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Abstract

We consider the dynamics of an XY spin chain subjected to an external trans-
verse field which is periodically quenched between two values. By deriving an
exact expression of the Floquet Hamiltonian for this out-of-equilibrium proto-
col with arbitrary driving frequencies, we show how, after an unfolding of the
Floquet spectrum, the parameter space of the system is characterized by al-
ternations between local and non-local regions, corresponding respectively to
the absence and presence of Floquet resonances. The boundary lines between
regions are obtained analytically from avoided crossings in the Floquet quasi-
energies and are observable as phase transitions in the synchronized state. The
transient behaviour of dynamical averages of local observables similarly under-
goes a transition, showing either a rapid convergence towards the synchronized
state in the local regime, or a rather slow one exhibiting persistent oscillations
in the non-local regime, where explicit decay coefficients are presented.
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1 Introduction

The study of out-of-equilibrium systems has recently moved to the forefront of research in
many-body physics, motivated largely by the desire to create interesting states of matter
with properties beyond those achievable in equilibrium. In periodically-driven systems,
which exist in nature but can also be created in the laboratory, driving can be used as a
probe or to generate non-trivial phases [1–3]. Floquet theory [4] is then used to describe
these situations. Whereas all relevant properties of the periodic dynamics are encoded
in the Floquet Hamiltonian, finding exact solutions remains a severe challenge, and these
are usually limited to few-body systems. This poses severe limitations to the application
of Floquet theory when a large number of components are involved, as in condensed
matter physics. However, in free-fermion models and related spin chain systems, the
Floquet Hamiltonian sometimes takes a simpler form due to their underlying algebraic
structure [5]. These models can then shed light on periodically-driven systems, while
describing experimentally-relevant situations [6–8], and being relevant in various fields
of physics [1, 9, 10]. Previous works have explored some of these scenarios [11, 12], and
numerical studies have also been performed for non-integrable systems [13–16], where
many-body resonances are of major interest [17–23].

Yet, exact expressions for Floquet Hamiltonians at arbitrary driving frequencies and
explicit connections between the dynamics and the quasi-energy spectrum, from which
much could be learned on equilibration and synchronization in driven systems, are lacking
in most cases. In this paper, we consider an antiferromagnetic spin-1/2 XY chain subject
to periodic quenches of a transverse magnetic field. Although the equilibrium properties
of this model are well-known [24–26], and despite studies of its out-of-equilibrium be-
haviour in certain scenarios (e.g., [27–33]), an exact description of its Floquet dynamics
valid in the entire parameter space is currently missing. The XY and related models have
been fundamental for understanding quantum phase transitions [32, 34, 35] and quantum
quenches [36,37], and can certainly play a similar role for the physics of periodic driving.
Its Floquet Hamiltonian is obtained exactly, and we investigate its local/non-local nature
for different driving parameters. A link is established between the locality of the Flo-
quet Hamiltonian and the presence of avoided crossings between its eigenstates, which can
be interpreted as Floquet resonances. These resonances are generally not observable in
the thermodynamic limit, but the free-fermionic nature of the model makes them visible
in the single-particle spectrum, leading to a slow convergence of observables towards a
synchronized state (i.e., the steady state of the stroboscopic time evolution [11, 12]) with
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persistent oscillations in the non-local regime. These results are expected to be generic for
any system mappable to a free fermion model. This study also allows to naturally connect
Floquet resonances [19] with the appearance of long-range correlations as presented in
Refs. [38,39]. The phenomena analyzed are also expected to be observable in string order
parameters, characterizing similar transitions in the Floquet ground state of driven Ising
models [40,41].

This paper is organised as follows. In Sec. 2, we start by providing a brief overview
of Floquet theory. This is subsequently applied to a periodically driven XY spin chain,
whose corresponding Floquet Hamiltonian is explicitly derived (see Secs. 3 and 4) and
its effective interactions thoroughly discussed (see Sec. 5). In Sec. 6, a detailed account
is presented on the correspondence between the locality, or lack thereof, of the Floquet
Hamiltonian and the dynamics of observables. The last section is reserved for conclusions
and possible future avenues of research.

2 Floquet Theory

Analogously to the Bloch theorem for crystalline solids, given a time periodic Hamiltonian
Ĥ(t) = Ĥ(t + T ) with T = 2π/ω0, one can construct a complete set of solutions of the
Schrödinger equation, the so-called Floquet states [1,4,11], which are periodic in time up
to a phase factor,

|Ψα(t)〉 = e−iε
[T ]
α t |Φα(t)〉 . (1)

Here the states |Φα(t)〉 are called Floquet modes and are periodic |Φα(t+ T )〉 = |Φα(t)〉,
with α representing a set of quantum numbers. The real quantities ε

[T ]
α are known as the

Floquet quasienergies. Due to the periodicity, these quasienergies can be translated to the
first Brillouin zone [−π/T, π/T ], just like the quasimomenta of Bloch waves.
To derive expressions for the Floquet modes and quasienergies, we first notice that, by
definition, a Floquet state obeys the Schrödinger equation

Û(t, t0) |Ψα(t0)〉 = |Ψα(t)〉 , (2)

with evolution operator Û(t2, t1) = Tt exp
[
−i
∫ t2
t1
Ĥ(t)dt

]
. One can easily show that, for

time-periodic Hamiltonians, this evolution operator obeys that U(t0 + nT, t0) = U(t0 +
T, t0)

n. In terms of the Floquet modes the preceding evolution equation becomes

Û(t, t0) |Φα(t0)〉 = e−iε
[T ]
α (t−t0) |Φα(t)〉 . (3)

Eq. (3) tells us, on the one hand, how Floquet modes evolve and, on the other, that for
stroboscopic times t = t0 + nT , the Floquet modes are eigenfunctions of the evolution
operator Û(t0 + nT, t0), that is

Û(t0 + nT, t0) |Φα(t0)〉 = e−iε
[T ]
α nT |Φα(t0)〉 . (4)

Moreover, since a unitary operator can always be written as the exponential of a Hermitian

operator, this allows us to introduce the so-called Floquet Hamiltonian Ĥ
[t0,T ]
F so that

Û(t0 + T, t0) = e−iĤ
[t0,T ]
F T . The Floquet Hamiltonian is time-independent, but depends

both on the driving period, as well as on the arbitrary choice of the initial time. Since
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Floquet Hamiltonians for different initial times are related by a gauge transformation, t0
is referred to as the “Floquet gauge”. Thus, the properties of the system at stroboscopic
times t0 + nT can be determined by studying the static Floquet Hamiltonian.

