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Abstract

We study the nature of the excitations of an antiferromagnetic (AFM) Heisen-
berg chain with staggered long range interactions using the time-dependent
density matrix renormalization group method and by means of a multi-spinon
approximation. The chain undergoes true symmetry breaking and develops
long range order, transitioning from a gapless spin liquid to a gapless ordered
AFM phase. The spin dynamical structure factor shows that the emergence of
Néel order can be associated to the formation of bound states of spinons that
become coherent magnons. The quasiparticle band leaks out from the two-
spinon continuum that is pushed up to higher energies. Our physical picture is
also supported by an analysis of the behavior of the excitations in real-time.
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1 Introduction

Heisenberg antiferromagnets (AFM) provide a testbed for spin-wave theory [1,2]. However,
it is well known that the spin-wave approximation is not a good starting point to describe
the dynamics of spin chains. Instead, their spectrum is determined by propagating domain
walls (spinons), which are the natural basis of excitations in one spatial dimension [3–6].
The fractionalization of excitations is an exotic many-body phenomenon that has mobilized
both experimentalists and theorists for decades and has have been observed in 1D spin
chains and ladders [7–18].
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Figure 1: (a) Phase diagram of the Heisenberg chain with long range staggered interactions
reproduced from Ref. [24], as a function of the coefficient λ and exponent α; (b) confining
potential as a function of α for λ = 1.

Spin-chains are not well ordered antiferromagnets: their correlations decay algebraically
and they do not develop true long-range order. Higher dimensional magnets may develop
long-range order and, in such a case, excitations are gapless magnons with well-defined
Goldstone modes. Spinons, or fractionalized excitations, are not only a feature of 1D spin
chains but are also expected to emerge in 2D spin liquids – states that do not break contin-
uous symmetries – as postulated by the theory of deconfined quantum criticality [19–21].
To reconcile these two pictures we interpret magnons (which carry spin 1) as bound states
of spinons (that carry spin 1/2). Notice , however, that in 1D and even in 2D spin liq-
uids [22], it is possible to have bound states of spinons without long range order. In such
a case, these excitations are referred to as “triplons” (the simplest example is a triplet
excitation on top of a dimerized gapped valence bond solid) [23].

On the 2D square lattice, a prototypical antiferromagnet, the spin wave dispersion
agrees with numerical results with high accuracy in the entire Brillouin zone, with the
only deviations along the (π, 0) − (π/2, π/2) path [25, 26]. Along this segment, the spin-
wave theory dispersion is essentially flat, while numerical results indicate a dip. Recent
experiments are in excellent agreement with numerics [27–29] which has prompted the
speculation of physics beyond magnons. In particular, in recent low- temperature polarized
neutron scattering experiments [29] , the broad and spin-isotropic continuum in Sz(k, ω) at
q = (π, 0) was interpreted as a sign of deconfinement of spinons in a region of momentum
space. Recent numerical Monte Carlo results show, however, that magnons are still present
and, even though their spectral weight may become very small, it never vanishes [30].

Similarly, neutron scattering experiments on the 2D triangular antiferromagnet Ba3CoSb2O9

[31, 32] indicate that the spectrum consists not only of low energy magnon branches, but
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also high energy continua with a separation of the order of the exchange interaction J .
The disagreement with expectations from spin-wave theory stimulated further theoreti-
cal work [33, 34] that pointed at deconfined spinons being the culprits of the high-energy
features, with magnons consisting of bound states of spinons.

