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Abstract

We consider uncharged fluids without any boost symmetry on an arbitrary curved background

and classify all allowed transport coefficients up to first order in derivatives. We assume rota-

tional symmetry and we use the entropy current formalism. The curved background geometry

in the absence of boost symmetry is called absolute or Aristotelian spacetime. We present

a closed-form expression for the energy-momentum tensor in Landau frame which splits into

three parts: a dissipative (10), a hydrostatic non-dissipative (2) and a non-hydrostatic non-

dissipative part (4), where in parenthesis we have indicated the number of allowed transport

coefficients. The non-hydrostatic non-dissipative transport coefficients can be thought of as

the generalization of coefficients that would vanish if we were to restrict to linearized perturba-

tions and impose the Onsager relations. For the two hydrostatic and the four non-hydrostatic

non-dissipative transport coefficients we present a Lagrangian description. Finally when we

impose scale invariance, thus restricting to Lifshitz fluids, we find 7 dissipative, 1 hydrostatic

and 2 non-hydrostatic non-dissipative transport coefficients.
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1 Introduction

Hydrodynamics arises as the universal description of interacting systems near local thermal

equilibrium in the long wavelength limit, which makes hydrodynamics indispensable as an

effective theory for a broad class of physical phenomena. Once a hydrodynamic description is

established for a system, its evolution is governed by the hydrodynamic equations of motion,

which express the conservation of currents such as the energy-momentum tensor. The relevant

currents are parametrized in terms of fluid variables such as temperature, fluid velocity and

chemical potential via the constitutive relations – see e.g. [1, 2].

In the standard treatment of hydrodynamical frameworks some type of boost symmetry

is assumed, namely Galilean boost symmetry for non-relativistic hydrodynamics and Lorentz

boost symmetry for its relativistic counterpart. Consequently, these symmetries are present

in the well-known Navier-Stokes equations [1] and relativistic hydrodynamics [2] or magneto-

hydrodynamics [3–6] respectively. While these boost symmetries are conventionally assumed,

there is no a priori reason to require any type of boost symmetry in the formulation of hy-

drodynamics.1 From a theoretical point of view they are not necessary as the hydrodynamic

equations generally follow from conservation of energy/momentum and other charges, which

in turn are connected to time/space translations and possible extra global symmetries. Boost

symmetries, on the other hand, provide relations between components of the various currents,

and are as such not an essential ingredient, though they are reflected as extra symmetries of

the resulting hydrodynamic equations. In fact, as we will return to in more detail shortly,

there exist many physical systems that do not exhibit boost symmetry. In particular, as soon

as there is a preferred reference frame, i.e. a medium with respect to which the fluid moves,

this symmetry will be broken. Moreover, breaking of boost symmetry also occurs in critical

systems with scaling symmetry characterized by a generic dynamical exponent z, i.e. systems

with Lifshitz symmetry. Importantly, the no-go theorem of [9] says that, when z 6= 1, 2, such

systems cannot exhibit boost symmetry if they allow for a fluid description. A similar no-go

theorem was found in Ref. [10] from a field theoretic point of view.

A systematic treatment of perfect fluids with translation and rotation symmetries, appli-

cable in the absence of any type of boost symmetry was first given in [9]. In a subsequent

work [11] the first-order hydrodynamics and transport for these perfect fluids was studied

when linearizing around a zero velocity background.

The primary aim of this paper is to complete this first-order analysis, as announced in [11],

by extending it to the full non-linear level. In particular, we will analyze such fluids up to first

order in derivatives for arbitrary fluid velocity backgrounds on curved absolute spacetime and

find all dissipative and non-dissipative transport coefficients. Moreover, among the latter we

will identify those that are hydrostatic and those that are not. We remark that, following the

works [9, 11], first-order corrections to non-boost invariant hydrodynamics on flat space were

also pursued in Ref. [12] (which also includes a U(1) current).2 Furthermore, hydrodynamics

1Assuming spatial rotational symmetry is not necessary either, though often taken as an extra symmetry

as is also the case in the present work. Hydrodynamics for anisotropic systems has been studied in several

places, e.g. in [7, 8].
2At the level of constitutive relations the present work agrees with [12]. However comparing the implications

of the non-negativity of entropy production and the properties of the non-dissipative transport coefficients
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of systems without boosts has been addressed previously (see e.g. [13,14] and [15–17]) but our

starting point, the perfect fluid thermodynamics introduced in [9], differs from these works.

Our hydrodynamic description starts from the perfect fluid energy-momentum tensor for

non-boost invariant systems obtained in Ref. [9]. This includes a new thermodynamic vari-

able, the kinetic mass density ρ, which is the thermodynamic dual of the magnitude of the

fluid velocity squared, v2. Furthermore, as an immediate consequence of the absence of boost

symmetry, all extensive thermodynamic quantities now also depend on the extra intrinsic ther-

modynamic quantity v. The analysis of [9] shows that this more general class of perfect fluids

leads to corrections to the Euler equations, which might be observable in hydrodynamic fluid

experiments. One also finds new expressions for the speed of sound in perfect fluids, reducing

to known results when boost symmetry is present. A concrete realization of this framework

can be obtained by considering an ideal gas of Lifshitz particles, enabling for example to

obtain expressions for the speed of sound for corresponding classical and quantum Lifshitz

gases [9]. Furthermore, the linearized first-order analysis in [11] has provided novel expres-

sions for the linearized Navier–Stokes equation including new dissipative and non-dissipative

first order transport coefficients.

As is well known, in order to account for dissipative effects, the conserved currents entering

the effective description are expanded to a given order in derivatives of the hydrodynamic fields

under the assumption that these derivative corrections are small compared to some intrinsic

length scale of the microscopic system (e.g. the mean free path). In the currents – and

therefore also in the resulting hydrodynamic equations of motion – each independent derivative

correction term is multiplied by a transport coefficient, such as viscosity and conductivity.

The values of these coefficients are constrained by the requirement that the divergence of

the entropy current is non-negative and, additionally, by the Onsager relations (or, rather,

their appropriate generalization: absence of anti-symmetric transport) in systems with time

reversal symmetry. For systems with a microscopic description, the specific form of certain

transport coefficients can be determined via Kubo formulae. If a system admits a gravitational

dual, further relations abound: notably, it has been shown via the AdS/CFT correspondence

that shear viscosity divided by entropy density is equal to 1
4π for a strongly coupled plasma

in N = 4 supersymmetric Yang–Mills theory [18].

To obtain the first-order hydrodynamics for non-boost invariant systems3 following the

paradigm reviewed above, the analysis of this paper makes crucially use of the geometry that

is connected to non-boost invariant fluids along with the power of hydrostatic partition func-

tions and the entropy current formalism. The geometry on which non-boost invariant fluids

live is the geometry that realizes (locally) only translational (space and time) and rotational

symmetries. 4 These symmetries are sometimes called Aristotelian and the corresponding ge-

ometry is that of curved absolute spacetime, which thus can also be referred to as Aristotelian

geometry.

requires one to extract the necessary details from the accompanying Mathematica notebooks of Ref. [12],

making it challenging to perform an extensive mapping of our final results.
3In the way we set up our calculations, we consider fluids which could have relativistic or Galilean boosts.

The Carrollian boost invariant fluid as realized in e.g. [9, 19] will not be considered in the present work. This

specific situation will be treated in [20].
4Similarly, non-relativistic (Galilean) fluids live on the geometry that locally realizes these symmetries and

in addition Galilean boosts, i.e. Newton-Cartan geometry. This was used in e.g. [19, 21–24].
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An interesting feature of non-boost invariant fluids is the appearance of non-dissipative

transport coefficients at first order, alongside dissipative transport coefficients [11, 12]. By

applying the entropy current constraint to the full non-linear constitutive relations we show

in this paper that there are 10 dissipative transport coefficients and 6 non-dissipative ones.

Following [25,26], one can further separate the non-dissipative ones into two types, hydrostatic

and non-hydrostatic, which in the present case turns out to be 2 and 4 transport coefficients,

respectively. For the case of Lifshitz fluids, these numbers become 7, 1 and 2, respectively. We

will show that both the hydrostatic and non-hydrostatic transport coefficients can be obtained

using Lagrangian methods. The hydrostatic transport coefficients feature in the non-canonical

part of the entropy current and coincide with contributions that can be computed using an

action principle obtained by allowing for time dependence in the hydrostatic partition function,

see e.g. [27, 28] and the earlier works [29, 30]. Furthermore, we find that when restricting

to linearized perturbations all the non-hydrostatic transport coefficients vanish due to the

Onsager relations.

We now return to a brief discussion of the physical relevance of non-boost invariant hy-

drodynamics, before presenting an outline of the paper.

Relevance of non-boost invariant hydrodynamics

As remarked above, for many systems in nature one does not have the luxury of assuming

boost symmetry. In condensed matter, for example, one can study critical points where boost

symmetries are absent [31]. The Lifshitz critical point [32] is an example of this and related

recent papers include quantum critical transport in strange metals, see e.g. [33], electrons in

graphene [34] and viscous electron fluids [35]. With this application in mind, it is shown in the

original Refs. [9,11] how the framework of non-boost invariant hydrodynamics can be adapted

to (non-relativistic) scale invariant fluids with critical exponent z. This includes particular

expressions for the speed of sound in generic z Lifshitz fluids as well as specific results for

the first-order transport coefficients in the linearized case. In particular, it was shown that

the sound attenuation constant depends on both shear viscosity and thermal conductivity.

The framework was also recently used in [36] to study out-of-equilibrium energy transport

in a quantum critical fluid with Lifshitz scaling symmetry following a local quench between

two semi-infinite fluid reservoirs. It is also interesting to note that Lifshitz hydrodynam-

ics is relevant in connection with non-AdS holographic realizations of systems with Lifshitz

thermodynamics [23,37–40], see also [41–45].

More generally non-boost invariant hydrodynamics is of relevance to any system with a

reference frame, such as æther theories or in various active matter systems exhibiting e.g.

flocking behavior, see e.g. [46] and [47] for a recent example. General active matter systems

typically do not have conserved energy or momentum as the divergence of the energy and

momentum currents is equal to ‘driving’ terms. Non-boost invariant hydrodynamics is only

an approximate description for configurations that are close to equilibrium configurations at

‘cruising speed’ where the driving terms vanish.

Assuming that the fundamental laws of physics are Lorentz invariant, the necessity of some

type of reference frame to obtain a system with broken boosts is obvious. Dispersion relations

which are non-analytic and incompatible with boost invariance, such as those of capillary
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waves and domain-wall fluctuations in superfluid interfaces (ripplons), see for example [48],

do indeed describe the propagation of particular fluctuations with respect to a medium. But

in order to have a hydrodynamic description of excitations with respect to a medium, we

also need that energy and momentum of these excitations are approximately conserved. This

is a non-trivial requirement, and requires a relatively weak coupling of the excitations to

the medium. In addition, in order to be in the hydrodynamic regime, the interaction times

and length scales of the excitations with themselves must be much smaller than those of the

excitations with the medium. For example, for electrons in a crystal, the electron-electron

scattering rate must be much higher than the rate for scattering of impurities and phonons

in order to possibly have hydrodynamic flow [34]. Obviously, it is an extremely interesting

question to find physical systems where all these conditions apply, which we will not address

in this paper.

It is of separate interest to understand systems with broken boost symmetry from an

effective field theory point of view. Here, the boost breaking arises because we integrate

out the degrees of freedom of the medium in a state which breaks the boost symmetry, for

example because the medium has a fixed density or particle number. In [49] a classification of

condensed matter systems that break boost symmetry but preserve rotation and translation

invariance was presented. The simplest possibility presented there was a so-called type I

framid, which is a system where the unbroken spacetime translation and rotation generators

are unmodified in the presence of a boost-breaking state. Curiously, this possibility does not

seem to be realized in nature, which was also seen in a recent analysis of the structure of

Goldstone bosons associated to boost breaking [50]. In such a putative type I framid the

expectation value of the energy-momentum tensor must be proportional to the metric with

the sum of the energy density and the pressure equal to zero. This is similar to the effective

energy-momentum tensor one can associate to a cosmological constant, and also the form of

the energy-momentum tensor in the presence of additional ‘Carroll’ boost invariance [9]. It is

unclear whether any systems in nature properly realize Carroll symmetry and this observation

may be in fact equivalent to the non-existence of type I framids. For a more detailed discussion

of systems with (approximate) Carroll symmetry, we refer the reader to [20].

A simple example which gives rise to a system without boost invariance and which does

appear in nature is a superfluid with a spontaneously broken U(1) symmetry. These are

systems which contain a coupling
∫
dd+1xAµJ

µ and where Aµ acquires an expectation value

Aµ = λδ0
µ. This is reminiscent of a chemical potential, except that here Jµ is not assumed

to be conserved once λ 6= 0. If λ is constant the system remains invariant under translations

and rotations. Our hydrodynamical description will still be a good approximation as long

as |∂µλ| � |λ| so that energy and momentum are approximately conserved. To find the

energy-momentum tensor of the theory, it is convenient to use vielbeins to convert curved

into flat indices, and to assume that Aa = λδ0
a. This is now a scalar and not a tensor from the

spacetime point of view, and one can obtain a conserved stress-tensor by varying with respect

to the vielbeins as described in e.g. [51]. The result of this computation is a new stress tensor

of the form T new
µν ∼ T old

µν + JµAν which is clearly not symmetric and therefore incompatible

with boost invariance. Moreover it shows that the new generator of time translations is a

linear combination of the old generator plus the U(1) current. As described in detail in [49],
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other breaking patterns are also possible.

Outline

The paper is organized in the following way. In Section 2, we recap and establish facts about

perfect boost-agnostic5 fluids and Aristotelian geometry. Next, in Section 3, we formulate

the entropy current on curved spacetime and define three sectors of transport: hydrostatic

non-dissipative, non-hydrostatic non-dissipative and dissipative transport. Subsequently, in

Section 4, we present a Lagrangian description of both hydrostatic and non-hydrostatic trans-

port and furthermore we connect the Lagrangian formulation to the non-canonical contri-

butions to the entropy current. Finally, in Section 5 we obtain and combine all first order

transport coefficients using constitutive relations. We end with a discussion and outlook in

Section 6. Two appendices are included. Appendix A presents the features of hydrodynamic

frame transformations from a generic frame to the Landau frame. Appendix B presents the

details of the derivation of the non-canonical entropy current by using constitutive relations

(as opposed to an action formulation as done in Section 4).