Finally, it can be shown that the evolution of a Floquet mode
∣∣∣Φ[T ]

α (t0)
〉
→
∣∣∣Φ[T ]

α (t)
〉

(where the superscript T now explicitly shows its dependence on the period) from t0 to
t = t0 + nT + δt is given by∣∣∣Φ[T ]

α (t)
〉

= eiε
[T ]
α δtÛ(t0 + δt, t0)

∣∣∣Φ[T ]
α (t0)

〉
. (5)

3 Driving the XY spin chain

In the following, Floquet theory will be applied to the XY spin chain, where we pay special
attention to the structure of the Floquet Hamiltonian. The instantaneous XY Hamiltonian
is given by

HXY=J
N∑
j=1

[
(1+γ)Sxj S

x
j+1 + (1−γ)Syj S

y
j+1 −

h(t)

J
Szj

]
, (6)

with superexchange parameter J > 0, anisotropy γ ∈ [0, 1], and h(t) a time-periodic
external magnetic field with non-negative average value. The spin-1/2 operators Sαj , α ∈
{x, y, z}, are taken to obey periodic boundary conditions. Performing a Jordan-Wigner

transformation and a Fourier transform to spinless fermion operators {c†k, ck}, and taking
care of the boundary conditions [24] (see Appendix A for details of the derivation), this
instantaneous Hamiltonian can be mapped to

HXY = −J
∑
k>0

[
(cos(k)− h(t)/J)(c†kck + c†−kc−k) + iγ sin(k)(c†kc

†
−k − c−kck)

]
− h(t)N

2
,

(7)
which (assuming even filling in subsectors k∪−k) is a direct sum of operators acting on two-

dimensional subspaces spanned by {|0〉 , c†kc
†
−k |0〉}. Observing the system stroboscopically

at times t0 + nT for n ∈ N, the evolution operator can be written as

U(t0 + nT, t0) = e−iH
[t0,T ]
F nT . (8)

The so-called Floquet Hamiltonian H
[t0,T ]
F can be obtained by diagonalizing the evolution

operator for a single driving cycle. In each two-dimensional momentum subspace, this
operator can be repesented as

Uk(t0 + T, t0) = uk,01k + i
∑

α∈{x,y,z}

uk,ασ
α
k , (9)

with Pauli matrices σαk . Solving the eigenvalue problem provides the Floquet modes and
the quasienergies. After some algebra one obtains the Floquet modes

∣∣∣Φ[T ]
k,σ(t0)

〉
= bσ

 1

σ
uk,x+iuk,y√
1−u2k,0+σuk,z

 , (10)

with normalization factor

bσ =


√

(1− u2k,0) + σuk,z

2
√

1− u2k,0


1
2

, (11)
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and corresponding eigenvalues λσ = e−iσεT (k)T with σ = ±1. Here εT (k) are the quasi-
energies given by

εT (k) = − 1

T
arccos(uk,0) . (12)

This allows us to write the following pseudospin representation of the Floquet Hamiltonian
(up to an overall constant)

H
[t0,T ]
F ≡

∑
k>0

εT (k)nk · σk , (13)

with

nk ≡

 uk,x√
1− u2k,0

,
uk,y√

1− u2k,0
,

uk,z√
1− u2k,0

 . (14)

It is, however, more illuminating to write the resulting Floquet Hamiltonian in terms of
the Jordan-Wigner fermions in real space, leading to the following result:

H
[t0,T ]
F =

N∑
j=1

(N−1)/2∑
`=1

[
A`c†jcj+` + B`c†jc

†
j+` + h.c.

]
+A0

N∑
j=1

c†jcj , (15)

where we can see that the driving may induce non-local interactions A` and B`.
So far the results are general, as they only rely on the algebraic structure of the

system. The problem is now that obtaining explicitly exact, analytical expressions for
Euler parameters uk,α is not a trivial matter. One protocol that allows for such solutions
consists on periodically quenching between two values of the time dependent external field
h(t),

h(t) =

{
h1 , 0 ≤ t < αT mod T
h2 , αT ≤ t < T mod T

. (16)

In this case, one can use the algebra of the Pauli matrices to determine the effective
parameters uk,α. In the following, we take t0 = 0 for simplicity. For this Floquet gauge,
we obtain:

uk,0 = cos(E1(k)αT ) cos(E2(k)(1− α)T )

− sin(E1(k)αT ) sin(E2(k)(1− α)T ) cos(∆k) ,

uk,x = sin(E1(k)αT ) sin(E2(k)(1− α)T ) sin(∆k) ,

uk,y = cos(E1(k)αT ) sin(E2(k)(1− α)T ) sin(θ2,k),

+ cos(E2(k)(1− α)T ) sin(E1(k)αT ) sin(θ1,k) ,

uk,z = − cos(E1(k)αT ) sin(E2(k)(1− α)T ) cos(θ2,k)

− cos(E2(k)(1− α)T ) sin(E1(k)αT ) cos(θ1,k) ,

where Ei(k) are the eigenvalues of the XY Hamiltonian with field hi, ∆k = θ2,k−θ1,k, and
θi,k is the corresponding Bogoliubov angle for that same external field. This is defined

as sin(θi,k) = −λk/
√
ξ2i,k + λ2k, with λk = γ sin(k) and ξi,k = cos(k) − hi/J . Detailed

expressions of the parameters uk,α for arbitrary Floquet gauge choices can be found in
Appendix B.

Before analyzing the influence of these possibly non-local interactions, let us discuss
their origin by considering the Floquet-Magnus expansion [13, 42]. In the infinite driving
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frequency limit T → 0, the Floquet Hamiltonian reduces to the time-averaged Hamiltonian
Hav. Eigenstates of Hav whose single-particle energy difference (within a single momentum
sector) equals an integer multiple of the driving frequency 2π/T are said to be quasi-
degenerate or resonant and, in the same way that a small perturbation on a stationary
Hamiltonian can strongly couple degenerate eigenstates of the unperturbed Hamiltonian,

deviations of e−iH
[t0,T ]
F T from e−iHavT can strongly couple quasi-degenerate eigenstates

[17–23]. These so-called Floquet resonances give rise to avoided crossings that result into
the Floquet eigenstates being linear combinations of two such (near-) resonant states.
As this mechanism cannot be represented by local operators, the Floquet Hamiltonian
contains long-range interactions if resonances are present (note that other mechanisms
can also lead to non-local terms in certain circumstances [43, 44]). In such situations,
the Magnus expansion is not expected to converge [13, 45–48], hence exact solutions are
important for the description of these resonances.

In Fig. 1 we show the quasi-energy spectrum as a function of T , where the intervals
within which avoided crossings occur can be clearly distinguished. Since quasi-energies
are only defined up to shifts 2πm/T,m ∈ N, in Fig. 1 the quasi-energies are restricted to
the first Brillouin Zone [−π/T, π/T ], which is known as the ‘folding’ of the spectrum [13].

Avoided

Crossings

Tc=π/2� � � �

�� �� �� ��

0.0 0.5 1.0 1.5 2.0
-4

-2

0

2

4

T

T
ϵ T
(k
)

Figure 1: Continuous quasi-energy spectrum (in pale green) as a function of the period
in the first Brillouin zone. Avoided crossings are present in the red intervals, indicated as
II, and absent in the pale blue intervals, denoted as I. The vertical orange line marks the
value of T above which no more intervals of type I are found. In this figure, we have used
the following values of the parameters: J = 1, γ = 0.8, h1 = 15, h2 = 0.5, α = 0.5, and
N = 10001.

4 Unfolding of the quasi-energy spectrum

By construction the Floquet Hamiltonian possesses the same eigenstates as the evolution
operator, and its eigenvalues ±εT (k) = ∓arccos(uk,0)/T follow from the logarithm of the
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corresponding eigenvalues of Uk(t0 +T, t0). As such, these quasi-energies are defined up to
shifts 2πm/T , with m ∈ N, whose branch choice is seen as a discrete gauge freedom [49].
While the gauge choice for the quasi-energies is immaterial for the time evolution of the
system, leading to a Floquet Hamiltonian that is similarly only defined up to a gauge
freedom, its effects on the latter are, however, much more involved. As will be argued in
the following, this folding might introduce unphysical interactions in the local Hamiltonian,
and the spectrum needs to be explicitly unfolded in order to highlight the effects of Floquet
resonances.