The above considerations beg the questions: how do gapless spinons evolve into gapless
magnons and singularities in the spectrum into coherent Goldstone modes as we transition
from a gapless spin liquid into a gapless antiferromagnet with long range order? [35,36] In
order to address these issues we resort to one dimensional spin-1/2 chains with staggered
SU(2)-symmetric long-range interactions that allow us to realize actual spontaneous sym-
metry breaking and true antiferromagnetic order: The general problem can be formulated
by means of the following Hamiltonian:

H = J
∑
i

~Si · ~Si+1 − λJ
∑
|i−j|>1

(−1)i−j

|i− j|α
~Si · ~Sj . (1)

The long range nature of the interactions artificially increases the dimensionality of the
problem and circumvents the restrictions imposed by the Mermin-Wagner theorem. At
the same time, they introduce volume-law entanglement, making the calculations more
challenging. However, the staggered phase enhances antiferromagnetism and avoids frus-
tration, also making it amenable to quantum Monte Carlo calculations [24,37,38].

The phase diagram of the extended Heisenberg chain as a function of the coupling λ
and exponent α was obtained by Laflorencie et al in Ref. [24] using quantum Monte Carlo,
who found a critical line separating Néel ordered and disordered phases with dynamical
exponent z < 1 (see Fig.1(a)). This indicates that the system generally does not admit
a description in terms of conformal field theory (which is not surprising), which should
be manifested in the finite-size scaling of the spin gap and the curvature of the dispersion
(which is sublinear), as well as the behavior of the entanglement entropy. Therefore, the
chain undergoes a transition from a gapless ordered phase with strong AFM correlations, to
a gapless disordered one with fractionalized excitations. The two regimes are characterized
by an order parameter, the staggered magnetization m = Sz(k = π), and by the nature
of the excitations that should be reflected in the spectrum, given by its dynamical spin
structure factor Sz(k, ω).

In this work, we focus on the particular case of λ = 1. In this limit, the Hamiltonian
becomes:

H = −J
∑
i,j

(−1)i−j

|i− j|α
~Si · ~Sj . (2)

The manuscript is organized as follows: in section 2 we discuss the spectral function
obtained by means of the time-dependent density matrix renormalization group method
(tDMRG) [39–42]. In section 3, we describe a multi-spinon analytical approach and an-
alyze the results from the point of view of confined spinon excitations. We provide an
intuitive picture of the nature of the excitations by studying their behavior in real time
in section 4 and we finally conclude with a summary and discussion.

2 Spin dynamics

In the disordered phase of the model Eq.(2), excitations are described in terms of decon-
fined spinons. Assuming a spinon dispersion ε(k), the two-spinon continuum is constructed
by all possible energies ε2(k) = ε(k1) + ε(k2), with k = k1 + k2. For the conventional
nearest-neighbor Heisenberg chain, the resulting spectrum is bounded from below by the
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Figure 2: Momentum resolved dynamical structure factor Sz(k, ω) of the Heisenberg
chain with long range interactions, λ = 1, and different values of α across the phase
transition.
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Figure 3: Spin dynamical structure factor across k = π/2 cuts for λ = 1 and different
values of α. The emergence of a sharp isolated peak leaking out of the continuum is
clearly observed as α decreases and long range order is developed. The curves are shifted
for clarity. Negative values are artifacts of the Fourier transform, as described in the text.

des Cloizeaux-Pearson dispersion πJ/2| sin k| [43], and the upper boundary of the contin-
uum is πJ | sin (k/2)| [44]. Therefore, it will be characterized by singularities and will not
realize coherent quasiparticles, that in the spectrum would appear as δ-like peaks, accom-
panied by and incoherent background at high energies (that can correspond to spinons
or a two-magnon continuum). Magnons are associated to symmetry breaking and the
emergence of gapless Goldstone modes after some gapped mode condenses. However, it is
possible to transition from a gapless phase without long range order (a gapless spin liquid)
to an ordered one with a well defined order parameter. In this case, it is expected that
the gapless deconfined excitations of the spin liquid will form bound states in the ordered
phase. For this to happen, an attractive confining potential should be strong enough to
overcome the kinetic energy of the free spinons. This is precisely what occurs in our model.

In the conventional 1D Heisenberg model, flipping a spin would create two domain
walls. The energy cost of such excitation does not scale with the separation between the
particles. However, in the case of long range staggered interactions, all spins interact with
each other and the local disturbance is felt by the bulk of the chain. Separating the domain
walls costs an extensive amount of energy, as depicted in Fig. 1(b), where we show the
confining potential for different values of α and λ = 1.

