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Abstract

We consider uncharged fluids without any boost symmetry on an arbitrary curved background
and classify all allowed transport coefficients up to first order in derivatives. We assume rota-
tional symmetry and we use the entropy current formalism. The curved background geometry
in the absence of boost symmetry is called absolute or Aristotelian spacetime. We present
a closed-form expression for the energy-momentum tensor in Landau frame which splits into
three parts: a dissipative (10), a hydrostatic non-dissipative (2) and a non-hydrostatic non-
dissipative part (4), where in parenthesis we have indicated the number of allowed transport
coefficients. The non-hydrostatic non-dissipative transport coefficients can be thought of as
the generalization of coefficients that would vanish if we were to restrict to linearized perturba-
tions and impose the Onsager relations. For the two hydrostatic and the four non-hydrostatic
non-dissipative transport coefficients we present a Lagrangian description. Finally when we
impose scale invariance, thus restricting to Lifshitz fluids, we find 7 dissipative, 1 hydrostatic
and 2 non-hydrostatic non-dissipative transport coefficients.
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1 Introduction

Hydrodynamics arises as the universal description of interacting systems near local thermal
equilibrium in the long wavelength limit, which makes hydrodynamics indispensable as an
effective theory for a broad class of physical phenomena. Once a hydrodynamic description is
established for a system, its evolution is governed by the hydrodynamic equations of motion,
which express the conservation of currents such as the energy-momentum tensor. The relevant
currents are parametrized in terms of fluid variables such as temperature, fluid velocity and
chemical potential via the constitutive relations — see e.g. [1,2].

In the standard treatment of hydrodynamical frameworks some type of boost symmetry
is assumed, namely Galilean boost symmetry for non-relativistic hydrodynamics and Lorentz
boost symmetry for its relativistic counterpart. Consequently, these symmetries are present
in the well-known Navier-Stokes equations [1] and relativistic hydrodynamics [2] or magneto-
hydrodynamics [3-6] respectively. While these boost symmetries are conventionally assumed,
there is no a priori reason to require any type of boost symmetry in the formulation of hy-
drodynamics.! From a theoretical point of view they are not necessary as the hydrodynamic
equations generally follow from conservation of energy/momentum and other charges, which
in turn are connected to time/space translations and possible extra global symmetries. Boost
symmetries, on the other hand, provide relations between components of the various currents,
and are as such not an essential ingredient, though they are reflected as extra symmetries of
the resulting hydrodynamic equations. In fact, as we will return to in more detail shortly,
there exist many physical systems that do not exhibit boost symmetry. In particular, as soon
as there is a preferred reference frame, i.e. a medium with respect to which the fluid moves,
this symmetry will be broken. Moreover, breaking of boost symmetry also occurs in critical
systems with scaling symmetry characterized by a generic dynamical exponent z, i.e. systems
with Lifshitz symmetry. Importantly, the no-go theorem of [9] says that, when z # 1,2, such
systems cannot exhibit boost symmetry if they allow for a fluid description. A similar no-go
theorem was found in Ref. [10] from a field theoretic point of view.

A systematic treatment of perfect fluids with translation and rotation symmetries, appli-
cable in the absence of any type of boost symmetry was first given in [9]. In a subsequent
work [11] the first-order hydrodynamics and transport for these perfect fluids was studied
when linearizing around a zero velocity background.

The primary aim of this paper is to complete this first-order analysis, as announced in [11],
by extending it to the full non-linear level. In particular, we will analyze such fluids up to first
order in derivatives for arbitrary fluid velocity backgrounds on curved absolute spacetime and
find all dissipative and non-dissipative transport coefficients. Moreover, among the latter we
will identify those that are hydrostatic and those that are not. We remark that, following the
works [9, 11], first-order corrections to non-boost invariant hydrodynamics on flat space were
also pursued in Ref. [12] (which also includes a U(1) current).? Furthermore, hydrodynamics

! Assuming spatial rotational symmetry is not necessary either, though often taken as an extra symmetry
as is also the case in the present work. Hydrodynamics for anisotropic systems has been studied in several
places, e.g. in [7,8].

2 At the level of constitutive relations the present work agrees with [12]. However comparing the implications
of the non-negativity of entropy production and the properties of the non-dissipative transport coefficients



of systems without boosts has been addressed previously (see e.g. [13,14] and [15-17]) but our
starting point, the perfect fluid thermodynamics introduced in [9], differs from these works.

Our hydrodynamic description starts from the perfect fluid energy-momentum tensor for
non-boost invariant systems obtained in Ref. [9]. This includes a new thermodynamic vari-
able, the kinetic mass density p, which is the thermodynamic dual of the magnitude of the
fluid velocity squared, v2. Furthermore, as an immediate consequence of the absence of boost
symmetry, all extensive thermodynamic quantities now also depend on the extra intrinsic ther-
modynamic quantity v. The analysis of [9] shows that this more general class of perfect fluids
leads to corrections to the Euler equations, which might be observable in hydrodynamic fluid
experiments. One also finds new expressions for the speed of sound in perfect fluids, reducing
to known results when boost symmetry is present. A concrete realization of this framework
can be obtained by considering an ideal gas of Lifshitz particles, enabling for example to
obtain expressions for the speed of sound for corresponding classical and quantum Lifshitz
gases [9]. Furthermore, the linearized first-order analysis in [11] has provided novel expres-
sions for the linearized Navier—Stokes equation including new dissipative and non-dissipative
first order transport coefficients.

As is well known, in order to account for dissipative effects, the conserved currents entering
the effective description are expanded to a given order in derivatives of the hydrodynamic fields
under the assumption that these derivative corrections are small compared to some intrinsic
length scale of the microscopic system (e.g. the mean free path). In the currents — and
therefore also in the resulting hydrodynamic equations of motion — each independent derivative
correction term is multiplied by a transport coefficient, such as viscosity and conductivity.
The values of these coefficients are constrained by the requirement that the divergence of
the entropy current is non-negative and, additionally, by the Onsager relations (or, rather,
their appropriate generalization: absence of anti-symmetric transport) in systems with time
reversal symmetry. For systems with a microscopic description, the specific form of certain
transport coefficients can be determined via Kubo formulae. If a system admits a gravitational
dual, further relations abound: notably, it has been shown via the AdS/CFT correspondence
that shear viscosity divided by entropy density is equal to ﬁ for a strongly coupled plasma
in N' = 4 supersymmetric Yang-Mills theory [18].

To obtain the first-order hydrodynamics for non-boost invariant systems® following the
paradigm reviewed above, the analysis of this paper makes crucially use of the geometry that
is connected to non-boost invariant fluids along with the power of hydrostatic partition func-
tions and the entropy current formalism. The geometry on which non-boost invariant fluids
live is the geometry that realizes (locally) only translational (space and time) and rotational
symmetries. * These symmetries are sometimes called Aristotelian and the corresponding ge-
ometry is that of curved absolute spacetime, which thus can also be referred to as Aristotelian

geometry.

requires one to extract the necessary details from the accompanying Mathematica notebooks of Ref. [12],
making it challenging to perform an extensive mapping of our final results.

3In the way we set up our calculations, we consider fluids which could have relativistic or Galilean boosts.
The Carrollian boost invariant fluid as realized in e.g. [9,19] will not be considered in the present work. This
specific situation will be treated in [20].

4Similarly, non-relativistic (Galilean) fluids live on the geometry that locally realizes these symmetries and
in addition Galilean boosts, i.e. Newton-Cartan geometry. This was used in e.g. [19,21-24].



An interesting feature of non-boost invariant fluids is the appearance of non-dissipative
transport coefficients at first order, alongside dissipative transport coefficients [11,12]. By
applying the entropy current constraint to the full non-linear constitutive relations we show
in this paper that there are 10 dissipative transport coefficients and 6 non-dissipative ones.
Following [25,26], one can further separate the non-dissipative ones into two types, hydrostatic
and non-hydrostatic, which in the present case turns out to be 2 and 4 transport coefficients,
respectively. For the case of Lifshitz fluids, these numbers become 7, 1 and 2, respectively. We
will show that both the hydrostatic and non-hydrostatic transport coefficients can be obtained
using Lagrangian methods. The hydrostatic transport coefficients feature in the non-canonical
part of the entropy current and coincide with contributions that can be computed using an
action principle obtained by allowing for time dependence in the hydrostatic partition function,
see e.g. [27,28] and the earlier works [29,30]. Furthermore, we find that when restricting
to linearized perturbations all the non-hydrostatic transport coefficients vanish due to the
Onsager relations.

We now return to a brief discussion of the physical relevance of non-boost invariant hy-

drodynamics, before presenting an outline of the paper.

Relevance of non-boost invariant hydrodynamics

As remarked above, for many systems in nature one does not have the luxury of assuming
boost symmetry. In condensed matter, for example, one can study critical points where boost
symmetries are absent [31]. The Lifshitz critical point [32] is an example of this and related
recent papers include quantum critical transport in strange metals, see e.g. [33], electrons in
graphene [34] and viscous electron fluids [35]. With this application in mind, it is shown in the
original Refs. [9,11] how the framework of non-boost invariant hydrodynamics can be adapted
to (non-relativistic) scale invariant fluids with critical exponent z. This includes particular
expressions for the speed of sound in generic z Lifshitz fluids as well as specific results for
the first-order transport coefficients in the linearized case. In particular, it was shown that
the sound attenuation constant depends on both shear viscosity and thermal conductivity.
The framework was also recently used in [36] to study out-of-equilibrium energy transport
in a quantum critical fluid with Lifshitz scaling symmetry following a local quench between
two semi-infinite fluid reservoirs. It is also interesting to note that Lifshitz hydrodynam-
ics is relevant in connection with non-AdS holographic realizations of systems with Lifshitz
thermodynamics [23, 37-40], see also [41-45].

More generally non-boost invariant hydrodynamics is of relevance to any system with a
reference frame, such as aether theories or in various active matter systems exhibiting e.g.
flocking behavior, see e.g. [46] and [47] for a recent example. General active matter systems
typically do not have conserved energy or momentum as the divergence of the energy and
momentum currents is equal to ‘driving’ terms. Non-boost invariant hydrodynamics is only
an approximate description for configurations that are close to equilibrium configurations at
‘cruising speed’ where the driving terms vanish.

Assuming that the fundamental laws of physics are Lorentz invariant, the necessity of some
type of reference frame to obtain a system with broken boosts is obvious. Dispersion relations

which are non-analytic and incompatible with boost invariance, such as those of capillary



waves and domain-wall fluctuations in superfluid interfaces (ripplons), see for example [48],
do indeed describe the propagation of particular fluctuations with respect to a medium. But
in order to have a hydrodynamic description of excitations with respect to a medium, we
also need that energy and momentum of these excitations are approximately conserved. This
is a non-trivial requirement, and requires a relatively weak coupling of the excitations to
the medium. In addition, in order to be in the hydrodynamic regime, the interaction times
and length scales of the excitations with themselves must be much smaller than those of the
excitations with the medium. For example, for electrons in a crystal, the electron-electron
scattering rate must be much higher than the rate for scattering of impurities and phonons
in order to possibly have hydrodynamic flow [34]. Obviously, it is an extremely interesting
question to find physical systems where all these conditions apply, which we will not address
in this paper.

It is of separate interest to understand systems with broken boost symmetry from an
effective field theory point of view. Here, the boost breaking arises because we integrate
out the degrees of freedom of the medium in a state which breaks the boost symmetry, for
example because the medium has a fixed density or particle number. In [49] a classification of
condensed matter systems that break boost symmetry but preserve rotation and translation
invariance was presented. The simplest possibility presented there was a so-called type I
framid, which is a system where the unbroken spacetime translation and rotation generators
are unmodified in the presence of a boost-breaking state. Curiously, this possibility does not
seem to be realized in nature, which was also seen in a recent analysis of the structure of
Goldstone bosons associated to boost breaking [50]. In such a putative type I framid the
expectation value of the energy-momentum tensor must be proportional to the metric with
the sum of the energy density and the pressure equal to zero. This is similar to the effective
energy-momentum tensor one can associate to a cosmological constant, and also the form of
the energy-momentum tensor in the presence of additional ‘Carroll’ boost invariance [9]. It is
unclear whether any systems in nature properly realize Carroll symmetry and this observation
may be in fact equivalent to the non-existence of type I framids. For a more detailed discussion
of systems with (approximate) Carroll symmetry, we refer the reader to [20].