2 Non-boost invariant perfect fluids and geometry

2.1 Perfect fluids on flat spacetime

Consider a charged perfect fluid in (d+ 1)-dimensions, which has spatial rotational invariance

and translational invariance in both time and space, as was studied in [9,11]. One can choose

the fluid variables to be chemical potential µ, temperature T and fluid velocity vi. These

variables are allowed to depend on space and time. It is assumed, however, that locally there

exists a thermodynamic equilibrium. We furthermore assume pressure P to be a function of µ,

T and v2. In other words, we assume the equation of state to be of the form P ≡ P (T, µ, v2).

Through the Gibbs-Duhem relation,

dP = sdT + ndµ+
1

2
ρdv2 , (2.1)

we can express entropy density s, charge density n and kinetic mass density ρ in terms of the

fluid variables. Finally, we have the Euler relation

E = −P + sT + µn+ ρv2 , (2.2)

which expresses the total energy density E in terms of the fluid variables. In the presence of

a boost symmetry, the corresponding Ward identity implies that the term containing kinetic

mass density in (2.1) and (2.2) can be absorbed into the other fluid variables [9,11]. This leads

to velocity independent thermodynamic relations – a hallmark of boost invariant systems.

The conserved currents, energy-momentum tensor Tµν and charge current Jµ can all be

expressed as functions of the fluid variables in a derivative expansion, the form of which is

dictated by the symmetry of the problem. The divergence of these conserved currents gives

5We sometimes use the terminology ‘boost-agnostic’ (instead of non-boost invariant) to highlight the fact

that the analysis holds in principle for any fluid regardless of whether it has boost symmetries or not.
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rise to the dynamics of the fluid. The most general homogeneous and isotropic perfect fluid,

i.e. at zeroth order in derivatives, is characterized by [9, 11]

T 0
0 = −E , T i0 = − (E + P ) vi , T 0

j = ρvj , T ij = Pδij + ρvivj , (2.3)

J0 = n , J i = nvi . (2.4)

Here we presented the fluid written in the LAB frame, in which the observer is at rest. For

fluids without boost symmetries, it is useful to define the internal energy

Ẽ = E − ρv2 , (2.5)

in terms of which the Euler and Gibbs-Duhem relations read

Ẽ + P = Ts+ µn, dẼ +
1

2
ρdv2 = Tds+ µdn, dP = sdT + ndµ+

1

2
ρdv2 . (2.6)

In the subsequent analysis, we will drop the charge current.

2.2 Curved geometry for non-boost invariant fluids

Fluids without boosts live on the geometry of absolute spacetime, which, due to Penrose, is

sometimes referred to as Aristotelian geometry [52]. This geometry locally realizes Aristotelian

symmetries consisting of translations in time and space along with rotations.

We define an Aristotelian geometry in terms of a 1-form τµ (clock-form), along with

a symmetric covariant tensor hµν (spatial metric), where, notably, neither field has been

assigned any local tangent space transformations. The signature of hµν is (0, 1, . . . , 1). We

emphasize that this is different from (torsional) Newton–Cartan geometry (see e.g. [53–55]), in

which hµν is endowed with transformation properties corresponding to local Galilean boosts.

Likewise, in Carrollian geometry (see for example [56]), it is τµ – but not hµν – that transforms

under local Carrollian boosts. In the more familiar case of Lorentzian geometry, both τµ and

hµν transform under local Lorentz transformations in such a way that γµν = −τµτν + hµν

remains invariant.

In this way, Galilean6, Carrollian, and Lorentzian geometries all arise as special cases of

Aristotelian geometry via the imposition of specific local tangent space transformations on

the geometric data τµ and hµν .

Because of the signature of hµν , we can decompose it into vielbeins in the following manner

hµν = δabe
a
µe
b
ν , (2.7)

where a = 1, . . . , d and µ takes d + 1 values. The spatial vielbeins eaµ transform under local

SO(d) transformations. Note that the square matrix (τµ, e
a
µ) is invertible with inverse denoted

by (vµ, eµa) – these objects satisfy the following orthonormality relations

vµτµ = −1 , vµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba . (2.8)

6We remark that in order to obtain torsional Newton–Cartan geometry from Aristotelian geometry, we need

an extra gauge field. See e.g. [55, 57] and references therein.
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Furthermore, these fields satisfy the completeness relation

−vµτν + eµae
a
ν = δµν . (2.9)

The determinant of (τµ, e
a
µ) will be denoted by e, i.e.

e = det(τµ, e
a
µ) . (2.10)

For completeness, we remark that it is in general possible to choose an affine connection Γλµν
that obeys

∇µτν = 0 , ∇µhνρ = 0 . (2.11)

Let us make the following ansatz for Γλµν :

Γλµν = −vλ∂µτν +
1

2
hλκ (∂µhνκ + ∂νhµκ − ∂κhµν)− hλκτνKµκ + Cλµν . (2.12)

where we introduced the extrinsic curvature

Kµν = −1

2
Lvhµν . (2.13)

The extrinsic curvature is purely spatial,

vµKµν = 0 , (2.14)

and its trace satisfies

K := hµνKµν = −e−1∂µ(evµ) , hµν = δabeµae
ν
b . (2.15)

The equations (2.11) are obeyed if we take

Cλµντλ = 0 , Cλµνhλρ + Cλµρhνλ = 0 . (2.16)

We can for example choose a connection with Cλµν = 0. This connection has non-zero torsion

given by

Γλ[µν] = −1

2
vλτµν +

1

4
hλκτνLvhµκ −

1

4
hλκτµLvhνκ , (2.17)

where we defined the torsion 2-form

τµν = ∂µτν − ∂ντµ . (2.18)

We have included the discussion of the connection for completeness. However, we will

never use any particular connection in this paper. Up to first order in derivatives we can

make do with Lie derivatives, exterior derivatives and divergences. At second order in the

derivative expansion, however, a choice must be made in order to write down curvatures.

Finally, we remark that flat Aristotelian spacetime in Cartesian coordinates corresponds

to

τµ = δ0
µ, hµν = δiµδ

i
ν , vµ = −δµ0 , hµν = δµi δ

ν
i , (2.19)

where we split the spacetime index µ = (0, i) into temporal and spatial directions.

7



2.3 Perfect fluids on a curved background

Consider a perfect fluid living on an Aristotelian geometry described by {τµ , hµν} with fluid

velocity uµ satisfying

uµτµ = 1 . (2.20)

On flat space, uµ = (1, vi), and the curved space analogue of v2 is u2 = hµνu
µuν . When

combined with the completeness relation (2.9) this implies the following decomposition of the

fluid velocity uµ,

uµ = −vµ + hµρhρνu
ν , (2.21)

in terms of timelike and spacelike components, respectively. The perfect fluid energy-momentum

tensor (2.3) generalized to a curved background reads [9] (see also Section 4.2)

Tµν = −
(
Ẽ + P + ρu2

)
uµτν + ρuµuρhρν + Pδµν . (2.22)

Using the property (2.20), this can also be written as

Tµν = uµuρ
[
−
(
Ẽ + P + ρu2

)
τρτν + ρhρν

]
+ Pδµν . (2.23)

It is furthermore useful to express the energy-momentum tensor Tµν as

Tµν = −Tµτν + Tµρhρν . (2.24)

where

Tµ = Euµ + Phµρhρνu
ν , (2.25)

Tµν = Phµν + ρuµuν , (2.26)

are the energy current and momentum-stress tensor, respectively, and where the relation

between Ẽ and E is given in (2.5).

If we are dealing with a theory on a generic curved Aristotelian background for which

there is an action principle, then diffeomorphism invariance implies the following conservation

equation for the energy-momentum tensor

e−1∂µ (eTµρ) + Tµ∂ρτµ −
1

2
Tµν∂ρhµν = 0 . (2.27)

This will be shown in Section 4.2. When we are dealing with an on-shell theory (as we are

in the case of dissipative fluids) then we simply impose (2.27) as the correct conservation

equation. This is the analogue of declaring ∇µTµν = 0 to be the conservation equation in the

relativistic case. Notice that in flat space (in Cartesian coordinates), Eq. (2.27) reproduces

the usual divergence of the energy-momentum tensor, as it is supposed to. The first term

expresses the usual divergence of the energy-momentum tensor, while the remaining terms

are currents contracted with their sources, on which a derivative acts. It thus takes the

standard form of a divergence of a current being equal to the sum of the responses times the

derivative of the sources. For completeness, we remark that the equation of motion (2.27)

admits the covariantization

∇µTµρ + Tµ∇ρτµ −
1

2
Tµσ∇ρhµσ −

(
Γµµσ − e−1∂σe

)
T σρ + 2Γλ[µρ]T

µ
λ = 0 , (2.28)
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for any choice of connection Γρµν .

It is useful to recast the equation of motion (2.27) for the perfect fluid (2.25)–(2.26), using

the thermodynamic relations (2.6), in the following form

0 = Lβs+
s

2
hµν (Lβhµν − hµσuσLβτν − hνσuσLβτµ) , (2.29)

0 = Πρ
νhρλ

[
−sThλµLβτµ + uλLβρ

+
ρ

2

(
uµhκλ + uκhµλ + uλhµκ

)
(Lβhκµ − hκσuσLβτµ − hµσuσLβτκ)

]
, (2.30)

where we introduced the spatial projector

Πρ
µ = δρµ − uρτµ , (2.31)

which satisfies

Πρ
µu

µ = 0 = Πρ
µτρ , Πµ

αΠα
ν = Πµ

ν . (2.32)

Furthermore, the Lie-derivative Lβ in (2.29) and (2.30) is defined with respect to the vector

βµ = uµ/T . (2.33)

In the remainder of this section we establish some identities that will be crucial later

on. Equation (2.29) expresses entropy conservation and (2.30) represents conservation of

momentum. Using that s and ρ can both be thought of as functions of T and u2 along with

the identities

uµLβτµ = − 1

T 2
uµ∂µT , (2.34)

uµuνLβhµν =
1

T
uµ∂µu

2 − 2
u2

T 2
uµ∂µT , (2.35)

where u2 = hµνu
µuν , we can view the perfect fluid equation as providing Lβτρ in terms of

Lβhµν − hµσuσLβτν − hνσuσLβτµ, i.e.

Lβτρ =
1

2
Xρ

µν(Lβhµν − hµσuσLβτν − hνσuσLβτµ) , (2.36)

where Xρ
µν is given by

Xρ
µν =

1

sT
Πσ

ρ

{
2

(
∂P

∂u2

)
s

hσλu
λhµν + 2

(
∂ρ

∂u2

)
s

hσλu
λuµuν + ρ (uµδνσ + uνδµσ)

}

+τρ
1

T

[
uµuν

(
∂ρ

∂s

)
u2

+ hµν
(
∂P

∂s

)
u2

]
. (2.37)

The expression in parentheses on the RHS of (2.36) has the nice property that

Lβhµν − hµσuσLβτν − hνσuσLβτµ =
1

T
(Luhµν − hµσuσLuτν − hνσuσLuτµ) , (2.38)

so that these are Lie derivatives along velocity with, notably, an absence of T derivatives.

Finally, we remark that on flat space (cf. Eq. (2.19)), this special combination reduces to

Lβhµν − hµσuσLβτν − hνσuσLβτµ
flat→ 1

T
(hµσ∂νu

σ + hνσ∂µu
σ) , (2.39)

which will be useful in Section 5, where – after setting up the general problem of first-order

corrections to non-boost invariant fluids – we specialize to flat space.
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3 Entropy current

Going beyond perfect fluids means moving away from local thermodynamic equilibrium and

requires derivative corrections to be added to the energy-momentum tensor. We will work up

to first order in derivatives. The goal will be to identify all allowed tensorial structures whose

coefficients are known as transport coefficients. By ‘allowed’ we mean ‘allowed by symmetry’

and furthermore ‘allowed by entropy considerations’. We will impose that the fluid locally

obeys the second law of thermodynamics, and hence there must exist an entropy current Sµ

with non-negative divergence

e−1∂µ (eSµ) ≥ 0 . (3.1)

By the entropy current we mean the most general current, constructed from the fluid variables,

up to first order in derivatives such that it reduces to suµ for a perfect fluid and such that its

divergence is non-negative for all fluid configurations. The requirement that the divergence

of the entropy current is non-negative constrains the transport coefficients appearing in the

expansion of the energy-momentum tensor. In this section, we elucidate the structure of the

entropy current beyond perfect fluid order and, in particular, show that the appropriate fluid

variables on curved space involve Lie derivatives of the geometric objects τµ and hµν along

βµ = uµ

T .

The canonical part of the entropy current is obtained by covariantizing (see e.g. [2]) the

thermodynamic Euler relation (2.6)

s =
1

T
Ẽ +

1

T
P , (3.2)

leading to

Sµcan = −Tµνβν + Pβµ , (3.3)

such that τµS
µ
can = s for a perfect fluid. However, there are generically terms present in the

entropy current that do not arise in this way: such terms form the non-canonical piece of the

entropy current, Sµnon, and we may in general write

Sµ = Sµcan + Sµnon = −Tµνβν + Pβµ + Sµnon . (3.4)

Using the decomposition of the entropy current (3.4), we can recast the LHS of the second

law (3.1) as

e−1∂µ (eSµ) =
(
Tµ − Tµ(0)

)
Lβτµ −

1

2

(
Tµν − Tµν(0)

)
Lβhµν + e−1∂µ (eSµnon) , (3.5)

where we used the Gibbs-Duhem relation (2.1) as well as

−Tµ(0)Lβτµ +
1

2
Tµν(0)Lβhµν = e−1∂µ (ePβµ) , (3.6)

with the perfect fluid energy-momentum tensors Tµ(0) and Tµν(0) given in Eqs. (2.25) and (2.26).

Here, the subscript (0) indicates that these terms are zeroth order in derivatives and thus

correspond to the perfect fluid contributions.
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Following the classification in refs. [25,26], we split the currents Tµ− Tµ(0) and Tµν − Tµν(0) ,

which are at least first order in derivatives, into dissipative and non-dissipative parts. The

latter are further subdivided into hydrostatic (HS) terms and non-hydrostatic (NHS) terms,

to be defined shortly, so that we find

Tµ − Tµ(0) = TµD + TµHS + TµNHS , (3.7)

Tµν − Tµν(0) = TµνD + TµνHS + TµνNHS . (3.8)

We will now define these three contributions separately. They should be thought of as inde-

pendent contributions to the energy-momentum tensor and they all have the same symmetry

properties with respect to rotations (and boosts or scale symmetries if these are present).