We are interested in determining signatures of confinement in the excitation spectrum
of the model. In order to obtain the spin dynamical structure factor we used the time-
dependent DMRG method (tDMRG) [39–42] following the prescription detailed in the
original work Ref. [39]. The idea consists of calculating the two-time spin-spin correlator:

〈Szr (t)Sz0(0)〉 = 〈ψ0|eiHtSzr e−iHtSz0 |ψ0〉, (3)

where Sz0 here is defined at the center of the chain, and r is the distance from center.
Fourier transforming to momentum space and frequency, we reconstruct the momentum
resolved spectral function. The Fourier transform is carried out over a finite time range
(in our case tmax = 20, which requires the use of a windowing technique to attenuate
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Figure 4: Possible configurations allowed in the variational Villain-like approach used in
this work: a) Ising ground state; b) two confined spinons created after flipping one spin; c)
two deconfined spinons; d) two confined spinons, one separate spinon and one anti-spinon;
e) three spinons and one anti-spinon.

artificial ringing (satellite oscillations associated to the natural frequencies that lead to
artifacts, such as negative values). The spectrum will exhibit an artificial broadening that
is inversely proportional to the width of our time window. In addition, good resolution at
high frequencies can be improved by using a small time-step, while a long time-window
is necessary to improve resolution at low frequencies. In order to time-evolve the wave
function, we use a time-step targeting procedure with a Krylov expansion of the time-
evolution operator [45] and a time step δt = 0.05 (time is measured in units of J−1 and J
is our unit of energy).

We study chains of length L = 48 using 400 DMRG states that guarantees that the
truncation error remains smaller than 10−6 over the time window. Results for the dynam-
ical structure factor are displayed in Fig.2 for λ = 1 and different values of α across the
phase transition. The spectrum is bounded from below by a sharp peak, which for large
α > 2.2 corresponds to the edge of the two spinon continuum. For smaller α, as we cross
over to the ordered phase, the peak splits out from the continuum, that moves to higher
energies. This can be seen more clearly in Fig.3, where we show cuts along the k = π/2
direction. The splitting of the peak and the shifting of the continuum to higher energies
are signatures of the formation of bound states, which become coherent quasi-particles in
the symmetry broken phase.

3 Two-spinon bound states

In order to develop intuition on the nature of the excitations and the confining mechanism,
we study a related toy problem that will serve as a close approximation to the present
situation. We will follow Villain [46] and assume that the ground state of the system has
uni-axial symmetry (the Ising limit), and consider the dynamics of mobile domain walls.
This is done by considering the motion of the spinons by means of spin flips, ignoring the
action of these terms on pairs of spins that do not involve domain walls. The procedure
was clearly outlined in Ref. [47] but, in our case, we need to consider the long-range
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Figure 5: Two-spinon spectra for λ = 1 and different values of α obtained by using Villain’s
approach for L = 60, as described in the text.

nature of the interactions (a similar procedure was carried out for the ferromagnetic case
in Refs. [48–51]). We firstly define the space spanned by all the possible configurations with
two spinons in an antiferromagnetic background |i, j〉, where i,j are the positions of the
domain walls, illustrated by Fig.4(a), (b) and (c). We then exploit translational symmetry
and define wave functions in a sector with momentum k = 2πn/L (n = 0, · · ·L− 1):

|Ψ(k, r)〉 =
1√
L

L−1∑
d=0

eikdTd|0, r〉, (4)

where the translation operator acts as Td|i, j〉 = |i+d, j+d〉 (periodic boundary conditions
enforce position to be defined mod (L)). The Hamiltonian matrix elements are easily
calculated and each momentum sector is diagonalized independently.