A simple example which gives rise to a system without boost invariance and which does
appear in nature is a superfluid with a spontaneously broken U(1) symmetry. These are
systems which contain a coupling [ dd“xAuJ # and where A, acquires an expectation value
A, = )\52. This is reminiscent of a chemical potential, except that here J* is not assumed
to be conserved once A # 0. If X\ is constant the system remains invariant under translations
and rotations. Our hydrodynamical description will still be a good approximation as long
as |0,A| < || so that energy and momentum are approximately conserved. To find the
energy-momentum tensor of the theory, it is convenient to use vielbeins to convert curved
into flat indices, and to assume that A, = A60. This is now a scalar and not a tensor from the
spacetime point of view, and one can obtain a conserved stress-tensor by varying with respect
to the vielbeins as described in e.g. [51]. The result of this computation is a new stress tensor
of the form T},J% ~ le’lyd + Ju A, which is clearly not symmetric and therefore incompatible
with boost invariance. Moreover it shows that the new generator of time translations is a

linear combination of the old generator plus the U(1) current. As described in detail in [49],



other breaking patterns are also possible.

Outline

The paper is organized in the following way. In Section 2, we recap and establish facts about
perfect boost-agnostic® fluids and Aristotelian geometry. Next, in Section 3, we formulate
the entropy current on curved spacetime and define three sectors of transport: hydrostatic
non-dissipative, non-hydrostatic non-dissipative and dissipative transport. Subsequently, in
Section 4, we present a Lagrangian description of both hydrostatic and non-hydrostatic trans-
port and furthermore we connect the Lagrangian formulation to the non-canonical contri-
butions to the entropy current. Finally, in Section 5 we obtain and combine all first order
transport coefficients using constitutive relations. We end with a discussion and outlook in
Section 6. Two appendices are included. Appendix A presents the features of hydrodynamic
frame transformations from a generic frame to the Landau frame. Appendix B presents the
details of the derivation of the non-canonical entropy current by using constitutive relations
(as opposed to an action formulation as done in Section 4).

2 Non-boost invariant perfect fluids and geometry

2.1 Perfect fluids on flat spacetime

Consider a charged perfect fluid in (d+ 1)-dimensions, which has spatial rotational invariance
and translational invariance in both time and space, as was studied in [9,11]. One can choose
the fluid variables to be chemical potential u, temperature 7" and fluid velocity v’. These
variables are allowed to depend on space and time. It is assumed, however, that locally there
exists a thermodynamic equilibrium. We furthermore assume pressure P to be a function of u,
T and v2. In other words, we assume the equation of state to be of the form P = P(T, u, v?).
Through the Gibbs-Duhem relation,

1
dP = sdT + ndp + §pdv2 , (2.1)

we can express entropy density s, charge density n and kinetic mass density p in terms of the
fluid variables. Finally, we have the Euler relation

£ =—P+sT+ pn+ pv*, (2.2)

which expresses the total energy density £ in terms of the fluid variables. In the presence of
a boost symmetry, the corresponding Ward identity implies that the term containing kinetic
mass density in (2.1) and (2.2) can be absorbed into the other fluid variables [9,11]. This leads
to velocity independent thermodynamic relations — a hallmark of boost invariant systems.
The conserved currents, energy-momentum tensor 7*, and charge current J* can all be
expressed as functions of the fluid variables in a derivative expansion, the form of which is
dictated by the symmetry of the problem. The divergence of these conserved currents gives

SWe sometimes use the terminology ‘boost-agnostic’ (instead of non-boost invariant) to highlight the fact
that the analysis holds in principle for any fluid regardless of whether it has boost symmetries or not.



rise to the dynamics of the fluid. The most general homogeneous and isotropic perfect fluid,
i.e. at zeroth order in derivatives, is characterized by [9, 11]

T =-€, Tho=—-(E+P)', T%=pv;, T';j=Ps;+p'v;, (2:3)

JP=n, J=mt. (2.4)

Here we presented the fluid written in the LAB frame, in which the observer is at rest. For

fluids without boost symmetries, it is useful to define the internal energy
E=E—p?, (2.5)
in terms of which the Euler and Gibbs-Duhem relations read
E4+P=Ts+ un, d€ + %pva = Tds + pdn, dP = sdT + ndp + %pdzﬂ . (2.6)

In the subsequent analysis, we will drop the charge current.

2.2 Curved geometry for non-boost invariant fluids

Fluids without boosts live on the geometry of absolute spacetime, which, due to Penrose, is
sometimes referred to as Aristotelian geometry [52]. This geometry locally realizes Aristotelian
symmetries consisting of translations in time and space along with rotations.

We define an Aristotelian geometry in terms of a 1-form 7, (clock-form), along with
a symmetric covariant tensor h,, (spatial metric), where, notably, neither field has been
assigned any local tangent space transformations. The signature of hy, is (0,1,...,1). We
emphasize that this is different from (torsional) Newton—Cartan geometry (see e.g. [53-55]), in
which h, is endowed with transformation properties corresponding to local Galilean boosts.
Likewise, in Carrollian geometry (see for example [56]), it is 7, — but not hy,, — that transforms
under local Carrollian boosts. In the more familiar case of Lorentzian geometry, both 7, and
h,u transform under local Lorentz transformations in such a way that v, = —7,7, + hu
remains invariant.

In this way, Galilean®, Carrollian, and Lorentzian geometries all arise as special cases of
Aristotelian geometry via the imposition of specific local tangent space transformations on
the geometric data 7, and hy,.

Because of the signature of h,,,, we can decompose it into vielbeins in the following manner
b
v

huw = 5abeZe , (2.7)

where a = 1,...,d and p takes d + 1 values. The spatial vielbeins e, transform under local
SO(d) transformations. Note that the square matrix (7, €}}) is invertible with inverse denoted
by (vH,eh) — these objects satisfy the following orthonormality relations

a b b
v, = -1, vtey, =0, e, =0, ehe, =0g- (2.8)

5We remark that in order to obtain torsional Newton—Cartan geometry from Aristotelian geometry, we need
an extra gauge field. See e.g. [55,57] and references therein.



Furthermore, these fields satisfy the completeness relation

—vtT, +elle], =0 . (2.9)

The determinant of (7, ej;) will be denoted by e, i.e.

e = det(7y,€),) - (2.10)

For completeness, we remark that it is in general possible to choose an affine connection Ff;,,
that obeys
Vur, =0, Vihy, =0. (2.11)

Let us make the following ansatz for I‘l);y:
1
I, = -0 + 5}&“ (Ouhww + Ovhpr — Oxhy) — K1, Ky + C,, (2.12)
where we introduced the extrinsic curvature
1
K/j,l/ = _iﬁvhuy . (213)
The extrinsic curvature is purely spatial,
K, =0, (2.14)
and its trace satisfies
K :=h"K,, = —e'0,(ev"), h" =§%elel (2.15)
The equations (2.11) are obeyed if we take
C/i\uT)\ =0, C//L\uh)\p + Cﬁ\phu)\ =0. (2.16)

We can for example choose a connection with C’ﬁ‘l, = (. This connection has non-zero torsion
given by
1 1 1
F[);Lu] = _52})\7—!“/ + ZhAHTl/‘thun - ZhAHT,uAthw{ ) (217)

where we defined the torsion 2-form
Tuv = 8u7-1/ - aVTp, . (218)

We have included the discussion of the connection for completeness. However, we will
never use any particular connection in this paper. Up to first order in derivatives we can
make do with Lie derivatives, exterior derivatives and divergences. At second order in the
derivative expansion, however, a choice must be made in order to write down curvatures.

Finally, we remark that flat Aristotelian spacetime in Cartesian coordinates corresponds
to

Ry = 6.0 e Y o o 4 (2.19)

_ 50
TH_(S urvo i vt 0

oo

where we split the spacetime index p = (0,7) into temporal and spatial directions.



2.3 Perfect fluids on a curved background

Consider a perfect fluid living on an Aristotelian geometry described by {7, , h, } with fluid
velocity u* satisfying

utr, =1. (2.20)

On flat space, u* = (1,v"), and the curved space analogue of v? is u? = hyutu”. When
combined with the completeness relation (2.9) this implies the following decomposition of the
fluid velocity u*,

u = —vt 4+ WPhyu” (2.21)

in terms of timelike and spacelike components, respectively. The perfect fluid energy-momentum
tensor (2.3) generalized to a curved background reads [9] (see also Section 4.2)

T, = — (c‘f +P+ pu2) u't, + putuPhy, + POl . (2.22)
Using the property (2.20), this can also be written as
T, = ' | = (E+ P+ pu) 7,1, + phy | + POl (2.23)

It is furthermore useful to express the energy-momentum tensor T#, as

T, = =T"1, + T' h,), . (2.24)

where
TH = Eut 4+ Ph*Phy,u” (2.25)
T = Ph* + putu" (2.26)

are the energy current and momentum-stress tensor, respectively, and where the relation
between £ and € is given in (2.5).

If we are dealing with a theory on a generic curved Aristotelian background for which
there is an action principle, then diffeomorphism invariance implies the following conservation

equation for the energy-momentum tensor
1
e 0, (eT*,) + T, — 51" 0ol = 0. (2.27)

This will be shown in Section 4.2. When we are dealing with an on-shell theory (as we are
in the case of dissipative fluids) then we simply impose (2.27) as the correct conservation
equation. This is the analogue of declaring V,T"” = 0 to be the conservation equation in the
relativistic case. Notice that in flat space (in Cartesian coordinates), Eq. (2.27) reproduces
the usual divergence of the energy-momentum tensor, as it is supposed to. The first term
expresses the usual divergence of the energy-momentum tensor, while the remaining terms
are currents contracted with their sources, on which a derivative acts. It thus takes the
standard form of a divergence of a current being equal to the sum of the responses times the
derivative of the sources. For completeness, we remark that the equation of motion (2.27)
admits the covariantization

— e 10,e) T7, + 21, ;T\ = 0, (2.28)

1
V. TF,+TH'V 7, — §Tﬂ<’vph,w - (Th,



for any choice of connection I'f, .
It is useful to recast the equation of motion (2.27) for the perfect fluid (2.25)—(2.26), using

the thermodynamic relations (2.6), in the following form

0= Lss+ gh“” (Lshpy — ot L7y — hyeu® LaTy) | (2.29)
0 = II” hpy [—sTh)‘“EgTM + u’\Egp
+§ ( Sy YL uAh’m) (Lohnp — hnot” LaTy — huou® LgTe) |, (2.30)

where we introduced the spatial projector
7, =6 —u’ry, (2.31)
which satisfies
It =0=10"°,7,, II",0°, =TI, . (2.32)
Furthermore, the Lie-derivative Lg in (2.29) and (2.30) is defined with respect to the vector
gt =ut/T. (2.33)

In the remainder of this section we establish some identities that will be crucial later
on. Equation (2.29) expresses entropy conservation and (2.30) represents conservation of
momentum. Using that s and p can both be thought of as functions of 7" and u? along with
the identities

1
uLgT, = —ﬁu“(?“T, (2.34)
T Loug 2 u’ i
utu’ Lghy, = T Ouu —QEU o0,T, (2.35)
where u? = hywutu”, we can view the perfect fluid equation as providing L7, in terms of

Ly — hyuou® Loty — hyou LaTy, ie.
1
LgT, = EXp“V(EBhW — huou® LT, — hyou’ LaT,) | (2.36)

where X,/ is given by

osT* ou2

1 P
o [u“u” (g@’) e (i) } . (2.37)
u? u?

The expression in parentheses on the RHS of (2.36) has the nice property that

1 P
XM = 11 {2 <a > hoxu W +2 <§£’2> hoxudu? + p (w6} + u” 5L) }

1
Lghuy — huou’ LT, — hyou’ LgT, = T (Luhpy = hpuou® LyT, — hyou’ LyT,) | (2.38)
so that these are Lie derivatives along velocity with, notably, an absence of T' derivatives.
Finally, we remark that on flat space (cf. Eq. (2.19)), this special combination reduces to

a ].
L — huot® LT, — hyou® Lat, 3 7 (had® + hgdya) (2.39)

which will be useful in Section 5, where — after setting up the general problem of first-order
corrections to non-boost invariant fluids — we specialize to flat space.