Although there exists no general way of doing so [19], in the current model we have the
advantage that, due to the free-fermionic structure, the Floquet Hamiltonian factorises
into two-dimensional subspaces and has a symmetric spectrum. Therefore, the single-
particle quasi-energy spectrum can be explicitly unfolded by either adding or subtracting
the corresponding multiple of 2π/T whenever a resonance condition is met (see Fig. 2 for
a graphical representation of the unfolding).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-5

0

5

T

ϵ
T(u
n
fo
ld
e
d
) (
k
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-5

0

5

T

ϵ
T
(k
)

Figure 2: Unfolded (left) and folded (right) quasienergies εT (k) at different values of the
driving period T for a small system with N = 41. In all local regions the unfolding returns
a spectrum close to that of the time-averaged Hamiltonian, whereas the avoided crossings
in the non-local regions are reflected in opening gaps in the unfolded Floquet spectrum.
The edges of the Brillouin zone ±π/T are marked by dashed red lines in the right figure.
The system parameters correspond to α = 1/2, γ = 0.5, J = 1, h1 = 1/2, h2 = 15.

Here, we present two equivalent ways of explicitly unfolding the Floquet spectrum.
The first one takes advantage of the symmetry of the spectrum of the time-averaged and
Floquet Hamiltonians, which implies that an avoided crossing takes place whenever the
value of a quasienergy approaches the edge of the Brillouin zone. This is precisely the
mechanism that keeps the spectrum found in (12) inside the interval [−π/T, π/T ]. For
a given value of k and as the period increases, the quasi-energy εT (k) will have a first
resonance at T = π/Eav(k). For periods above this value, we can unfold the quasienergy
out of the first Brillouin zone by shifting it by 2π/T . The spectrum will now be confined
inside the second Brillouin zone, and in order to further unfold it we need a shift of
−2× 2π/T for periods larger than 2π/Eav(k), where a second resonance takes place. By
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repeating this process iteratively, the full unfolding can be written as

ε
(unfolded)
T (k) = εT (k)−

∞∑
n=1

(−1)nΘ(TEav(k)− nπ)
2πn

T

= εT (k)− 2π

T

bTEav(k)/πc∑
n=1

(−1)nn ,

(17)

with Θ(x) the Heaviside function.
An alternative way of unfolding the spectrum is by making the connection with the

γ → 0 limit of driven XX models. In this limit, the driving becomes trivial since the
XX Hamiltonians commute at all values of h and J , leading to a Floquet operator whose
eigenstates are exactly those of the time-averaged Hamiltonian Hav. The spectrum can
now be unfolded by demanding that the Floquet Hamiltonian reduces to Hav at all values
of the driving period T if we take this limit. Namely, for γ = 0 the evolution operator in
the pseudo-spin representation is

Uk(t0 + T, t0) = cos(Eav(k)T )1− i sin(Eav(k)T )σzk , (18)

with Eav(k) = |J cos(k)−hav| and hav = αh1 + (1−α)h2, while the Floquet Hamiltonian
reduces to

HF =
∑
k>0

1

T
arccos [cos(Eav(k)T )] sgn [sin(Eav(k)T )]σzk + Cst.

=
∑
k>0

(
Eav(k)−

⌊
Eav(k)T + π

2π

⌋
2π

T

)
σzk + Cst .

(19)

It is clear that this Hamiltonian shares the eigenstates of the time-averaged Hamiltonian,
where the eigenvalues have acquired an appropriate shift compared to Eav because of
the term arccos [cos(Eav(k)T )] /T . The shifts introduced by the arccos function can be
explicitly undone by defining the unfolded quasienergies as

ε
(unfolded)
T (k) = εT (k) + sign [sin(Eav(k)T )]

⌊
Eav(k)T + π

2π

⌋
2π

T
. (20)

In the limit γ → 0, at each value of the driving period the Floquet Hamiltonian now
reduces to Hav, which has a guaranteed unfolded spectrum. It is easy to show that Eqs.
(17) and (20) are equivalent. While the necessary shifts depend on Eav(k), this only
determines the edges of the shifts due to the sign- and floor-function, similar as in the
determination of the boundaries of the different regions. The resulting shifts are introduced
at the avoided crossings, and as such the resulting Floquet Hamiltonian will showcase the
different dynamical behaviours in the different regions.

With this choice of unfolding one can check that we recover the expected results for
various limits of the parameters. For instance, if γ = 0 all instantaneous Hamiltonians

commute and the driving trivializes, leading to H
[t0,T ]
F = Hav at all driving frequencies,

as returned by the proposed unfolding. Another example is the static case, which can be
achieved by either h1 = h2, α = 0 or α = 1, for which the Floquet Hamiltonian reduces
to the static one.

5 Induced Interactions in the Floquet Hamiltonian

Now that the spectrum has been unfolded, we can return to the couplings A` and B` in the
Floquet Hamiltonian given by Eq. (15). In particular, we are interested in whether or not
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Figure 3: Density plots of the measure ρ as a proxy of the non-locality of the Floquet
Hamiltonian in the (T, h1)- , (h1, h2)-, and (h1, α)-planes (from left to right). In all three
figures, J = 1, L = 10, and N = 10001. The other parameters are γ = 0.8, h2 = 0.5,
α = 0.5 (left figure); γ = 0.2, α = 0.1, T = 0.8 (middle figure); and γ = 0.2, h2 = 0.5,
T = 0.8 (right figure). The red lines separating the different regions are the predictions
according to Eqs. (27). Note the local line h1 = h2 in the middle plot, which corresponds
to a trivial quench-driven protocol for which the Floquet Hamiltonian is precisely the
average one.

the driving introduces significant couplings at ranges larger than the nearest-neighbour
interactions present in the instantaneous Hamiltonian. With our choice of driving protocol,
these couplings are given by

A` =
2

N

∑
k>0

uk,z√
1− u2k,0

cos(`k)ε
(unfolded)
T (k) ,

B` = − 2

N

∑
k>0

uk,y + iuk,x√
1− u2k,0

sin(`k)ε
(unfolded)
T (k) .

(21)

To visualise the non-locality of the the Floquet Hamiltonian in the parameter space we
introduce the measure

ρ =
1

2(L− 1)

L∑
`≥2

{
|A`|+

√
||B`||2

}
. (22)

This quantity measures the average strength of interactions up to range L, excluding those
of range 1 as well as the effective on-site potential. Therefore, it allows us to probe only
interaction ranges which were not present in the static Hamiltonians and, as such, the
non-local long-range behaviour of the Floquet Hamiltonian. As mentioned before, as T
goes to zero, one retrieves the time-averaged Hamiltonian, and ρ = 0. When T increases,
one would naively expect an enhancement of longer range interactions, reflected in an
increase of ρ. However, this is not always the case. As can be seen in Fig. 3, which show
density plots of ρ in the planes (T, h1), (h1, h2), and (h1, α), alternating regions where
interactions are either local (blue regions corresponding to ρ ' 0) or non-local (orange
regions corresponding to ρ > 0) can be clearly distinguished.

Furthermore, in Fig 4 we show the amplitudes of the couplings A` (Nb. B`-couplings
behave in an analogous manner) along the dotted line h1 = 15 corresponding to the left
plot in Fig 3, where it can be seen that inside the local regime (highlighted by the pale
blue background) only the local couplings are non-neglibible, whereas in the non-local
regime all the couplings play a role in the Floquet Hamiltonian. These local to non-local
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L |ℓ|
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-2

0

2

4

6

8

T


ℓ

α h1+(1-α)h2

-J/2

Figure 4: Effective couplingsA` as a function of the period. The red line shows the effective
on-site magnetic field A0, the blue line the effective nearest neighbours interaction A1, and
the black one the average strength of the remaining effective couplings. The latter becomes
negligible inside the local regions indicated by the pale blue background.

transitions are induced by the appearance of avoided crossings, as indicated in Fig. 1,
since the latter are the origin of the long-range interactions. As such, the boundary lines
separating these two kinds of regions, drawn as red lines in Fig. 3, can be analytically
derived by looking for these resonance conditions.
To do so, we start by noticing that, due to the symmetry of the spectrum of the time-

averaged Hamiltonian, resonances begin to occur whenever the quasienergies get close to
the first Brillouin zone (as can also be observed from Fig. 1). If we were to start at
small values of T we expect the quasienergies to correspond to the eigenvalues of the
time-averaged Hamiltonian, given by

Eavσ (k) = σJ

√
γ2 sin2(k) + (cos(k)− hav/J)2 , (23)

with hav = αh1 + (1− α)h2 the average magnetic field, which we take to be non-negative
without loss of generality. This dispersion has its maximum for k = π, so we expect that
this would be the first momentum mode to reach the boundary of the Brillouin zone. The
last mode to reach it corresponds with the minimum k? of the dispersion, given by

k? =

{
0 if hav ≥ J(1− γ2) ,
arccos

(
hav/J(1− γ2)

)
if hav < J(1− γ2) .

