with the observed pulsars’ spectra in
e.g. [47].

As for the open problems and future directions, an interesting exercise would be to
pin point the role of transport coefficients in an interesting physical setup. For example,
some transport coefficients of the type γi influence the leading-order corrections to the
propagating modes in the uniform magnetic field while the coefficient β2 is responsible for
P > 0 in the Michel monopole background. It would also be interesting to understand
these effects in a more realistic setup such as the magnetosphere of the Kerr black hole,
particularly the leading-order corrections to the Blandford-Znajek process [43] and the
stability of such solutions [75,76].

One should keep in mind that the present construction assumes that the theory admits
a gradient expansion. While being a standard practice, this is a very strong assumption
and is not always valid. For example, in the typical fluid, the thermal fluctuations generate
non-analytic terms which invalidate the derivative expansion beyond the first order in 3+1
dimensions [77,78]. Fortunately, as the dissipative terms are not allowed by the emergent
SO(1, 1) symmetry, one may argue that the fluctuations are negligible due to dissipation-
fluctuation theorem 14. Nevertheless, it would be extremely useful if there would be a

14The origin of this type of non-analytic property can also be traced back to the coupling between
Schwinger-Keldysh partners, see e.g. [20]. In our setup, the vanishing of the entropy production implies
that such coupling is zero.
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different mechanism that breaks the gradient expansion or a way to systematically prove
the validity of the gradient expansion for this type of fluids.
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A Useful identities and properties

A.1 Notation

Here we summarise our notation. For symmetrisation/antisymmetrisation of indices we
use round/square brackets on them with an appropriate 1

n! factor in front, e.g. t(µν) ≡
1
2 (tµν + tνµ), t[µν] ≡ 1

2 (tµν − tνµ). And the angle-brackets denote traceless symmetrisation

with respect to the appropriate projector t〈µν〉 ≡ 1
2 (Ωµ

αΩν
β + Ων

αΩµ
β − ΩµνΩαβ) tαβ or

t〈µν〉 ≡ 1
2

(
Πµ

αΠν
β + +Πν

αΠµ
β − ΠµνΠαβ

)
tαβ depending whether µ, ν are SO(1, 1)- or

SO(2)-indices.
For the derivatives we use two notations, ∇ρ tα ...β ... = tα ...β ... ;ρ for covariant deriva-

tives (with respect to the metric) and ∂ρ t
α ...

β ... = tα ...β ... ,ρ for partial derivatives.

A.2 Projective properties of uµν

The variable uµν arises from the enhancement of two directions generated by uµ and hµ,
which are independent in MHD at non-zero temperature, to a surface with SO(1, 1) sym-
metry. uµν is an element of the symmetry group of its complement in the antisymmetric
representation. We can build a symmetric tensor out of uµν :

Ωµν = uµαuα
ν , (A.1)

which acts as a metric on the SO(1, 1)-invariant surface. Additionally, the product struc-
ture of the symmetry groups in MHD at T = 0 means that the metric on the 4-dimensional,
background space-time can be decomposed into:

gµν = Ωµν + Πµν ⇒ Πµν = gµν − Ωµν , (A.2)

where Πµν is the metric in the SO(2)-invariant sector. The fact that uµν belongs purely
to the SO(1, 1)-sector of the theory defines the first constraint on it:

Ωµ
αu

αν = uµαΩα
ν = uµαuαβu

βν = uµν . (A.3)
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The second constraint on uµν is its normalisation 15:

uµνuµν = −2 . (A.4)

The above relation, together with (A.3), implies that ΩµνΩµν = Ωµ
µ = ΠµνΠµν = Πµ

µ = 2
(in four-dimensional space-time).

A.2.1 Properties of ∇ρuµν

Now that we know the full set of constraints on uµν we can calculate derivatives of these
constraints and analyse what they imply for ∇ρuµν .

The first constraint we will analyse is the projective property of uµν (A.3). Its deriva-
tive takes the following form:

∇ρuµν = Ωµ
α∇ρuαν +∇ρuµαΩα

ν − uµαuνβ∇ρuαβ . (A.5)

Projecting the above equation onto SO(2)-sector we find:

Πµ
αΠν

β∇ρuαβ = 0 . (A.6)

We can also contract (A.5) with uρµΩν
λ:

(uρµΩν
λ + Ωρ

µuν
λ)∇ρuµν = 0 , (A.7)

which after using the decomposition:

∇ρuµν = Ωµ
αΩν

βAραβ + Πµ
αΠν

βBραβ + (Ωµ
αΠν

β + Πµ
αΩν

β)Cραβ (A.8)

gives us:

Ωµ
αΩν

β∇ρuαβ = 0 . (A.9)

So the constraints (A.9) and (A.6) together imply that:

(Ωµ
αΠν

β + Πµ
αΩν

β)∇ρuαβ = ∇ρuµν , (A.10)

which means that ∇ρuµν belongs, in the last two indices, to the mixed, vector-vector part
of SO(1, 1)⊗SO(2). We will denote this shortly as ∇ρuµν ∈ (v⊗ v)µν . Similar derivation
can also be made for a perturbation δuµν with fixed background fields gµν and bµν which
shares the same projective property.

The derivative of the norm (A.4), uµν∇ρuµν = 0, is a trivial consequence of the fact
that ∇ρuµν ∈ (v ⊗ v)µν so it does not generate a new constraint.

A.2.2 Properties of ∇σ∇ρuµν

In the case of the second derivative of uµν we proceed in the same way as in the previous
section. We first calculate the second derivative of the constraint (A.3) and using the
decomposition of ∇σ∇ρuµν in the last two indices into the three sectors of the SO(1, 1)⊗
SO(2) symmetry group:

∇σ∇ρuµν = Ωµ
αΩν

βAσραβ + Πµ
αΠν

βBσραβ + (Ωµ
αΠν

β + Πµ
αΩν

β)Cσραβ (A.11)

we find the constraints on the tensors Aσραβ, Bσραβ and Cσραβ. In this case all three of
these tensors are non-zero but the first two can be rewritten in terms of products of ∇ρuµν

15This normalisation agrees with uµν ≡ 2u[µhν].
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and the antisymmetric part C[σρ]αβ of the last one is controlled by the curvature terms
only:

Aσρµν = 2u[µ|αΩ|ν]β∇σuαλ∇ρuβλ , (A.12)

Bσρµν = −2uαβ∇σu[µα∇ρuν]β , (A.13)

2C[σρ]αβ = Rσρ
αγuγ

β +Rσρ
βγuαγ . (A.14)

This means that only ∇(σ∇ρ)uµν ∈ (v ⊗ v)µν contributes a new, independent tensor
structure at the second order in derivatives.

The second derivative of the norm (A.4), the same as in the case of its first derivative,
does not generate new constraints. The second derivative of the norm is trivially satisfied
when we apply the projective properties of ∇σ∇ρuµν and ∇ρuµν .