For example spatial rotational symmetries dictate that TµνD , TµνHS and TµνNHS are all separately

symmetric under the interchange of µ and ν.

The dissipative terms produce entropy,

e−1∂µ (eSµ) = TµDLβτµ −
1

2
TµνD Lβhµν ≥ 0 , (3.9)

with equality holding if and only if TµD = TµνD = 0, while the non-dissipative NHS terms by

definition obey,

TµNHSLβτµ −
1

2
TµνNHSLβhµν = 0 . (3.10)

These terms thus make a vanishing contribution to the divergence of the canonical entropy

current. Finally, the non-dissipative HS terms are defined to cancel the divergence of the

non-canonical entropy current,

e−1∂µ (eSµnon) = −TµHSLβτµ +
1

2
TµνHSLβhµν , (3.11)

and will play a major role in the next section.

The goal of this work will be to classify the allowed terms appearing in the three parts:

D, HS and NHS of the energy-momentum tensor. We will start this analysis with a detailed

study of the HS and NHS terms for which it is possible to write down a Lagrangian.

4 Non-dissipative transport

In this section we study Lagrangian descriptions of non-dissipative transport. We will see

in Section 5 and Appendix B, by looking at constitutive relations, that at first order in

derivatives all non-dissipative transport coefficients can be obtained from an action. We start

with the hydrostatic partition function for fluids in thermal equilibrium. This requires curved

backgrounds admitting a Killing vector that generates time translations. We will then relax

the condition that there is a Killing vector, moving away from thermal equilibrium. This

leads to an action for HS transport. The relaxation of the presence of a Killing vector allows

for more terms to be added to the action. These extra terms all correspond to NHS transport

as we will show in the last subsection of this section.
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4.1 Hydrostatic partition function

If we assume a stationary curved backgroundMS with a time-translation symmetry generated

by H, we can write down the thermal partition function

Z = Tr
[
e−H/T

]
, (4.1)

which, provided the Aristotelian background curves sufficiently weakly compared to the mean

free path, is known as the hydrostatic partition function or the equilibrium partition function

[27,28] (see also [21] for the construction of the hydrostatic partition function in the context of

Newton–Cartan backgrounds). The time-translation symmetry implies that (4.1) gives rise to

static responses. Phrased in the language of geometry, we take the time-translation symmetry

of the background, which is described by τµ and hµν , to be generated by a timelike Killing

vector βµ, where βµ = (1, 0, . . . , 0) in suitable coordinates. Timelike (and future pointing)

means that τµβ
µ > 0. The Killing equations for an Aristotelian geometry are7

Lβτµ = 0 , (4.2)

Lβhµν = 0 . (4.3)

These conditions imply equilibrium via (2.36) as they trivially solve the leading order equations

of motion. The vector βµ leads to a preferred choice of local temperature and velocity given

by

T = 1/(τµβ
µ) (4.4)

uµ = Tβµ , (4.5)

where the velocity uµ satisfies τµu
µ = 1, cf. (2.20). We see that the requirement of positive

temperature is equivalent to the requirement that βµ is future-pointing timelike, i.e. τµβ
µ > 0.

To make contact with the thermal partition function (4.1), we need to analytically continue

‘time’, which we identify with the affine parameter λt along integral curves of βµ, λt → −iλE
t .

We then compactify this to the ‘thermal circle’ by identifying λE
t ∼ λE

t + 1/T . In this way,

a functional integral over the Euclideanized manifold will return the partition function Z in

(4.1). Now, Z itself can be written in a derivative expansion, and by writing

SHPF = −i logZ , (4.6)

we can now also expand SHPF in derivatives

SHPF =
∑
n

S
(n)
HPF , (4.7)

where S
(n)
HPF takes the form of an integral overMS built from objects with n derivatives. With

a slight abuse of terminology, we will refer to SHPF as the hydrostatic partition function.

7The field hµν is constrained to have one zero eigenvalue, so one can write it as hµν = δabe
a
µe
b
ν in terms of

unconstrained spatial vielbeins. Since the latter transform under local rotations, the Killing vector equation

(4.3) can equivalently be written as

Lβeaµ = λabe
b
µ ,

where λab = −λba is an infinitesimal local rotation.
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In order to construct the hydrostatic partition function explicitly, we need to identify

the allowed terms up to first order in derivatives taking into consideration the conditions

of thermal equilibrium on a curved background imposed by the Killing equation. The first

Killing equation (4.2) can be written as

T−1∂µT − uν (∂ντµ − ∂µτν) = 0 , (4.8)

while the second Killing equation (4.3) can be written as

Luhµν −
uρ

T
hρν∂µT −

uρ

T
hρµ∂νT = 0 . (4.9)

By contracting (4.8) with uµ and vµ we obtain

0 = uµ∂µT , (4.10)

0 = T−1vµ∂µT + uµLvτµ . (4.11)

Contracting (4.9) with vµvν gives nothing as a result of the fact that hµν has one zero eigen-

value with eigenvector vµ. Contracting with uµuν , vµuν and hµν leads to

0 = uµ∂µu
2 , (4.12)

0 =
1

2
vµ∂µu

2 − 1

2
uµuνLvhµν + u2uµLvτµ , (4.13)

0 = e−1∂µ (euµ) , (4.14)

where we defined u2 = hµνu
µuν .

In order to construct the hydrostatic partition function SHPF, we write down the most

general expansion in derivatives of the background fields τµ and hµν under the assumption

that the Killing equations (4.2) and (4.3) are obeyed. At zeroth order in derivatives, we can

build two scalars,

T , u2 . (4.15)

At first order, taking into account the relations (4.10)–(4.14), there are two independent

one-derivative scalars, which we can take to be

vµ∂µT , vµ∂µu
2 . (4.16)

Scalars such as uµ∂µT , uµ∂µu
2, e−1∂µ (euµ), uµLvτµ, uµuνLvhµν are either zero or related to

(4.16) via the relations (4.10)–(4.14), possibly using partial integration. Furthermore, scalars

such as hµνu
µLvuν , hµνLuhµν and hµνLvhµν do not lead to anything new as they can be

rewritten in terms of (4.16). Up to first order, we therefore obtain

SHPF =

∫
dd+1xe

(
P (T, u2) + F1(T, u2)vµ∂µT + F2(T, u2)vµ∂µu

2
)

+O(∂2) , (4.17)

where the functions P , F1 and F2 are all arbitrary functions of T and u2.

Since the background is stationary we can use adapted coordinates (known as ‘static gauge’

in [21]), where we choose a time direction t such that the Killing vector βµ is given by βµ = δµt .

As βµ is Killing, the tensors τµ and hµν are independent of t. Thus, in these coordinates the
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fluid velocity uµ is given by8 uµ = T (x)δµt , where the temperature T only depends on xi with

i = 1, . . . , d and not on t.

The Euclideanized background has the structure of a fiber bundle, where the thermal

circle is fibered over the spatial base (see also [21]). We can then perform a timelike Kaluza–

Klein reduction of our Aristotelian geometry to arrive at SHPF in terms of fields that are

unconstrained by the Killing equations. In particular, in our adapted coordinates τµ and hµν

can be parameterized as

τµdx
µ = N(dt−Aidxi) , (4.18)

hµνdx
µdxν = σij

(
dxi +Xi(dt−A)

) (
dxj +Xj(dt−A)

)
. (4.19)

The metric σij is invertible and has signature (1, . . . , 1). This parameterization makes manifest

that hµν has one zero eigenvalue. The integration measure e is e = N
√
σ where σ = detσij .

Further, the 1-form A = Aidx
i is a Kaluza–Klein type gauge connection in that δt = Λ(x)

and δAi = ∂iΛ leave the parameterization invariant. The other fields N , Xi and σij , which

depend on xi but not on t, are thus all gauge invariant. Since τµu
µ = 1 with uµ = T (x)δµt it

must be that T = N−1. Finally, the vector vµ satisfying τµv
µ = −1 is given by

vµ = −N−1δµt +N−1Xi (δµi +Aiδ
µ
t ) . (4.20)

We can now ask again what are the invariant scalars up to first order in derivatives. These

have to be gauge invariant under the Kaluza–Klein gauge transformation δAi = ∂iΛ. At

zeroth order in derivatives, we find N and X2 = σijX
iXj , so that at first order in derivatives

we can build two scalars

Xi∂iN , Xi∂iX
2 . (4.21)

We thus obtain the hydrostatic partition function

S =

∫
Σ
ddx
√
σ
(
P̃ (N,X2) +G1(N,X2)Xi∂iN +G2(N,X2)Xi∂iX

2
)
. (4.22)

A term such as G3(N,X2)∂i
(√
σXi

)
can be absorbed into the G1 and G2 terms after partial

integration. Likewise, a term such as G4(N,X2)
√
σσijLXσij , where σij is the inverse of σij ,

can be written as 2G4(N,X2)∂i
(√
σXi

)
so that this, too, is nothing new. Thus we see that

this line of reasoning leads to the same hydrostatic partition function as in (4.17). For ease of

comparing (4.22) and (4.17) we note that the vanishing of uµ∂µT , uµ∂µu
2 and ∂µ (euµ) follows

immediately from the t-independence of the fields involved in the Kaluza–Klein reduction.

Furthermore one observes that evµ∂µF =
√
σXi∂iF where F is any function of T = N−1 and

u2 = N−2X2. We can now set (4.22) and (4.17) equal to each other and in principle read off

the 1-1 relation between the sets of functions {P , F1, F2} and {P̃ , G1, G2}.

4.2 Action for hydrostatic non-dissipative transport

In order to compute transport coefficients using (4.17), we will drop the restriction to station-

ary configurations – that is to say, we relax the requirement that βµ is Killing. This will lead

8Note that since uµ ∝ δµt , we are in a comoving frame.
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to an action for the hydrostatic non-dissipative transport coefficients9 This is related to the

discussion below equation (3.7) in the following way. As we will show, the energy-momentum

tensor obtained by varying the geometric variables in the action that follows from the hydro-

static partition function without the condition that βµ is Killing, is equal to the HS part of

the energy-momentum tensor as defined in equation (3.11).

We now have geometric variables τµ and hµν and fluid variables βµ. However as shown

in [26] we cannot freely vary βµ. Instead we think of it as being described in terms of

fundamental variables whose variation is such that we vary βµ under a diffeomorphism. We

thus obtain the fluid equations of motion via diffeomorphism invariance, i.e.

δξSHS =

∫
M
dd+1x e

(
−Tµδξτµ +

1

2
Tµνδξhµν + Fµδξβ

µ

)
= 0 . (4.23)

Here SHS is the same action as in (4.17) except that now βµ is no longer a Killing vector, and

Fµ is the response to varying βµ under diffeomorphisms. Setting the diffeomorphism variation

to zero for any ξµ leads to the off-shell diffeomorphism Ward identity,

e−1∂µ (eTµρ) + Tµ∂ρτµ −
1

2
Tµν∂ρhµν = Fµ∂ρβ

µ + e−1∂µ(eFρβ
µ) , (4.24)

where we recall Tµν = −Tµτν +Tµρhρν . Using that the fluid equations of motion follow from

a diffeomorphism transformation of βµ we see that on shell the left- and right-hand side vanish

separately. We conclude that in order to compute the energy-momentum tensor we vary τµ

and hµν keeping βµ fixed, and furthermore that the on-shell energy-momentum conservation

equation is given by

e−1∂µ (eTµρ) + Tµ∂ρτµ −
1

2
Tµν∂ρhµν = 0 , (4.25)

as stated before in Eq. (2.27).

We now first show that we can reproduce the perfect fluid equations of motion on an

arbitrary curved background as discussed in Section 2.3. To this end we consider the action

up to zeroth order in derivatives, i.e.

S(0) =

∫
M
dd+1x eP (T, u2) , (4.26)

with P the pressure as we will see a posteriori. Since we vary the background sources

keeping βµ fixed, we have δT = −Tuµδτµ and δuµ = −uµuρδτρ. Using further that δe =

e
(
−vµδτµ + 1

2h
µνδhµν

)
, we find

Tµ(0) = Pvµ +

(
∂P

∂T

)
u2
Tuµ + 2

(
∂P

∂u2

)
T

u2uµ , (4.27)

Tµν(0) = Phµν + 2

(
∂P

∂u2

)
T

uµuν . (4.28)

Using the thermodynamic relations
(
∂P
∂T

)
u2

= s,
(
∂P
∂u2

)
T

= 1
2ρ, sT = Ẽ + P as well as the

relation (2.21) between vµ and uµ, we recover the perfect fluid energy-momentum tensor

(2.25) and (2.26).

9In terms of the classification of [25,26], the non-dissipative transport coefficients considered in this section

are class L = HS ∪ H̄S , i.e. those that have a Lagrangian description.
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Let us next consider the first order derivative terms in (4.17). We will denote the first

order part of the action by S(1), i.e.

S(1) =

∫
dd+1xe

(
F1(T, u2)vµ∂µT + F2(T, u2)vµ∂µu

2
)
. (4.29)

We thus have SHS = S(0) + S(1).

It is well known that when we introduce derivative corrections, the notion of temperature

and velocity can undergo field redefinitions whereby two equally valid definitions of tempera-

ture and velocity can differ by derivatives of the fluid variables. Such redefinitions are known

as hydrodynamical frame transformations and choosing a certain set of fluid variables corre-

sponds to choosing a hydro frame. We will present our final results in Landau frame, which

is defined by declaring that the full (all order in derivatives) energy-momentum tensor is such

that

Tµνu
ν = −Ẽuµ , (4.30)

where −Ẽ is the unique negative eigenvalue of the energy-momentum tensor which is taken

to be equal to its perfect fluid value. The corresponding eigenvector uµ is used to define the

velocity. This equation does not fix the normalization of uµ. The choice of eigenvalue and of

eigenvector (up to rescaling) are thus d + 1 conditions that can be used to fix the definition

of T and uµ. As in (2.20), we will choose the normalization τµu
µ = 1.