(24)

This will define bands within which there are avoided crossings, delimited by the conditions

∆Eav(π) ≡ Eav+ (π)− Eav− (π) = m
2π

T
,

∆Eav(k?) ≡ Eav+ (k?)− Eav− (k?) = m
2π

T
,

(25)

10
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with m ∈ N, giving the following equations

2(J + hav) = m
2π

T
, (26)

and {
2|J − hav| = m2π

T if hav ≥ J(1− γ2) ,
2γ
√
J2 − h2av

1−γ2 = m2π
T if hav < J(1− γ2) .

(27)

We can now use the set of equations (27) to find the boundary lines that appear in the
density plots of Fig. 3. Consider, for instance, the left plot of Fig. 3 in the hav ≥ J(1−γ2)
region, and let T

(m)
π and T

(m)
0 denote the values of the period T at which quasienergies

at k = π and k = 0 are close to the edge of the first Brillouin zone. These two values are

such that T
(m)
π ≤ T (m)

0 . Therefore, along the T axis, avoided crossings are roughly within

the set of disjoint intervals ∪m≥0[T (m)
π , T

(m)
0 ], where the Floquet Hamiltonian is non-

local. Alternatively, in the complementary set of disjoint intervals ∪m≥0[T (m)
0 , T

(m+1)
π ],

the Floquet Hamiltonian is roughly local. Looking precisely at the left panel of Fig. 3, we
notice that the region of local interactions disappears above a certain value of T . This

obviously must correspond to T
(m)
0 = T

(m+1)
π = Tc. Solving this equation in the region

where hav ≥ J gives 
J + hc =

π(m+ 1)

Tc

J − hc =
πm

Tc

⇒

Tc =
π

2J
hc = J(2m+ 1)

, (28)

where the set of hc is the family of values of average magnetic field where two boundaries
intersect. In particular, in the left panel of Fig. 3 the end points of the non-local region in
the (T, h1)-plane correspond to the collection of points (Tc, h1c) = (π/2, 2(2m+ 1)− 1/2)
for m = 1, 2, 3, . . .. In the same way, one can derive the corresponding expressions for
these intersections in the regimes hav < J(1− γ2) and J(1− γ2) ≤ hav < J .

To form a more explicit criterion for the locality of the interactions, we can look at the
asymptotic decay of the couplings with increasing distance. We consider the couplings to
behave as

A` ∼ f(`) +
g(`)

N
, (29)

for large ` and N . Here, f(`) is the dominant decaying term in the thermodynamic limit
and g(`) the leading finite size correction to this decay. Let us first find it in the non-local
regions, where the arguments of the sums in Eq. (21) present discontinuities due to the
unfolding of the quasi-energy spectrum at points {ki}ni=1 for which the Floquet states are
resonant. In the limit of large N all summations can be exchanged by integration, and

defining ak = εT (k)uk,z
/√

1− u2k,0 and integrating by parts then returns

lim
N→∞

A` =
2

2π
Re

[ ∫ k1

0
ake

ik`dk +
n−1∑
i=2

∫ ki+1

ki

ake
ik`dk +

∫ π

kn

ake
ik`dk

]

=
1

π`

n∑
i=1

(a−ki − a
+
ki

) sin(ki`) +O(`−2) ,

11
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Figure 5: Effective couplings A` (top panel) and B` (real part in the central panel, imag-
inary part in the bottom one) as a function of distance in a non-local region, with J = 1,
γ = 0.8, h1 = 10, h2 = 0.5, α = 0.5, T = 0.6, and N = 1000001. The dots indicate the
absolute value of the corresponding coupling, while the continuous lines show the decaying
envelope, which decays as `−1 up to finite size corrections.

with a±ki = limk→k±i
ak. Thus, the couplings decay as f(`) ∝ `−1 in the non-local regions,

as can be seen in Fig. 5. The deviations from the predicted decay for large ` are due to
finite size corrections, which can similarly be obtained, as shown in Appendix C.

As for the local regions, there are no discontinuities in the integrand, and further
analysis is necessary:

lim
N→∞

A` =
1

π
Re

∫ π

0
ake

ik`dk =
1

π
Re

[
1

i`

[
dak
dk

eik`
]π
0

− 1

i`

∫ π

0

dak
dk

eik`dk

]
=

1

π

∑
n odd

(−1)(n+1)/2

`n+1

[
(−1)`

dnak
dkn

∣∣∣∣
π

− dnak
dkn

∣∣∣∣
0

]
.

(30)

We can see that all the prefactors in this asymptotic series are proportional to odd deriva-
tives of ak. However, it can be verified that this function is symmetric both around k = 0
and k = π, and thus its odd derivatives at these points vanish. Therefore, this series shows
that the couplings must decay faster than any polynomial of `−1, as can be seen in Fig. 6,
where we can see an exponential decay of the couplings. This faster than algebraic decay
of the function f(`) is to be seen as a precise definition of “locality” in the present context.

6 Influence on the dynamics

A natural question to ask is how these features impact the evolution of observables towards
the (synchronized) steady-state regime. It was previously observed that the presence of
a limited number of Floquet resonances in finite-size systems has a major influence on
the dynamics, leading to long-lived temporal fluctuations [19]. Similarly, in Ref. [38] open
driven systems are considered where analogous regions to the ones in Fig. 1 are defined
by the quick or slow spatial decay of correlation functions.
To explore this, suppose we prepare the system at an initial time in the ground state |GS〉
of a static Hamiltonian (with e.g. h(t) = h1) and analyse its stroboscopic properties after
introducing driving. For a given observable O, the stroboscopic time evolution is given
by 〈O(nT )〉 ≡ 〈Ψ(nT )| O |Ψ(nT )〉, where |Ψ(nT )〉 = U(nT, 0) |GS〉, with n ∈ N. This
can be separated into two contributions: a decaying part tending to zero as n → ∞ and
a (synchronized) steady-state [11] determined by the diagonal ensemble in the basis of

12
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Figure 6: Effective couplings A` (left panel) and B` (real part in the central panel, imagi-
nary part in the right one) as a function of distance in a local region, with J = 1, γ = 0.8,
h1 = 10, h2 = 0.5, α = 0.5, T = 0.25, and N = 1000001. The dots indicate the abso-
lute value of the corresponding coupling, while the continuous lines show in this case an
exponential decay up to finite size corrections.

Floquet eigenstates.
Let us work these expression explicitly for different observables. Consider the following
operators, which can be written in pseudo-spin representation as

1

N

N∑
j=1

Szj =
1

2
− 1

N

∑
k>0

(1k + σzk) ,

1

N

N∑
j=1

Sxj S
x
j+1 = − 1

2N

∑
k>0

(
cos(k) (1k + σzk)− sin(k)σyk

)
.