A.3 Projective properties of Hαβγ

As in the case of uµν , we can also write down constraints on Hαβγ coming from its pro-
jective properties. These properties come from the fact that Hαβγ is antisymmetric in
its three indices and both projectors Ωµν and Πµν live in a two-dimensional submanifolds
of the four-dimensional space-time. This means that there exists a set of coordinates in
which Ωµν and Πµν are non-zero only if their indices take values in a two-coordinate subset
(different for each projector) of the four coordinates describing the full space-time. And
this implies that:

ΩµαΩνβΩλγHαβγ = 0 , (A.15)

ΠµαΠνβΠλγHαβγ = 0 , (A.16)

because there will always be a pair of repeated indices on Hαβγ
16.

We can also take derivatives of the above constraints to obtain the projective properties
of the derivatives of Hαβγ . For ∇ρHαβγ we find:

ΩµαΩνβΩλγ∇ρHαβγ = 2Hαβγu
[µ|δΠασΩ|ν]γΩλβ∇ρuδσ −Hαβγu

λδΠασΩµβΩνγ∇ρuδσ ,
(A.17)

ΠµαΠνβΠλγ∇ρHαβγ = 2Hαβγu
δαΠλβΠ[µ|σΠ|ν]γ∇ρuδσ −Hαβγu

δαΠλσΠµβΠνγ∇ρuδσ .
(A.18)

A.4 Jacobi identities for uµν

Apart from its normalisation (A.4) and the projective property (A.3), the variable uµν

satisfies also Jacobi identities. This can be understood as either a property of the an-
tisymmetric product which defines uµν in terms of uµ and hµ (uµν = 2u[µhν]) or as a
property of the antisymmetric representation of SO(2), which uµν is.

The lowest-order Jacobi identity for uµν takes the following form:

3u[αβuγ]λ = uαβuγλ + uγαuβλ + uβγuαλ = 0 . (A.19)

Contracting the above with uλ
µ gives:

uαβΩγµ + uγαΩβµ + uβγΩαµ = 0 , (A.20)

16Constraint (A.15) is always true as the SO(1, 1)-sector described by Ωµν is always two-dimensional.
However, the orthogonal sector characterised by Πµν has dimension d − 2 in d-dimensional space-time so
constraint (A.16) does not exist in higher dimensions than d = 4.
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and contracting this identity further with uβ
ρ and changing ρ→ β:

ΩαβΩγµ − uγαuβµ − ΩβγΩαµ = 0 . (A.21)

There are also higher-order Jacobi identities [79] involving products of more variables
uµν and more indices interchanged cyclically, as well as more possible contractions of them.
At the level of the products of three u-variables we have 17:

u[αβuγ][δuλ]µ = 0 , (A.22)

together with all the possible contractions, similarly to (A.20) and (A.21).
We will not analyse any higher-order Jacobi identities here as they are not needed for

our study of 2nd-order MHD. But it should be kept in mind that corrections at three-
derivative-order and higher may require them. It is also important to mention that deriva-
tives of these Jacobi identities do not generate any new constraints. This statement was
only checked at the level of one and two derivatives. But it seems natural that this
statement would generalise to any number of derivatives.

The power of Jacobi identities comes from the fact that they can be treated like
projectors that annihilate any tensor that they are projected onto. This way contracted
with any tensor structure they produce many new identities for those tensor structures.
This is the most involved part of the process of generating lists of independent scalars,
vectors and tensors at any derivative-order in MHD at zero-temperature.

A.5 Variations of hydrodynamic variables

Following their definitions in terms of the massless degrees of freedom in terms of σi, aµ, gµν
and bµν in Section 2.1, the variations of the physical quantities under metric and gauge
field perturbations are 18

δuµν = −1

2
uµνΩαβδgαβ , (A.23a)

δµ = −1

2
µΩαβδgαβ + uαβδbαβ , (A.23b)

δΩµν = uµαδgαβu
βν − ΩµνΩαβδgαβ (A.23c)

and δΠµν = δgµν − δΩµν . Here we use the notation δgµν = −gµαgνβδgαβ. We would like
to emphasise the role of the spacetime index which is crucial to the constitutive relations
derived from the action. Unlike the ordinary fluid four-velocity uµ where δuµ = −gµνδuν
(see e.g. [11]), we have

δuµ
ν = −1

2
(uµ

αωνβ + ωµ
αuνβ)δgαβ −Πµ

αuνβδgαβ, (A.24a)

δuµν =
1

2
uµνω

αβδgαβ + (uµ
αΠν

β −Πµ
αuν

β)δgαβ. (A.24b)

These variations with respect to the background fields are consistent with the variations
of uµ and hµ at finite temperature that were obtained in [30,41].

17This is the only antisymmetrization of indices on uαβuγδuλµ that gives a new, independent identity.
Others reduce to u[αβuγ]λ = 0.

18The results we obtain here are a generalization of the constraints on the derivatives of uµν as the
covariant derivative of the background metric gµν vanishes but variations can have a non-vanishing effect
on the metric.
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B Computations details

B.1 More details on the classification of the second-order terms in the
effective action

In this section, we will further elaborate on the algorithm we use to generate the second-
order derivative-terms in the effective action. The code which implements these steps,
Scalars.nb, can be found in [59]. Let us recall all the structures with two derivatives of
the hydrodynamic variables in Eq.(2.27):

{∇ρµ∇σµ, ∇ρ∇σµ, ∇ρµ∇σuµν , ∇ρ∇σuµν , ∇ρuµν∇σuαβ, (B.1)

∇ρµ Hαβγ , ∇ρuµνHαβγ , HαβγHρσλ, ∇ρHαβγ , Rαβγδ} .

All of the above terms have an even number of indices so all of them can be contracted
into scalars. In order to reduce the number of scalars we generate by considering all the
possible contractions of the terms in (B.1) with zeroth-order terms

{uµν , Ωµν , Πµν} (B.2)

we will only take the (v⊗v)µν-part of∇ρuµν and∇(ρ∇σ)uµν because we know from sections
A.2.1 and A.2.2 that those are the only independent contributions to (B.1). Furthermore,
because we are only considering contractions into scalars here we will project onto the
(v⊗v)-sector with ωµαΠν

β instead of the full projector (ωµαΠν
β +Πµ

αω
ν
β) as both parts

of that projector generate the same scalars, up to a sign.
After obtaining all the different scalars from all the possible contractions we use the

Jacobi identities, as presented in section A.4, to eliminate scalars related by such identities.
By applying Jacobi identities as projectors onto (B.1) we generate a set of identities for
scalars at the second order in derivatives. And we use these identities, together with the
projective properties of Hαβγ from section A.3, to reduce the list of scalars obtained from
all the possible contractions of (2.27) down to the following 27 scalars:

