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One dimensional (1d) interacting systems with local Hamiltonians can be studied with various
well-developed analytical methods. Recently novel 1d physics was found numerically in systems
with either spatially nonlocal interactions, or at the 1d boundary of 2d quantum critical points,
and the critical fluctuation in the bulk also yields effective nonlocal interactions at the boundary.
This work studies the edge states at the 1d boundary of 2d strongly interacting symmetry protected
topological (SPT) states, when the bulk is driven to a disorder-order phase transition. We will take
the 2d Affleck-Kennedy-Lieb-Tasaki (AKLT) state as an example, which is a SPT state protected
by the SO(3) spin symmetry and spatial translation. We found that the original (1 + 1)d boundary
conformal field theory of the AKLT state is unstable due to coupling to the boundary avatar of the
bulk quantum critical fluctuations. When the bulk is fixed at the quantum critical point, within the
accuracy of our expansion method, we find that by tuning one parameter at the boundary, there
is a generic direct transition between the long range antiferromagnetic Néel order and the valence
bond solid (VBS) order. This transition is very similar to the Néel-VBS transition recently found
in numerical simulation of a spin-1/2 chain with nonlocal spatial interactions. Connections between
our analytical studies and recent numerical results concerning the edge states of the 2d AKLT-like
state at a bulk quantum phase transition will also be discussed.

PACS numbers:

Our understanding of one dimensional (1d) quantum
many-body systems with local Hamiltonians is far more
complete compared with higher dimensional systems,
since many powerful analytical methods such as Bethe
ansatz [1], Virasoro algebra [2], etc. are applicable only
to 1d systems (or (1 + 1)d space-time). We also under-
stand that 1d systems have many unique features that
are fundamentally different from higher dimensions. For
example, with local Hamiltonians, generally there can
not be spontaneous continuous symmetry breaking in
(1 + 1)d even at zero temperature (with exceptions of
the scenarios when a fully polarized ferromagnet is the
exact ground state), the closest one can possibly get is a
quasi-long range power-law correlation of order parame-
ters that transform nontrivially under a continuous sym-
metry. There is also no topological order in 1d systems
analogous to fractional quantum Hall states which have
a gap and simultaneously ground state topological de-
generacy [3]. This means that many phenomena that are
found in higher dimensions do not occur in 1d systems.

To seek for richer physics in one dimensional systems,
we need to explore beyond the restriction of local Hamil-
tonians. One way to get around this restriction is to con-
sider 1d systems at the boundary of a 2d systems, and
drive the 2d bulk to a quantum phase transition. The
physics becomes especially interesting when the disor-
dered phase in the phase diagram of the 2d bulk is a sym-
metry protected topological (SPT) phase, which already
has topologically protected 1d edge state. The interplay
between the topological edge state and gapless quantum
critical modes can lead to very nontrivial physics, which
has been studied through numerical methods recently [4–

7]. One can also directly turn on nonlocal spatial interac-
tion in a 1d Hamiltonian. 1d quantum spin chains with
nonlocal spatial interactions have also been studied re-
cently, and very intriguing physics was found [8, 9]. We
will discuss the results of these numerical works later in
this paper.

In this work we investigate the 2d SPT state protected
by symmetry SO(3)×G, where SO(3) is the ordinary spin
symmetry, while G is a discrete symmetry, which could
be an onsite unitary Z2 symmetry, or an anti-unitary
time-reversal ZT

2 . G can also be a lattice symmetry such
as translation by one lattice constant. For example, when
G is the translation along the x̂ axis (Tx), this state can
be realized as the Affleck-Kennedy-Lieb-Tasaki (AKLT)
state of the spin-2 system on a 2d square lattice [10]. In
the example of spin-2 AKLT state, there is a chain of dan-
gling spin-1/2 at the boundary of the system, as long as
the boundary is along the x̂ axis and preserves the trans-
lation symmetry Tx. The nature of the SPT states, and
the Lieb-Shultz-Mattis (LSM) theorem [11–13] guarantee
that this boundary system cannot be trivially gapped,
i.e. it must be either gapless, or gapped but degenerate
(For a closed 1d system without 0d boundaries, a generic
ground state degeneracy can only originate from spon-
taneous discrete symmetry breaking [3]). In this work
we will take the AKLT state as an example, but our
results can be straightforwardly generalized to other dis-
crete symmetries G.