When including the first order derivatives in the action SHS and computing the energy-

momentum tensor by variation, we do not end up with a Landau frame expression. We will

refer to the frame in which SHS is written as the Lagrangian frame, and to indicate this frame

dependence we will write the variation of S(1) as

δS(1) =

∫
M
dd+1x e

(
−T µ(1)δτµ +

1

2
T µν(1) δhµν

)
, (4.31)

i.e. we denote the responses with calligraphic T . The total energy-momentum tensor must

be frame-independent, so we have the equation

T µ(0) + T µ(1) = Tµ(0) + Tµ(1)HS , (4.32)

T µν(0) + T µν(1) = Tµν(0) + Tµν(1)HS , (4.33)

where the left hand side is in Lagrangian frame and is computed by variation of the action,

while the right-hand side is in any frame – for example in Landau frame. The right hand

side is computed by applying a frame transformation to the left hand side and arranging the

result according to the number of derivatives. At perfect fluid order the expressions look the

same, but they are written with respect to different choices of T and uµ.

Let us next compute the variation of the first derivative terms in the action (4.29). Using

δvλ = vλvµδτµ − hλ(µvν)δhµν , we obtain

T µ(1) = uµ
[(

∂F1

∂u2

)
T

−
(
∂F2

∂T

)
u2

]
(2u2vλ∂λT − Tvλ∂λu2) + uµK(TF1 + 2u2F2) , (4.34)

T µν(1) =
(
hµνvλ − hλµvν − hλνvµ

) (
F1∂λT + F2∂λu

2
)

+2

[(
∂F1

∂u2

)
T

−
(
∂F2

∂T

)
u2

]
uµuνvλ∂λT + 2F2Ku

µuν , (4.35)
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where K is the trace of the extrinsic curvature defined in equation (2.15). Combining these

according to T µ(1)ν = −T µ(1)τν + T µρ(1)hρν yields the first order part of the energy-momentum

tensor in Lagrangian frame,

T µ(1)ν =

[
2vλuµhσρΠ

σ
νu

ρ

[(
∂F1

∂u2

)
T

−
(
∂F2

∂T

)
u2

]
+ 2F1v

[λhµ]ρhρν

]
∂λT

+

[
vλuµτνT

[(
∂F1

∂u2

)
T

−
(
∂F2

∂T

)
u2

]
+ 2F2v

[λhµ]ρhρν

]
∂λu

2

−TuµτνF1K + 2F2Ku
µΠσ

νhσρu
ρ . (4.36)

This should be added to the perfect fluid energy-momentum tensor

T µ(0)ν = −
(
Ẽ + P + ρu2

)
uµτν + ρuµuρhρν + Pδµν , (4.37)

coming from the variation of S(0).

In Appendix A we work out the transformation from any frame to Landau frame, indicated

by primed variables. Using the results from that appendix we obtain in Landau frame that

Tµ(1)HSν = Tµρ(1)HShρσΠ′σν , (4.38)

where we remind the reader that Tµρ(1)HS is computed using (4.33). This gives

Tµρ(1)HS = T κ(1)λΠ′σκ
u′λ

s′T ′

[
ρ′
(
u′µδρσ + u′ρδµσ

)
+ 2u′σ

(
hµρ

(
∂P ′

∂u′2

)
s′

+ u′µu′ρ
(
∂ρ′

∂u′2

)
s′

)]
+ T µρ(1) + T σ(1)ντσ

u′ν

T ′

[
u′µu′ρ

(
∂ρ′

∂s′

)
u′2

+ hµρ
(
∂P ′

∂s′

)
u′2

]
,

(4.39)

with the prime denoting Landau frame fluid variables. We defined u′σ = hσκu
′κ. Terms such

as T µρ(1) are given in (4.35), but where we must replace the T and uµ by T ′ and u′µ.

We will drop the primes and use the relations

∂µT = −T 2Lβτµ − Tuρτµρ , (4.40)

∂µu
2 = Tuν (Lβhµν − uµLβτν − uνLβτµ)− u2uρτµρ − uρωρµ , (4.41)

where τµν is the torsion 2-form defined in (2.18) and where ωρµ = ∂ρuµ − ∂µuρ. Using the

equations of motion (2.37) to eliminate Lβτµ derivatives, allows us to write

Tµν(1)HS =
1

2
ηµναβHS (Luhαβ − uαLuτβ − uβLuτα) +

1

2
ηµναβtor ταβ

+
1

2
ηµναβrot ωαβ +

1

2
ηµναβext Kαβ , (4.42)

where Kαβ is the extrinsic curvature introduced in (2.13). In obtaining this result we have

also used the following relation

vµωµν = Tvµ (Lβhµν − uµLβτν − uνLβτµ)

− uνuρvµτµρ − 2uρKνρ .
(4.43)

This was done in order to make ηµναβrot = −ηµνβαrot spatial in its last two indices (to avoid

ambiguities among some of the η tensors as a result of (4.43)), i.e. ταη
µναβ
rot = 0.
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The ηµναβHS tensor that features in (4.42) can be written as10

ηµναβHS = J1h
µνhαβ + J2u

µuνuαuβ + 4J3v
(µhν)(αvβ) +

1

2
J4(hµνuαuβ + hαβuµuν)

+J5(hµνu(αvβ) + hαβu(µvν)) + J6(uµuνu(αvβ) + uαuβu(µvν))

+2J7(v(µhν)(αuβ) + v(αhβ)(µuν)) +
1

2
A1(hµνuαuβ − hαβuµuν)

+A2(hµνu(αvβ) − hαβu(µvν)) +A3(uµuνu(αvβ) − uαuβu(µvν))

+2A4(v(µhν)(αuβ) − v(αhβ)(µuν)) , (4.44)

where the eleven scalars J1,...,7,A1,2,3,4 are given by

J1 =
1

s
F1

[
s

(
∂P

∂s

)
u2
− 2u2

(
∂P

∂u2

)
s

]
, (4.45)

J2 =
2

sT
F2

[
s

(
∂ρ

∂s

)
u2
− 2u2

(
∂ρ

∂u2

)
s

− 2ρ

]
+

4u2

s
fA

(
∂ρ

∂u2

)
s

−2

s
fB

[
s

(
∂ρ

∂s

)
u2
− 2ρ

]
, (4.46)

J3 = −F2 , (4.47)

J4 =
1

s
F1

[
s

(
∂ρ

∂s

)
u2
− 2u2

(
∂ρ

∂u2

)
s

− 2ρ

]
+

2

s
(T−1F2 − fB)

[
s

(
∂P

∂s

)
u2
− 2u2

(
∂P

∂u2

)
s

]
, (4.48)

J5 =
1

s
F1

[
2

(
∂P

∂u2

)
s

− ρ
]

+ 2F2

[(
∂P

∂s

)
u2

+ T

]
− 2fA

(
∂P

∂s

)
u2

, (4.49)

J6 =
2

s
F1

(
∂ρ

∂u2

)
s

+
2

sT
F2

[
s

(
∂ρ

∂s

)
u2
− ρ
]
− 2fA

(
∂ρ

∂s

)
u2

+
2ρ

s
fB , (4.50)

J7 =
ρ

s
F1 − F2 , (4.51)

A1 = − 4ρ

sT
F1

(
∂P

∂s

)
u2

+
F1

s

[
s

(
∂ρ

∂s

)
u2
− 2u2

(
∂ρ

∂u2

)
s

− 2ρ

]
+

4u2

sT
F1

[(
∂P

∂u2

)
s

(
∂ρ

∂s

)
u2
−
(
∂ρ

∂u2

)
s

(
∂P

∂s

)
u2

]
+

2

s
(T−1F2 + fB)

[
s

(
∂P

∂s

)
u2
− 2u2

(
∂P

∂u2

)
s

]
, (4.52)

A2 = −F1

sT

[
ρT + 2ρ

(
∂P

∂s

)
u2

+ 2T

(
∂P

∂u2

)
s

]
+ 2F2

[(
∂P

∂s

)
u2

+ T

]
−2fA

(
∂P

∂s

)
u2

, (4.53)

A3 = −2F1

sT

[
ρ

(
∂ρ

∂s

)
u2

+ T

(
∂ρ

∂u2

)
s

]
+

2F2

T

(
∂ρ

∂sT

)
u2

+
2ρ

sT
F2 − 2fA

(
∂ρ

∂s

)
u2

+
2ρ

s
fB , (4.54)

A4 = J7 , (4.55)

10Note that Tµν(1)HS in (4.42) is only defined up to terms proportional to vµvν , since vµvνδhµν = 0.
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where we defined the recurring combinations

fA :=

(
∂F2

∂T

)
u2
−
(
∂F1

∂u2

)
T

, fB :=

(
∂F2

∂T

)
u2
−
(
∂F1

∂T

)
u2
. (4.56)

The coefficients Ji make up the symmetric part of ηµναβHS under the interchange of µν and αβ

while the coefficients Ai make up the anti-symmetric part of ηµναβHS . The remaining η tensors

in (4.42) are given by

ηµναβtor = 2

[
1

T

(
TF1 + 2u2F2

) [(∂P
∂s

)
u2

+ T

]
− 2u2

(
∂P

∂s

)
u2
fA

]
hµνu[αvβ]

+2

[(
F1 + 2T−1u2F2

)(∂ρ
∂s

)
u2
− 2u2

(
∂ρ

∂s

)
u2
fA − 2TfB

]
uµuνu[αvβ]

+4(TF1 + u2F2)v(µhν)[αuβ] − 4F2v
(µuν)u[αvβ] (4.57)

ηµναβrot = −4F2v
(µhν)[αhβ]σhσκu

κ , (4.58)

ηµναβext = −2

[
F1

(
∂ρ

∂s

)
u2
− 2F2

]
uµuνhαβ − 2F1

(
∂P

∂s

)
u2
hµνhαβ + 8F2v

(µhν)(αuβ)

−4

[
F2

[
T−1

(
∂P

∂s

)
u2

+ 1

]
− fA

(
∂P

∂s

)
u2

]
hµνuαuβ

−4(T−1F2 − fA)

(
∂ρ

∂s

)
u2
uµuνuαuβ . (4.59)

An important consistency check for these results is performed in Section 5.6, where we

show that these expressions recover the results of [11] in the limit of linearized perturbations

around a fluid at rest. Equation (4.42) is the main result of this subsection. We will next

discuss how this is related to the non-canonical entropy current as it should via the frame-

independent definition (3.11).

4.3 Non-canonical entropy current

In the previous subsection, we obtained explicit expressions for the contributions to the energy-

momentum tensor that arise from the action SHS. As discussed in Section 3, the HS part of the

energy-momentum tensor is related to the divergence of the non-canonical part of the entropy

current, cf. (3.11). The goal of this subsection is to show that there exists a non-canonical

entropy current whose divergence obeys (3.11) where the energy-momentum tensor is the one

we just obtained. The result for the non-canonical entropy current is given in equation (4.72)

where we used the definitions (4.68) and (4.69).

In Appendix B we show that the converse is also true, i.e. starting from the most general

non-canonical entropy current and demanding that its divergence obeys (3.11), where the

energy-momentum tensor is the most general one allowed by symmetries, we find (using only

on-shell relations) that the non-canonical entropy current is (up to terms that are identically

conserved) precisely of the form as given in (4.70) and (4.72). The analysis in Appendix B has

been restricted to flat space but we expect the result to generalize to any curved background.

In the Lagrangian frame, the divergence of the non-canonical entropy current (3.11) must

obey

e−1∂µ

(
eSµ(1)non

)
= −T µ(1)Lβτµ +

1

2
T µν(1)Lβhµν , (4.60)
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where T µ(1) and T µν(1) are given in (4.34) and (4.35). This can be solved for Sµ(1)non up to

identically conserved currents, leading to

Sµ(1)non = − 1

T
vµF1u

ρ∂ρT +
1

T
uµF1v

ρ∂ρT −
1

T
vµF2u

ρ∂ρu
2 +

1

T
uµF2v

ρ∂λu
2 . (4.61)

The total entropy current (3.4) in the Lagrangian frame can be written as Sµ = suµ−T µ(1)νβ
ν+

Sµ(1)non where we have split the contributions from the zeroth order derivative terms, which is

just the perfect fluid result suµ, from the terms containing first order derivatives. Substituting

the result obtained in the previous subsection for T µ(1)ν (see equation (4.36)) and using (4.61)

we obtain for the full entropy current in Lagrangian frame,

Sµ = suµ − uµF1e
−1∂ρ (evρ) + uµ

(
∂F2

∂T
− ∂F1

∂u2

)
vρ∂ρu

2 . (4.62)

One may at this point object that the full entropy current could also receive contributions

from the dissipative sector of transport. We will show next that in the Lagrangian frame only

the HS sector contributes to the entropy current.

To show this we first observe that in Landau frame (denoted here by a prime just like in

Apppendix A) the total entropy current (3.4) is given by

Sµ = s′u′µ + Sµ(1)non , (4.63)

simply because Landau frame is equivalent to demanding that the canonical entropy current

is that of a perfect fluid, i.e. Tµ(1)νβ
ν ∼ Tµ(1)νu

ν = 0 by definition. If we next take the

Lagrangian frame result (4.62) and we transform it to Landau frame using (A.8) and (A.9)

we obtain (4.63) with Sµ(1)non as given in (4.61) (written in terms of primed variables). In other

words the Lagrangian frame entropy current is the same as the total entropy current (4.63)

and so since the total entropy current is frame independent it must be that (4.62) equals the

total entropy current.

In Landau frame the right hand side of equation (3.11) can be written as

e−1∂µ

(
eSµ(1)non

)
=

1

2T
Tµν(1)HS (Luhµν − uνLuτµ − uµLuτν) , (4.64)

where uµ = hµνu
ν and where Tµν(1)HS is the Landau frame expression for the HS contributions

to Tµν(1) . This was computed in the previous subsection in (4.39). As a consistency check we

will explicitly verify that this is indeed the case.

To first order in derivatives, we can rewrite the right hand side of (4.60) in terms of u′

rather than u, and using the relation

−T µ(1) = T µ(1)νu
′ν − T µρ(1)hρνu

′ν , (4.65)

we find that

e−1∂µ

(
eSµ(1)non

)
= T µ(1)ρu

′ρLβ′τµ +
1

2
T µν(1)

(
Lβ′hµν − hνρu′ρLβ′τµ − hµρu′ρLβ′τν

)
. (4.66)

Dropping the prime and using the perfect fluid equations of motion in the form (2.36), we can

replace the Lβτµ by Lβhµν − hνρuρLβτµ − hµρuρLβτν terms, so that we obtain (4.64) with

Tµν(1)HS = T µν(1) + T ρ(1)σu
σXρ

µν , (4.67)
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where Xρ
µν is given in (2.37) and where Tµν(1)HS is in Landau frame as can be seen by comparing

to (4.39).