3 Entropy current

Going beyond perfect fluids means moving away from local thermodynamic equilibrium and
requires derivative corrections to be added to the energy-momentum tensor. We will work up
to first order in derivatives. The goal will be to identify all allowed tensorial structures whose
coefficients are known as transport coefficients. By ‘allowed’ we mean ‘allowed by symmetry’
and furthermore ‘allowed by entropy considerations’. We will impose that the fluid locally
obeys the second law of thermodynamics, and hence there must exist an entropy current S*
with non-negative divergence

e 9, (eS*) > 0. (3.1)

By the entropy current we mean the most general current, constructed from the fluid variables,
up to first order in derivatives such that it reduces to su* for a perfect fluid and such that its
divergence is non-negative for all fluid configurations. The requirement that the divergence
of the entropy current is non-negative constrains the transport coefficients appearing in the
expansion of the energy-momentum tensor. In this section, we elucidate the structure of the
entropy current beyond perfect fluid order and, in particular, show that the appropriate fluid
variables on curved space involve Lie derivatives of the geometric objects 7, and h,, along

B = ut
=%,
The canonical part of the entropy current is obtained by covariantizing (see e.g. [2]) the

thermodynamic Euler relation (2.6)

1~ 1
== —P 2
s TS +5P, (3.2)
leading to
S(/;Lan =-T",p" + Pp", (33)

such that TMSéLan = s for a perfect fluid. However, there are generically terms present in the
entropy current that do not arise in this way: such terms form the non-canonical piece of the
entropy current, Shon, and we may in general write

St = SE 4 SK = _TW, B4 PRE 4+ SE (3.4)

can non

Using the decomposition of the entropy current (3.4), we can recast the LHS of the second
law (3.1) as

- 1 ” v -
10y (e5") = (T = Tfy)) Lom - > (77 =Tl ) Lot + ¢ 0y (Shion) (3.5)
where we used the Gibbs-Duhem relation (2.1) as well as
T{o\ L ST L g = €10, (P 3.6
() BTM+§(0)5W*€ i (ePB") (3.6)

with the perfect fluid energy-momentum tensors T (’6) and T (‘g)’ given in Eqgs. (2.25) and (2.26).
Here, the subscript (0) indicates that these terms are zeroth order in derivatives and thus

correspond to the perfect fluid contributions.
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Following the classification in refs. [25,26], we split the currents T# — T, (‘6) and THY — T(‘g)',
which are at least first order in derivatives, into dissipative and non-dissipative parts. The
latter are further subdivided into hydrostatic (HS) terms and non-hydrostatic (NHS) terms,
to be defined shortly, so that we find

T — Tl = Th + Ths + Tug - (3.7)

T — Ty = T + Ths + Tis - (3.8)

We will now define these three contributions separately. They should be thought of as inde-
pendent contributions to the energy-momentum tensor and they all have the same symmetry
properties with respect to rotations (and boosts or scale symmetries if these are present).
For example spatial rotational symmetries dictate that T]S”', T I‘{‘g and T; IGIV{S are all separately
symmetric under the interchange of 1 and v.

The dissipative terms produce entropy,

1
e 10, (eS") = Th LT, — 310 Lol 20, (3.9)

with equality holding if and only if T/ = T5” = 0, while the non-dissipative NHS terms by
definition obey,

L
ThusLomn — 5 Thins Lol =0 (3.10)

These terms thus make a vanishing contribution to the divergence of the canonical entropy
current. Finally, the non-dissipative HS terms are defined to cancel the divergence of the

non-canonical entropy current,
1
-1
e 0y (eShy) = —Ths Loty + §ngﬁghw, : (3.11)

and will play a major role in the next section.

The goal of this work will be to classify the allowed terms appearing in the three parts:
D, HS and NHS of the energy-momentum tensor. We will start this analysis with a detailed
study of the HS and NHS terms for which it is possible to write down a Lagrangian.

4 Non-dissipative transport

In this section we study Lagrangian descriptions of non-dissipative transport. We will see
in Section 5 and Appendix B, by looking at constitutive relations, that at first order in
derivatives all non-dissipative transport coefficients can be obtained from an action. We start
with the hydrostatic partition function for fluids in thermal equilibrium. This requires curved
backgrounds admitting a Killing vector that generates time translations. We will then relax
the condition that there is a Killing vector, moving away from thermal equilibrium. This
leads to an action for HS transport. The relaxation of the presence of a Killing vector allows
for more terms to be added to the action. These extra terms all correspond to NHS transport

as we will show in the last subsection of this section.
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4.1 Hydrostatic partition function

If we assume a stationary curved background Mg with a time-translation symmetry generated
by H, we can write down the thermal partition function

Z=Tr [e*H/T} , (4.1)

which, provided the Aristotelian background curves sufficiently weakly compared to the mean
free path, is known as the hydrostatic partition function or the equilibrium partition function
[27,28] (see also [21] for the construction of the hydrostatic partition function in the context of
Newton—Cartan backgrounds). The time-translation symmetry implies that (4.1) gives rise to
static responses. Phrased in the language of geometry, we take the time-translation symmetry
of the background, which is described by 7, and h,,, to be generated by a timelike Killing

vector B*, where g* = (1,0,...,0) in suitable coordinates. Timelike (and future pointing)
means that 7,8 > 0. The Killing equations for an Aristotelian geometry are’

LT, =0, (4.2)

E/Bhwj =0. (4.3)

These conditions imply equilibrium via (2.36) as they trivially solve the leading order equations
of motion. The vector S* leads to a preferred choice of local temperature and velocity given
by

T = 1/(ruf") (4.4)
ut = TB", (4.5)

where the velocity u# satisfies 7,u* = 1, cf. (2.20). We see that the requirement of positive
temperature is equivalent to the requirement that 3# is future-pointing timelike, i.e. 7,8 > 0.

To make contact with the thermal partition function (4.1), we need to analytically continue
‘time’, which we identify with the affine parameter \; along integral curves of B#, Ay — —iAF.
We then compactify this to the ‘thermal circle’ by identifying A\’ ~ A’ 4+ 1/7. In this way,
a functional integral over the Euclideanized manifold will return the partition function Z in
(4.1). Now, Z itself can be written in a derivative expansion, and by writing

SHPF = —1 logZ 5 (46)
we can now also expand Sgpg in derivatives

SHPF = Z SI({n}ZF ; (4.7)

where SI({ngF takes the form of an integral over Mg built from objects with n derivatives. With

a slight abuse of terminology, we will refer to Sypr as the hydrostatic partition function.

"The field huy is constrained to have one zero eigenvalue, so one can write it as hu, = éabeZei’, in terms of
unconstrained spatial vielbeins. Since the latter transform under local rotations, the Killing vector equation
(4.3) can equivalently be written as

Lpe,, = )\abefu

where A%, = —\p® is an infinitesimal local rotation.
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In order to construct the hydrostatic partition function explicitly, we need to identify
the allowed terms up to first order in derivatives taking into consideration the conditions
of thermal equilibrium on a curved background imposed by the Killing equation. The first
Killing equation (4.2) can be written as

T-'9,T — " (0,7, — 9,7,) =0, (4.8)

while the second Killing equation (4.3) can be written as

uf u”
‘Cuhulj - ?hpl,auT - ?hpua,,T - 0 . (49)

By contracting (4.8) with u* and v* we obtain

0 = u'9,T, (4.10)
0 =T ""0,T + ulLyT,. (4.11)

Contracting (4.9) with v#v” gives nothing as a result of the fact that h,, has one zero eigen-
value with eigenvector v*. Contracting with u*u”, v#u” and h* leads to

0 = utdyu?, (4.12)
1 1

0= 51}“3#23 — 5u“u”£vhw + Uzu“,CUTN, (4.13)

0=e 10, (eut), (4.14)

where we defined u? = hyutu.

In order to construct the hydrostatic partition function Sppp, we write down the most
general expansion in derivatives of the background fields 7, and h,, under the assumption
that the Killing equations (4.2) and (4.3) are obeyed. At zeroth order in derivatives, we can
build two scalars,

T, u?. (4.15)

At first order, taking into account the relations (4.10)—(4.14), there are two independent
one-derivative scalars, which we can take to be

v"0,T, v I’ . (4.16)

Scalars such as w9, T, u8,u?, e719, (eut), uHL,7,, utu’ Lyh,, are either zero or related to
(4.16) via the relations (4.10)—(4.14), possibly using partial integration. Furthermore, scalars
such as hyutLyu”, W Lyhy,, and W Lyh,, do not lead to anything new as they can be

rewritten in terms of (4.16). Up to first order, we therefore obtain
SHpF = / d™ze (P(T,u?) + Fi(T, u?)v"0,T + Fuo(T,u?)vhd,u?) + O(9?), (4.17)

where the functions P, F; and F, are all arbitrary functions of 7' and u?.

Since the background is stationary we can use adapted coordinates (known as ‘static gauge’
in [21]), where we choose a time direction ¢ such that the Killing vector 8* is given by g# = ..
As pH is Killing, the tensors 7, and hy, are independent of ¢. Thus, in these coordinates the
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fluid velocity u* is given by® u# = T'(z)d}', where the temperature T only depends on z* with
1=1,...,d and not on t.

The Euclideanized background has the structure of a fiber bundle, where the thermal
circle is fibered over the spatial base (see also [21]). We can then perform a timelike Kaluza—
Klein reduction of our Aristotelian geometry to arrive at Sypp in terms of fields that are
unconstrained by the Killing equations. In particular, in our adapted coordinates 7, and h,,
can be parameterized as

. dat = N(dt — Aydx'), (4.18)
hudztds” = o5 (da' + X'(dt — A)) (da? + X7 (dt — A)) . (4.19)
The metric 05 is invertible and has signature (1, ..., 1). This parameterization makes manifest

that h,, has one zero eigenvalue. The integration measure e is e = N\/o where o = det 0y;.
Further, the 1-form A = A;dx’ is a Kaluza-Klein type gauge connection in that 6t = A(z)
and 0A4; = 0;A leave the parameterization invariant. The other fields N, X* and oi;, which
depend on z' but not on ¢, are thus all gauge invariant. Since 7,u" = 1 with u* = T(z)d}' it
must be that 7= N~!. Finally, the vector v* satisfying T,0* = —1 is given by

o' = — N7+ NTIX (S8 + Aol . (4.20)

We can now ask again what are the invariant scalars up to first order in derivatives. These
have to be gauge invariant under the Kaluza—Klein gauge transformation 6A4; = 9;A. At
zeroth order in derivatives, we find N and X? = 0ij X i X7, so that at first order in derivatives
we can build two scalars

XN,  X'0;X2. (4.21)

We thus obtain the hydrostatic partition function
S = / dlz/o (P(N, X%) + G1(N, X?)X'9;N + Go(N, XQ)XZ@X2> . (4.22)
b

A term such as G3(N, X2)0; (ﬁXi) can be absorbed into the G; and G5 terms after partial
integration. Likewise, a term such as G4(N, X?)\/o0" Lx0;;, where 0% is the inverse of o35,
can be written as 2G4 (N, X?)0; (ﬁXi) so that this, too, is nothing new. Thus we see that
this line of reasoning leads to the same hydrostatic partition function as in (4.17). For ease of
comparing (4.22) and (4.17) we note that the vanishing of u#9, T, u*9,u? and 9, (eu”) follows
immediately from the t-independence of the fields involved in the Kaluza—Klein reduction.
Furthermore one observes that ev"d,F = /o X'0;F where F is any function of 7= N~! and
u? = N72X?2. We can now set (4.22) and (4.17) equal to each other and in principle read off

the 1-1 relation between the sets of functions { P, F1, F>} and {15, G1, Ga}.