(31)

Each of these operators can be expanded as O =
∑

k>0Ok. Similarly, in all performed
calculations the system is initially prepared in the ground state |GS〉 of an XY Hamiltonian
(for instance with h = h1), which can also be expanded in momentum and Floquet modes
as

|GSk〉 =
∑

σ∈{−,+}

∣∣∣Φ[0,T ]
k,σ (0)

〉〈
Φ
[0,T ]
k,σ (0)

∣∣∣GSk

〉
. (32)

Following the previous sections, the time evolution can be explicitly calculated. Taking
Uk(t = nT + δt, 0) = Uk(δt, 0)[Uk(T, 0)]n with δt ∈ [0, T ) leads to

|Ψk(t)〉 ≡ Uk(t, 0) |GSk〉

=
∑

σ∈{−,+}

Uk(δt, 0)[Uk(T, 0)]n
∣∣∣Φ[0,T ]

k,σ (0)
〉〈

Φ
[0,T ]
k,σ (0)

∣∣∣GS
(1)
k

〉
=
∑

σ∈{−,+}

e−inσεT (k)TUk(δt, 0)
∣∣∣Φ[0,T ]

k,σ (0)
〉〈

Φ
[0,T ]
k,σ (0)

∣∣∣GS
(1)
k

〉
.

The dynamical expectation values of the above operators are then given by

〈O(t)〉 =
∑

σ,σ′∈{−,+}

∑
k>0

e−in(σ−σ
′)εT (k)T

〈
GSk

∣∣∣Φ[0,T ]
k,σ′ (0)

〉
×
〈

Φ
[0,T ]
k,σ′ (0)

∣∣∣U †k(δt, 0)OkUk(δt, 0)
∣∣∣Φ[0,T ]

k,σ (0)
〉〈

Φ
[0,T ]
k,σ (0)

∣∣∣GSk

〉
.

13
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These can be naturally separated in a steady-state (synchronized) term depending only
on δt and a remaining time-dependent decaying term, 〈O(t)〉 = O(ss)(δt) +O(decay)(t) as

O(ss)(δt) =
∑

σ∈{−,+}

∑
k>0

〈
GSk

∣∣∣Φ[0,T ]
k,σ (0)

〉〈
Φ
[0,T ]
k,σ (0)

∣∣∣U †k(δt, 0)OkUk(δt, 0)
∣∣∣Φ[0,T ]

k,σ (0)
〉

×
〈

Φ
[0,T ]
k,σ (0)

∣∣∣GSk

〉
,

O(decay)(t) =
∑

σ∈{−,+}

∑
k>0

e−2inσεT (k)T
〈

GSk

∣∣∣Φ[0,T ]
k,−σ(0)

〉
×
〈

Φ
[0,T ]
k,−σ(0)

∣∣∣U †k(δt, 0)OkUk(δt, 0)
∣∣∣Φ[0,T ]

k,σ (0)
〉〈

Φ
[0,T ]
k,σ (0)

∣∣∣GSk

〉
.

Let us analyse each of these distinct behaviors.

6.1 Decay to the synchronized state

The dynamical behaviour of observables can be shown to differ greatly depending on
the different phases of the system (see Fig. 7). In the non-local regime, convergence
towards the steady-state (synchronized) regime is robust, happening as t−1/2. In the local
regime on the other hand, convergence generally behaves as t−3/2, although specific driving
protocols also allow for a slower decay as t−3/4 or t−1/2. This behaviour is independent
of the specific observable, and here it will be shown to follow from the dispersion relation
of the quasienergies as function of momentum k. Provided O can be decomposed in
momentum subsectors, in the thermodynamic limit the decaying part of the observable
can be written as

O(decay)(nT ) =
N

2π

∫ π

0
dk
[
f(k)e−2inθT (k) + h.c.

]
, (33)

in which θT (k) = εT (k)T and f(k) =
〈
GSk

∣∣∣Φ[0,T ]
k,− (0)

〉〈
Φ
[0,T ]
k,− (0)

∣∣∣Ok∣∣∣Φ[0,T ]
k,+ (0)

〉〈
Φ
[0,T ]
k,+ (0)

∣∣∣GSk

〉
.

The latter contains both an observable-dependent part with the off-diagonal matrix ele-
ments of Ok and an observable-independent part containing the overlaps of the Floquet
modes with the initial state.

The long-time dynamics of such expressions then follows from the stationary-phase
approximation, where the dominant contributions to the integral will follow from station-
ary points where the phase θT (k) becomes extremal, i.e. θ′T (k) = 0. Each one of these
points contributes to the dominant term in the long-time dynamics. First of all, it can
be easily checked that the dispersion θT (k) always has extremal points at the boundaries
of the Brillouin zone, where θ′T (0) = θ′T (π) = 0. However, the crucial observation is that,
at k = 0 and k = π, the prefactor of these contributions also vanishes, f(0) = f(π) = 0.
This behaviour is independent of the observable, only following from the overlaps in f(k).

Indeed, let us look at the k = 0, π sectors of the XY Hamiltonian. For these modes,
the off-diagonal elements in Eq. (7) vanish, and the Hamiltonian is already diagonal

in the basis {|0〉k , c
†
k |0〉k}k=0,π, reflecting the fact that these modes cannot be doubly

occupied (c†0c
†
0 = c†πc

†
−π = 0). In order to respect the separation in sectors of parity of

N + M of the Hilbert space, we only consider initial states with either a |0〉k or c†k |0〉k
wavefunction component for these momenta. The same holds for the Floquet modes, which
are by construction restrained to one of these parity subspaces, and therefore one of the
overlaps in f(k) will always vanish at these points. From the stationary phase method,
the contributions to the integral of these two stationary points can then be approximated

14
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Figure 7: Possible different behaviours of the decay to the steady-state (synchronized)
regime starting from the ground state of Hav at t = 0. The stroboscopic time evolution of
the magnetization Mz(nT ) = 〈Sz(nT )〉/N is presented in the top row, where the bottom
row presents the corresponding dispersion θT (k). Column (i) corresponds to t−3/2 decay
in the local region, column (ii) to t−1/2 decay in the non-local region, and column (iii)
to t−3/4 decay in the local region when θ′′T (0) = 0. The stationary points at k = 0 and
k = ±π can be clearly observed in all columns, whereas additional stationary points are
introduced in the second column due to the presence of avoided crossings. The system
parameters correspond to N = 10001 and (i) α = 1/2, γ = 0.5, J = 1, h1 = 2, h2 = 12
and T = 0.25 (ii) α = 1/2, γ = 0.5, J = 1, h1 = 2, h2 = 12 and T = 0.45 (iii) α = 1/2,
γ = 0.70711, J = 1, h1 = 0.6, h2 = 0.8 and T = 0.1.
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as∫ ∞
−∞

dk
1

2
f ′′(k0)(k − k0)2e−inθ

′′
T (k0)(k−k0)

2 ∝ n−3/2 , for θ′T (k0) = 0 and k0 = 0, π . (34)

Note that this does not necessitate f ′(k0) = 0, since this first-order contribution vanishes
by the symmetry of the integral. If k = 0 and k = π are the only stationary points, these
are the only two contributions, both scaling as n−3/2. This is precisely what happens in
the local regime, where the dispersion remains qualitatively similar to that of the time-
averaged Hamiltonian, leading to a decay of t−3/2.

It can also easily be checked that additional stationary points arise in the non-local
regime, corresponding to the avoided crossings in the Floquet spectrum. At these points,
f(k) is not expected to vanish, leading to contributions which can be approximated as∫ ∞

−∞
dkf(k0)e

−inθ′′T (k0)(k−k0)
2 ∝ n−1/2 , for θ′T (k0) = 0 and k0 6= 0, π . (35)

Once such an additional stationary point is present, as is the case in the non-local regime,
this n−1/2 term will dominate the time evolution, leading to a slow decay of t−1/2.