Rαγβδu
αβuγδ RαγβδΠ

αβΠγδ

RαγβδΠ
αβωγδ HαγλHβδκΠαβΠγδωλκ

Hβγδu
βγΠα

δ∇αµ Hαβδu
αβΠγδωλκ∇κuγλ

uαβΠγδωλκ∇κuδλ∇βuαγ Παβ∇αµ∇βµ
ωαβ∇αµ∇βµ Παβ∇β∇αµ
ωαβ∇β∇αµ Hβδκu

αβuγδΠλκ∇γuαλ
HβδκΠαβΠγδωλκ∇γuαλ uαβuγδΠλκ∇βuδκ∇γuαλ
ΠαβΠγδωλκ∇βuδκ∇γuαλ uβγΠα

δ∇αµ∇γuβδ (B.3)

Πβγωα
δ∇αµ∇γuβδ uαβΠγδ∇δHαβγ

Παβωγδωλκ∇κuβλ∇δuαγ ΠαβΠγδωλκ∇γuαλ∇δuβκ
uα

βΠγδ∇αµ∇δuβγ Πα
βωγδ∇αµ∇δuβγ

uαβuγδΠλκ∇βuαλ∇δuγκ ΠαβΠγδωλκ∇βuαλ∇δuγκ
uαβΠγδ∇δ∇βuαγ Παβωγδ∇δ∇βuαγ
Hβδκu

αβΠγδΠλκ∇λuαγ

Next we apply the leading equations of motion (2.11a)-(2.11b) to further reduce the
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number of independent scalars to 14:

Rαγβδu
αβuγδ RαγβδΠ

αβΠγδ

RαγβδΠ
αβωγδ HαγλHβδκΠαβΠγδωλκ

Hβδκu
αβuγδΠλκ∇γuαλ HβδκΠαβΠγδωλκ∇γuαλ

uαβuγδΠλκ∇βuδκ∇γuαλ ΠαβΠγδωλκ∇βuδκ∇γuαλ (B.4)

uαβΠγδ∇δHαβγ ΠαβΠγδωλκ∇γuαλ∇δuβκ
uαβuγδΠλκ∇βuαλ∇δuγκ ΠαβΠγδωλκ∇βuαλ∇δuγκ
uαβΠγδ∇δ∇βuαγ Hβδκu

αβΠγδΠλκ∇λuαγ
In the last step we consider each scalar in the above list multiplied by an arbitrary

function of the chemical potential f(µ) and integrate them by parts to eliminate the
second derivatives of uµν and the derivatives of Hαβγ . And once again applying the
leading equations of motion (2.11a)-(2.11b) we find 12 independent scalars:

Rαγβδu
αβuγδ RαγβδΠ

αβΠγδ

RαγβδΠ
αβωγδ HαγλHβδκΠαβΠγδωλκ

Hβδκu
αβuγδΠλκ∇γuαλ HβδκΠαβΠγδωλκ∇γuαλ

uαβuγδΠλκ∇βuδκ∇γuαλ ΠαβΠγδωλκ∇βuδκ∇γuαλ (B.5)

ΠαβΠγδωλκ∇γuαλ∇δuβκ uαβuγδΠλκ∇βuαλ∇δuγκ
ΠαβΠγδωλκ∇βuαλ∇δuγκ Hβδκu

αβΠγδΠλκ∇λuαγ
Eliminating the last scalar in the above list because it is not CPT -invariant we arrive at
scalars in (2.28a)-(2.28c).

There is also the possibility of using the Levi-Civita symbol εαβγδ in constructing the
second-order scalars. This would produce the following scalars in addition to (B.5):

εγδλνRαβκµu
αβuγδΠκλΠµν εγδλνRακβµu

αβuγδΠκλΠµν

εγδνσHακµHβλρu
αβuγδΠκλΠµνΠρσ εγδνσHαβκHλµρu

αβuγδΠκλΠµνΠρσ

εκλνσHβδρu
αβuγδuκλΠµνΠρσ∇γuαµ εαβλνHκµσu

αβΠγδΠκλΠµνωρσ∇δuγρ
εαβλνHδµσu

αβΠγδΠκλΠµνωρσ∇κuγρ εγδνσHβµρu
αβuγδΠκλΠµνΠρσ∇λuακ

εγδνσHβλρu
αβuγδΠκλΠµνΠρσ∇µuακ εγδλσHβνρu

αβuγδΠκλΠµνΠρσ∇µuακ (B.6)

εαβλνu
αβΠγδΠκλΠµνωρσ∇δuγρ∇µuκσ εαβδνu

αβΠγδΠκλΠµνωρσ∇κuγρ∇µuλσ
εγδλσu

αβuγδΠκλΠµνΠρσ∇µuακ∇νuβρ εγδλνu
αβuγδΠκλΠµνωρσ∇βuµσ∇ρuακ

εγδνσu
αβuγδΠκλΠµνΠρσ∇µuακ∇ρuβλ εγδνσu

αβuγδΠκλΠµνΠρσ∇λuακ∇ρuβµ
εγδλσu

αβuγδΠκλΠµνΠρσ∇µuακ∇ρuβν
It is important to notice that because the Levi-Civita symbol is totally antisymmetric in
all of its four indices, all of them have to take different values. This means that in our
separation of indices into the SO(1, 1) and SO(2) sectors we have that:

εµνρσ = ΠµαΠνβΩργΩσδεαβγδ =
1

2
ΠµαΠνβ

(
ΩργΩσδ − ΩσγΩρδ

)
εαβγδ =

= −1

2
ΠµαΠνβuρσεαβγδu

γδ . (B.7)

And this last form of the Levi-Civita symbol is what we used to generate (B.6). It is
then straightforward to check that all of the terms in (B.6) are not invariant under charge
conjugation C and the parity P assigned in appendix B.2.
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B.2 Discrete charges (C,P , T ) of hydrodynamic variables

In this section, we elaborate on the discrete charge assignment of the hydrodynamic vari-
ables. This analysis has already been done for fluid with 1-form global symmetry in [30,41]
and we simply specify this information to the limit where there is an emergent SO(1, 1)
symmetry. We will also follow the conventions in mentioned papers where all thermody-
namic quantities are invariant under all C,P, T symmetries.

A few properties is worth mentioning. Firstly, as the action contains the combination
S ⊃

∫
d4xJµνbµν , it implies that bµν and Jµν must transform in the same way under

the discrete symmetries. From this, one can deduce how uµν transforms via the definition
µ ∼ uµν(bµν+ ...) noting that µ is chosen to be invariant under all C,P, T transformations.
This should be contrasted with the string reparametrisation symmetry σi → σ′i with
det [∂σ′/∂σ] < 0 which acts effectively as an additional discrete transformation for the
hydrodynamic variables (which we denote by R in the table below). In the latter case, the
chemical potential µ, density ρ and uµν switch sign while the current Jµν does not. The
table summarising the transformations of relevant hydrodynamic variables is presented
below.