Our study will mainly focus on the 1d boundary of
strongly interacting 2d bosonic SPT phases, using a con-
trolled renormalization group method. We would like to
mention that previous literature has discussed the cou-

http://arxiv.org/submit/3513495/pdf


2

pling between quantum criticality and topologically lo-
calized gapless states in various fermionic topological in-
sulators [14]; other approaches such as constructing solu-
ble models and various numerical methods have also been
used to study edge states of interacting SPT states at a
bulk quantum criticality [15–17]. Our main finding is
that there is a generic continuous quantum phase transi-
tion between a long range antiferromagnetic Néel order
which spontaneously breaks the SO(3) spin symmetry,
and a valence bond solid state, at the 1d boundary of
an AKLT state that couples to the bulk quantum critical
modes. The bulk quantum critical modes effectively yield
nonlocal interactions at the 1d boundary, which makes
the long range Néel order possible.
In principle the 1d boundary of this AKLT state should

be effectively described by an extended Heisenberg model

H =
∑

j

J ~Sj · ~Sj+1 + · · · (1)

where ~Sj is the spin-1/2 operator, and the ellipsis in-
cludes other possible terms allowed by SO(3)× Tx. The
ground state of Eq. 1 depends on the entire lattice Hamil-
tonian. But a useful starting point of analyzing this
boundary system is the SU(2)1 conformal field theory
(CFT) described by the following Hamiltonian in the in-
frared limit:

H0 =

∫

dx
1

3 · 2π

(

~JL · ~JL + ~JR · ~JR

)

. (2)

The SU(2)1 CFT has a larger symmetry than the lat-

tice Hamiltonian Eq. 2, since ~JL and ~JR generate the
SU(2)L,R symmetries for the left and right chiral modes
respectively. The relation between the microscopic oper-
ator ~S and the low energy field is [18]

~S(x) ∼
1

2π

(

~JL(x) + ~JR(x)
)

+ (−1)x~n(x), (3)

where ~n(x) is the Néel order parameter at the boundary.
~JL,R both have scaling dimension +1 at the SU(2)1 CFT
fixed point, while ~n(x) has scaling dimension 1/2 at the
SU(2)1 CFT.
The diagonal SU(2) symmetry (simultaneous SU(2) ro-

tation between the left and right modes) corresponds to
the original SO(3) spin symmetry on the lattice scale.
And because the lattice Hamiltonian has a lower sym-
metry than the infrared theory Eq. 2, another term is
allowed in the low energy Hamiltonian:

H1 =

∫

dx λ ~JL · ~JR. (4)

Since ~JL,R have scaling dimension +1, power-counting in-
dicates the coefficient λ has scaling dimension 0. Depend-
ing on the sign of λ, this term can be either marginally
relevant or marginally irrelevant. When λ is negative

and marginally irrelevant the system flows back to the
SU(2)1 CFT with an enlarged SU(2)L × SU(2)R symme-
try. When this term is positive and marginally relevant,
it will flow to infinite (nonperturbative) and generate a
mass gap, which based on the nature of the SPT phase
would imply that the system spontaneously breaks the
discrete symmetry G. For example, when this system is
realized as the AKLT state, and G is the translation Tx,
the LSM theorem demands that when the boundary of
the system generates a mass gap, it spontaneously breaks
the translation symmetry and develops a nonzero expec-
tation value of a dimerized valence bond solid (VBS) or-

der: v ∼ (−1)j ~Sj · ~Sj+1. As a side-note, we emphasize
that the state we are studying here is different from the
SO(3) or SU(2) SPT state defined through the group co-
homology of SO(3) or SU(2) [19–21], since in those states
the symmetry acts chirally, i.e. it only acts on either the
left or right modes. While in our case the spin symmetry
acts on both the left and right modes of the 1d bound-
ary, and another discrete symmetry such as translation
is demanded.
Our goal is to study the edge states when the bulk un-