Results for the two spinon excitation spectrum for chains of length L = 60 are shown
in Fig.5 for λ = 1 and several values of α. We plot the energy of the two spinon state E(k).
For small α we see several bound states leaking out of the two spinon continuum. As α
increases above the expected value for the transition in the isotropic case αc ' 2.2, the
continuum tends to collapse and merge with the two-spinon bound states. This scenario
agrees qualitatively with the observed behavior in the SU(2) symmetric case. For small
α, the two spinon continuum is pushed to higher energies, and is clearly separated from
the “magnon” band.

So far, our approach has ignored other possibilities that can be realized through long
range spin flips. In fact, it is easy to convince oneself that two-spinon configurations can
only propagate via nearest-neighbor spin-flips. In order to account for the long-range
off-diagonal processes we have to consider states with three spinons and one anti-spinon,
as illustrated in Fig.4(d) and (e). As a matter of fact, long range spin flips can create
a proliferation of spinons and anti-spinons throughout the chain, but this is prevented
by energetic considerations. For this reason and due to the fast growth of the number of
possible configurations (scaling as ∼ L3), we only preserve those with one anti-spinon, and
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Figure 6: Spectra for λ = 1 and different values of α obtained by using Villain’s approach
for L = 36, including the sector with three spinons and one anti-spinon.

even so we can solve for sizes up to L = 36. The spectrum is now modified as seen in Fig.6,
but the low energy features remain qualitatively similar. However, we see a continuum of
high energy states corresponding to the new sector that gets mixed with the two-spinon
continuum. A significant different that we observe between these results and those in Fig.5
is that the number of bands leaking out of the continuum is suppressed. It is reasonable to
expect that as more spinon and anti-spinon states are included, only one band will finally
survive. Clearly, the low-energy physics is well described as consisting of bound states
of spinons but, as we shall see, accounting for the additional spin fluctuations becomes
important when it comes to understanding the real-time evolution of the system.

4 Real-time evolution

It is natural to ask whether the spinon confinement can be identified in a numerical “time-
of-flight” experiment, in which a spinon is created at the center of a chain by the application
of the S+ operator, and left to evolve under the action of the Hamiltonian. Results ob-
tained with tDMRG as shown in Fig.7 where we plot the correlations 〈N↑(r, t)N↑(r+1, t)〉,
where N↑ = (2Sz + 1). Notice that bound states are not necessarily localized in nearest
neighbors, but actually are extended objects that have a characteristic size [37] that gets
smaller with decreasing α. However, to a certain extent, these correlations can help us
develop intuition and, for this purpose, we shall refer to them as the “spinon density”.
Without long-range interactions, spinons propagate ballistically [52, 53] and this is seen
in Fig.7 as a “lightcone” with a velocity determined by the maximum slope of the spinon
dispersion v = π/2. As the value of alpha decreases, spinons become more and more
confined and, consequently, “heavier” (or slower), since bound states of spinons move co-
herently through second-order processes by means of two consecutive spin flips. However,
a side effect of the long-range interactions is that spinons can “hop” longer distances.
As a consequence, the originally sharp edges of the lightcone become more diffuse and,
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Figure 7: Domain wall expansion for λ = 1 and different values of α, obtained with
tDMRG for a chain with L = 48 spins. Results for the nearest neighbor case are also
included. We show the “spinons density”: 〈N↑(r, t)N↑(r + 1, t)〉. Color density is in a log
scale.

moreover, they acquire an apparent curvature that gives the misleading impression of an
underlying “accelleration”. As it turns out, this illusion is due to the superposition of two
characteristic velocities, as we discuss next.