In Appendix B we start with a constitutive relation for the non-canonical entropy current

as well as the energy-momentum tensor on flat space and we work entirely on shell. We then

show that without making any assumptions about the nature of the non-canonical entropy

current and the energy-momentum tensor other than their constitutive relations that equation

(3.11) forces the non-canonical entropy current to be of the same form as derived in this

subsection. In Appendix B the functions F1 and F2 are replaced by F and G which are

defined as

F1 = T

(
∂G

∂T

)
u2
, (4.68)

F2 = T

(
∂G

∂u2

)
T

+
T

u2
F . (4.69)

This allows us to write (4.61) as

Sµ(1)non = (−vµuρ + uµvρ)

(
∂ρG+

1

u2
F∂ρu

2

)
. (4.70)

Using that

e−1∂ρ [e (−vµuρ + uµvρ)G] = Ge−1∂ρ [e (−vµuρ + uµvρ)] + (−vµuρ + uµvρ) ∂ρG , (4.71)

is identically conserved, we find

Sµ(1)non = Ge−1∂ρ [e (vµuρ − uµvρ)]− 1

u2
F (vµuρ − uµvρ) ∂ρu2 . (4.72)

The flat space version of this is precisely equation (B.17).

4.4 Action for non-hydrostatic non-dissipative transport

In Section 4.2 we dropped the condition that βµ is a Killing vector and used the hydrostatic

partition function to find an action for hydrostatic non-dissipative transport. Once we drop

the condition that βµ is Killing we can add more terms to the action at first order in derivatives

because we can no longer use the Killing equations to relate various derivatives. These extra

terms can be obtained by looking at all scalars one can construct from the Lie derivatives

of τµ and hµν . These are listed in equations (4.10)–(4.14). We can multiply each of these

scalars by an arbitrary function forming new scalar terms that can be added to the action

SHS. Using the freedom to perform partial integrations we can drop the last term of the form

F̃ e−1∂µ (euµ). This leads to 4 additional terms each multiplied by one of the functions F3 to

F6. The full first order action becomes

S(1) =

∫
dd+1x e

(
F1v

µ∂µT + F2v
µ∂µu

2 + F3u
µ∂µT + F4u

µ∂µu
2 + F5u

µLvτµ

+F6u
µuνLvhµν) . (4.73)

The additional contributions to the energy current and stress tensor (in Lagrangian frame)

due to the novel F3 to F6 contributions to the action are

T µF1
=

(
∂F1

∂u2

)
T

uµ(2u2vλ∂λT − Tvλ∂λu2) + TF1u
µK , (4.74)
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T µF2
= −

(
∂F2

∂T

)
u2
uµ(2u2vλ∂λT − Tvλ∂λu2) + 2u2F2u

µK , (4.75)

T µF3
= F3(uµ + vµ)uρ∂ρT − TF3u

µe−1∂ρ(eu
ρ)

−
(
∂F3

∂u2

)
T

uµ(Tuρ∂ρu
2 − 2u2uρ∂ρT ) , (4.76)

T µF4
= F4(uµ + vµ)uρ∂ρu

2 − 2u2F4u
µe−1∂ρ(eu

ρ)

+

(
∂F4

∂T

)
u2
uµ(Tuρ∂ρu

2 − 2u2uρ∂ρT ) , (4.77)

T µF5
= uµuσvρτρσ

[
T

(
∂F5

∂T

)
u2

+ 2u2

(
∂F5

∂u2

)
T

+ F5

]
− F5Ku

µ

−F5e
−1∂ρ (euρ) vµ − F5Luvµ + uµvρ∂ρF5 − vµuρ∂ρF5 , (4.78)

T µF6
= −2uµuρuσKρσ

[
T

(
∂F6

∂T

)
u2

+ 2u2

(
∂F6

∂u2

)
T

+ 2F6

]
, (4.79)

T µνF1
= F1

(
hµνvλ − hλµvν − hλνvµ

)
∂λT + 2

(
∂F1

∂u2

)
T

vλ∂λTu
µuν , (4.80)

T µνF2
= F2

(
hµνvλ − hλµvν − hλνvµ

)
∂λu

2 + 2F2Ku
µuν − 2

(
∂F2

∂T

)
u2
vλ∂λTu

µuν , (4.81)

T µνF3
=

(
F3h

µν + 2

(
∂F3

∂u2

)
T

uµuν
)
uρ∂ρT , (4.82)

T µνF4
= F4h

µνuρ∂ρu
2 − 2

(
∂F4

∂T

)
u2
uµuνuρ∂ρT − 2F4u

µuνe−1∂ρ(eu
ρ) , (4.83)

T µνF5
= F5u

σ (hµνvρ − hρµvν − hρνvµ) τρσ + 2

(
∂F5

∂u2

)
T

uµuνuσvρτρσ , (4.84)

T µνF6
= −2F6h

µνuρuσKρσ − 4

(
∂F6

∂u2

)
T

uµuνuρuσKσρ − 2F6h
λ(µvν)

(
∂λu

2 − 2uσLuhσλ
)

+4F6u
(µLuvν) + 2

(
2uλu(µvν) − uµuνvλ

)[(∂F6

∂T

)
u2
∂λT +

(
∂F6

∂u2

)
T

∂λu
2

]
+4F6u

(µvν)e−1∂λ(euλ) + 2F6u
µuνK , (4.85)

where for completeness we have included the F1 and F2 parts as well. These were already

derived earlier in equations (4.34) and (4.35). In writing the F6 part of T µν we used the

freedom to remove a term proportional to vµvν .

We will next rewrite these expressions by writing them in terms of Lβhµν and Lβτµ. Using

equations (4.40), (4.41), (4.43) and

e−1∂µ(euµ) =
T

2
hρσ (Lβhρσ − 2uρLβτσ) , (4.86)

Luvµ = uµuρvντνρ − Thµνvρ (Lβhνρ − uνLβτρ) , (4.87)

where we remind the reader that uµ = hµνu
ν and ωµν = ∂µuν − ∂νuµ. In general, T µ and

T µν take the following form

T µ = χµνLβτν +
1

2
ΣµνρLβhνρ +

1

2
Σµνρ

ext Kνρ , (4.88)

T µν = ∆µνρLβτρ +
1

2
η̃µνρσLβhρσ +

1

2
η̃µνρσrot ωρσ +

1

2
η̃µνρσext Kρσ +

1

2
η̃µνρσtor τρσ , (4.89)
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where Σµνρ = Σµρν , ∆µνρ = ∆νµρ, η̃µνρσ = η̃νµρσ = η̃µνσρ and similarly for the other tensors.

We find that

Σµνρ
ext = 2

(
TF1 − F5 + 2u2F2

)
uµhνρ

−4

[
T
∂

∂T
(F2 + F6)− ∂

∂u2

(
TF1 − F5 − 2u2F6

)]
uµuνuρ , (4.90)

η̃µνρσrot = 4(F2 + F6)v(µhν)[σhρ]λhλκu
κ , (4.91)

η̃µνρσext = 4(F2 + F6)
[
2v(µhν)(ρuσ) + uµuνhρσ − hµνuρuσ

]
, (4.92)

η̃µνρσtor = 4

[
T
∂

∂T
(F2 + F6)− ∂

∂u2
(TF1 − F5 − 2u2F6)

]
uµuνv[ρuσ] + 4(F2 + F6)u(µvν)v[ρuσ]

−2
(
TF1 − F5 + 2u2F2

)
hµνv[ρuσ] + 4

(
TF1 − F5 + u2(F2 − F6)

)
v(µhν)[ρuσ] , (4.93)

where as usual we dropped vµvν terms and where we defined η̃µνρσrot = −η̃µνσρrot such that

τρη̃
µνρσ
rot = 0 in order that (4.43) does not lead to any ambiguities among the various tensors.

Furthermore we find that

χµν = 2T

(
F5 + T

(
∂F5

∂T

)
u2

+ 2u2

(
∂F5

∂u2

)
T

− 2u2F4 − TF3

)
v[µuν] , (4.94)

η̃µνρσ − η̃ρσµν = 4T (F2 − F6)
(
hµνu(ρvσ) − hρσu(µvν)

)
+4T (3F6 − F2)

(
v(µhν)(ρuσ) − v(ρhσ)(µuν)

)
+4TF4 (hµνuρuσ − hρσuµuν)

+16T

(
∂F6

∂u2

)
T

(
uρuσu(µvν) − uµuνu(ρvσ)

)
, (4.95)

η̃µνρσ + η̃ρσµν = 4T (F2 + F6)
[
− 2v(µhν)(ρvσ) +

(
hµνv(ρuσ) + hρσu(µvν)

)
−
(
v(µhν)(ρuσ) + v(ρhσ)(µuν)

) ]
, (4.96)

∆µνρ − Σρµν = 2T
(
TF1 − F5 + u2(F2 − F6)

)
hρ(µvν) − T

(
TF1 − F5 + 2u2F2

)
vρhµν

+2T (F2 + F6)(vρ + uρ)u(µvν) + 2T 2 ∂

∂T
(F2 + F6)

(
vρuµuν − 2uρu(µvν)

)
−2T

∂

∂u2
(TF1 − F5 − 2u2F6)

(
vρuµuν − 2uρu(µvν)

)
, (4.97)

∆µνρ + Σρµν = 2T
(
TF1 + F5 + 2u2F2 − u2(F2 + F6)

)
hρ(µvν) − T

(
TF1 + F5 + 2u2F2

)
vρhµν

+2T (F2 + F6)vρu(µvν) − 2T (TF3 + 2u2F4)uρhµν

+4T

(
F4 + T

(
∂F4

∂T

)
u2
− T

(
∂F3

∂u2

)
T

)
uρuµuν

+2T

(
− ∂

∂u2

(
TF1 + F5 − 2u2F6

)
+ T

∂

∂T
(F2 + F6) + 2F4

)
vρuµuν

+2T

(
−2

∂

∂u2

(
TF1 − F5 + 2u2F6

)
+ 2T

∂

∂T
(F2 − F6) + F2 + F6

)
uρu(µvν) ,

(4.98)

where we have discarded terms in T µν proportional to vµvν .

As we have seen in Section 3 the NHS terms are defined as those contributions to the

energy-momentum tensor for which

−T µLβτµ +
1

2
T µνLβhµν = 0 . (4.99)
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Using equations (4.88) and (4.89) we can see that for this to be the case it is necessary that

Σµνρ
ext , η̃µνρσrot , η̃µνρσext and η̃µνρσtor all vanish. The χµν is anti-symmetric so there are no Lβτµ

squared contributions to (4.99). The condition η̃µνρσ + η̃ρσµν = 0 guarantees that the η̃µνρσ

is anti-symmetric under the interchange of the first pair of symmetric indices with the second

pair of symmetric indices ensuring that there are no Lβhµν squared contributions to (4.99).

Finally, cancellation of the cross terms LβhµνLβτρ requires that we set ∆µνρ − Σρµν = 0. As

one can see by inspection all of these conditions will be obeyed provided we set

F1 =
1

T

(
F5 + 2u2F6

)
, F2 = −F6 . (4.100)

We thus conclude that when (4.100) holds, equation (4.99) holds off shell. Setting F1 and F2

equal to their NHS values we obtain the following action for pure NHS transport at first order

SNHS =

∫
dd+1xe

(
F3u

µ∂µT + F4u
µ∂µu

2 − TF5v
µLβτµ − 2TF6u

µvνLβhµν
)
. (4.101)

The NHS currents are then schematically

T µNHS =
6∑
i=1

T µFi |F1=T−1F5+2T−1u2F6 ; F2=−F6
, (4.102)

T µνNHS =
6∑
i=1

T µνFi |F1=T−1F5+2T−1u2F6 ; F2=−F6
. (4.103)

On shell and in Landau frame we have for T µ =
∑6

i=1 T
µ
Fi

and T µν =
∑6

i=1 T
µν
Fi

that

TµνHS + TµνNHS = T µν + T ρσuσXρ
µν − T ρXρ

µν =
1

2
ηµναβ (Lβhαβ − uαLβτβ − uβLβτα)

+
1

2
ηµναβrot ωαβ +

1

2
ηµναβext Kαβ +

1

2
ηµναβtor ταβ , (4.104)

where we remind the reader that Tµν is defined in equation (4.33). In here the tensors are

given by

ηµναβ = η̃µναβ +
(
−Σραβ + η̃ρσαβuσ

)
Xρ

µν + (∆µνρ + η̃µνρσuσ)Xρ
αβ

+
[
−χρσ +

(
∆ρλσ − Σρλσ

)
uλ + η̃ρκσλuκuλ

]
Xρ

µνXσ
αβ , (4.105)

ηµναβrot = η̃µναβrot + η̃ρσαβrot uσXρ
µν , (4.106)

ηµναβext = η̃µναβext + η̃ρσαβext uσXρ
µν − Σραβ

ext Xρ
µν , (4.107)

ηµναβtor = η̃µναβtor + η̃ρσαβtor uσXρ
µν . (4.108)

The pure NHS part in Landau frame is given by

TµνNHS =
1

2
ηµναβNHS (Lβhαβ − uαLβτβ − uβLβτα) , (4.109)

where ηµναβNHS = −ηαβµνNHS is obtained by substituting (4.100) into (4.105).

One might wonder what the expression for the pure HS part is. However, for the HS sector

it is only the symmetric part of ηµναβ as well as the objects ηµνρσrot , ηµνρσext and ηµνρσtor that are

uniquely determined. These all depend on two functions F2 +F6 and TF1−F5 +2u2F2. There
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is no unique HS expression for the remaining four functions in the action. The reason behind

this is that we know that

−T µHSLβτµ +
1

2
T µνHSLβhµν = e−1∂µ (eSµnon) , (4.110)

but this only uniquely fixes the symmetric part of ηµνρσ as well as the extrinsic, torsion

and rotation η-tensors. The anti-symmetric part cannot be fixed. This freedom is precisely

encoded by the NHS terms. In a sense the HS coefficients belong to the ‘quotient space’ of non-

dissipative transport coefficients modulo the NHS ones. Hence two HS transport coefficients

are equivalent if they differ by an NHS term. In Section 4.2 we picked a representative of the

HS sector by setting F3 = F4 = F5 = F6 = 0.

The second line in (4.105) is anti-symmetric under interchanging the pair µν with αβ as

can be seen from the fact that

−χρσ +
(

∆ρλσ − Σρλσ
)
uλ + η̃ρκσλuκuλ =

2T

[
2Tu2

(
∂F6

∂T

)
u2
− 2TF1 − 2u2F6 + 2F5 + 4u2

(
∂F5

∂u2

)
T

+ T

(
∂F5

∂T

)
u2

]
u[ρvσ] .