C P T R
∂µ ∂µ (∂0,−∂i) (−∂0, ∂i) ∂µ
Jµν −Jµν (J0i,−J ij) (−J0i, J ij) Jµν

uµν −uµν (u0i,−uij) (−u0i, uij) −uµν
µ µ µ µ −µ
Hµνλ −Hµνλ (−H0ij , Hijk) (−H0ij , Hijk) Hµνλ

C Linearised constitutive relations

Using the effective Lagrangian (2.24) we find in the flat-space, flat-gauge-field limit at the
linear order in uµν 19 :

δε = ζ(1,1) u
αβΠγδuαγ,βδ +O(∂3) , (C.1a)

δp = ζ(2) u
αβΠγδuαγ,βδ +O(∂3) , (C.1b)

δρ = ζ̃ uαβΠγδuαγ,βδ +O(∂3) , (C.1c)

tµνSO(1,1) = −2η(1,1) u
〈µ|αΠβγΩ|ν〉δuαβ,γδ +O(∂3) , (C.1d)

tµνSO(2) = 2η(2) u
αβΠ〈µ|γΠ|ν〉δuαδ,βγ +O(∂3) , (C.1e)

tµνv⊗v = −2u(µ|αΠ|ν)β
(
ν0 Πγδuαγ,βδ + ν1 Ωγδuαβ,γδ + ν2 Πγδuαβ,γδ

)
+O(∂3) , (C.1f)

sµνSO(2) = 0 +O(∂3) , (C.1g)

sµνv⊗v = 2Ω[µ|αΠ|ν]β
(
ν̃0 Πγδuαγ,βδ + ν̃1 Ωγδuαβ,γδ + ν̃2 Πγδuαβ,γδ

)
+O(∂3) . (C.1h)

The fact that we obtain δρ, sµνv⊗v 6= 0 in the linearised theory shows that we are working
in a different frame than [30]. The transport coefficients ζ, η and ν depend on the chem-
ical potential µ and they can be related to the coefficients α, βi and γi in the effective

19To clarify, the linear order is the part that survives an expansion of the effective degrees of freedom
around a constant background, uµν → uµν0 + δuµν and only contains terms up to the first order in δu. The
linearisation and taking the flat-space, flat-gauge-field limit are performed on the most general Tµν and
Jµν so on the results in appendix D. This is because the variations of the action and accompanying them
integrations by parts can generate linear terms in the flat limit from terms in the action that are nonlinear
and/or contain curvature or gauge field.
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Lagrangian (2.24) via:

ε(µ) = −p(µ) + µp′(µ) , ρ(µ) = p′(µ) , (C.2a)

ζ(1,1) = −ρ(µ)γ′1(µ)

ρ′(µ)
+ 2γ1(µ) + 2γ5(µ)− µγ′3(µ) + γ3(µ)− γ4(µ) , (C.2b)

ζ(2) = −γ6(µ)− 2γ7(µ)− ρ(µ)γ′3(µ)

ρ′(µ)
+ γ3(µ)− γ8(µ) + µγ′2(µ)− 2γ2(µ), (C.2c)

ζ̃ = −1

2
β1(µ) , (C.2d)

η(1,1) = −ρ(µ)γ′1(µ)

ρ′(µ)
+ 2γ1(µ) + γ3(µ) + γ4(µ) , (C.2e)

η(2) = −γ6(µ)− γ3(µ)− γ8(µ)− µγ′2(µ) + 2γ2(µ) , (C.2f)

ν0 = −γ6(µ) +
ρ(µ)γ′3(µ)

ρ′(µ)
− γ3(µ) + γ8(µ) + 2γ2(µ) , (C.2g)

ν1 = −2γ4(µ) + 2γ5(µ) , (C.2h)

ν2 = γ6(µ) + γ3(µ)− γ8(µ)− 2γ2(µ) , (C.2i)

ν̃0 = −1

2
β2(µ) , (C.2j)

ν̃1 = −1

2
β1(µ) , (C.2k)

ν̃2 =
1

2
β2(µ) , (C.2l)

Note that we can also allows the transsport coefficients to also depends on additional scale
as discussed in Section 2.2 and it will not change the conclusion of this appendix.

As mentioned earlier, the appearance of ζ̃ and ν̃i in our results simply comes from
the fact that the variations of the effective action give a different hydrodynamic frame
than the one adopted in [30]. One can show that by changing frame, as presented in Eqs.
(2.35)-(2.36b), to the one with δρ, sµνv⊗v = 0 the transport coefficients in Tµν transform as
follows:

ζ(1,1) 7→ ζ(1,1) − µζ̃ , (C.3)

ζ(2) 7→ ζ(2) −
ρ(µ)

ρ′(µ)
ζ̃ , (C.4)

ν0 7→ ν0 − µν̃0 , (C.5)

ν1 7→ ν1 − µν̃1 , (C.6)

ν2 7→ ν2 − µν̃2 . (C.7)

Additionally, the authors of [30] proposed a condition on transport coefficients which
arises from the constraint that makes the equations of motion not overdetermined, namely

(∇µTµν) Ωνλ + µ (∇µJµν)uνλ = 0 . (C.8)

While this relation is obviously satisfied at the zeroth order, it imposes a constraint on the
second-order transport coefficients. It was shown by [42] (see their appendix C), that this
relation follows from the diffeomorphism invariance of the action generated by a vector
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field ξµ in the SO(1, 1) plane i.e. ξµ = Ωµνξν . In our case the above constraint generates
the following condition for the transport coefficients:

ν0 + ν2 − µ(ν̃0 + ν̃2) =
ρ(µ)

µρ′(µ)

(
−ζ(1,1) + η(1,1) + ν1 + µ(ζ̃ − ν̃1)

)
, (C.9)

which is satisfied by the expressions in (D.2a)-(C.2l). Using the mappings of the transport
coefficients under the frame change into the frame with δρ, sµνv⊗v = 0 we can also show that
this condition becomes:

ν0 + ν2 =
ρ(µ)

µρ′(µ)

(
−ζ(1,1) + η(1,1) + ν1

)
, (C.10)

which agrees with [30]. It is also worth noting that the above condition is also satisfied
in our frame choice by the expressions in (D.2a)-(C.2i) since the transport coefficients in
Jµν cancel each other out independently, ν̃0 + ν̃2 = 0 and ζ̃ − ν̃1 = 0.

D Full non-linear constitutive relations with curvature and
field strength

While we strongly recommend working at the level of the effective action when possible,
we still would like to list the full constitutive relations for completeness. Recall that the
decomposition of the constitutive relations (2.32) is:

Tµν = −(ε+ δε) Ωµν + (p+ δp) Πµν + tµνSO(1,1) + tµνSO(2) + tµνv⊗v ,

Jµν = (ρ+ δρ) uµν + sµνSO(2) + sµνv⊗v .

We first address structures appearing in each second-order piece and then show how they
are related to transport coefficients α, βi and γi in the effective action. These results
are obtained via the variation of the action with respect to the background metric and
two-form gauge field. Its implementation can be found in the file Action.nb in [59].