Within the local regime, there is still the possibility of obtaining a t−1/2 decay, albeit
with smaller deviations from the steady state, if hav < J(1 − γ2), when the dispersion
has one extremum in the (0, π) interval. Remarkably, it is also possible to obtain a t−3/4

decay by fine-tuning the system parameters. In all derivations so far, it was assumed that
θ′′T (k0) 6= 0 at k0 = 0, π. However, in some specific cases the second and the third order
derivatives vanish at either k = 0 or k = π (an explicit expression can be straightfor-
wardly obtained, although it is rather unwieldy). Then, the contributions from these two
stationary points are given by∫ ∞

−∞
dk

1

2
f ′′(k0)(k − k0)2e−inθ

′′′′
T (k0)(k−k0)4/12 ∝ n−3/4 ,

for θ′T (k0) = θ′′T (k0) = θ′′′T (k0) = 0 and k0 = 0, π . (36)

If no other stationary points are present, the n−3/4 terms will dominate the decay. These
three decay regimes are illustrated in Fig. 8.

This shows that in the non-local regimes, the system generally exhibits the slowest de-
caying exponent. Furthermore, it exhibits persistent oscillations, the frequency of which
corresponds to the quasi-energy difference between the resonant states in the avoided cross-
ings. These can be interpreted as Rabi oscillations where the resonant states repeatedly
emit and reabsorb energy to/from the driving. This change of behaviour as we transition
between local to non- local regions can also be connected to crossovers between area-law
to volume-law scaling in the entanglement entropy of the steady state, which was similarly
shown to be reflected in dynamical phase transitions [39].

6.2 Synchronized state

In previous studies, it has been shown that the synchronized state can be described by a
Gibbs ensemble. In most instances the temperature associated to that description turns
out to be infinite [14–16]. In our case, however, due to the restriction of Floquet reso-
nances to the single-particle sector, the system does not heat up to an infinite-temperature
state, but is instead described by a non-trivial Periodic Generalized Gibbs Ensemble
(PGGE) [12]. This implies that the resulting steady-state values of physically relevant
observables will be highly dependent on the driving protocol, and possibly prone to dis-
play signals of phase transitions. This behaviour is indeed observed in Fig. 9, where
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Figure 8: Stroboscopic time evolution of the decaying part of the total magnetization
Mz =

∑N
i=1 S

z
i /N (top panel) and nearest neighbour correlator Cxx =

∑N
i=1 S

x
j S

x
j+1/N

(lower panel) for N = 100001, J = 1, t0 = 0 and the following choice of parameters.
Orange dots: α = 0.5, γ = 0.8, h1 = 0.2, h2 = 1.2, and T = 10; green dots: α = 0.5,
γ = 0.550961, h1 = 0.2, h2 = 1.2, and T = 0.75; blue dots: α = 0.5, γ = 0.8, h1 = 2.0,
h2 = 0.5, and T = 0.75. The value of γ in the second case (green dots) results from
imposing that the second derivative of the quasi-energy is zero at k = 0. In all cases we
plot the absolute value of the observable so that the algebraic decay (shown by solid lines
with corresponding matching colors) can be appreciated in a log-log scale. In the insets
we show the total expectation value for each observable in the regime corresponding to a
decay ∼ n−1/2.
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Figure 9: Synchronous value of the total magnetization Mz =
∑N

i=1 S
z
i /N (red line)

and correlator Cxx =
∑N

i=1 S
x
j S

x
j+1/N (black line) along the dotted line h1 = 15 in Fig.

1. The transitions from local to non-local regions are accompanied by the presence of
non-analyticities. The vertical green lines correspond to non-analyticities inside non-local
regions.

the steady-state observables present non-analyticities precisely at the edges of local and
non-local regimes. Furthermore, non-analyticities can be found well within the non-local
regions, as indicated by the vertical pale green lines in the same figure. These correspond
to the change in the number of resonant modes and it can be shown that their location in
the parameter space also obeys Eqs. (27).
Note that, even though the dynamics are independent of the unfolding of the spectrum,
the match between the transitions present in the Floquet Hamiltonian and those in the ex-
pectation values of the observables further justifies our choice of unfolding. This approach
also circumvents the use of an extended Hilbert space [50] for which exact solutions are out
of reach. Finally, from Fig. 9 we can see that by choosing certain driving parameters one
can target specific combinations of values for the magnetization and correlation functions
as a means of engineering systems with particular properties.

7 Conclusions

In this work, we considered an anisotropic XY spin chain driven by a periodically-quenched
external transverse field. The algebraic structure of the theory, together with the quench-
based choice of protocol, have allowed us to obtain an exact expression for the Floquet
Hamiltonian and its eigenstates. While the choice of Floquet Hamiltonian for a fixed t0 is
unique only up to discrete gauge choices, we have shown that a simple unfolding proce-
dure allows to clearly highlight the different non-equilibrium phases. We have established
the presence of regions with local and non-local interactions depending on the driving
parameters, and present analytic expressions for the phase diagram as determined by the
structure of the avoided crossings of the quasi-energies representing resonances. In the
local regions this Floquet Hamiltonian is well approximated by the time-averaged one,
whereas the non-local region is characterized by the presence of resonances in the Floquet
single-particle spectrum, necessitating long-range interactions. For these systems, there
exists a maximal value of the driving period above which the interactions remain non-
local. The different phases can be observed in both the dynamics and the steady-state
observables. Non-local regions are distinguished by a slow decay combined with persistent
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oscillations originating from Floquet resonances, whereas in local regions a quicker decay
to the synchronized state can be expected, though this depends on the parameters of the
driving. In future work, we will return to the questions of how more general interactions
influence these effects, and how they manifest themselves for other types of observables
such as longer-range and/or dynamical correlations.
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A The Antiferromagnetic XY Model

We consider the spin-1/2 antiferromagnetic chain [24] described by the Hamiltonian

HXY = J
N∑
j=1

[
(1 + γ)Sxj S

x
j+1 + (1− γ)Syj S

y
j+1

]
− h

N∑
j=1

Szj , (37)

where J > 0 is a superexchange coupling, γ ∈ [0, 1] is the anisotropy parameter, h is an
external magnetic field, Sαj for α ∈ {x, y, z} are spin-1/2 operators and we consider periodic
boundary conditions Sαj+N = Sαj . Recall that the raising and lowering spin operators are

defined as S±j = Sxj ± iS
y
j . After performing a Jordan-Wigner transformation

Szj =
1

2
− c†jcj ,

S−j = (−1)jeiπ
∑
`<j c

†
`c`c†j ,

S+
j = (−1)jeiπ

∑
`<j c

†
`c`cj ,

(38)

where c and c† are operators for spinless fermions with the usual anticommunitation rela-
tions {cj , c†j′} = δjj′ , we obtain the following Hamiltonian

HXY = −J
2

N−1∑
j=1

[
c†jcj+1 + γc†jc

†
j+1 + h.c.

]
+ h

N∑
j=1

c†jcj −
hN

2

+
J

2
(−1)NP

[
c†Nc1 + γc†Nc

†
1 + h.c.

]
,

(39)

where P ≡ eiπ
∑N
`=1 c

†
`c` ≡ eiπM is the operator measuring the parity of the total number

of fermions, which is related to the total magnetization along ẑ. The last term in Eq.
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39 corresponds to the transformation of the boundary term under periodic boundary
conditions. Since [HXY , P ] = 0 the Hilbert space splits into two subspaces with even or
odd N +M . Moreover, as the periodic boundary conditions for the spin operators are, for

c-operators, transformed into the condition (−1)Neiπ
∑N
`=1 c

†
`c`cN+1 = c1, this implies that

in the N +M even sector we have cN+1 = c1, while for the odd sector we obtain, in turn,
cN+1 = −c1. All in all, the Hamiltonian takes the form

H± = −J
2

N∑
j=1

[
c†jcj+1 + γc†jc

†
j+1 + h.c.