4.2 Action for hydrostatic non-dissipative transport

In order to compute transport coefficients using (4.17), we will drop the restriction to station-
ary configurations — that is to say, we relax the requirement that g* is Killing. This will lead

8Note that since u* o 6%, we are in a comoving frame.
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to an action for the hydrostatic non-dissipative transport coefficients” This is related to the
discussion below equation (3.7) in the following way. As we will show, the energy-momentum
tensor obtained by varying the geometric variables in the action that follows from the hydro-
static partition function without the condition that * is Killing, is equal to the HS part of
the energy-momentum tensor as defined in equation (3.11).

We now have geometric variables 7, and hy, and fluid variables $*. However as shown
in [26] we cannot freely vary *. Instead we think of it as being described in terms of
fundamental variables whose variation is such that we vary g* under a diffeomorphism. We
thus obtain the fluid equations of motion via diffeomorphism invariance, i.e.

1
5§SHS = / d™y e <—T‘u(557'u + ETMV(SghMV + F,u(;éﬁ“) =0. (4.23)
M

Here Spg is the same action as in (4.17) except that now 5* is no longer a Killing vector, and
F,, is the response to varying 8" under diffeomorphisms. Setting the diffeomorphism variation
to zero for any &* leads to the off-shell diffeomorphism Ward identity,

1
e 0y, (eT*,) + T, — 51" Ophyu = Fu0,8" + e L0 (eF,B"), (4.24)

where we recall T#, = —T"1, +T"?h,. Using that the fluid equations of motion follow from
a diffeomorphism transformation of S#* we see that on shell the left- and right-hand side vanish
separately. We conclude that in order to compute the energy-momentum tensor we vary 7,
and hy, keeping " fixed, and furthermore that the on-shell energy-momentum conservation
equation is given by

1
e 0, (eT*,) + T, — 3T Ol = 0, (4.25)

as stated before in Eq. (2.27).

We now first show that we can reproduce the perfect fluid equations of motion on an
arbitrary curved background as discussed in Section 2.3. To this end we consider the action
up to zeroth order in derivatives, i.e.

S(0) :/ Az eP(T,u?), (4.26)
M

with P the pressure as we will see a posteriori. Since we vary the background sources
keeping B* fixed, we have 61T = —Twu"07, and du = —uludt,. Using further that de =
e (—v“ém + %h“”éhw,), we find

oP oP
o 1z il I el 2, 1
T = Put + <8T>U2 Tuk + 2 <au2>T“ ut (4.27)
y y oP y

Using the thermodynamic relations (g—;)uQ = s, (gTPQ)T = %p, sT = € + P as well as the

relation (2.21) between v# and u#, we recover the perfect fluid energy-momentum tensor
(2.25) and (2.26).

9In terms of the classification of [25,26], the non-dissipative transport coefficients considered in this section
are class L = Hs U Hg, i.e. those that have a Lagrangian description.
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Let us next consider the first order derivative terms in (4.17). We will denote the first

order part of the action by S(y), i.e
Sa) = /dd+1xe (F(T, u?)vt9),T + Fy(T, uQ)v"@#uQ) . (4.29)

We thus have Sps = Sy + S(1)-

It is well known that when we introduce derivative corrections, the notion of temperature
and velocity can undergo field redefinitions whereby two equally valid definitions of tempera-
ture and velocity can differ by derivatives of the fluid variables. Such redefinitions are known
as hydrodynamical frame transformations and choosing a certain set of fluid variables corre-
sponds to choosing a hydro frame. We will present our final results in Landau frame, which
is defined by declaring that the full (all order in derivatives) energy-momentum tensor is such
that

T’ = —Eut, (4.30)

where —& is the unique negative eigenvalue of the energy-momentum tensor which is taken
to be equal to its perfect fluid value. The corresponding eigenvector u* is used to define the
velocity. This equation does not fix the normalization of u#. The choice of eigenvalue and of
eigenvector (up to rescaling) are thus d + 1 conditions that can be used to fix the definition
of T'and u*. As in (2.20), we will choose the normalization 7,u* = 1.

When including the first order derivatives in the action Sps and computing the energy-
momentum tensor by variation, we do not end up with a Landau frame expression. We will
refer to the frame in which Syg is written as the Lagrangian frame, and to indicate this frame

dependence we will write the variation of Sy as

550 = /M dlz e (—T(*;)m STy 0l > , (4.31)

i.e. we denote the responses with calligraphic 7. The total energy-momentum tensor must
be frame-independent, so we have the equation

T(“ + 7’(’1‘) = T“) + T(“)HS, (4.32)

72 + 7"“’ = T(’“)’ + T(‘“)’HS , (4.33)

where the left hand side is in Lagrangian frame and is computed by variation of the action,
while the right-hand side is in any frame — for example in Landau frame. The right hand
side is computed by applying a frame transformation to the left hand side and arranging the
result according to the number of derivatives. At perfect fluid order the expressions look the
same, but they are written with respect to different choices of T" and u*.

Let us next compute the variation of the first derivative terms in the action (4.29). Using
o = ?))"U“(STM — h)‘(“v”)éh,w, we obtain

8F1 8F2 A A 2
"o (22
Ty = [<8U2>T <8T)u2] (200 05T — Tv 0zu®) + u K (TFy + 2u”F), (4.34)
72‘1%’ = (h””vA — hMa” — h’“’v“) (F1O\T + Fr05u?)
8F1 3F2 w,o v, A w, v
+2 [<8u2> <3T>UJ v O\T + 2Fy Kul'u"” | (4.35)
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where K is the trace of the extrinsic curvature defined in equation (2.15). Combining these
according to 7'(‘1‘)11 T )T + ’T hpl, yields the first order part of the energy-momentum

tensor in Lagrangian frame

F: F:
= o (32), () JraniwnJon

oF OF:
A T 1 2 A 2
+ [U ut'ry [<6u2> - <9T)u2:| + 2F2’U[ h“}phpy} o\u

—Tu't, F1 K 4+ 2F, Kut11? y hgpu” . (4.36)
This should be added to the perfect fluid energy-momentum tensor
72‘6),/ =— <<‘:’ + P+ pu2> u't, + putulhy, + POl (4.37)

coming from the variation of S(g).
In Appendix A we work out the transformation from any frame to Landau frame, indicated
by primed variables. Using the results from that appendix we obtain in Landau frame that

TM

sy = Tlishoo 170 (4.38)

(1yus'teo
where we remind the reader that T’ (q,;HS is computed using (4.33). This gives

- u/)\ oP' 8/)/
A G [p (0 ul00) + 2t (W <au'2> et (auﬂ) ﬂ

v / /
11p o W i (00 uwp ((OF
" 721) " 7-(1)1/7-0 |:U ! < )u/2 h < 0s" ) e ’
(4.39)

T s’
with the prime denoting Landau frame fluid variables. We defined ), = hyxu/®. Terms such

Tiins =

as 7E’f§) are given in (4.35), but where we must replace the T" and u* by T and u'*.
We will drop the primes and use the relations

T = ~T*Lp1, — TulT,, (4.40)
a,nﬁ = Tu" (Lghu — upLaTy — un LaTy) — U2up7'up —u’wpu (4.41)

where 7, is the torsion 2-form defined in (2.18) and where w,, = d,u, — d,u,. Using the

equations of motion (2.37) to eliminate Lg7,, derivatives, allows us to write

1 1
Tyns = QHHEM (Luhas — ualuts — ugluTa) + 2n€‘o”raﬂ
1
+§nfol;aﬁwaﬂ + nﬁ;ﬁaﬁK ) (4‘42)

where K3 is the extrinsic curvature introduced in (2.13). In obtaining this result we have
also used the following relation

viw, = To* (Lghy — uu Loty — w, LaT,)

(4.43)
—wufvtr,, — 2uPK,, .
This was done in order to make nfoytaﬁ nﬁﬁﬁ % spatial in its last two indices (to avoid
ambiguities among some of the 7 tensors as a result of (4.43)), i.e. 7a7"%*” = 0.
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The nﬁléaﬁ tensor that features in (4.42) can be written as'’

nﬁVSaﬁ Tih*™ R £ Toulu? u®u® + 4j3v(“h”)(avﬁ) + %j4(huvuauﬁ + hocﬁuuuV>
+T5 (W u @)+ h@By )y + Ts(uhu?u @0 + uuPulto))
F2T5 (0B | @By 4 % Ay (W0 — poBypi?)
+ Ao (R u P — pByig)y 4 Az (uruu o) — uuPultor))
+2A4(v(ﬂhl’)(au5) _ v(ahﬁ)(uuV)) 7 (4.44)

where the eleven scalars Ji .. 7, 41,234 are given by

1 oP , [ OP
=il (5), - (5e) ) 2
_ 2 Op\ o2 (90 _ du® . (Op
= [ <a> . <Bu> 24* s 1 (au)
2 ap
—~f» [s <(9s)u2 - 24 , (4.46)
J3 = —F3, (4.47)
_1 o\ o 2( 9P _
Js = SF1 {s <8s>u2 2u <8u2>8 2,0]
2ip oy [ (28— (28
- [ (2) —ae ()] s
1 P oP OP
e info () o), (),
2 dp 2 dp dp 2p
a=n(an) i (5) ol 2 (5) o e
Jr = gFl - Iy, (4.51)
_ _Ap, (0P Bl (o) _op2(90) _
A= () b ()L () )
4u2 oP op ap oP
o |(5e), (3, (50, (as)uJ
+2(T*1F + fB) OPN o2 (9F (4.52)
S 2 B) ¢ S ) .2 ou2 ’ '
R P P P
OP
—2fa <8s>u2 ; (4.53)
_ 2R [ (0 DN 2B (G0 2, (00
do= = o (50) 7 () |+ 77 () i (32).
IB (4.54)
A4 = \77 ) (455)

ONote that T (1)Hs in (4.42) is only defined up to terms proportional to v*v”, since v*v”dh, = 0.
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where we defined the recurring combinations

8F2 6F1 8F2 aFl
— (22 _ (=L = == - == . 4.56
fa <8T)u2 <6u2>T’ /s <8T e \OT ), (4.56)
The coeflicients J; make up the symmetric part of nﬁléaﬁ under the interchange of pyv and of
puraf

while the coefficients A; make up the anti-symmetric part of g~ . The remaining 1 tensors
in (4.42) are given by

wop _ o1 2 or 5,2 (9F v, fa, 8]
Nior = = [T(TF1+2U F) [(8S>u2+T] 2u (33 u2f,4 R u%y

+2 [(Fl + 277’ ) (8”) — 202 <a”> fa—2T fB] utu? ulo”

Js 0s
+4(TFy + v F)v eyl — 4o y)yloy?) (4.57)
e = —aF R by (4.58)
uvaf 8/0 viaf opP vpaf (npv)(a, B)
Nt = —2|F1 | = — 265 | uPuP R — 21 | — h*Y P 4 8 Fyv\HRY !\ %y
83 u2 88 u2
—4|Fy 71 8j +1| = fa 8j Y uu?
Os u? ds w2
—A(T7YFy — f4) <‘;p> wut uuP (4.59)
S w2

An important consistency check for these results is performed in Section 5.6, where we
show that these expressions recover the results of [11] in the limit of linearized perturbations
around a fluid at rest. Equation (4.42) is the main result of this subsection. We will next
discuss how this is related to the non-canonical entropy current as it should via the frame-
independent definition (3.11).

4.3 Non-canonical entropy current

In the previous subsection, we obtained explicit expressions for the contributions to the energy-
momentum tensor that arise from the action Spg. As discussed in Section 3, the HS part of the
energy-momentum tensor is related to the divergence of the non-canonical part of the entropy
current, cf. (3.11). The goal of this subsection is to show that there exists a non-canonical
entropy current whose divergence obeys (3.11) where the energy-momentum tensor is the one
we just obtained. The result for the non-canonical entropy current is given in equation (4.72)
where we used the definitions (4.68) and (4.69).

In Appendix B we show that the converse is also true, i.e. starting from the most general
non-canonical entropy current and demanding that its divergence obeys (3.11), where the
energy-momentum tensor is the most general one allowed by symmetries, we find (using only
on-shell relations) that the non-canonical entropy current is (up to terms that are identically
conserved) precisely of the form as given in (4.70) and (4.72). The analysis in Appendix B has
been restricted to flat space but we expect the result to generalize to any curved background.