D.1 Second-order scalars

The scalars δε, δp and δρ obtained by varying the effective action are:

δε = ζ(1,1) u
αβΠγδuαγ ;βδ + ζ

(γ1)
(1,1) Rαγβδu

αβuγδ + ζ
(γ2)
(1,1) RαγβδΠ

αβΠγδ

+ ζ
(γ3)
(1,1) RαγβδΠ

αβΩγδ + ζ
(γ4)
(1,1) u

αβuγδΠλρuδρ;βuαλ;γ + ζ
(γ5)
(1,1) u

αβuγδΠλρuαλ;βuγρ;δ

+ ζ
(γ6)
(1,1) ΠαβΠγδΩλρuδρ;βuαλ;γ + ζ

(γ7)
(1,1) ΠαβΠγδΩλρuαλ;βuγρ;δ

+ ζ
(γ8)
(1,1) ΠαβΠγδΩλρuαλ;γuβρ;δ + ζ

(β1)
(1,1) Hβδρu

αβuγδΠλρuαλ;γ (D.1a)

+ ζ
(β2)
(1,1) HβδρΠ

αβΠγδΩλρuαλ;γ + ζ
(β3)
(1,1) u

αβΠγδHαβγ ;δ

+ ζ
(α)
(1,1) HαγλHβδρΠ

αβΠγδΩλρ +O(∂3) ,
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δp = ζ(2) u
αβΠγδuαγ ;βδ + ζ

(γ1)
(2) Rαγβδu

αβuγδ + ζ
(γ3)
(2) RαγβδΠ

αβΩγδ

+ ζ
(γ4)
(2) uαβuγδΠλρuδρ;βuαλ;γ + ζ

(γ5)
(2) uαβuγδΠλρuαλ;βuγρ;δ

+ ζ
(γ6)
(2) ΠαβΠγδΩλρuδρ;βuαλ;γ + ζ

(γ7)
(2) ΠαβΠγδΩλρuαλ;βuγρ;δ

+ ζ
(γ8)
(2) ΠαβΠγδΩλρuαλ;γuβρ;δ + ζ

(β1)
(2) Hβδρu

αβuγδΠλρuαλ;γ (D.1b)

+ ζ
(β2)
(2) HβδρΠ

αβΠγδΩλρuαλ;γ + ζ
(β3)
(2) uαβΠγδHαβγ ;δ

+ ζ
(α)
(2) HαγλHβδρΠ

αβΠγδΩλρ +O(∂3) ,

δρ = ζ̃ uαβΠγδuαγ ;βδ + ζ̃(γ1) Rαγβδu
αβuγδ + ζ̃(γ2) RαγβδΠ

αβΠγδ

+ ζ̃(γ3) RαγβδΠ
αβΩγδ + ζ̃(γ4) uαβuγδΠλρuδρ;βuαλ;γ

+ ζ̃(γ5) uαβuγδΠλρuαλ;βuγρ;δ + ζ̃(γ6) ΠαβΠγδΩλρuδρ;βuαλ;γ (D.1c)

+ ζ̃(γ7) ΠαβΠγδΩλρuαλ;βuγρ;δ + ζ̃(γ8) ΠαβΠγδΩλρuαλ;γuβρ;δ

+ ζ̃(β2) HβδρΠ
αβΠγδΩλρuαλ;γ + ζ̃(α) HαγλHβδρΠ

αβΠγδΩλρ +O(∂3) ,

The transport coefficients ζ(1,1), ζ(2) and ζ̃ correspond to the corrections to δε, δp and
δρ, respectively. The superscripts on transport coefficients follow and expand on the
numbering of scalars used in the effective action. And the coefficients without superscripts
correspond to terms that contribute to the linearised theory and follow the notation of [30].
The above transport coefficients correspond to the coefficients in the effective action in
the following way:

ζ(1,1) = −ρ(µ)γ′1(µ)

ρ′(µ)
+ 2γ1(µ) + 2γ5(µ)− µγ′3(µ) + γ3(µ)− γ4(µ) , (D.2a)

ζ
(γ1)
(1,1) = µγ′1(µ) , ζ

(γ2)
(1,1) = µγ′2(µ)− γ2(µ) , (D.2b)

ζ
(γ3)
(1,1) = −ρ(µ)γ′1(µ)

ρ′(µ)
+ γ1(µ) + µγ′3(µ) , ζ

(γ4)
(1,1) =

ρ(µ)γ′1(µ)

ρ′(µ)
− 2γ1(µ) (D.2c)

− γ3(µ) + µγ′4(µ)− γ4(µ) ,

ζ
(γ5)
(1,1) = −µγ′1(µ)− µγ′5(µ) + γ5(µ) + µ2γ′′3 (µ) + µγ′4(µ)− γ4(µ) , (D.2d)

ζ
(γ6)
(1,1) = γ1(µ) + µγ′6(µ)− γ6(µ) + 2γ5(µ)− µγ′3(µ)− γ4(µ) + γ8(µ) + γ2(µ) , (D.2e)

ζ
(γ7)
(1,1) =

ρ(µ)2γ′′1 (µ)

ρ′(µ)2
− ρ(µ)γ′1(µ)

ρ′(µ)
− ρ(µ)2γ′1(µ)ρ′′(µ)

ρ′(µ)3
+ γ1(µ) + µγ′7(µ) + γ2(µ) , (D.2f)

ζ
(γ8)
(1,1) = γ6(µ) + γ3(µ) + µγ′8(µ)− γ8(µ)− 2γ2(µ) , (D.2g)

ζ
(β1)
(1,1) = 2γ′1(µ) + β1(µ) + 4γ′5(µ)− 4µγ′′3 (µ)− 2γ′4(µ) , (D.2h)

ζ
(β2)
(1,1) = µβ′2(µ)− β2(µ)− β1(µ)− 2γ′3(µ) , ζ

(β3)
(1,1) =

1

2
β1(µ) + γ′3(µ) ,

(D.2i)

ζ
(α)
(1,1) = µα′(µ) , (D.2j)
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ζ(2) = −γ6(µ)− 2γ7(µ)− ρ(µ)γ′3(µ)

ρ′(µ)
+ γ3(µ)− γ8(µ) + µγ′2(µ)− 2γ2(µ) , (D.3a)

ζ
(γ1)
(2) = γ1(µ) , ζ

(γ3)
(2) = −γ6(µ)− 2γ7(µ)− ρ(µ)γ′3(µ)

ρ′(µ)
+ γ3(µ)− γ8(µ)− γ2(µ) ,

(D.3b)

ζ
(γ4)
(2) = −γ1(µ) + γ6(µ) + 2γ7(µ) +

ρ(µ)γ′3(µ)

ρ′(µ)
− γ3(µ) + γ8(µ) + γ2(µ) , (D.3c)