dergoes a disorder-order quantum phase transition, and
the disordered phase of the bulk phase diagram is the
AKLT state. The quantum critical fluctuation in the
bulk may affect the edge of the AKLT state. To study
the interplay between the topologically protected edge
states, and the quantum critical modes, we adopt the
“two layer” picture used in Ref. [22]: in layer-1, the sys-
tem remains a gapped AKLT state in the bulk with solid
edge states described by Eq. 1 and Eq. 2; in layer-2 the
system undergoes a phase transition between an ordinary
trivial disordered phase and an ordered phase. These two
systems are glued together at the boundary. We have
used the common wisdom that the transition between
the SPT phase and the ordered phase is generically in
the same universality class as the transition between an
ordinary disordered phase and an ordered phase [45]. We
will discuss two kinds of ordered phases: an SO(3) an-
tiferromagnetic order, and an Ising-like VBS order that
spontaneously breaks Tx, assuming the boundary is at
y = 0. In the bulk the two disorder-order transitions un-
der discussion correspond to the three dimensional (3D)
SO(3) and Ising Wilson-Fisher transitions respectively,
which can be studied through a standard ǫ = 4 −D ex-
pansion, where D = 2 + 1 is the space-time dimension
in the bulk. We only extend the bulk dimensionality of
layer-2 to 3− ǫ spatial dimensions, while the layer-1 still
has a two-dimensional bulk and one-dimensional bound-
ary.
We denote the bulk SO(3) antiferromagnetic order pa-

rameter, and the Ising-VBS order parameter in layer-
2 as ~φ and φ respectively, which should couple to the
Néel order parameter ~n and the VBS order parameter
v at the boundary theory of layer-1, and this coupling
could lead to new physics in the infrared. However, ~φ
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and φ do not directly couple to ~n and v due to the
boundary condition of the Wilson-Fisher fixed point. As-
suming the boundary of the 2d system is at y = 0, the
most natural boundary condition for fields ~φ, φ would be
~φ(y = 0) = φ(y = 0) = 0 [46]. Then the leading nonva-
nishing boundary fields with the same quantum number
as ~φ and φ are ~Φ ∼ ∂y~φ and Φ ∼ ∂yφ [23].

The SO(3) order parameter ~φ and the Ising order pa-
rameter φ will not become critical simultaneously with-
out fine-tuning, but they can be treated in the same
framework. The boundary quantum critical modes ~Φ and
Φ couple to the fields at the boundary of layer-1 through
the following terms in the action

S =

∫

d2x gn~Φ(x) · ~n(x) + gvΦ(x)v(x)

+

∫

d2xd2x′
1

2
Φa(x)C−1

n (x,x′)abΦ
b(x′)

+

∫

d2xd2x′
1

2
Φ(x)C−1

v (x,x′)Φ(x′), (5)

where x = (x, τ) is the space-time coordinate.
Cn(x,x

′)ab and Cv(x,x
′) are the normalized correlation

functions of Φa and Φ at the boundary:

Cn(x, 0)ab = 〈Φa(x, τ)Φb(0, 0)〉 =
δab

(x2 + τ2)3/2−ǫn
,

Cv(x, 0) = 〈Φ(x, τ)Φ(0, 0)〉 =
1

(x2 + τ2)3/2−ǫv
. (6)

The scaling dimension of ~Φ and Φ is ∆n = D/2 − ǫn +
O(ǫ2) and ∆v = D/2 − ǫv + O(ǫ2), where D = 3 is the
bulk space-time dimension. ǫn/v can be computed again
through the ǫ = (4 −D) expansion, following the calcu-
lation of boundary criticality of the Wilson-Fisher fixed
points [23–27]: for an O(N) Wilson-Fisher fixed point in
the bulk, the scaling dimension of the boundary modes
of the order parameter is

∆Ø(N) =
D

2
−

N + 2

2(N + 8)
ǫ+O(ǫ2). (7)