]
+ h

N∑
j=1

c†jcj −
hN

2
, (40)

where H+ obeys periodic boundary conditions while H− obeys anti-periodic ones. Finally,
we write the c-operators in Fourier modes

cj =
1√
N

∑
k

eikjck , (41)

where k takes values in a Brillouin Zone that depends on N and M , as shown in Table 1.

Table 1: Brillouin zones for different parities of N and M .
N +M N M Brillouin Zone Boundary Condition

even even even BZ1 = {−π + 2π
N , . . . , 0, . . . , π} PBC

even odd odd BZ2 = {−π + 2π
N , . . . , 0, . . . , π −

2π
N } PBC

odd even odd BZ3 = {−π + π
N , . . . ,−

π
N ,

π
N , . . . , π −

π
N } APBC

odd odd even BZ4 = {−π + 2π
N , . . . ,−

π
N ,

π
N , . . . , π} APBC

For a given Brillouin zone, for instance BZ3, the Hamiltonian in the reciprocal space reads

HXY = −J
∑
k>0

(
c†k c−k

)(cos(k)− h
J iγ sin(k)

−iγ sin(k) −(cos(k)− h
J )

)(
ck
c†−k

)
− hN

2
− J

∑
k>0

(
cos(k)− h

J

)
.

(42)

This Hamiltonian can then be diagonalised by a Bogoliubov transformation(
ck
c†−k

)
=

(
cos(θk/2) −i sin(θk/2)
−i sin(θk/2) cos(θk/2)

)(
ηk
η†−k

)
, (43)

with a Bogoliubov angle defined by sin(θk) = −λk/
√
ξ2k + λ2k and cos(θk) = −ξk/

√
ξ2k + λ2k,

where λk = γ sin(k) and ξk = cos(k)− h/J . In terms of Bogoliubov fermions, the Hamil-
tonian becomes

HXY =
∑
k

E(k)η†kηk − hN/2−
∑
k>0

(J cos(k)− h+ E(k)) , (44)

with excitation spectrum

E(k) = J
√
λ2k + ξ2k . (45)
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The model undergoes a quantum phase transition when h = J , with an antiferromagnetic
ground state for h < J , and a paramagnetic one for h > J . The dispersion relation (45)
has a minimum at k = 0 when h ≥ J(1 − γ2), and at k = arccos

(
h/J(1− γ2)

)
when

h < J(1 − γ2). In the latter case, k = 0 becomes a local maximum. In both situations,
there is a maximum for k = π.

Another approach to the problem comes from noticing that the Hamiltonian (42)
allows a pseudospin 1/2 representation since it connects the Fock vacuum |0〉 to the state

c†kc
†
−k |0〉 for each k. We thus introduce the following representation

c†kc
†
−k |0〉k →

(
1
0

)
k

≡ |1〉k , |0〉k →
(

0
1

)
k

≡ |2〉k . (46)

Thus operators acting on this space, and expressible in terms of sum of operators acting
on k-labeled subspaces (e.g. O =

∑
k>0Ok) can be written, in this representation, as sums

of 2× 2 matrices whose entries are (Ok)ij = 〈i|Ok|j〉 for i, j ∈ {1, 2}. For the Hamiltonian
(42) this allows to write it as

HXY =
∑
k>0

Hk −
hN

2
− J

∑
k>0

ξk , (47)

whereHk = E(k)nk·σk with σk = (σxk , σ
y
k , σ

z
k) being Pauli matrices, and nk = (0,− sin(θk), cos(θk)).

This representation is related to Eq. (44) through a particle-hole transformation of the
negative momentum Bogoliubov modes. Thus, the diagonalized Hamiltonian presents two
energy branches Eσ(k) = σE(k) for σ ∈ {−1, 1} with eigenvectors

∣∣∣E(i)
σ,k

〉
= aσ(k)

(
1

Eσ(k)−ξk
iλk

)
, aσ(k) =

1√
1 + [Eσ(k)−ξk]2

λ2k

.
(48)

The pseudospin representation is particularly useful as it allows to express time evo-
lution as rotations on the Bloch sphere around the axis nk, that is,

Uk(t
′, t) = e−iHk(t

′−t) = cos[E(k)(t′ − t)]1− i sin[E(k)(t′ − t)]nk · σk . (49)

B Other Floquet gauge choices and continuous time evolu-
tion

In the main text we consider focus on the case where t0 = 0 an consider mostly the
stroboscopic dynamics. Suppose, however, that we start the evolution of the system at an
arbitrary Floquet gauge t0 and we want to evolve it up to a time t0 + δt, δt ∈ [0, T ]. Then
the evolution operator in a given k sector is given by

Uk(t0 + δt, t0) =


e−iH

(1)
k δt , if δt ∈ [0, αT − t0] ,

e−iH
(2)
k (t0+δt−αT )e−iH

(1)
k (αT−t0) , if δt ∈ [αT − t0, T − t0] ,

e−iH
(1)
k (t0+δt−T )e−iH

(2)
k (1−α)T e−iH

(1)
k (αT−t0) , if δt ∈ [T − t0, T ] ,

,

(50)
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where H
(i)
k is the Hamiltonian with field hi, with eigenvalues Ei(k) and Bogoliubov angles

θ
(i)
k . Using an Euler angle representation, we will write this evolution operator as

Uk(t0 + δt, t0) = uk,0(δt)1k + iuk,x(δt)σxk + iuk,y(δt)σ
y
k + iuk,z(δt)σ

z
k

=

(
uk,0(δt) + iuk,z(δt) uk,y(δt) + iuk,x(δt)
−uk,y(δt) + iuk,x(δt) uk,0(δt)− iuk,z(δt)

)
,

(51)

where the coefficients uk,l(δt) are given by

uk,0(δt) =



cos[E1(k)δt] ,

cos[E1(k)(αT − t0)] cos[E2(k)(t0 + δt− αT )]

− sin[E1(k)(αT − t0)] sin[E2(k)(t0 + δt− αT )] cos ∆k ,

cos[E1(k)(t0 + δt− T )]{cos[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]

− sin[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos ∆k}
− sin[E1(k)(t0 + δt− T )]{cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos ∆k

+ sin[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]} ,
(52)

uk,x(δt) =


0 ,
sin[E1(k)(αT − t0)] sin[E2(k)(t0 + δt− αT )] sin(∆k) ,
sin[E1(k)(αT − t0)] cos[E1(k)(t0 + δt− T )] sin[E2(k)(1− α)T ] sin(∆k)
− sin[E1(k)(t0 + δt− T )] cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] sin(∆k) ,

(53)

uk,y(δt) =



sin[E1(k)δt] sin
(
θ
(1)
k

)
,

cos[E1(k)(αT − t0)] sin[E2(k)(t0 + δt− αT )] sin
(
θ
(2)
k

)
+ sin[E1(k)(αT − t0)] cos[E2(k)(t0 + δt− αT )] sin

(
θ
(1)
k

)
,

sin[E1(k)(t0 + δt− T )]{cos[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]} sin
(
θ
(1)
k

)
+ sin[E1(k)(t0 + δt− T )] sin[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] sin

(
∆k − θ

(1)
k

)
+ cos[E1(k)(t0 + δt− T )]{cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] sin