ζ
(γ5)
(2) = −γ1(µ)− µ2γ′′2 (µ) + µγ′2(µ)− γ2(µ) , ζ

(γ6)
(2) = γ8(µ) + µγ′2(µ) , (D.3d)

ζ
(γ7)
(2) =

ρ(µ)γ′6(µ)

ρ′(µ)
− γ6(µ) +

2ρ(µ)γ′7(µ)

ρ′(µ)
− γ7(µ) +

ρ(µ)2γ′′3 (µ)

ρ′(µ)2
(D.3e)

− ρ(µ)2γ′3(µ)ρ′′(µ)

ρ′(µ)3
+
ρ(µ)γ′8(µ)

ρ′(µ)
− γ8(µ) +

ρ(µ)γ′2(µ)

ρ′(µ)
,

ζ
(γ8)
(2) = γ6(µ) + γ3(µ)− 2γ2(µ) , (D.3f)

ζ
(β1)
(2) = 4µγ′′2 (µ)− 2γ′2(µ) , ζ

(β2)
(2) = 2γ′2(µ)− β2(µ) , (D.3g)

ζ
(β3)
(2) = −γ′2(µ) , ζ

(α)
(2) = −α(µ) , (D.3h)

ζ̃ = −1

2
β1(µ) , (D.4a)

ζ̃(γ1) = γ′1(µ) , ζ̃(γ2) = γ′2(µ) , (D.4b)

ζ̃(γ3) = γ′3(µ) , ζ̃(γ4) = γ′4(µ) , (D.4c)

ζ̃(γ5) =
1

2
µβ′1(µ) + γ′5(µ) , ζ̃(γ6) = −1

2
β2(µ)− 1

2
β1(µ) + γ′6(µ) , (D.4d)

ζ̃(γ7) = γ′7(µ) , ζ̃(γ8) =
1

2
β2(µ) + γ′8(µ) , (D.4e)

ζ̃(β2) = β′2(µ) + 2α(µ) , (D.4f)

ζ̃(α) = α′(µ) , (D.4g)

D.2 Second-order symmetric tensors

There are three symmetric rank-two tensors tµνSO(1,1), t
µν
SO(2) and tµνv⊗v which transform as

SO(1, 1) and SO(2) tensors, and a product of vectors under SO(1, 1)⊗SO(2), respectively.
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By varying the effecitve action w.r.t. the background metric, we find:

tµνSO(1,1) = −2η(1,1) u
〈µ|αΠβγΩ|ν〉δuαβ ;γδ + 2η

(γ3)
(1,1) RαγβδΠ

αβΩ〈µ|γΩ|ν〉δ

+ 2η
(γ5)
(1,1) u

βγu〈µ|αΠδλΩ|ν〉ρuαδ ;ρuβλ;γ + 2η
(γ6)
(1,1) ΠαβΠγδΩ〈µ|λΩ|ν〉ρuδρ;βuαλ;γ

+ 2η
(γ7)
(1,1) ΠαβΠγδΩ〈µ|λΩ|ν〉ρuαλ;βuγρ;δ + 2η

(γ8)
(1,1) ΠαβΠγδΩ〈µ|λΩ|ν〉ρuαλ;γuβρ;δ (D.5a)

+ 2η
(β2)
(1,1) HβδρΠ

αβΠγδΩ〈µ|λΩ|ν〉ρuαλ;γ + 2η
(β3)
(1,1) u

〈µ|αΠβγΩ|ν〉δHαβδ ;γ

+ 2η
(β4)
(1,1) HβδρΠ

αβΩλρΩ〈µ|γΩ|ν〉δuαγ ;λ + 2η
(α)
(1,1) HαγλHβδρΠ

αβΠγδΩ〈µ|λΩ|ν〉ρ +O(∂3) ,

tµνSO(2) = 2η(2) u
αβΠ〈µ|γΠ|ν〉δuαδ ;βγ + 2η

(γ2)
(2) RαγβδΠ

γδΠ〈µ|αΠ|ν〉β + 2η
(γ3)
(2) RαγβδΠ

〈µ|αΠ|ν〉βΩγδ

+ 2η
(γ4)
(2) uαβuγδΠ〈µ|λΠ|ν〉ρuδρ;βuαλ;γ + 2η

(γ5)
(2) uαβuγδΠ〈µ|λΠ|ν〉ρuαλ;βuγρ;δ

+ 2η
(γ6)
(2) ΠγδΠ〈µ|αΠ|ν〉βΩλρuδρ;βuαλ;γ + 2η

(γ7)
(2) ΠγδΠ〈µ|αΠ|ν〉βΩλρuβλ;αuγρ;δ

+ 2η
(γ8,1)
(2) ΠγδΠ〈µ|αΠ|ν〉βΩλρuγλ;αuδρ;β + 2η

(γ8,2)
(2) ΠγδΠ〈µ|αΠ|ν〉βΩλρuαλ;γuβρ;δ

(D.5b)

+ 2η
(β1)
(2) Hβδρu

αβuγδΠ〈µ|λΠ|ν〉ρuαλ;γ + 2η
(β2,1)
(2) HβδρΠ

γδΠ〈µ|αΠ|ν〉βΩλρuγλ;α

+ 2η
(β2,2)
(2) HβδρΠ

γδΠ〈µ|αΠ|ν〉βΩλρuαλ;γ + 2η
(β3)
(2) uαβΠ〈µ|γΠ|ν〉δHαβδ ;γ

+ 2η
(α)
(2) HαγλHβδρΠ

γδΠ〈µ|αΠ|ν〉βΩλρ +O(∂3) .

In the case of the above tensor structures the superscript on the transport coefficients
denotes the scalar that is the trace of the corresponding tensor, again following and ex-
panding on the numbering of scalars used in the effective action and the scalars in the
constitutive relations earlier. And the numbers after comma number the tensors with
the same trace. Because the off-diagonal (v⊗ v)-components below are trivially traceless,
the superscripts on their transport coefficients carry only a greek later to indicate their
structure (number of field strengths H) and a number after comma.

tµνv⊗v = −2ν0 u
(µ|αΠγδΠ|ν)βuαγ ;βδ − 2ν1 u

(µ|αΠ|ν)βΩγδuαβ ;γδ − 2ν2 u
(µ|αΠγδΠ|ν)βuαβ ;γδ

+ 2ν(γ,1) Rαβγδu
βγu(µ|αΠ|ν)δ + 2ν(γ,2) RαβγδΠ

βγΠ(µ|αΩ|ν)δ

+ 2ν(γ,3) uβγu(µ|αΠλρΠ|ν)δuβρ;γuαλ;δ + 2ν(γ,4) uβγu(µ|αΠλρΠ|ν)δuβρ;γuαδ ;λ

+ 2ν(γ,5) uβγu(µ|αΠλρΠ|ν)δuαλ;ρuβδ ;γ + 2ν(γ,6) ΠβγΠ(µ|αΩλρΩ|ν)δuβρ;γuαλ;δ

+ 2ν(γ,7) ΠβγΠ(µ|αΩλρΩ|ν)δuβλ;αuγρ;δ + 2ν(γ,8) ΠβγΠ(µ|αΩλρΩ|ν)δuγδ ;ρuαλ;β (D.5c)