Our first attempt to explain the observed behavior is to use the Villain approximation
with two spinons, presented in Fig.8. As we mentioned earlier, the long range interactions
in this case enter only as a diagonal contribution, since long range spin flips produce a
proliferation of spinons that take us outside of the two-spinon sector. However, we can
already identify very interesting features as we change the exponent from basically α→∞
(nearest neighbor interactions, only), to α = 1.8. In the former case, we see a coherent
ballistic propagation of the spinons with a well defined characteristic velocity, as expected,
since the problem is equivalent to two non-interacting particles. For α = 2.2 we identify
two coexisting lightcones: a fainter one preserves the same slope as the free deconfined
spinons, while the second one, with larger weight, describes coherent particles moving with
roughly half the spinon velocity. It only makes sense to attribute these features to a bound
state of spinons, a “magnon”. As we reduce α even further, the free spinon lightcone loses
weight, which is transferred to the magnons. For α = 1.8 we can clearly identify a single
magnon lightcone, as free spinons move to higher energies. In order to support these
observations we also calculate 〈N↑(r, t)N↑(r + 1, t)N↑(r + 2, t)〉, or “magnon density”, in
Fig.9. In the nearest-neighbor limit we only see a very faint feature that loses weight as
time evolves: the original flipped spin creates a state like the one depicted in Fig.4(b),
but it is short lived and breaks into two spinons. As α decreases, the magnon lightcone
becomes more and more coherent and correlates exactly with the features observed in
Fig.8.

Having determined the coexistence of deconfined spinons and magnons in the lightcone,
it rests to explain the apparent curvature in the DMRG results. For this, we need to extend
our treatment by considering the possibility of three spinons and one anti-spinon to account
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Figure 8: Spinon density 〈N↑(r, t)N↑(r+1, t)〉 for λ = 1 and different values of α, obtained
using Villain’s two-spinon approximation. Results for the nearest neighbor case are also
included. Color density is in a log scale.

for the long-range spin flips. The results for the spinon and magnon densities are presented
in Fig.10 and Fig.11, respectively. We basically observe a “fan” or excitations covering
the region between the magnon and free spinon wavefronts. Moreover, attempting to
identify a characteristic velocity is an ill-defined problem, since spins are allowed to hop
to all distances. This is also reflected in the magnon dispersion no longer having a linear
dispersion, as previously observed.

5 Summary and conclusions

We have analyzed the spectrum and studied the nature of the excitations of a Heisen-
berg chain with staggered long range interactions. The unfrustrated long-range nature
of the exchange effectively increases the dimensionality of the system and the chain is
able to undergo true symmetry breaking and develop long range order. For weakly decay-
ing interactions, our tDMRG calculations show that the emergence of Néel order can be
associated to the formation of bound states of spinons that become coherent quasiparti-
cles (magnons). At the same time, the two-spinon continuum is pushed to higher energies.
This is supported by two-spinon and three-spinon approximations that reproduce the main
features and explain the formation of bound states due to a confining potential that grows
logarithmicaly. The observed behavior bears very close resemblance to the one found in
actual neutron experiments in higher dimensional materials.

Funding information The authors acknowledge support from the National Science
Foundation under grant No. DMR-180781.
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Figure 9: Same as Fig.8 but for the “magnon density” 〈N↑(r, t)N↑(r + 1, t)N↑(r + 2, t)〉.

Figure 10: Spinon density 〈N↑(r, t)N↑(r+1, t)〉 for λ = 1 and different values of α, obtained
using Villain’s approximation including three spinons and one anti-spinon.
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Figure 11: Magnon density 〈N↑(r, t)N↑(r+ 1, t)N↑(r+ 2, t)〉 for λ = 1 and different values
of α, obtained using Villain’s approximation including three spinons and one anti-spinon.
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[40] A. J. Daley, C. Kollath, U. Schollwöck and G. Vidal, Time-dependent density-matrix
renormalization-group using adaptive effective hilbert spaces, Journal of Statistical
Mechanics: Theory and Experiment 2004(04), P04005 (2004), doi:10.1088/1742-
5468/2004/04/p04005.

[41] A. E. Feiguin, The density matrix renormalization group method and its time-
dependent variants, In XV Training Course in the Physics of Strongly Correlated
Systems, vol. 1419, p. 5. AIP Proceedings (2011).
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