In the Lagrangian frame, the divergence of the non-canonical entropy current (3.11) must
obey

_ | p—
e 19, (eSé)non) = —7E’f)£5m + 57?5 Lshu (4.60)
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where T(’f) and 7?1‘; are given in (4.34) and (4.35). This can be solved for S’(”l)non up to
identically conserved currents, leading to

1 1 1 1
Sﬁ)non = —TU“FlupapT + Tu”prapT — fv“qupf),,UQ + TU“FQUpa/\UQ . (4.61)

The total entropy current (3.4) in the Lagrangian frame can be written as S = su“—ﬁ‘f)yﬁ” +
Sﬁ)non where we have split the contributions from the zeroth order derivative terms, which is
just the perfect fluid result su#, from the terms containing first order derivatives. Substituting
the result obtained in the previous subsection for 72’13” (see equation (4.36)) and using (4.61)
we obtain for the full entropy current in Lagrangian frame,

oF, OF
-1 2 1 2
St = sut —u!'Fre” "0, (ev”) + u (8T - 8u2> vPOpu” . (4.62)
One may at this point object that the full entropy current could also receive contributions
from the dissipative sector of transport. We will show next that in the Lagrangian frame only
the HS sector contributes to the entropy current.

To show this we first observe that in Landau frame (denoted here by a prime just like in
Apppendix A) the total entropy current (3.4) is given by

St = s'u'* + S (4.63)

(1)non

simply because Landau frame is equivalent to demanding that the canonical entropy current
is that of a perfect fluid, i.e. T(‘i)yﬂ” ~ T(‘i)yu” = 0 by definition. If we next take the
Lagrangian frame result (4.62) and we transform it to Landau frame using (A.8) and (A.9)
we obtain (4.63) with S (#1)n0n as given in (4.61) (written in terms of primed variables). In other
words the Lagrangian frame entropy current is the same as the total entropy current (4.63)
and so since the total entropy current is frame independent it must be that (4.62) equals the
total entropy current.

In Landau frame the right hand side of equation (3.11) can be written as
e 19, (es” TW (Luhyy — up Loy, — uyLoT) (4.64)
r & Wnon ) = o (s Fultpy = UwkaTy = UpbuTy) :

where u, = h,,u” and where T(“ gHS is the Landau frame expression for the HS contributions
to T(”i) This was computed in the previous subsection in (4.39). As a consistency check we
will explicitly verify that this is indeed the case.

To first order in derivatives, we can rewrite the right hand side of (4.60) in terms of u’
rather than u, and using the relation

=T = Thu = T hpu (4.65)
we find that
6718,1 (GSﬁ)n0n> TM U ,C@/TM + T (‘Cﬁl uy h,/pulpﬁﬂ/Tu - hupu/p[,ﬂ/Ty) . (466)

Dropping the prime and using the perfect fluid equations of motion in the form (2.36), we can
replace the Lg7, by Lgh,, — hypu? LT, — hypu” LaT, terms, so that we obtain (4.64) with

Tus = Ty + Theu" X" (4.67)
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where X, is given in (2.37) and where T(T;HS is in Landau frame as can be seen by comparing
to (4.39).

In Appendix B we start with a constitutive relation for the non-canonical entropy current
as well as the energy-momentum tensor on flat space and we work entirely on shell. We then
show that without making any assumptions about the nature of the non-canonical entropy
current and the energy-momentum tensor other than their constitutive relations that equation
(3.11) forces the non-canonical entropy current to be of the same form as derived in this
subsection. In Appendix B the functions F} and Fs are replaced by F' and G which are

defined as
F=T (ﬁ)ug , (4.68)
=T (g;)T + %F (4.69)
This allows us to write (4.61) as
Sﬁ)non = (—vHu” + ut'vP) <(9pG + u12F(9pu2> . (4.70)

Using that
e 10, [e (—vFuP + u'vP) G] = Ge 1, [e (—vHuP + uFvP)] + (—vFuf +utoP) 9,G . (4.71)
is identically conserved, we find

SH

_ 1
(1non — Ge 18/) e (vV'u” — u'oP)] — EF (v uf — utoP) 5pu2 . (4.72)

The flat space version of this is precisely equation (B.17).

4.4 Action for non-hydrostatic non-dissipative transport

In Section 4.2 we dropped the condition that 5* is a Killing vector and used the hydrostatic
partition function to find an action for hydrostatic non-dissipative transport. Once we drop
the condition that 5* is Killing we can add more terms to the action at first order in derivatives
because we can no longer use the Killing equations to relate various derivatives. These extra
terms can be obtained by looking at all scalars one can construct from the Lie derivatives
of 7, and hy,. These are listed in equations (4.10)—(4.14). We can multiply each of these
scalars by an arbitrary function forming new scalar terms that can be added to the action
Sus. Using the freedom to perform partial integrations we can drop the last term of the form
F e719, (eu*). This leads to 4 additional terms each multiplied by one of the functions Fj to

Fs. The full first order action becomes
Sy = /dd+1x e (Flv"a”T + ng“8“u2 + F3uh0,T + F4u“8#u2 + Fsuh' Ly,
+Esutu” Lohyy) (4.73)

The additional contributions to the energy current and stress tensor (in Lagrangian frame)

due to the novel F3 to Fg contributions to the action are
oy

Tr = (W) u (2uP\T — Tv oyu?) + TR K | (4.74)
T
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OF:
Th = — <8TQ) u(2uP T — T \u?) + 20> Fouh K (4.75)
u?

Te, = Fs(u!' +0")uf0,T — TF3u'e '0,(eu”)

OF;
- <8u2>T ' (TuPd,u* — 2u*uPd,T) (4.76)
Ti, = Fa(u! + VMY uldpu? — 2u* Fyute 10, (eur)
+ <8F4> w"(TuPdu? — 2u*u?d,T) | (4.77)
oT ) 2
i OF OFs
7;% = v Ty, [T (6T> + 2 2<6 2> —|—F5} — FsKuM
—F5e_1(9p (euf) vt — Fs L,oM + utvP0,Fs — v'uP0, Fs | (4.78)

3F

Tlﬁl" = F (h‘“’v)‘ — hMyY h/\”v“> T +2 (8 5

> vV o\Tulu” | (4.80)

F:
TH = Fy (WUA — Ry h”’vﬂ) \u? + 2R Kulu” — 2 (%Tz) VO Tulu” | (4.81)
O0F3
F.
T]g:, = F,h"uPo, u? —2 <601:1> uu’ul0,T — 2F4UMUV€_18p(eup) ) (4.83)

0Fs

Tlé;u — F5uo (h/va _ hpuvl/ o hﬂuvﬂ) Tpo‘ + 2 (W

> uHu"u v T, (4.84)
T

F
T}ffe” = 2Fsh""uu’ K,y — 4 (gg) wu ' uPu’ Kyp — 2Fgh M ty?) ((‘Au2 — 2u"£uh0A)
us/Jr
Fi Fi
+4Fgu L") + 2 <2u/\u(“v”) — u“u”v’\> [(C{;;)ﬁ LT + <ZUS>T (%\u?]
+4Fguto) e 10y (en?) + 2Fsuf v’ K (4.85)

where for completeness we have included the F; and F5 parts as well. These were already
derived earlier in equations (4.34) and (4.35). In writing the Fg part of T"” we used the
freedom to remove a term proportional to v*vY.

We will next rewrite these expressions by writing them in terms of Lgh,,, and L37,. Using
equations (4.40), (4.41), (4.43) and

T
e ', (eut) = §h’” (Lghpe — 2u,LpTs) (4.86)
Lot = wuPvir,, — Th* ' vP (Lghy, — u,LaT,) , (4.87)

where we remind the reader that u, = hyu” and w,, = 0 u, — dyu,. In general, TH and
TH take the following form

TH = X" LgT, + Eﬂ”f?.cﬁh + z Ky, (4.88)

ext

1 o 1 . 1. .
TH = AMPLeT, + 577M P7Lahpe + 5?]5&””%0 + 2775>cutpUKpcr + ni‘o"rpana , (4.89)
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where XHVP = SV APVP = AVEP ptvPo — pPiro = pivoP and similarly for the other tensors.
We find that

P = 2(TF — Fs + 2u*Fy) u'h™”

ext

8 a 2 v
—4 [T@T (Fy + Fg) — ] (TF1 — Fs — 2u Fg)} utulul (4.90)
ol = 4(Fo + Fo)v# T hy ur (4.91)
ﬁgXVtPJ = 4(Fy + F) [Qv(uhu)(ﬂua) + ulrur hPe — h‘“”upu"} ’ (4.92)

P = 4 {T;T (Fy + Fg) — 882 (TF, — F5 — 2u2F6)} wutvlPull + 4(Fy + Fg)uPo?) vlPyc]

—2 (TFy — F5 + 2u’Fy) h0lPu) + 4 (TF — Fs + u?(Fp — Fg)) ohlPuc) | (4.93)

where as usual we dropped v#v” terms and where we defined 7/5”7 = —7/?” such that

rot
Tolthet ” = 0 in order that (4.43) does not lead to any ambiguities among the various tensors.

Furthermore we find that

F
Y = 2T <F5 +T <%];f> +2u” (gu§> — 2u’Fy — TF3> ol (4.94)

HVPT — GPTHY — AT(Fy — Fy) (h“”u(pv ) _ ppo g (g ))
AT (3F; — Fy) (Uwhu)(puo) _ U(pha)(uul/)>
+AT Fy (W uPu® — hP7utu)

OFy
00,00 (1) _ i v (p,0)
+16T(8u2> (uuu v ut'u’utPu ), (4.95)

NPT 4 pPory = 4T(F2 + F6) [ — 2R (Pyo) + (h‘“’v(”u”) + hpgu(“v”)>
_ (Uwhuxpua) n U(phd)(uuV)) ] , (4.96)
APPSR = 9T (TFy — Fs + u*(Fy — Fg)) h*"0") — T (TFy — Fs + 2u*F) P
+2T(Fy + Fp) (v° + uP)ultv?”) + 2T26%(F2 + Fp) <vpu“u” —~ 2upu(”vl’))

d
205 (TFy — F — 2u°F) (upu# — 2uPuliy? >) , (4.97)
APV 4 5P = 9T (TFy + Fs + 2u’Fy — u*(Fy + Fg)) h#W0") — T (TFy + Fs + 2u*F) P

+2T(Fy + Fg)vPuMo?) — 2T(T F3 + 2u?Fy)ul b

+4T <F4 +T <8F4> -T (81*3,) ) uPutu”
ou? )

oT
9 2 0 v
+2T 92 (TF1+F5 —2u F6) +T8T(F2+F6)+2F4 vPutu

G,
+2T < 57 (TF, — Fs5 + 2u®Fg) + 2Ta

8T(F2 — F6) + Fy + F6> upu(“U”) ,
(4.98)

where we have discarded terms in 7*” proportional to v#v”.
As we have seen in Section 3 the NHS terms are defined as those contributions to the

energy-momentum tensor for which

1
—THLpT, + §T”V£Bhuv =0. (4.99)
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Using equations (4.88) and (4.89) we can see that for this to be the case it is necessary that
S, e, kel and 70”7 all vanish. The x*” is anti-symmetric so there are no Lz,
squared contributions to (4.99). The condition 7#**P? + P7#” = () guarantees that the 7#*r?
is anti-symmetric under the interchange of the first pair of symmetric indices with the second
pair of symmetric indices ensuring that there are no Lgh,, squared contributions to (4.99).
Finally, cancellation of the cross terms Lgh,,, L7, requires that we set A#? — ¥PH = (0. As

one can see by inspection all of these conditions will be obeyed provided we set

Fi (F5 + 2u2F6) , Fr=—Fg. (4100)

1
T
We thus conclude that when (4.100) holds, equation (4.99) holds off shell. Setting F; and F5
equal to their NHS values we obtain the following action for pure NHS transport at first order

SNHS = /dd+11‘6 (F3UH8HT -+ F4u"8uu2 — TF5U“£57'H — 2TF6'LL“UV£ﬁhlw) . (4.101)