+ 2ν(β,1) u(µ|αΠγδΠ|ν)βHαβγ ;δ + 2ν(β,2) u(µ|αΠ|ν)βΩγδHαβγ ;δ

+ 2ν(β,3) Hαγρu
βγu(µ|αΠλρΠ|ν)δuβλ;δ + 2ν(β,4) uαβΠ(µ|γΩ|ν)δHαγδ ;β

+ 2ν(β,5) HγδρΠ
βγΠ(µ|αΩλρΩ|ν)δuαλ;β + 2ν(β,6) HαδρΠ

βγΠ(µ|αΩλρΩ|ν)δuβλ;γ

+ 2ν(β,7) HαγρΠ
βγΠ(µ|αΩλρΩ|ν)δuβλ;δ + 2ν(β,8) HαγρΠ

βγΠ(µ|αΩλρΩ|ν)δuβδ ;λ

+ 2ν(α) HαβλHγδρΠ
βγΠ(µ|αΩλρΩ|ν)δ +O(∂3) .

The transport coefficients can be written in terms of α, βi and γi as follows:

η(1,1) = −ρ(µ)γ′1(µ)

ρ′(µ)
+ 2γ1(µ) + γ3(µ) + γ4(µ) , (D.6a)

38



SciPost Physics Submission

η
(γ3)
(1,1) = −γ1(µ)− γ3(µ)− γ4(µ) , (D.6b)

η
(γ5)
(1,1) =

ρ(µ)γ′1(µ)

ρ′(µ)
+ µγ′1(µ)− 2γ1(µ) + µγ′3(µ)− γ3(µ) + µγ′4(µ)− γ4(µ) , (D.6c)

η
(γ6)
(1,1) = −γ1(µ)− γ3(µ)− γ4(µ) + γ8(µ) + γ2(µ) , (D.6d)

η
(γ7)
(1,1) = −ρ(µ)2γ′′1 (µ)

ρ′(µ)2
+
ρ(µ)γ′1(µ)

ρ′(µ)
+
ρ(µ)2γ′1(µ)ρ′′(µ)

ρ′(µ)3
− γ1(µ) + γ7(µ) (D.6e)

+
ρ(µ)γ′3(µ)

ρ′(µ)
− γ3(µ) + γ2(µ) ,

η
(γ8)
(1,1) = γ6(µ) + γ3(µ)− 2γ2(µ) , (D.6f)

η
(β2)
(1,1) = −β2(µ) , η

(β3)
(1,1) = −1

2
β1(µ) , (D.6g)

η
(β4)
(1,1) = −2γ′1(µ)− 2γ′3(µ)− 2γ′4(µ) , (D.6h)

η
(α)
(1,1) = −α(µ) , (D.6i)

η(2) = −γ6(µ)− γ3(µ)− γ8(µ)− µγ′2(µ) + 2γ2(µ) , (D.7a)

η
(γ2)
(2) = −γ2(µ) , η

(γ3)
(2) = −γ6(µ)− γ3(µ)− γ8(µ) + γ2(µ) , (D.7b)

η
(γ4)
(2) = −γ1(µ) + γ6(µ)− γ4(µ) + γ8(µ)− γ2(µ) , (D.7c)

η
(γ5)
(2) = −γ1(µ)− γ5(µ) + µγ′3(µ)− γ3(µ) + µ2γ′′2 (µ)− µγ′2(µ) + γ2(µ) , (D.7d)

η
(γ6)
(2) = −γ6(µ)− γ3(µ) + γ8(µ)− µγ′2(µ) + 2γ2(µ) , (D.7e)

η
(γ7)
(2) =

ρ(µ)γ′6(µ)

ρ′(µ)
− γ6(µ) +

ρ(µ)γ′3(µ)

ρ′(µ)
− γ3(µ) +

ρ(µ)γ′8(µ)

ρ′(µ)
− γ8(µ) (D.7f)

− ρ(µ)γ′2(µ)

ρ′(µ)
+ 2γ2(µ) ,

η
(γ8,1)
(2) = −γ8(µ) , η

(γ8,2)
(2) = γ6(µ) + γ3(µ)− 2γ2(µ) , (D.7g)

η
(β1)
(2) = −β1(µ)− 2γ′3(µ)− 4µγ′′2 (µ) + 2γ′2(µ) , η

(β2,1)
(2) = β2(µ) + 2γ′2(µ) , (D.7h)

η
(β2,2)
(2) = −β2(µ) , η

(β3)
(2) = γ′2(µ) , (D.7i)

η
(α)
(2) = −2α(µ) , (D.7j)

ν0 = −γ6(µ) +
ρ(µ)γ′3(µ)

ρ′(µ)
− γ3(µ) + γ8(µ) + 2γ2(µ) , (D.8a)
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ν1 = −2γ4(µ) + 2γ5(µ) , ν2 = γ6(µ) + γ3(µ)− γ8(µ)− 2γ2(µ) , (D.8b)

ν(γ,1) = 2γ1(µ) + 2γ5(µ) + 2γ3(µ) , ν(γ,2) = 2γ2(µ)− ρ(µ)γ′3(µ)

ρ′(µ)
, (D.8c)

ν(γ,3) = −µγ′6(µ) + γ6(µ) + γ3(µ) + µγ′8(µ)− γ8(µ) + 2µγ′2(µ)− 2γ2(µ) , (D.8d)

ν(γ,4) = µγ′6(µ)− γ6(µ) + 2µγ′3(µ)− γ3(µ)− µγ′8(µ) + γ8(µ)− 4µγ′2(µ) + 2γ2(µ) ,
(D.8e)

ν(γ,5) = −2ρ(µ)γ′1(µ)

ρ′(µ)
+ 2γ1(µ)− 2ρ(µ)γ′5(µ)

ρ′(µ)
+ 2γ5(µ) +

µρ(µ)γ′′3 (µ)

ρ′(µ)
(D.8f)

− ρ(µ)γ′3(µ)

ρ′(µ)
− µρ(µ)γ′3(µ)ρ′′(µ)

ρ′(µ)2
+ 2γ3(µ) + 2µγ′2(µ)− 2γ2(µ) ,

ν(γ,6) =
2ρ(µ)γ′1(µ)

ρ′(µ)
− 2γ1(µ)− γ6(µ) +

ρ(µ)γ′3(µ)

ρ′(µ)
− 3γ3(µ) +

2ρ(µ)γ′4(µ)

ρ′(µ)
(D.8g)

− 2γ4(µ) + γ8(µ) + 4γ2(µ) ,

ν(γ,7) = γ6(µ)− ρ(µ)γ′3(µ)