(4.111)

This means that the symmetric part of ηµναβ does not contain terms that are quadratic in

Xρ
µν . This explains why the J coefficients in (4.44) do not contain product of ρ and P and/or

derivatives thereof, while the A coefficients do admit such terms.

5 First order corrections

This section can be viewed as a continuation of Section 3, in which we use constitutive

relations and non-negativity of entropy production to find all the allowed first order corrections

to the boost-agnostic perfect fluid energy-momentum tensor. We already dealt with the

constitutive relations for the HS sector in Appendix B and so we will only be concerned with

the constitutive relations for NHS and dissipative transport. We also show how to recover

Lifshitz fluids as well as Lorentz boost invariant fluids from our general framework. Finally,

we consider the limit of small fluid velocity and show how our formalism recovers the results

of [11].

5.1 Constitutive relations

Using our result (4.64), the relation (A.11) tells us that to second order in derivatives and in

Landau frame,

e−1∂µ (eSµ) = − 1

2T

(
Tµν(1) − T

µν
(1)HS

)
(Luhµν − hρνuρLuτµ − hµρuρLuτν) , (5.1)

where Tµν(1)HS is the Landau frame hydrostatic contribution as defined in (3.8), and Tµν(1) is the

full energy-momentum tensor in Landau frame.

Since the divergence of the entropy current is a quadratic form in the derivatives of the

fluid variables, equation (5.1) tells us which derivatives we should use to write the constitutive
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relations for the energy-momentum tensor. The fluid variables are Luτµ and Luhµν , and we

may thus write the following constitutive relation for the part of the energy-momentum tensor

that is not of hydrostatic origin11

Tµν(1) − T
µν
(1)HS =

1

2
ηµνρσLuhρσ + ζ̃µνρLuτρ . (5.2)

By redefining ζ̃µνρ, this can be written equivalently as

Tµν(1) − T
µν
(1)HS =

1

2
ηµνρσ (Luhρσ − hκσuκLuτρ − hρκuκLuτσ) + ζµνρLuτρ . (5.3)

Upon substituting the constitutive relations into the right hand side of (5.1) we obtain a

quadratic form. Non-negative entropy production will restrict the form of the ηµνρσ tensor,

and it tells us that ζµνρ must vanish. This is because there are no Luτρ squared terms in

(5.1). Furthermore, terms involving the anti-symmetric combination of velocity derivatives

(analogous to the ηµνρσrot term in (4.42)) are also explicitly forbidden by the requirement that

the divergence of the entropy current is a quadratic form. We thus conclude that

Tµν(1) − T
µν
(1)HS =

1

2
ηµνρσ (Luhρσ − hκσuκLuτρ − hρκuκLuτσ) , (5.4)

so that all that is left is to classify all the allowed terms that make up ηµνρσ. This can be

achieved by looking at the symmetries of the fluid.

In addition to the SO(d) Ward identity (which is manifest in the symmetry of Tµν) the

energy-momentum tensor must respect the symmetries of the thermal state around which

we expand. In the absence of boost symmetries the thermal state spontaneously breaks the

SO(d) symmetry down to the SO(d − 1) subgroup that preserves the velocity hµρhρνu
ν . In

flat space these are the rotations preserving vi. In other words, different absolute values of

velocities correspond to different thermodynamic states of the theory.

Therefore, the natural tensor structures are the SO(d− 1) invariant tensors vµ as well as

Pµν = hµν − nµnν , nµ =
hµνhνρu

ρ

√
u2

, (5.5)

where nµnνhµν = 1. The tensor Pµν is a projector onto the space orthogonal to the unit

vector nµ. In terms of these tensor structures, the constitutive relation takes the form12,13

ηµνρσ = t

(
PµρP νσ + PµσP νρ − 2

d− 1
PµνP ρσ

)
+

4s1

u2
v(µnν)n(ρvσ) + s2n

µnνnρnσ + s3P
µνP ρσ

+
4f1

u2
v(µP ν)(ρvσ) + f2 (Pµρnνnσ + P νρnµnσ + Pµσnνnρ + P νσnµnρ)

+s6 (P ρσnµnν + Pµνnρnσ)− sNHS
3 (P ρσnµnν − Pµνnρnσ)

11The η-tensor in (5.2) should not be confused with the η-tensor that appears in the context of Lagrangian

transport in (4.104).
12We remark again that this object has two redundancies: we can add to ηµνρσ any term of the form vµvνY ρσ

or vρvσZµν for arbitrary Y µν and Zµν without changing Tµν .
13The rationale behind the naming scheme we have adopted for the transport coefficients will become appar-

ent in the next section (see in particular Eq. (5.22)), where we show that in the expression for the divergence of

the entropy current, the coefficients {s1, s2 . . . } multiply scalar structures, the coefficients {f1, f2, . . . } multiply

vector structures, while, finally, the coefficient t multiplies a single tensor structure.
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− 4f3√
u2

(
v(µP ν)(ρnσ) + n(µP ν)(ρvσ)

)
− 4fNHS

√
u2

(
v(µP ν)(ρnσ) − n(µP ν)(ρvσ)

)
− 2s5√

u2

(
v(µnν)P ρσ + Pµνn(ρvσ)

)
− 2sNHS

1√
u2

(
v(µnν)P ρσ − Pµνn(ρvσ)

)
− 2s4√

u2

(
v(µnν)nρnσ + nµnνn(ρvσ)

)
− 2sNHS

2√
u2

(
v(µnν)nρnσ − nµnνn(ρvσ)

)
, (5.6)

leading to a total of 14 transport coefficients. The f1 term in was also observed in [13].

We see that the η-tensor has a part that is anti-symmetric under interchanging the pairs of

symmetric indices. This is related to non-hydrostatic non-dissipative transport and is the

topic of Section 5.2. This leaves 10 coefficients that could contribute to dissipative transport.

The normalization of the 14 coefficients has been chosen such that all coefficients have the

same scaling dimension which is d, the number of spatial dimensions. We note that hµν will

be assigned a scaling dimension of 2 while vµ and uµ will have scaling dimension z.

A unique feature of Landau frame is that the derivative corrections to the energy current

is given entirely in terms of the (2, 0) momentum-stress tensor (cf. the second relation in

(A.6)), which in turn means that the (1, 1) energy-momentum tensor (2.24) at first order can

be constructed from the (2, 0) momentum-stress tensor. More precisely, defining Tµν(1)D,NHS :=

Tµν(1)D + Tµν(1)NHS = Tµν(1) − T
µν
(1)HS, where each term is a symmetric tensor, we have

(T(1)D,NHS)µν =
1

2

[
−ηµρκλuρτν + ηµρκλhρν

]
(Luhκλ − uκLuτλ − uλLuτκ) , (5.7)

where we have used the relation (2.24). On flat space (2.19), where uµ = (1, vi), the energy-

momentum tensor – and by extension the tensor ηµνρσ – may be further decomposed as,

(T(1)D,NHS)0
j =

1

2
ηjkl

(
∂kv

l + ∂lv
k
)

+ κjk∂tv
k , (5.8)

(T(1)D,NHS)ij =
1

2
ηijkl

(
∂kv

l + ∂lv
k
)

+ κijk∂tv
k , (5.9)

where the flat space tensors κjk, ηjkl, κ
ijk are given by

κjk = η0j0k , ηjkl = η0jkl , κijk = ηijk0 , (5.10)

which means that

κjk =
f1

v2
Pjk +

s1

v2
njnk , (5.11)

ηjkl =
f3 + fNHS

√
v2

(
P jknl + P jlnk

)
+
s5 + sNHS

1√
v2

P klnj +
s4 + sNHS

2√
v2

njnknl , (5.12)

κijk =
f3 − fNHS

√
v2

(
P jkni + P iknj

)
+
s5 − sNHS

1√
v2

P ijnk +
s4 − sNHS

2√
v2

ninjnk , (5.13)

ηijkl = t

(
P ikP jl + P ilP jk − 2

d− 1
P ijP kl

)
+ s3P

ijP kl

+f2

(
P iknjnl + P jkninl + P ilnjnk + P jlnink

)
+ s2n

injnknl

+s6

(
P klninj + P ijnknl

)
+ sNHS

3

(
P ijnknl − P klninj

)
, (5.14)

where the result has been written in terms of

ni =
vi√
v2
, P ij = δij −

vivj

v2
= δij − ninj , (5.15)

which are the flat space versions of (5.5).

27



5.2 Non-hydrostatic non-dissipative transport & Onsager relations

The subsector of transport obtained by isolating the anti-symmetric part of η, i.e. ηµνρσA ⊂
ηµνρσ with ηµνρσA = −ηρσµνA , corresponds to the non-hydrostatic (NHS) non-dissipative trans-

port. By using (5.7) and (5.1), such terms trivially produce no entropy. The constitutive

relations tell us that there are at most 4 transport coefficients of this type. In Section 4.4 we

found precisely 4 terms in the action that corresponded to the NHS sector. Extracting the

anti-symmetric part of (5.6), we get

ηµνρσA =
4fNHS

√
u2

(
n(µP ν)(ρvσ) − n(ρP σ)(µvν)

)
+

2sNHS
1√
u2

(
Pµνn(ρvσ) − P ρσn(µvν)

)
+

2sNHS
2√
u2

(
nµnνn(ρvσ) − nρnσn(µvν)

)
+ sNHS

3 (Pµνnρnσ − P ρσnµnν) . (5.16)

Demanding the absence of NHS transport is, at linear order, equivalent to the Onsager

relations [58, 59], which express the fact that there are no anti-symmetric contributions to

the η-tensor in systems with time-reversal symmetry. More explicitly, consider linearized

perturbations around global thermal equilibrium (T0, v
i
0) in flat space,

vi = vi0 + δvi, T = T0 + δT ,

where δvi and δT are the fluctuations. The resulting change in the energy-momentum tensor

to first order in fluctuations is

δTµν(1) =
1

2
ηµνρσ0 (∂ρδuσ + ∂σδuρ) ,

where δuµ = (0, δvi) and indices are lowered by hµν = δiµδ
i
ν . The Onsager relations then tell

us that14

ηµνρσ0 = ηρσµν0 ,

which is the linearized version of the general requirement of symmetry, ηµνρσ = ηρσµν .

Imposing symmetry on the η-tensor is equivalent to the vanishing of all NHS coefficients,

fNHS = sNHS
1 = sNHS

2 = sNHS
3 = 0 . (5.17)

Hence, ignoring the NHS sector, we obtain the following constitutive relations for the dissi-

pative sector

κjk =
f1

v2
Pjk +

s1

v2
njnk , (5.18)

κijk =
f3√
v2

(
P jkni + P iknj

)
+

1√
v2
s5P

ijnk +
1√
v2
s4n

injnk , (5.19)

ηijkl = t

(
P ikP jl + P ilP jk − 2

d− 1
P ijP kl

)
+f2

(
P iknjnl + P jkninl + P ilnjnk + P jlnink

)
14 One way to see this is because 〈∂µδuν(t)δTµν(1)(0)〉 = 〈∂µδuν(0)δTµν(1)(t)〉, which is a direct result of time

reversal symmetry.
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+s3P
ijP kl + s6

(
P klninj + P ijnknl

)
+ s2n

injnknl , (5.20)

leaving us with 10 candidate coefficients for dissipative transport. Note that in the absence

of NHS terms we have the identity ηjkl = η0jkl = ηklj0 = κklj (cf. (5.10) and (5.11)–(5.14)).

For the remainder of this section we will be working in flat space. In the next subsection

we will show that all these coefficients contribute to dissipation provided they obey suitable

inequalities.

5.3 Dissipative transport

In this section, we derive additional constraints on the dissipative transport coefficients from

the requirement of positivity of entropy production. Using our results (5.18)–(5.20), the diver-

gence of the entropy current in Landau frame (5.1) on flat space along with the requirement

that it be positive definite for the dissipative sector reads

−T∂µSµ =
1

4
ηijkl

(
∂iv

j + ∂jv
i
) (
∂kv

l + ∂lv
k
)

+ κij∂tv
i∂tv

j

+κijk
(
∂iv

j + ∂jv
i
)
∂tv

k ≤ 0 , (5.21)

with equality if and only if all the dissipative coefficients are zero.

It is useful to decompose the expression (5.21) into scalar, vector and tensor sectors,

~b(S)TA
(S)
(3×3)

~b(S) +~b
(V )
i

TA
(V )
(2×2)

~b
(V )
i + tA(T ) ≤ 0 , (5.22)

where the basis vector of scalars is

~b(S) =


1
2

1
v2
∂tv

2

ninj∂iv
j

P ij∂iv
j

 , (5.23)

with the associated quadratic form

A
(S)
(3×3) =

 s1 s4 s5

s4 s2 s6

s5 s6 s3

 . (5.24)

The basis vector of vectors is

~b
(V )
i =

(
1√
v2
∂tv

i

P ijnk(∂jv
k + ∂kv

j)

)
, (5.25)

which has the associated quadratic form

A
(V )
(2×2) =

(
f1 f3

f3 f2

)
, (5.26)

The single tensor structure is described by

A(T ) =

(
P ikP jl + P ilP jk − 2

d− 1
P ijP kl

)(
∂iv

j + ∂jv
i
) (
∂kv

l + ∂lv
k
)
. (5.27)
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Positivity of entropy production must hold for all fluid configurations and thus for each of the

three sectors separately.

The tensor contribution requires that

t ≤ 0 . (5.28)

The quadratic form of the vector sector must be negative definite, i.e. all its eigenvalues must

be negative, which is the case if and only if

f1 ≤ 0 , f2 ≤ 0 , detA
(V )
(2×2) = f1f2 − f2

3 ≥ 0 . (5.29)

Finally, the quadratic form of the scalar sector must be negative definite as well, which gives

the conditions

s1 ≤ 0 , s2 ≤ 0 , s3 ≤ 0 , (5.30)

s1s2 − s2
4 ≥ 0 , s1s3 − s2

5 ≥ 0 , s3s2 − s2
6 ≥ 0 , (5.31)

detA
(S)
(3×3) = s1s2s3 − s3s

2
4 − s2s

2
5 + 2s4s5s6 − s1s

2
6 ≤ 0 . (5.32)

5.4 Scale invariance: Lifshitz fluid dynamics

If our fluid enjoys scale symmetry with dynamical exponent z, the following Ward identity

must be satisfied (see also [9] for more details)

zT 0
0 + T ii = 0 . (5.33)

Using the constitutive relations for the dissipative sector (5.18)–(5.20), this gives rise to the

following relations at first order

zvjκjk = δijκ
ijk , zvjηjkl = δijη

ijkl , (5.34)

which amounts to

zs5 = (d− 1)s3 + s6 ,

zs4 = (d− 1)s6 + s2 ,

zs1 = (d− 1)s5 + s4 . (5.35)

Hence, if we impose scale symmetry, the 6 dissipative scalar transport coefficients get reduced

by 3, while the 3 vector and 1 tensor transport coefficients are unaffected. In other words,

uncharged Lifshitz hydrodynamics has 7 dissipative transport coefficients at first order. We

note that the inequality type constraints for Lifshitz fluids are obtained by substituting the

relations (5.35) into (5.30)–(5.32).