The NHS currents are then schematically

6
b g
7T\IHS - ZTFZ-|F1:T71F5+2T71U2F6; Fo=—Fg» (4.102)
i=1
6
uy v
’E\IHS = ZTFi |F1:T*1F5+2T*1U2F6; Fo=—Fp - (4.103)
i=1

On shell and in Landau frame we have for 7# = $7°_, Tg and TH = SO Tg that

1
THS + Thits = T + T uo X, = TP X, = o™ (Lghag — uaLpTs — upLpTa)

1, 1, 1
+§ng0ta6w0‘5 =+ ingxtaBKa,B + 577{;101"06/87—045 ’ (4104)

where we remind the reader that T"" is defined in equation (4.33). In here the tensors are

given by

numg _ ,'7]/1,1/046 I <_Epa5 + ﬁpoaﬂua) XM 4 (AP 4 ey, Xpaﬁ

+ |:_Xpa + (Ap)\a o sz\d) uy + ﬁpnaz\unu)\} XpuVXanB ’ (4105)
nhe? = il 4 A u X (4.106)
rl? = e ? il P X — SR X (4.107)
nfe® = e + g X (4.108)

The pure NHS part in Landau frame is given by

L w
TIG?IS = inli\LlHaSB (Lghap — uaLpTg —uglpty) , (4.109)
where nf%% = —nPlY is obtained by substituting (4.100) into (4.105).
One might wonder what the expression for the pure HS part is. However, for the HS sector
it is only the symmetric part of " as well as the objects n/a’, nt4F? and /2 that are

uniquely determined. These all depend on two functions F + Fg and TF; — F5+2u?Fy. There
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is no unique HS expression for the remaining four functions in the action. The reason behind
this is that we know that

1
—Ths LTy + §Tﬁ‘s”ﬁﬁh,w =e 19, (eSH,) , (4.110)

but this only uniquely fixes the symmetric part of n**P? as well as the extrinsic, torsion
and rotation n-tensors. The anti-symmetric part cannot be fixed. This freedom is precisely
encoded by the NHS terms. In a sense the HS coefficients belong to the ‘quotient space’ of non-
dissipative transport coefficients modulo the NHS ones. Hence two HS transport coefficients
are equivalent if they differ by an NHS term. In Section 4.2 we picked a representative of the
HS sector by setting F3 = Fy = F5 = F = 0.

The second line in (4.105) is anti-symmetric under interchanging the pair uv with af as
can be seen from the fact that

_Xpa + (Ap)\a o Ep/\a) uy + ﬁpnaz\unu/\ —

0Fg O0F}5 O0F}5
o0Tu? | == | —2TF, — 2u’Fs + 2F + 4u? | —2 T =2
" <8T>uz A <0u2>T+ <5T u?

2T ulPy!

(4.111)

This means that the symmetric part of n**®% does not contain terms that are quadratic in
X,#. This explains why the [J coefficients in (4.44) do not contain product of p and P and/or
derivatives thereof, while the A coefficients do admit such terms.

5 First order corrections

This section can be viewed as a continuation of Section 3, in which we use constitutive
relations and non-negativity of entropy production to find all the allowed first order corrections
to the boost-agnostic perfect fluid energy-momentum tensor. We already dealt with the
constitutive relations for the HS sector in Appendix B and so we will only be concerned with
the constitutive relations for NHS and dissipative transport. We also show how to recover
Lifshitz fluids as well as Lorentz boost invariant fluids from our general framework. Finally,
we consider the limit of small fluid velocity and show how our formalism recovers the results
of [11].

5.1 Constitutive relations
Using our result (4.64), the relation (A.11) tells us that to second order in derivatives and in
Landau frame,

_ 1 v v
e 18“ (ES“) = “oT (T(/i) - T(q)HS) (ﬁuh,uu - hpuupﬁuT,u - h,upupEuTl/) ) (5'1)

where T(’SHS is the Landau frame hydrostatic contribution as defined in (3.8), and T(‘ﬁ is the
full energy-momentum tensor in Landau frame.

Since the divergence of the entropy current is a quadratic form in the derivatives of the
fluid variables, equation (5.1) tells us which derivatives we should use to write the constitutive
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relations for the energy-momentum tensor. The fluid variables are £,7, and L,h,,, and we
may thus write the following constitutive relation for the part of the energy-momentum tensor
that is not of hydrostatic origin''

v v 1 vpo v,
T(/i) - T(Ml)HS = 577” P ﬁuhpa + ¢ pEqu . (52)

By redefining ¢#¥, this can be written equivalently as

1
Tﬁl)’ — T(%HS = 57)‘“’”” (Luhpe = huot Loty — hpp"LoyT5) + CHPLyT, (5.3)

Upon substituting the constitutive relations into the right hand side of (5.1) we obtain a
quadratic form. Non-negative entropy production will restrict the form of the n***? tensor,
and it tells us that ¢#? must vanish. This is because there are no £,7, squared terms in

(5.1). Furthermore, terms involving the anti-symmetric combination of velocity derivatives

uvpo
rot

(analogous to the n term in (4.42)) are also explicitly forbidden by the requirement that

the divergence of the entropy current is a quadratic form. We thus conclude that

v v 1 vV po K KR
T("l) — T(‘i)HS = 517“ P7 (Lyhpoe — heot LyTy — hptt" LoyTs) (5.4)

so that all that is left is to classify all the allowed terms that make up n**??. This can be
achieved by looking at the symmetries of the fluid.

In addition to the SO(d) Ward identity (which is manifest in the symmetry of T#) the
energy-momentum tensor must respect the symmetries of the thermal state around which
we expand. In the absence of boost symmetries the thermal state spontaneously breaks the
SO(d) symmetry down to the SO(d — 1) subgroup that preserves the velocity h**h,,u”. In
flat space these are the rotations preserving v’. In other words, different absolute values of
velocities correspond to different thermodynamic states of the theory.

Therefore, the natural tensor structures are the SO(d — 1) invariant tensors v* as well as

PHY = hY — nFn¥ | nt = P hypu” ) (5.5)

Vu?

where n#n"”h,,, = 1. The tensor P*” is a projector onto the space orthogonal to the unit

vector n*. In terms of these tensor structures, the constitutive relation takes the form'?:!?

nuypa — t <P,upPl/O' _|_ P,LLO'PVP _ d 2 1

Af1
u2

P‘“’P”U) + 4—8212)(“1”L”)7L(pv”) + sontn’nfn® 4 s3 PHY PP°
u

42y pr)pye) fo (P*PnYn? 4+ PYPnFn® + PHonYnP + P ntn’)

+s¢ (PP?ntn” + P*nfn?) — 33NHS (PPontn? — P*nPn?)

"The n-tensor in (5.2) should not be confused with the 7)-tensor that appears in the context of Lagrangian
transport in (4.104).

12We remark again that this object has two redundancies: we can add to **?° any term of the form v*v”Y *°
or v’v? Z* for arbitrary Y*” and Z"” without changing T, .

13The rationale behind the naming scheme we have adopted for the transport coefficients will become appar-
ent in the next section (see in particular Eq. (5.22)), where we show that in the expression for the divergence of
the entropy current, the coefficients {s1, s2 ...} multiply scalar structures, the coefficients { f1, f2, ... } multiply
vector structures, while, finally, the coefficient t multiplies a single tensor structure.
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NHS
_Afs (Uw Popo) 4 e pV)(PUU)) I <v(u Pope) pV)(PUU)>
u2 A /u2
285 ( (n V)pPU+PMV (p U)) QSNHS ( (V) ppo _ puvy,(p a))
\/1? vy n nywuv 7\/@ vy n nuv
284 QSNHS

i (U(“n”)n"na + n’“‘n”n(pva)>

leading to a total of 14 transport coefficients. The f; term in was also observed in [13].

(v(”n”)npn” - n“n”n(pva)) , (5.6)

We see that the n-tensor has a part that is anti-symmetric under interchanging the pairs of
symmetric indices. This is related to non-hydrostatic non-dissipative transport and is the
topic of Section 5.2. This leaves 10 coefficients that could contribute to dissipative transport.
The normalization of the 14 coefficients has been chosen such that all coefficients have the
same scaling dimension which is d, the number of spatial dimensions. We note that h*” will
be assigned a scaling dimension of 2 while v* and u* will have scaling dimension z.

A unique feature of Landau frame is that the derivative corrections to the energy current
is given entirely in terms of the (2,0) momentum-stress tensor (cf. the second relation in
(A.6)), which in turn means that the (1,1) energy-momentum tensor (2.24) at first order can

be constructed from the (2,0) momentum-stress tensor. More precisely, defining T(q';D NHS ‘=

T(’f;D + T(‘i';NHS = T(’f; - T(‘i';HS, where each term is a symmetric tensor, we have
1
(T(l)D,NHS)Mz/ =3 —U“pmupﬂ/ + nupm\hpu] (Luhwr — uLyTs — urLyTs) (5.7)

where we have used the relation (2.24). On flat space (2.19), where u# = (1,v"), the energy-
momentum tensor — and by extension the tensor n**?? — may be further decomposed as,

1
(Taypwms)’y = 3"kl (@wl + 5zvk> + KR0" (5.8)
A 1 g
(T(yp,Nms)'j = 3" n'Ik! (@w + Ov ) + KIFG (5.9)
where the flat space tensors i, 1;i, kY% are given by
— 00k Nikl = UL ik — piiko (5.10)
which means that
Kjk = éij + n]nk, (5.11)
f3+fNHS ko1 ik 551 setsyS Loy
Nikl = ———— (PJ n' + P’n ) P n! + =22 ninFn 5.12
s Ve Vo2 (5.12)
N fy — fNHS . o 55— sNHS g GNHS
Py S (P] n' + P* n3> S . 2 nindn®, (5.13
Vo2 Vo2 Vo2 (5.13)
n’ijk‘l — ¢ (P’Lk;P]l + PZlP]k P’L]]jkl) + Sspijpk‘l
+fo (Piknjnl + ijn n! + Plpin® + lenink) + son'nin’n!
+56 (Pklninj + Piipkp ) + s)HS (Pijnknl — Pklninj> , (5.14)
where the result has been written in terms of
nt = — PY =5 — =5 —nin (5.15)

v

which are the flat space versions of (5.5).
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5.2 Non-hydrostatic non-dissipative transport & Onsager relations

The subsector of transport obtained by isolating the anti-symmetric part of 7, i.e. 9" C

NP7 with n"?” = —nf°"", corresponds to the non-hydrostatic (NHS) non-dissipative trans-
port. By using (5.7) and (5.1), such terms trivially produce no entropy. The constitutive
relations tell us that there are at most 4 transport coefficients of this type. In Section 4.4 we
found precisely 4 terms in the action that corresponded to the NHS sector. Extracting the
anti-symmetric part of (5.6), we get

4fNHS QSNHS
W = —— (n("P”)(”v”) — n(pP")(“v”)> + 2L (P””n(pva) — P”Un(“v”))
Vu? u
2$NHS
+ \/272 (n“n”n(pva) - npnan(“v”)> + syHS (PHYpPR — PPopinY) . (5.16)
u

Demanding the absence of NHS transport is, at linear order, equivalent to the Onsager
relations [58,59], which express the fact that there are no anti-symmetric contributions to
the nm-tensor in systems with time-reversal symmetry. More explicitly, consider linearized
perturbations around global thermal equilibrium (75, vé) in flat space,

vt = v 4 o', T=1Ty+dT,

where v’ and 87 are the fluctuations. The resulting change in the energy-momentum tensor
to first order in fluctuations is

17 1 vVpo
STH = S (0p0us + s,

where du” = (0,6v") and indices are lowered by hy, = 5;5};. The Onsager relations then tell

us that!'*

uvpo _  _pouv
Mo =T ,

which is the linearized version of the general requirement of symmetry, n**f? = nPoHv,
Imposing symmetry on the n-tensor is equivalent to the vanishing of all NHS coefficients,

FNHS _ GNHS _ NHS _ (NHS _ ¢ (5.17)

Hence, ignoring the NHS sector, we obtain the following constitutive relations for the dissi-

pative sector

fi 51
Kjk = U—ijk + U—annk R (518)
K;Z]k — % (P-]knz + Pan]) —+ \/7785P”nk —+ \/7784n1njnk y (519)
VU v v

d—1

+f2 <Piknjnl + PEpin! + Plnin® 4 lenink)

ne way to see this is because Uy, (t = Uy t)), which is a direct result of time
0 his is b 0,0 ST} (0 8y.6uy (0)0TY hich is a di It of ti
reversal symmetry.
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+53 P PRt 56 (Pklninj + Pij”knl) + son'n’n*n! (5.20)

leaving us with 10 candidate coefficients for dissipative transport. Note that in the absence
of NHS terms we have the identity n;x = n%* = p*i0 = g* (cf. (5.10) and (5.11)—(5.14)).
For the remainder of this section we will be working in flat space. In the next subsection
we will show that all these coefficients contribute to dissipation provided they obey suitable
inequalities.