(
θ
(2)
k

)
+ sin[E1(k)(αT − t0)] cos[E2(k)(1− α)T ] sin

(
θ
(1)
k

)
} ,

(54)

uk,z(δt) =



− sin[E1(k)δt] cos
(
θ
(1)
k

)
,

− cos[E1(k)(αT − t0)] sin[E2(k)(t0 + δt− αT )] cos
(
θ
(2)
k

)
− sin[E1(k)(αT − t0)] cos[E2(k)(t0 + δt− αT )] cos

(
θ
(1)
k

)
,

− cos[E1(k)(t0 + δt− T )]{cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos
(
θ
(2)
k

)
+ sin[E1(k)(αT − t0)] cos[E2(k)(1− α)T ] cos

(
θ
(1)
k

)
}

− sin[E1(k)(t0 + δt− T )]{cos[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]} cos
(
θ
(1)
k

)
+ sin[E1(k)(t0 + δt− T )] sin[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos

(
∆k − θ

(1)
k

)
,

(55)
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with ∆k = θ
(2)
k − θ

(1)
k . The coefficients are given in a piecewise manner for δt in the three

intervals [0, αT − t0], [αT − t0, T − t0], and [T − t0, T ], respectively. This result will allow
us to do any arbitrary time evolution and to obtain the Floquet modes by diagonalising it
for δt = T . We denote the Euler parameters of the stroboscopic time evolution operator
Uk(t0 + T, t0) as uk,p ≡ uk,p(δt = T ), p ∈ {0, x, y, z}, whose expressions turn out to be

uk,0 = cos[E1(k)t0]{cos[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]

− sin[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos ∆k}
− sin[E1(k)t0]{cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos ∆k

+ sin[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]} ,
uk,x = sin[E1(k)(αT − t0)] cos[E1(k)t0] sin[E2(k)(1− α)T ] sin(∆k)

− sin[E1(k)t0] cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] sin(∆k) ,

uk,y = sin[E1(k)t0] cos[E1(k)(αT − t0)] cos[E2(k)(1− α)T ] sin
(
θ
(1)
k

)
+ sin[E1(k)t0] sin[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] sin

(
∆k − θ

(1)
k

)
+ cos[E1(k)t0]{cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] sin

(
θ
(2)
k

)
+ sin[E1(k)(αT − t0)] cos[E2(k)(1− α)T ] sin

(
θ
(1)
k

)
} ,

uk,z = − cos[E1(k)t0]{cos[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos
(
θ
(2)
k

)
+ sin[E1(k)(αT − t0)] cos[E2(k)(1− α)T ] cos

(
θ
(1)
k

)
}

− sin[E1(k)t0]{cos[E1(k)(αT − t0)] cos[E2(k)(1− α)T ]} cos
(
θ
(1)
k

)
+ sin[E1(k)t0] sin[E1(k)(αT − t0)] sin[E2(k)(1− α)T ] cos

(
∆k − θ

(1)
k

)
.

C Finite-size corrections

To derive expressions describing the finite size effects, an easy way to obtain the correction
function g(`) is to replace the boundaries of the integral by the lowest and highest momenta
allowed by the quantization:

A` ≈
1

π
Re

∫ π−π/N

π/N
ake

ik`dk =
1

π`
(aπ−π/N sin((π − π/N)`)− aπ/N sin((π/N)`) +O(`−2)

= −(−1)`aπ + a0
N

sinc(π`/N) +O(`−2) +O(N−2) ,

(56)

with sinc(x) = sin(x)/x. This finite size correction is the same in both the local and
non-local regime. The same analysis can be done for B` yielding the same asymptotic
behaviour in both the local and non-local regimes. The finite size corrections however are
slightly different, and are given by

gB(`) = −cos(π`/N)

`N

[(
(−1)`

dbk
dk

∣∣∣∣
π

+
dbk
dk

∣∣∣∣
0

)
+ i

(
(−1)`

dck
dk

∣∣∣∣
π

+
dck
dk

∣∣∣∣
0

)]
, (57)

where

bk = εT (k)uk,y
/√

1− u2k,0 , ck = εT (k)uk,x
/√

1− u2k,0 . (58)

23



SciPost Physics Submission

References

[1] N. Goldman and J. Dalibard, Periodically driven quantum systems: Effec-
tive hamiltonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014),
doi:10.1103/PhysRevX.4.031027.

[2] G. Goldstein, C. Aron and C. Chamon, Photoinduced superconductivity in semicon-
ductors, Phys. Rev. B 91, 054517 (2015), doi:10.1103/PhysRevB.91.054517.

[3] R. Moessner and S. L. Sondhi, Equilibration and order in quantum Floquet matter,
Nat. Phys. 13(5), 424 (2017), doi:10.1038/nphys4106.

[4] J. H. Shirley, Solution of the schrödinger equation with a hamiltonian periodic in
time, Phys. Rev. 138, B979 (1965), doi:10.1103/PhysRev.138.B979.

[5] V. Gritsev and A. Polkovnikov, Integrable Floquet dynamics, SciPost Phys. 2, 021
(2017), doi:10.21468/SciPostPhys.2.3.021.

[6] I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev.
Mod. Phys. 80(3), 885 (2008), doi:10.1103/RevModPhys.80.885.

[7] N. Yao, A. Potter, I.-D. Potirniche and A. Vishwanath, Discrete Time Crystals:
Rigidity, Criticality, and Realizations, Phys. Rev. Lett. 118(3), 030401 (2017),
doi:10.1103/PhysRevLett.118.030401.

[8] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D.
Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao and C. Monroe, Observation of
a discrete time crystal, Nature 543(7644), 217 (2017), doi:10.1038/nature21413.

[9] O. Kyriienko and A. S. Sørensen, Floquet quantum simulation with superconducting
qubits, Phys. Rev. Applied 9, 064029 (2018), doi:10.1103/PhysRevApplied.9.064029.

[10] X. Wen and J.-Q. Wu, Floquet conformal field theory, arXiv:1805.00031 (2018).

[11] A. Russomanno, A. Silva and G. E. Santoro, Periodic steady regime and interfer-
ence in a periodically driven quantum system, Phys. Rev. Lett. 109, 257201 (2012),
doi:10.1103/PhysRevLett.109.257201.

[12] A. Lazarides, A. Das and R. Moessner, Periodic thermodynamics of isolated quantum
systems, Phys. Rev. Lett. 112, 150401 (2014), doi:10.1103/PhysRevLett.112.150401.

[13] M. Bukov, L. D’Alessio and A. Polkovnikov, Universal high-frequency behavior of
periodically driven systems: from dynamical stabilization to floquet engineering, Adv.
Phys. 64(2), 139 (2015), doi:10.1080/00018732.2015.1055918.

[14] L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interact-
ing lattice systems, Phys. Rev. X 4, 041048 (2014), doi:10.1103/PhysRevX.4.041048.

[15] A. Lazarides, A. Das and R. Moessner, Equilibrium states of generic quan-
tum systems subject to periodic driving, Phys. Rev. E 90, 012110 (2014),
doi:10.1103/PhysRevE.90.012110.
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[44] M. Benito, A. Gómez-León, V. M. Bastidas, T. Brandes and G. Platero, Floquet
engineering of long-range p-wave superconductivity, Phys. Rev. B 90, 205127 (2014),
doi:10.1103/PhysRevB.90.205127.

[45] T. Kuwahara, T. Mori and K. Saito, Floquet–Magnus theory and generic transient
dynamics in periodically driven many-body quantum systems, Ann. Phys. 367, 96
(2016), doi:10.1016/j.aop.2016.01.012.

[46] A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven
quantum systems from a floquet-space perspective, New Journal of Physics 17(9),
093039 (2015).

[47] R. Scharf, The campbell-baker-hausdorff expansion for classical and quantum kicked
dynamics, Journal of Physics A: Mathematical and General 21(9), 2007 (1988).
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