We furthermore remark that since all transport coefficients that appear in the η-tensor

(5.6) are functions of T and v2 and have scaling dimension d, they must be of the form

T d/zf(α) , α = v2T
2
z
−2 , (5.36)

for some unknown function f , where α has no scaling dimension.
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Turning to the NHS sector, which is described by (5.16), we find that scale symmetry gets

rid of two coefficients. It sets sNHS
2 = −(d−1)sNHS

1 and sNHS
3 = −zsNHS

1 and leaves fNHS free.

Furthermore, scale symmetry reduces the number of hydrostatic transport coefficients from

two to one. This can be seen as follows. The z-trace Ward identity on curved space reads

−zvντµTµν + hµρh
ρνTµν = −zτµTµ + hµνT

µν = 0 . (5.37)

If we substitute (4.34) and (4.35) as well as (4.37) into this Ward identity we find that (by

looking at the terms proportional to the trace of the extrinsic curvature)

F1 = −2F2
u2(z − 1)

zT
. (5.38)

The rest of the terms in (5.37) then tell us that

P (T, u2) = T 1+ d
z p(α) , F2(T, u2)T 2− 2

z = T
d
z q(α) , (5.39)

where p(α) and q(α) are arbitrary functions of α which is the scale invariant combination

α = u2T
2
z
−2. We can then write the hydrostatic partition function (4.17) as

SHS(Lif) =

∫
dd+1xe

(
T 1+ d

z p(α) + T
d
z q(α)vµ∂µα

)
+O(∂2) . (5.40)

The same can be done for the action (4.101) describing NHS transport, which for Lifshitz

scaling takes the form

SNHS(Lif) =

∫
dd+1xe

(
T
d
z r1(α)uµ∂µα+ T

d−2z+2
z r2(α)uµvνLβhµν

)
+O(∂2) . (5.41)

exhibiting two NHS transport coefficients in agreement with the statement above.

All together for an uncharged Lifshitz fluid we find 7 dissipative, 1 HS and 2 NHS transport

coefficients.

5.5 Lorentz boost invariance

What we have obtained is the most general set of first order transport coefficients with-

out assuming boost invariance. In this subsection, we show how to recover relativistic first

order hydrodynamics from our results. In Landau frame and on Minkowski spacetime the

relativistic energy-momentum tensor is described by (see e.g. [2] for a review of relativistic

hydrodynamics)

Tµν = ẼUµUν + PΠµ
ν − ζΠµ

ν∂ρU
ρ − ηΠµρΠν

σΣρσ , (5.42)

where ζ and η are the bulk and shear viscosity terms, respectively, which are independent of

v2 in the Lorentzian case. A relativistic fluid is characterized by a velocity

Uµ = γ(1, vi), Uµ = γ(−1, vi) , (5.43)

where γ = (1−v2)−1/2. In writing the relativistic energy-momentum tensor (5.42), we defined

the projector Πµ
ν = δµν + UµUν , while the shear tensor Σρσ is given by

Σρσ = ∂ρUσ + ∂σUρ −
2

d
ηρσ∂λU

λ , (5.44)
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where ηµν = diag(−1, 1, . . . , 1) is the d-dimensional Minkowski metric.

A necessary condition for this to be recovered from our general framework is the boost

Ward identity, T 0
(1)i = −T i(1)0, where T i(1)0 = −vjT i(1)j in Landau frame. Using (5.8) and (5.9)

we see that this translates into the requirements

vjηijkl = κkli, vjκijk = κik . (5.45)

This implies the relations

f3 = v2f2, f1 = v2f3, s5 = v2s6, s4 = v2s2, s1 = v2s4 . (5.46)

Hence in Landau frame it is sufficient to compare our expression for T i(1)j with (5.42) at first

order. A tedious calculation shows that the two expressions agree if and only if

s3 = −ζγ − 2

d(d− 1)
ηγ ,

s6 = −ζγ3 +
2

d
ηγ3 ,

s2 = −ζγ5 − 2ηγ5 +
2

d
ηγ5 ,

f2 = −ηγ3 ,

t = −ηγ , (5.47)

so that we recover the standard transport coefficients ζ and η. In this way, it is also possible

to recover (massless) Galilean invariant fluids, although we refrain from giving the details.

5.6 Small velocity limit

We will assume that the transport coefficients are functions of T and v2 which admit a Taylor

expansion in v2. Demanding that the tensors κjk, ηjkl, η
ijkl and κijk have a regular limit for

v2 = 0 leads to the conditions

f1 = O(v2) ,

s1 − f1 = O(v4) ,

f3 = O(v2) ,

fNHS = O(v2) ,

s5 = O(v2) ,

sNHS
1 = O(v2) ,

s4 = O(v2) ,

sNHS
2 = O(v2) ,

t = O(1) ,

s3 −
2

d− 1
t = O(1) ,

f2 − t = O(v2) ,

2

d− 1
t− s3 + s6 = O(v2) ,

sNHS
3 = O(v2) ,
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s2 − s6 − 2f2 = O(v2) . (5.48)

In obtaining these expressions, we have used that if A + B = O(v2) and A = O(v2), then

B = O(v2).

Substituting these results into the relations (5.11)–(5.14) leads to

κjk =
f1

v2
δjk +O(v2) , ηijkl = t(δilδjk + δikδjl) +

(
s3 −

2t

d− 1

)
δijδkl +O(v2) , (5.49)

and ηjkl = κijk = 0, where it is particularly noteworthy that all NHS transport drops out.

We further remark that the Lorentzian case – which we recovered from our general framework

in Section 5.5 – satisfies these conditions, and in particular some of these coefficients exhibit

small-v2 behavior involving even higher powers of velocity, e.g. f1 = O(v4).

It is interesting to look at the leading order terms in the expansion of T 0
(1)j and T i(1)j in

powers of v2, where v2 is small compared to the speed of sound. These terms are t, s3
2 −

t
d−1

and f1. These are the shear and bulk viscosity and a new transport coefficient $ (denoted by

π in [11]), i.e.

t = −η +O(v2) ,
s3

2
− t

d− 1
=

1

d
η − 1

2
ζ +O(v2) , f1 = −$v2 +O(v4) . (5.50)

Hence to leading order in vi we find

T 0
(1)j = −$∂tvj + . . . , (5.51)

T i(1)j = −ζδij∂kvk − η(∂ivj + ∂jvi −
2

d
δij∂kv

k) + . . . , (5.52)

where ζ, η and $ are non-negative (as follows from the results of Section 5.3). Thus, we

recover the results of [11].

In order to make further contact with the results of [11], we turn to the hydrostatic sector

– in particular, the transport coefficients $ and ζ that appear in (5.51) and (5.52) can be

split into dissipiative and hydrostatic non-dissipative parts15,

$ = $D +$HS, ζ = ζD + ζHS . (5.53)

Using our result (4.42), we see that only the terms involving J1, J7 and J3 survive the small

velocity limit. Via the relation (2.21), we find that the terms involving F2 in J7 and J3 cancel.

Thus, when expanding around vi = δvi on a flat background, we find that

T 0
(1)HSi = −ρ0F1(T0)

s0
∂tδv

i = −$HS∂tδv
i , (5.54)

T i(1)HSj = δijF1(T0)
∂P0

∂s0
∂kδv

k = −ζHSδ
i
j∂kδv

k , (5.55)

where the subscript ‘0’ – e.g. in T0 – denotes the value of the corresponding variable in the

global equilibrium around which we expand. In [11], it is shown that

$HS = −aT
ρ0T0

s0
, (5.56)

15Since we showed in (5.49) that all NHS transport drops out in the limit of small background velocity, we

ignore that sector in the split.
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ζHS = aTT0
∂P0

∂s0
, (5.57)

where aT is the derivative with respect to temperature of a certain hydrostatic transport

coefficient a that was identified in [11]. Comparing these with our expressions in (5.54) and

(5.55) gives the relation

F1(T0) = −aTT0 , (5.58)

thereby identifying F1 with the function a used in [11].

6 Discussion and outlook

In this paper we presented the complete first-order energy-momentum tensor for a boost-

agnostic fluid in curved spacetime, going beyond the linearized results obtained in [11]. Im-

plementing the constraint of non-negativity of the divergence of the entropy current, we find

10 dissipative, 2 hydrostatic non-dissipative and 4 non-hydrostatic non-dissipative transport

coefficients. In the linearized regime the latter four coefficients vanish as a result of imple-

menting the Onsager relations.

Using the curved spacetime formulation we explicitly obtained all non-dissipative transport

coefficients, notably both in Landau frame and Lagrangian frame, by using a Lagrangian

whose form was derived by starting with the hydrostatic partition function. Furthermore,

we checked that our final results reproduce the well-known relativistic first-order transport

coefficients when Lorentz boost symmetries are present. We also treated the special case when

the hydrodyanmic theory exhibits an additional Lifshitz scale invariance, in which case there

are 7 dissipative, 1 hydrostatic non-dissipative and 2 non-hydrostatic non-dissipative transport

coefficients. We also studied the small velocity limit, reproducing the results of [11].

With the full geometrical information at our disposal, we can now for example compute

Kubo formulae and relate individual transport coefficients to a particular linear response.

Consider for example the response of the system in flat space to a purely time-dependent

perturbation δhµν . The perfect fluid equations of motion (2.27) remain valid to first order if

we also impose δP = δ(eρ) = 0, together with

δvi = −δh0i − vjδhji , (6.1)

δ(eE) =
1

2
T 00δh00 −

1

2
T ijδhij . (6.2)

This induces a certain change δTµν which evaluates to

δT ij = −Pδhij −
1

2
δhkkρv

ivj − ρviδh0j − ρvjδh0i − ρvivkδhkj − ρvjvkδhki , (6.3)

δT i0 = −1

2
δhkkρv

i − ρδh0i − ρvjδhij , (6.4)

δT 00 = −1

2
δhkkρ . (6.5)

From these variations one can read off that there are leading order contributions to the

two-point function 〈TµνT ρσ〉 which are ω-independent. If we substract these leading order

contributions, we find from (5.4) that we expect a contribution proportional to ωηµνρσ to the
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two-point function, and hence a Kubo formula of the type η ∼ limω→0
1
ω (〈TT 〉 − 〈TT 〉leading).

This is not yet the complete answer though. First of all, the leading order change in vi is also

relevant and using the explicit expression one can show that while at first order 〈TµνT 00〉 is

indeed proportional to ηµν00, 〈TµνT 0i〉 does not contain any contribution of η, and

〈TµνT ij〉(1) ∼ ηµνij − ηµν0(ivj) . (6.6)

In addition, we have not yet included the hydrostatic contribution to the stress tensor. These

contributions can in principle be extracted from the analysis in Section 4. Alternatively,

one can also try to derive Kubo formulae for the HS coefficients directly from the partition

function, which in particular guarantees that the stress tensor will be covariantly conserved

[60]. We leave a more detailed analysis of all these issues to future work.

Besides the application to Kubo formulae, the geometrical formulation based on Aris-

totelian (or absolute) spacetime also paves the way for computing hydrodynamic modes – our

framework provides the ideal starting point for such an analysis. One is now provided with

the tools to answer questions regarding the stability of the hydrodynamical spectrum at first

order in curved spacetime, as was studied for boost invariant systems in [19, 61]. Another

extension of this work is to consider the inclusion of a U(1) charge current as was initiated

in [11,12]. The case of Carroll hydrodynamics requires special treatment and will be the topic

of future work [20].

Another worthwhile open direction is to consider the relation to holography for the case of

Lifsthiz fluids, for which we have identified the reduced set of first-order transport coefficients.

Such fluids were discussed in a holographic context in Refs. [23,41–44]. Following these works,

it would be interesting to study hydrodynamic modes of Lifshitz fluids using quasinormal

modes in order to find the extra dissipative and non-dissipative transport coefficients, as was

done in [45] (see also [62] for a study of quasinormal modes in hyperscaling violating Lifshitz

theories). It would furthermore be interesting to see if a damping/overdamping transition as

reported in [63,64] could be reproduced. More generally, addressing the question of universal

properties obeyed by transport coefficients in holographic setups and the development of a

full-fledged fluid/gravity correspondence would be relevant to pursue in this case.

In another direction, it would be worthwhile to examine submanifolds and fluids living

on them in the spirit of [24]. In particular, it was shown in the context of Newton–Cartan

geometry that the normal projection of vµ can be interpreted as the transverse velocity of the

submanifold. In the absence of boost symmetry, the role of such a velocity might be more

prominent.

Finally, as discussed in the introduction, one often finds broken translation symmetry when

considering systems where boosts are absent. Assuming there is a hierarchy of (the absence

of) these symmetries, one can apply the results presented in this work. It would be important

and interesting to apply the formalism developed in this paper to describe particular physical

phenomena in concrete systems that do not exhibit boost symmetries.

35



Acknowledgements

We especially thank Stefan Vandoren for discussions and collaboration on non-boost invariant

hydrodynamics. We also thank Nick Poovuttikul and Lárus Thorlacius for useful discussions.
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A Hydrodynamic frame transformations & Landau frame

This appendix briefly discusses the general features of hydrodynamic frame transformations.