5.3 Dissipative transport

In this section, we derive additional constraints on the dissipative transport coefficients from
the requirement of positivity of entropy production. Using our results (5.18)—(5.20), the diver-
gence of the entropy current in Landau frame (5.1) on flat space along with the requirement

that it be positive definite for the dissipative sector reads
1 .. . . S
-T0,5" = ankl (8{03 + 83-1)@) <3kvl + 8[0’“) + Ri; 00" O’
+ 10k (&vj + 8jvi) ok <0, (5.21)

with equality if and only if all the dissipative coefficients are zero.
It is useful to decompose the expression (5.21) into scalar, vector and tensor sectors,

E(S)TA&S)E(S) + QV)TAEXX)Q)EEV) +t4") <o, (5.22)

where the basis vector of scalars is

(ko
o) = [ nindgni | | (5.23)
P o

with the associated quadratic form

S1 S4 S5
(3x3) = S4 S92 Sg . (5.24)
85 S6 S3

The basis vector of vectors is

L g0
AR A I (5.25)
! Piink(9;0F + Opv7)

which has the associated quadratic form

A, = (2 ;z) , (5.26)

The single tensor structure is described by

AT = (P““le + pitpik _ dilpﬁpk’) (807 + 9;07) <8kvl + a,vk) . (5.27)
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Positivity of entropy production must hold for all fluid configurations and thus for each of the
three sectors separately.

The tensor contribution requires that
t<0. (5.28)

The quadratic form of the vector sector must be negative definite, i.e. all its eigenvalues must
be negative, which is the case if and only if

<0, <0, detAl), = fifs— f}>0. (5.29)

Finally, the quadratic form of the scalar sector must be negative definite as well, which gives
the conditions

Slgo, SQSO, SgSO, (530)
5189 — 53 >0, 5153 — 52 >0, 5359 — 52 >0, (5.31)
det Ag)x?)) = $18983 — 3333 — 823§ + 2548556 — slsg <0. (5.32)

5.4 Scale invariance: Lifshitz fluid dynamics

If our fluid enjoys scale symmetry with dynamical exponent z, the following Ward identity
must be satisfied (see also [9] for more details)

2T% +T% =0. (5.33)

Using the constitutive relations for the dissipative sector (5.18)—(5.20), this gives rise to the
following relations at first order

zvjﬁ;jk = (%-/{ijk , zvjnjkl = 5Z-j17ijkl , (5.34)

which amounts to

z85 = (d—1)s3 + s¢ ,

zs4 = (d—1)s¢ + s2,

zs1 = (d—1)s5+ s4 . (5.35)
Hence, if we impose scale symmetry, the 6 dissipative scalar transport coefficients get reduced
by 3, while the 3 vector and 1 tensor transport coefficients are unaffected. In other words,
uncharged Lifshitz hydrodynamics has 7 dissipative transport coefficients at first order. We
note that the inequality type constraints for Lifshitz fluids are obtained by substituting the
relations (5.35) into (5.30)—(5.32).

We furthermore remark that since all transport coefficients that appear in the n-tensor
(5.6) are functions of T and v? and have scaling dimension d, they must be of the form

T f(a),  a=0v2T:72, (5.36)

for some unknown function f, where o has no scaling dimension.
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Turning to the NHS sector, which is described by (5.16), we find that scale symmetry gets
rid of two coefficients. Tt sets sY1S = —(d — 1)sYH5 and s§1S = —2sNHS and leaves fNHS free.
Furthermore, scale symmetry reduces the number of hydrostatic transport coefficients from

two to one. This can be seen as follows. The z-trace Ward identity on curved space reads
=207, T, + hyph” T, = —27,T" + hy, TH = 0. (5.37)

If we substitute (4.34) and (4.35) as well as (4.37) into this Ward identity we find that (by
looking at the terms proportional to the trace of the extrinsic curvature)

2(z—1)

=25 - (5.38)
The rest of the terms in (5.37) then tell us that
P(T,0?) =T" 5p(a) . By(T,u’)T* % = Tgla) (5.39)

where p(a) and ¢(«) are arbitrary functions of a which is the scale invariant combination
a = u?T?72. We can then write the hydrostatic partition function (4.17) as

SHs(Lif) = /dd+1xe (Tng(a) + qu(a)vuaﬂa> +0(9?) . (5.40)

The same can be done for the action (4.101) describing NHS transport, which for Lifshitz

scaling takes the form

d—2z+2

SNHS(Lif) = /dd+1xe (T%rl(a)u“é?ua +T = rg(a)u“vyﬁghw,> + 0. (5.41)

exhibiting two NHS transport coefficients in agreement with the statement above.
All together for an uncharged Lifshitz fluid we find 7 dissipative, 1 HS and 2 NHS transport
coeflicients.

5.5 Lorentz boost invariance

What we have obtained is the most general set of first order transport coefficients with-
out assuming boost invariance. In this subsection, we show how to recover relativistic first
order hydrodynamics from our results. In Landau frame and on Minkowski spacetime the
relativistic energy-momentum tensor is described by (see e.g. [2] for a review of relativistic
hydrodynamics)

T, = EUMU, + PTI*, — CT1*,0,U° — nII*11,7 %, , (5.42)

where ¢ and 7 are the bulk and shear viscosity terms, respectively, which are independent of
v? in the Lorentzian case. A relativistic fluid is characterized by a velocity

UH = 'y(l,vi), U, = ’y(—l,vi) , (5.43)

where v = (1—v?)71/2. In writing the relativistic energy-momentum tensor (5.42), we defined
the projector II*,, = 85, + U*U,,, while the shear tensor X, is given by

2
Ypo = 0pUs + 05U, — anpgagﬂ : (5.44)
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where 1, = diag(—1,1,...,1) is the d-dimensional Minkowski metric.

A necessary condition for this to be recovered from our general framework is the boost
Ward identity, T(Ol)i = _T(il)o’ where T(’Al)0 = —va(il)j in Landau frame. Using (5.8) and (5.9)
we see that this translates into the requirements

ijkl _  kli

vin K& VIR = gy (5.45)

This implies the relations
f3 = v fo, f1 = v fs, s5 = v2sg, s4 = 0289, s1 = v%sy . (5.46)

Hence in Landau frame it is sufficient to compare our expression for T(il)j with (5.42) at first

order. A tedious calculation shows that the two expressions agree if and only if
¢ 2
s3 = —Cy— ——
3 by
3,2 3
s6 = —Cv +om
2
s2=—=Cy" = 2m” + 5m”
fo=—m?,

so that we recover the standard transport coefficients ¢ and 7. In this way, it is also possible
to recover (massless) Galilean invariant fluids, although we refrain from giving the details.

5.6 Small velocity limit

We will assume that the transport coefficients are functions of 7' and v? which admit a Taylor

expansion in v2. Demanding that the tensors Kjks Mjkis M K and k7% have a regular limit for

v2 = 0 leads to the conditions

f=0@%,
s1— f1 = O(U4)7
fs =07,
I =0,
s5 = O(v?),
A = 00?),
s = O(v?),
3 = 0w,
t=0(1),

2
53 — ﬁt =0(1),
fo—t= 0%,
mt— s3+ s = O(v?)
S = 0(?)



SS9 — S¢ — 2f2 = 0(112) . (5.48)

In obtaining these expressions, we have used that if A + B = O(v?) and A = O(v?), then
B = O(v?).

Substituting these results into the relations (5.11)—(5.14) leads to

g o o 2 g
Kk = f%% +0W?), I =576 4 56 + <33 - dl) 576N+ O(w?),  (5.49)
v _

and njp = kY% = 0, where it is particularly noteworthy that all NHS transport drops out.
We further remark that the Lorentzian case — which we recovered from our general framework
in Section 5.5 — satisfies these conditions, and in particular some of these coefficients exhibit

small-v? behavior involving even higher powers of velocity, e.g. f1 = O(v?).

It is interesting to look at the leading order terms in the expansion of T (Ol)j and T(il)j in

2 S3

powers of v2, where v? is small compared to the speed of sound. These terms are f, 2 - d—il
and f1. These are the shear and bulk viscosity and a new transport coefficient o (denoted by
7 in [11]), i.e.

t 1

: 1
t=—n+0?, %3 a1 3" §C +0(v?), fi=—-m®+00h). (550

Hence to leading order in v* we find

Thy, = —@0’ + ..., (5.51)
. 9
T(Zl)j = —g‘éijc’)kvk — 7](8@‘2)]‘ + 8]‘%‘ — 8(5;-8k’l)k) + ..., (5.52)

where ¢, n and w are non-negative (as follows from the results of Section 5.3). Thus, we
recover the results of [11].

In order to make further contact with the results of [11], we turn to the hydrostatic sector
— in particular, the transport coefficients w and ¢ that appear in (5.51) and (5.52) can be
split into dissipiative and hydrostatic non-dissipative parts'®,

@ = wp + wHS, ¢=¢(p+Cus - (5.53)

Using our result (4.42), we see that only the terms involving J1, J7 and [J3 survive the small
velocity limit. Via the relation (2.21), we find that the terms involving F5 in J7 and J3 cancel.
Thus, when expanding around v’ = §v* on a flat background, we find that

Fy (T . .
T(OI)HSi = _ﬂo;fo)atévl = —wHsObv" (5.54)
Thyns; = 5iF1(T0)%5k5vk = —(us 850, 60" (5.55)
(1)HS; J 850 7 ’

where the subscript ‘0’ — e.g. in Ty — denotes the value of the corresponding variable in the
global equilibrium around which we expand. In [11], it is shown that
polo

wHs = —ar s (5.56)

15Since we showed in (5.49) that all NHS transport drops out in the limit of small background velocity, we
ignore that sector in the split.
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0P,
Cas = aTTDT% ; (5.57)

where arp is the derivative with respect to temperature of a certain hydrostatic transport
coefficient a that was identified in [11]. Comparing these with our expressions in (5.54) and
(5.55) gives the relation

F(To) = —arTp , (5.58)

thereby identifying F; with the function a used in [11].

6 Discussion and outlook

In this paper we presented the complete first-order energy-momentum tensor for a boost-
agnostic fluid in curved spacetime, going beyond the linearized results obtained in [11]. Im-
plementing the constraint of non-negativity of the divergence of the entropy current, we find
10 dissipative, 2 hydrostatic non-dissipative and 4 non-hydrostatic non-dissipative transport
coefficients. In the linearized regime the latter four coefficients vanish as a result of imple-
menting the Onsager relations.

Using the curved spacetime formulation we explicitly obtained all non-dissipative transport
coefficients, notably both in Landau frame and Lagrangian frame, by using a Lagrangian
whose form was derived by starting with the hydrostatic partition function. Furthermore,
we checked that our final results reproduce the well-known relativistic first-order transport
coefficients when Lorentz boost symmetries are present. We also treated the special case when
the hydrodyanmic theory exhibits an additional Lifshitz scale invariance, in which case there
are 7 dissipative, 1 hydrostatic non-dissipative and 2 non-hydrostatic non-dissipative transport
coefficients. We also studied the small velocity limit, reproducing the results of [11].