ρ′(µ)
+ γ3(µ)− γ8(µ)− 2γ2(µ) , (D.8h)

ν(γ,8) = 2γ1(µ) + 2γ3(µ) + 2γ4(µ)− 2γ2(µ) , (D.8i)

ν(β,1) = −β2(µ) , ν(β,2) =
1

2
β1(µ) , (D.8j)

ν(β,3) = −β2(µ) + 2γ′6(µ)− 2γ′8(µ)− 4γ′2(µ) , ν(β,4) = −1

2
β1(µ) , (D.8k)

ν(β,5) = −β1(µ)− 2γ′6(µ)− 4γ′3(µ) + 2γ′8(µ) + 8γ′2(µ) , (D.8l)

ν(β,6) = β2(µ)− ρ(µ)β′1(µ)

ρ′(µ)
+ β1(µ)− 2ρ(µ)γ′′3 (µ)

ρ′(µ)
+

2ρ(µ)γ′3(µ)ρ′′(µ)

ρ′(µ)2
− 4γ′2(µ) , (D.8m)

ν(β,7) = −µβ′2(µ) + 2β2(µ) + β1(µ) , ν(β,8) = µβ′2(µ)− β2(µ) , (D.8n)

ν(α) = 2β′2(µ) + 4α(µ) . (D.8o)

D.3 Second-order anti-symmetric tensors

Similarly to the symmetric tensors, the antisymmetric tensor components sµνSO(1,1), s
µν
SO(2)

and sµνv⊗v can be obtained by varying the action w.r.t. the 2-form source bµν . It turns
out that the SO(1, 1)-components obtained this way are all proportional to uµν so they
are contained in δρ, at this order in the derivative expansion. The non-zero components
sµνSO(2) and sµνv⊗v are:

sµνSO(2) = 2η̃
(γ,1)
(2) Rαγβδu

αβΠ[µ|γΠ|ν]δ + 2η̃
(γ,2)
(2) uαβΠ[µ|γΠ|ν]δΩλρuγλ;αuδρ;β

+ 2η̃
(γ,3)
(2) uαβΠ[µ|γΠ|ν]δΩλρuδρ;βuαγ ;λ + +2η̃

(γ,4)
(2) uαβΠλρΠ[µ|γΠ|ν]δuβδ ;ρuαγ ;λ (D.9a)

+ 2η̃
(γ,5)
(2) uαβΠλρΠ[µ|γΠ|ν]δuβλ;ρuαδ ;γ + 2η̃

(β,1)
(2) Π[µ|αΠ|ν]βΩγδHαβγ ;δ

+ 2η̃
(β,2)
(2) Hβδρu

αβΠλρΠ[µ|γΠ|ν]δuαγ ;λ + 2η̃
(β,3)
(2) Hβγδu

αβΠλρΠ[µ|γΠ|ν]δuαλ;ρ +O(∂3) ,
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sµνv⊗v = 2ν̃0 ΠβγΠ[µ|αΩ|ν]δuβδ ;αγ + 2ν̃1 Π[µ|αΩγδΩ|ν]βuαβ ;γδ + 2ν̃2 ΠβγΠ[µ|αΩ|ν]δuαδ ;βγ

+ 2ν̃(γ,1) Rαγβδu
αβΠ[µ|γΩ|ν]δ + 2ν̃(γ,2) uαβΠδλΠ[µ|γΩ|ν]ρuαδ ;βuλρ;γ

+ 2ν̃(γ,3) uαβΠδλΠ[µ|γΩ|ν]ρuαγ ;βuδρ;λ + 2ν̃(γ,4) uαβΠδλΠ[µ|γΩ|ν]ρuαγ ;ρuβδ ;λ

+ 2ν̃(γ,5) uαβΠδλΠ[µ|γΩ|ν]ρuβλ;ρuαδ ;γ + 2ν̃(γ,6) uαβΠδλΠ[µ|γΩ|ν]ρuαδ ;βuγρ;λ (D.9b)

+ 2ν̃(β,1) Hβγλu
αβΠδλΠ[µ|γΩ|ν]ρuδρ;α + 2ν̃(β,2) ΠβγΠ[µ|αΩ|ν]δHαβδ ;γ

+ 2ν̃(β,3) Hβλρu
αβΠδλΠ[µ|γΩ|ν]ρuαγ ;δ + 2ν̃(β,4) Hβγρu

αβΠδλΠ[µ|γΩ|ν]ρuαδ ;λ

+ 2ν̃(β,5) Hαβλu
αβΠδλΠ[µ|γΩ|ν]ρuδρ;γ + 2ν̃(β,6) Hβγλu

αβΠδλΠ[µ|γΩ|ν]ρuαδ ;ρ

+ 2ν̃(α) HαγδHβλρu
αβΠδλΠ[µ|γΩ|ν]ρ +O(∂3) .

The transport coefficients of the SO(2)-components are related to those in the effective
action via

η̃
(γ,1)
(2) =

1

2
β2(µ) , η̃

(γ,2)
(2) = −1

2
β1(µ) , (D.10a)

η̃
(γ,3)
(2) =

1

2
β2(µ)− 1

2
β1(µ) , η̃

(γ,4)
(2) = −1

2
β2(µ) , (D.10b)

η̃
(γ,5)
(2) =

ρ(µ)β′2(µ)

2ρ′(µ)
− 1

2
β2(µ) , (D.10c)

η̃
(β,1)
(2) = −α(µ) , η̃

(β,2)
(2) = α(µ) , (D.10d)

η̃
(β,3)
(2) = α(µ)− ρ(µ)α′(µ)

ρ′(µ)
, (D.10e)

and similarly for the (v ⊗ v)-components:

ν̃0 = −1

2
β2(µ) , ν̃1 = −1

2
β1(µ) , (D.11a)

ν̃2 =
1

2
β2(µ) , (D.11b)

ν̃(γ,1) = −1

2
β1(µ) , ν̃(γ,2) = −1

2
β2(µ) +

1

2
µβ′2(µ) , (D.11c)

ν̃(γ,3) =
1

2
β2(µ)− ρ(µ)β′1(µ)

2ρ′(µ)
+

1

2
β1(µ) , ν̃(γ,4) =

1

2
β2(µ) , (D.11d)

ν̃(γ,5) =
1

2
β2(µ) , ν̃(γ,6) = −1

2
µβ′2(µ) , (D.11e)

ν̃(β,1) = −2µα′(µ) + 2α(µ) , ν̃(β,2) = 2α(µ) , (D.11f)

ν̃(β,3) = −β′2(µ) + 2α(µ) , ν̃(β,4) = −2α(µ) , (D.11g)

ν̃(β,5) = −1

2
β′2(µ) , ν̃(β,6) = −2µα′(µ) , (D.11h)

ν̃(α) = 4α′(µ) , (D.11i)
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