Consider the energy-momentum tensor to first order, which in a generic frame takes the form,

Tµν = −
(
Ẽ + P + ρu2

)
uµτν + ρuµuρhρν + Pδµν − T

µ
(1)τν + Tµρ(1)hρν . (A.1)

Redefining T and uµ as

T = T ′ + δT , uµ = u′µ + δuµ , (A.2)

with τµδu
µ = 0 (in order to preserve the normalization τµu

µ = 1), leads to an energy-

momentum tensor of the form

Tµν = −
(
Ẽ ′ + P ′ + ρ′u′2

)
u′µτν + ρ′u′µu′ρhρν + P ′δµν − T̃

µ
(1)τν + T̃µρ(1)hρν , (A.3)

where Ẽ ′ = Ẽ(T ′, u′2) etc., and where

T̃µ(1) = Tµ(1) +
(
δẼ + δP + ρ′δu2 + u′2δρ

)
u′µ +

(
Ẽ ′ + P ′ + ρ′u′2

)
δuµ + δPvµ , (A.4)

T̃µρ(1) = Tµρ(1) + ρ′u′µδuρ + ρ′u′ρδuµ + u′µu′ρδρ+ δPhµρ . (A.5)

The defining condition for the transformed energy-momentum tensor (A.3) to be in Landau

frame is

u′νTµν = −Ẽ ′u′µ ⇔ T̃µ(1) = T̃µρ(1)hρνu
′ν ⇔ T̃µ(1)νu

′ν = 0 , (A.6)

where T̃µ(1)ν = −T̃µ(1)τν + T̃µρ(1)hρν which will be the case provided we have

Tµ(1)νu
′ν =

(
δẼ +

1

2
ρ′δu2

)
u′µ +

(
Ẽ ′ + P ′

)
δuµ . (A.7)

This can be solved for δs and δuµ (by contracting with τµ and hµρu
′ρ) to give

u′µδs+ s′δuµ = Tµ(1)ν

u′ν

T ′
, (A.8)
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s′δuµ = T σ(1)νΠ′
µ
σ
u′ν

T ′
, (A.9)

where Π′µσ = δµσ − u′µτσ, and where we used δẼ + 1
2ρ
′δu2 = T ′δs and Ẽ ′ + P ′ = T ′s′.

In Landau frame, it follows from (A.6) that the divergence of the entropy current (3.5)

reads

e−1∂µ (eSµ) =
1

T
Tµν(1)hνρu

ρLuτµ −
1

2T
Tµν(1)Luhµν + e−1∂µ

(
eSµ(1)non

)
, (A.10)

which we can equivalently express as

e−1∂µ (eSµ) = − 1

2T
Tµν(1) (Luhµν − hρνuρLuτµ − hµρuρLuτν) + e−1∂µ

(
eSµ(1)non

)
. (A.11)

This was used to rewrite the divergence of the entropy current in Section 5.

B Non-canonical entropy current from constitutive relations

In this appendix, we derive the form of the non-canonical entropy current from its constitutive

relations on flat space.

In Landau frame the divergence of the non-canonical entropy current must obey

e−1∂µ (eSµnon) =
1

2T
TµνHS (Luhµν − hρνuρLuτµ − hµρuρLuτν) . (B.1)

On flat space and in Cartesian coordinates, τµ, hµν and their inverses vµ and hµν are constant

and furthermore we can write

∂µS
µ
non =

1

T
TµHSν∂µu

ν =
1

2T
TµνHS (∂µuν + ∂νuµ) , (B.2)

where we defined uν = hνρu
ρ, which is a purely spatial object. The hydrostatic part of the

energy-momentum tensor must obey all the usual properties the full energy-momentum tensor

obeys. In particular, it must be symmetric in its spatial indices. To avoid clutter, we will

drop the subscript HS in this appendix.

The constitutive relations for the non-canonical entropy current and the hydrostatic momentum-

stress tensor Tµν take the form

Sµ(1)non = χµνρ∂νuρ , (B.3)

Tµν(1) =
1

2
ηµνρσ (∂ρuσ + ∂σuρ) +

1

2
ηµνρσrot (∂ρuσ − ∂σuρ) , (B.4)

at first order in derivatives (compare with (4.42) and note that the additional terms due to

torsion and extrinsic curvature are absent on flat space). The decomposition of the tensors

can be performed with the help of the tensors vµ, hµκuκ and hµν . We find

χµνρ = e1v
µhνρ + e2v

µhνκhρλuκuλ + e3v
µvνhρσuσ + e4h

µνhρσuσ + e5h
µρhνσuσ

+e6h
µρvν + e7h

µσhνρuσ + e8h
µκhνλhρσuκuλuσ + e9h

µκvνhρσuκuσ , (B.5)

ηµνρσrot = c1 (vµhνρhσκuκ + vνhµρhσκuκ − vµhνσhρκuκ − vνhµσhρκuκ)

+c2

(
hµκhνρhσλuκuλ + hνκhµρhσλuκuλ − hµκhνσhρλuκuλ − hνκhµσhρλuκuλ

)
.
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(B.6)

In deriving the constitutive relation for ηµνρσrot , we used the fact that16 vρ (∂ρuσ − ∂σuρ) =

vρ (∂ρuσ + ∂σuρ) so that we can choose the last two indices of ηµνρσrot to be spatial. We will

leave ηµνρσ unspecified, but it admits the same decomposition as in Section 5.

Equation (B.2) can be written as

χµνρ∂µ∂νuρ =
1

4T
ηµνρσ (∂µuν + ∂νuµ) (∂ρuσ + ∂σuρ)

+
1

4T
ηµνρσrot (∂µuν + ∂νuµ) (∂ρuσ − ∂σuρ)− (∂µχ

µνρ) ∂νuρ . (B.7)

We would like to solve this equation on shell. By ‘solving’ we mean finding expressions for

the coefficients e1 to e9. The left hand side only contains second order derivative terms, while

the right hand side only contains products of first order derivative terms. However, on shell

these are not independent, as we now discuss.

On flat space the equation of motion of the perfect fluid part, see equations (2.36), can be

written as

∂ρ log T = −1

2
Xρ

µν (∂µuν + ∂νuµ) , (B.8)

where Xρ
µν is defined in (2.37). If we differentiate both sides with respect to ∂σ and anti-

symmetrize in ρ and σ, we obtain a relation among second order derivatives and products of

first order derivatives. We seek a scalar equation like the left hand side of (B.7), and the only

way to obtain such an expression is to contract the curl of (B.8) with vρuσ. This leads to

Y µνρ∂µ∂νuρ =
1

2
vρuσ (∂ρXσ

µν − ∂σXρ
µν) (∂µuν + ∂νuµ) , (B.9)

where Y µνρ is defined by

Y µνρ = (vσuµ − vµuσ)Xσ
νρ . (B.10)

The condition that (B.7) does not contain any second order derivatives can be fulfilled

in two different ways. The first is to take χµνρ proportional to Y µνρ. The second option is

to take a χµνρ that is anti-symmetric in its first two indices χµνρ = −χνµρ. Using (B.5) the

latter is of the form

χµνρ = 2e1v
[µhν]ρ + 2e2v

[µhν]κhρλuκuλ + 2e5h
ρ[µhν]κuκ , (B.11)

where we have set the symmetric part χ(µν)ρ = 0. This latter condition leads to e6 = −e1,

e3 = e4 = e8 = 0, e7 = −e5 and e9 = −e2. We thus conclude that at this stage the most

general form of χµνρ is

χµνρ = fY µνρ + 2e1v
[µhν]ρ + 2e2v

[µhν]κhρλuκuλ + 2e5h
ρ[µhν]κuκ , (B.12)

where f is an arbitrary function. Compared to (B.5) we are now using a slightly different

parameterization, namely the right hand side of (B.5) has been applied to χµνρ− fY µνρ after

which we impose that the result is antiysmmetric in µ and ν. We hope that this will not cause

any confusion.

16This is a consequence of being on flat space, since vµ∂νuµ = uµ∂νv
µ = 0.
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Equation (B.7) has now been reduced to an equation involving only products of first order

derivatives and can be written as

0 = −f
2
vρuσ (∂ρXσ

µν − ∂σXρ
µν) (∂µuν + ∂νuµ) +

1

4T
ηµνρσ (∂µuν + ∂νuµ) (∂ρuσ + ∂σuρ)

+
1

4T
ηµνρσrot (∂µuν + ∂νuµ) (∂ρuσ − ∂σuρ)− (∂µχ

µνρ) ∂νuρ . (B.13)

The first three terms do not contain any term of the form Xµνρσ (∂µuν − ∂νuµ) (∂ρuσ − ∂σuρ),
where Xµνρσ is purely spatial, i.e. all contractions with τµ give zero. Any such term arising

from (∂µχ
µνρ) ∂νuρ must therefore have a vanishing coefficient. Such a term does indeed arise:

its coefficient is e5, and so we conclude that e5 = 0.

Using that e5 = 0 and the form of χ derived in (B.12), we conclude that at this stage the

most general allowed non-canonical entropy current (B.3) is

Sµ(1)non =
(
fY µνρ + 2e1v

[µhν]ρ + 2e2v
[µhν]κhρλuκuλ

)
∂νuρ . (B.14)

Using equations (B.10) and (B.8), this can also be written as

Sµ(1)non =
f

T
(vµuν − vνuµ) ∂νT + e1∂ν (vµuν − vνuµ) +

e2

2
(vµuν − vνuµ) ∂νv

2 , (B.15)

where we also used that uµ = −vµ + hµκuκ and that the background tensors are assumed to

be constant. Moreover, we remind the reader that uµ = (1, vi), so that we may write u2 = v2.

We now use the freedom that we can add an identically conserved current to the entropy

current, as we are not classifying such terms. We can thus write

Sµ(1)non =
f

T
(vµuν − vνuµ) ∂νT + e1∂ν (vµuν − vνuµ) +

e2

2
(vµuν − vνuµ) ∂νv

2

+∂ν [g (vµuν − vνuµ)] , (B.16)

for any function g. If we then choose g such that ∂g
∂T = − f

T we obtain the non-canonical

entropy current

Sµ(1)non = G∂ν (vµuν − vνuµ)− F

v2
(vµuν − vνuµ) ∂νv

2 , (B.17)

where G = e1 + g and F = −v2e2
2 − v2 ∂g

∂v2
. We thus recover the result (4.72) written in flat

space.

The divergence of (B.17) must obey

∂µS
µ
(1)non =

1

4T
ηµνρσ (∂µuν + ∂νuµ) (∂ρuσ + ∂σuρ) +

1

4T
ηµνρσrot (∂µuν + ∂νuµ) (∂ρuσ − ∂σuρ) .

(B.18)

We can solve this equation for the coefficients c1 and c2 in (B.6) as well as for those that

appear in the symmetric part of ηµνρσ = ηρσµν in terms of F and G, but we will refrain from

giving the explicit result. Instead we refer to Section 4 for such expressions.
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(2016) 170, arXiv:1606.06747 [hep-th].

42

http://dx.doi.org/10.1103/PhysRevLett.35.1678
http://dx.doi.org/10.1103/PhysRevLett.35.1678
https://link.aps.org/doi/10.1103/PhysRevLett.35.1678
http://dx.doi.org/10.1038/ncomms9188
http://dx.doi.org/10.1088/1361-648X/aaa274
http://dx.doi.org/10.1088/1361-648X/aaa274
http://arxiv.org/abs/1710.08425
http://dx.doi.org/10.1088/2515-7639/aaf8fb
http://dx.doi.org/10.1088/2515-7639/aaf8fb
http://arxiv.org/abs/1803.03549
http://arxiv.org/abs/1803.03549
http://dx.doi.org/10.1007/JHEP12(2019)115
http://arxiv.org/abs/1909.06377
http://dx.doi.org/10.1103/PhysRevD.80.126003
http://arxiv.org/abs/0905.3183
http://dx.doi.org/10.1103/PhysRevD.80.126004
http://arxiv.org/abs/0907.4755
http://arxiv.org/abs/0907.4755
http://dx.doi.org/10.1088/1126-6708/2009/03/070
http://arxiv.org/abs/0812.5088
http://dx.doi.org/10.1007/JHEP09(2011)017
http://arxiv.org/abs/1105.6335
http://dx.doi.org/10.1007/JHEP03(2014)050
http://arxiv.org/abs/1312.6380
http://dx.doi.org/10.1007/JHEP12(2015)076
http://arxiv.org/abs/1508.02494
http://dx.doi.org/10.1007/JHEP03(2017)041
http://arxiv.org/abs/1611.04773
http://dx.doi.org/10.1007/JHEP11(2016)170
http://dx.doi.org/10.1007/JHEP11(2016)170
http://arxiv.org/abs/1606.06747


[45] M. Garbiso and M. Kaminski, “Dispersion relations in non-relativistic two-dimensional

materials from quasinormal modes in Hrava Gravity,” JHEP 10 (2019) 087,

arXiv:1905.11993 [hep-th].

[46] J. Toner, Y. Tu, and S. Ramaswamy, “Hydrodynamics and phases of flocks,” Annals of

Physics 318 (2005) no. 1, 170–244.

[47] A. Cavagna, D. Conti, C. Creato, L. Del Castello, I. Giardina, T. S. Grigera, S. Melillo,

L. Parisi, and M. Viale, “Dynamic scaling in natural swarms,”Nat. Phys. 13 (09, 2017)

914–918. http://dx.doi.org/10.1038/nphys4153.

[48] H. Watanabe and H. Murayama, “Nambu-Goldstone bosons with fractional-power

dispersion relations,” Phys. Rev. D89 (2014) no. 10, 101701, arXiv:1403.3365

[hep-th].

[49] A. Nicolis, R. Penco, F. Piazza, and R. Rattazzi, “Zoology of condensed matter:

Framids, ordinary stuff, extra-ordinary stuff,” JHEP 06 (2015) 155, arXiv:1501.03845

[hep-th].

[50] L. Alberte and A. Nicolis, “Spontaneously broken boosts and the Goldstone

continuum,” arXiv:2001.06024 [hep-th].

[51] S. Hollands, A. Ishibashi, and D. Marolf, “Counter-term charges generate bulk

symmetries,” Phys.Rev. D72 (2005) 104025, arXiv:hep-th/0503105 [hep-th].

[52] R. Penrose, Structure of space-time in Battelle Rencontres; ed. C. M. de Witt and J. A.

Wheeler. New York: Benjamin, 1968.

[53] M. H. Christensen, J. Hartong, N. A. Obers, and B. Rollier, “Torsional Newton-Cartan

Geometry and Lifshitz Holography,” Phys.Rev. D89 (2014) 061901, arXiv:1311.4794

[hep-th].

[54] G. Festuccia, D. Hansen, J. Hartong, and N. A. Obers, “Torsional Newton-Cartan

Geometry from the Noether Procedure,” Phys. Rev. D94 (2016) no. 10, 105023,

arXiv:1607.01926 [hep-th].
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