With the full geometrical information at our disposal, we can now for example compute
Kubo formulae and relate individual transport coefficients to a particular linear response.
Consider for example the response of the system in flat space to a purely time-dependent
perturbation 0h,,. The perfect fluid equations of motion (2.27) remain valid to first order if
we also impose dP = §(ep) = 0, together with

Sv' = —0hg; — v/ Shj; (6.1)
1 1 ..
5(e€) = 5To%hm — 5TV ohij . (6.2)

This induces a certain change dT*” which evaluates to
6T = —Péh;j — %5hkkpvivj — pviéhoj — pv? Sho; — pvivkéhkj — pvivFShy; | (6.3)
6T = —%éhkkpvi — pdhg; — pvjéhij ) (6.4)
6T = —%(Wzkkp . (6.5)

From these variations one can read off that there are leading order contributions to the
two-point function (T**TP?) which are w-independent. If we substract these leading order
contributions, we find from (5.4) that we expect a contribution proportional to wn***? to the
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two-point function, and hence a Kubo formula of the type 1 ~ lim,, g %((TT> — (T'T)1cading)-
This is not yet the complete answer though. First of all, the leading order change in v* is also
relevant and using the explicit expression one can show that while at first order (T**T%) is

indeed proportional to n**% (T#T0) does not contain any contribution of 7, and
(TWTU>(1) ~ nuw‘j _ nuvo(ivj) ) (6.6)

In addition, we have not yet included the hydrostatic contribution to the stress tensor. These
contributions can in principle be extracted from the analysis in Section 4. Alternatively,
one can also try to derive Kubo formulae for the HS coefficients directly from the partition
function, which in particular guarantees that the stress tensor will be covariantly conserved
[60]. We leave a more detailed analysis of all these issues to future work.

Besides the application to Kubo formulae, the geometrical formulation based on Aris-
totelian (or absolute) spacetime also paves the way for computing hydrodynamic modes — our
framework provides the ideal starting point for such an analysis. One is now provided with
the tools to answer questions regarding the stability of the hydrodynamical spectrum at first
order in curved spacetime, as was studied for boost invariant systems in [19,61]. Another
extension of this work is to consider the inclusion of a U(1) charge current as was initiated
in [11,12]. The case of Carroll hydrodynamics requires special treatment and will be the topic
of future work [20].

Another worthwhile open direction is to consider the relation to holography for the case of
Lifsthiz fluids, for which we have identified the reduced set of first-order transport coefficients.
Such fluids were discussed in a holographic context in Refs. [23,41-44]. Following these works,
it would be interesting to study hydrodynamic modes of Lifshitz fluids using quasinormal
modes in order to find the extra dissipative and non-dissipative transport coeflicients, as was
done in [45] (see also [62] for a study of quasinormal modes in hyperscaling violating Lifshitz
theories). It would furthermore be interesting to see if a damping/overdamping transition as
reported in [63,64] could be reproduced. More generally, addressing the question of universal
properties obeyed by transport coefficients in holographic setups and the development of a
full-fledged fluid/gravity correspondence would be relevant to pursue in this case.

In another direction, it would be worthwhile to examine submanifolds and fluids living
on them in the spirit of [24]. In particular, it was shown in the context of Newton—Cartan
geometry that the normal projection of v* can be interpreted as the transverse velocity of the
submanifold. In the absence of boost symmetry, the role of such a velocity might be more
prominent.

Finally, as discussed in the introduction, one often finds broken translation symmetry when
considering systems where boosts are absent. Assuming there is a hierarchy of (the absence
of) these symmetries, one can apply the results presented in this work. It would be important
and interesting to apply the formalism developed in this paper to describe particular physical
phenomena in concrete systems that do not exhibit boost symmetries.
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A Hydrodynamic frame transformations € Landau frame

This appendix briefly discusses the general features of hydrodynamic frame transformations.
Consider the energy-momentum tensor to first order, which in a generic frame takes the form,

T, = — (5 + P+ pu2) T, + putuPhy,, + Pol — T(”i)ﬂ, + T(’ﬁ'hpl, ) (A1)

Redefining T" and u* as
T=T +6T, ut = u'* 4 Sut (A.2)
with 7,0u* = 0 (in order to preserve the normalization 7,u* = 1), leads to an energy-

momentum tensor of the form

TV, = — (& + P+ o) s, + ol by + PO~ T+ Tk, (A3)

where £ = £(T",u'?) etc., and where

T(‘i) = T(‘i) + (55 + 6P + p'ou® + u’25p> u't + (c‘:" + P+ p'u'2) out +dPuvt,  (A4)
T(q’; = T(‘fl’; + puPouf + p'uPSut + u'Fu'PSp + SPhMP (A.5)
The defining condition for the transformed energy-momentum tensor (A.3) to be in Landau
frame is
uv'TH, = Mt & T(‘i) = T(q’))hp,,u”’ & T(’i)yu”’ =0, (A.6)
where T(‘i)y = —T(‘i)T,, + Tg’i hp, which will be the case provided we have
-1 ~
T(q)yu'” = <55 + 2p'5u2> u't + (5' + P') out . (A.7)

This can be solved for §s and du” (by contracting with 7, and h,,u’?) to give

u/V
uPds + s'out = TH

o (A.8)
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sout = T2, ' u”
- (1),/ o T, I

where 1'%, = 6% — u/*7,,, and where we used d€ + $p/6u? = T'Ss and E+P =T4.

In Landau frame, it follows from (A.6) that the divergence of the entropy current (3.5)
reads

1
C_lau (65#) = *T'uyhypupﬁu,ru -

1 v —1
= T T Luhy + ¢, (S}

o (1) (1)non> ; (A.10)

which we can equivalently express as

1
€19y (e8") = = =T (Lulvuy = bt Luty = hyp L) + €70, (esgg)non) . (A1)

This was used to rewrite the divergence of the entropy current in Section 5.

B Non-canonical entropy current from constitutive relations

In this appendix, we derive the form of the non-canonical entropy current from its constitutive
relations on flat space.
In Landau frame the divergence of the non-canonical entropy current must obey

1
e ), (eSH ) = ﬁT{;g (Luhpy — bt Loy — hypu? Lo7,) (B.1)

On flat space and in Cartesian coordinates, 7, h,, and their inverses v# and h*" are constant

and furthermore we can write

1 1
= 7TI£ILSV8NUV = ﬁ

where we defined u, = h,,uf, which is a purely spatial object. The hydrostatic part of the

——
aMs’non T

THs (Opuy + Oyuy) (B.2)
energy-momentum tensor must obey all the usual properties the full energy-momentum tensor
obeys. In particular, it must be symmetric in its spatial indices. To avoid clutter, we will
drop the subscript HS in this appendix.

The constitutive relations for the non-canonical entropy current and the hydrostatic momentum-
stress tensor TH” take the form

Fn = V01 w3
v 1 vpo Lo o
T(‘i) - 577“ P7 (Optio + Opup) + 5771¢Lotp (Opis — Doup) (B.4)

at first order in derivatives (compare with (4.42) and note that the additional terms due to
torsion and extrinsic curvature are absent on flat space). The decomposition of the tensors
can be performed with the help of the tensors v*, h**u, and h**. We find

XHP = e P hYP + egut WY P My + esvP 0 hPug 4 eah™ hP%uy + esh*PhY u,
+egh™v” + erh" W Puy + esh* WY WP ususuy + egh™ v’ hP sy | (B.5)
et = c1 (VPRYPh uy + vV WP R uy — vF Y PR, — vV hPT PR,

ez (RURPR Mgy + R Mgy — R R g — BRI gy )
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(B.6)

In deriving the constitutive relation for nfe”’, we used the fact that'® v* (0,us — dpu,) =

v” (Opus + Osu,) so that we can choose the last two indices of n}”” to be spatial. We will

leave n*P? unspecified, but it admits the same decomposition as in Section 5.
Equation (B.2) can be written as

D — %nwo (Otty + By) (Ot + D)
ol Outts + Byun) (Dpug — Bgup) = (9ux"?) Dy (B.T)

We would like to solve this equation on shell. By ‘solving’ we mean finding expressions for
the coefficients e; to eg. The left hand side only contains second order derivative terms, while
the right hand side only contains products of first order derivative terms. However, on shell
these are not independent, as we now discuss.
On flat space the equation of motion of the perfect fluid part, see equations (2.36), can be
written as
Oy 108 T =~ X, (D + D) (B.8)

where X" is defined in (2.37). If we differentiate both sides with respect to d, and anti-
symmetrize in p and o, we obtain a relation among second order derivatives and products of
first order derivatives. We seek a scalar equation like the left hand side of (B.7), and the only
way to obtain such an expression is to contract the curl of (B.8) with vPu?. This leads to

1
Y00y = S0 (Dp X" = Og X (Dt + Dyty) (B.9)

where Y#? is defined by
YHP = (v7ut — vhu?) X, (B.10)

The condition that (B.7) does not contain any second order derivatives can be fulfilled
in two different ways. The first is to take x**? proportional to Y#*P. The second option is
to take a P that is anti-symmetric in its first two indices x**? = —x"**. Using (B.5) the
latter is of the form

x*P = 2e 0P 4 262v[“h”]”hpAuHuA + 2eshP RV Ry, , (B.11)
where we have set the symmetric part X(””)p = 0. This latter condition leads to eg = —eq,
e3 =e4 =eg =0, e = —es and eg = —eg. We thus conclude that at this stage the most

general form of x** is
P = fYHr 4 2e vHpIP 4 262v[“h”]”hpAuHuA + 2eshP RV IRy, , (B.12)

where f is an arbitrary function. Compared to (B.5) we are now using a slightly different
parameterization, namely the right hand side of (B.5) has been applied to x*** — fY*? after
which we impose that the result is antiysmmetric in ¢ and v. We hope that this will not cause

any confusion.

'5This is a consequence of being on flat space, since v"9,u, = u,d,v" = 0.
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Equation (B.7) has now been reduced to an equation involving only products of first order

derivatives and can be written as
1
0= —gvpu" (0p X" = 05 X M) (Ot + Opuy) + ﬁn‘“’p" (Ouuy + Opuy) (Opue + Osup)
Lo
+E77#otpa (Optiy + Oyuy) (Optio — oup) — (Fux"’) Dyuy - (B.13)
The first three terms do not contain any term of the form X***? (9,u, — Oyu,) (Opus — Osu,),
where X#¥P? is purely spatial, i.e. all contractions with 7,, give zero. Any such term arising
from (0, x""?) 0,u, must therefore have a vanishing coefficient. Such a term does indeed arise:
its coeflicient is e5, and so we conclude that e5 = 0.
Using that e5 = 0 and the form of x derived in (B.12), we conclude that at this stage the
most general allowed non-canonical entropy current (B.3) is

SH

(non = (fY“”p + 2eyvltp¥le 4 Qegv[“h”]”hp)‘uHuA> Oy - (B.14)

Using equations (B.10) and (B.8), this can also be written as

Sﬁ)non = % (v*u” —v"u?) 0,T + €10, (vHu” — v"ut) + % (vHu” —vut) dv*,  (B.15)
where we also used that u* = —v* + h*" u, and that the background tensors are assumed to

be constant. Moreover, we remind the reader that u* = (1,v%), so that we may write u? = v?.

We now use the freedom that we can add an identically conserved current to the entropy
current, as we are not classifying such terms. We can thus write

I - f v v v v €2 v v 2
Stnon = 7 (W0 =) O, T + €10, (vu” — v"uk) + = (V' — o"ut) v
+0y [g (VU — v uk)] (B.16)
for any function g. If we then choose g such that g—% = —% we obtain the non-canonical

entropy current

14 14 F v v
Sé‘l)non = GO, (v'u” —v"ut) — 2 (vHu? — v¥ut) a2, (B.17)
where G = e; + g and F = —% — 02%. We thus recover the result (4.72) written in flat

space.
The divergence of (B.17) must obey

a“Séil)non - ﬁn/“’pa (Optw + Ovuy) (Optic + Ogup) + %nﬁ)ytpa (Opt + Opuy) (Optic — Dgutp) -

(B.18)
We can solve this equation for the coefficients ¢; and ¢z in (B.6) as well as for those that
appear in the symmetric part of n**?? = nf?* in terms of F' and G, but we will refrain from

giving the explicit result. Instead we refer to Section 4 for such expressions.
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