In our case ǫn/v = ǫ(N + 2)/(2(N + 8)) with N = 3, 1
respectively. We again stress that the ǫ dimensionality
was introduced for layer-2 only. The effective action of
~Φ and Φ in Eq. 5 already received leading order correc-
tion from the ǫ−expansion due to the self-interaction of
the bulk critical modes. These effective actions can in
principle receive further corrections from the gv and gn
couplings with the boundary fields ~n and v, but this cor-
rection should be at least at the order of g2n, g

2
v, which

will be at higher order of ǫ−expansion. As we can see
later, the main physics we will discuss is at the vicinity
of a fixed point where gn, gv ∼ ǫ.
Eq. 2, 4, 5 together can be viewed as an effective non-

local 1d theory, and this theory will be the starting point
of our discussion hereafter. Considering the fact that

FIG. 1: The coupled RG flow of λ and gn based on Eq. 11.
A new fixed point (λ∗, g∗

n
) = ( 2ǫn

π
, 4ǫn

π
) is found, which sep-

arates two phases: the phase where λ → +∞ is the VBS
phase, and the phase with (λ, gn) → (−∞,+∞) is the long
range Néel order at the 1d boundary. But on the Néel order
side of the phase diagram, the RG flow is complicated and
nonmonotonic, hence it may take a long RG scale, or a large
system size to finally reveal the true long range order.

the scaling dimension of both the Néel and VBS order
parameter at the SU(2)1 CFT is 1/2, to the leading order
of ǫ expansion, the scaling dimensions of the coupling
constants must be

∆gn = ǫn +O(ǫ2), ∆gv = ǫv +O(ǫ2)

ǫn =
5

22
ǫ, ǫv =

1

6
ǫ. (8)

gn/v are hence weakly relevant assuming a small param-
eter ǫ. Hence the SU(2)1 CFT at the boundary of the
AKLT state will be unstable against coupling to the
quantum critical modes, while fortunately due to the
weak relevance of the coupling constants, this effect can
be studied perturbatively.

To proceed we need to compute the coupled renormal-
ization group (RG) flow of λ and gn/v in Eq. 4 and Eq. 5.
The RG equations can be derived based on the following
operator product expansion (OPE):

Ja
L(z)n

b(w, w̄) ∼
1

2

1

z − w
(iδabv(w, w̄) + iǫabcn

c(w, w̄)) ,

Ja
R(z̄)n

b(w, w̄) ∼
1

2

1

z̄ − w̄
(−iδabv(w, w̄) + iǫabcn

c(w, w̄)) ,

Ja
L(z)v(w, w̄) ∼ −

1

2

i

z − w
na(w, w̄),

Ja
R(z̄)v(w, w̄) ∼

1

2

i

z̄ − w̄
na(w, w̄).

(

∑

a

na(z, z̄)Φa(z, z̄)

)(

∑

b

nb(w, w̄)Φb(w, w̄)

)

∼
3

2

1

|z − w|4
+

1

2

1

|z − w|2

∑

a=1,2,3

Ja
L(w)J

a
R(w̄),
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+
3

4

1

(z̄ − w̄)2
TL(w) +

3

4

1

(z − w)2
TR(w̄) + ...,

(v(z, z̄)Φ(z, z̄)) (v(w, w̄)Φ(w, w̄))

∼
1

2

1

|z − w|4
−

1

2

1

|z − w|2

∑

a=1,2,3

Ja
L(w)J

a
R(w̄)

+
1

4

1

(z̄ − w̄)2
TL(w) +

1

4

1

(z − w)2
TR(w̄) + ...,

(

∑

a=1,2,3

Ja
L(z)J

a
R(z̄)

)





∑

b=1,2,3

Jb
L(w)J

b
R(w̄)





∼
3

4

1

|z − w|4
−

2

|z − w|2

∑

a=1,2,3

Ja
L(w)J

a
R(w̄)

+
3

2

1

(z̄ − w̄)2
TL(w) +

3

2

1

(z − w)2
TR(w̄) + ... (9)

In these equations, z and w are the chiral coordinates
(z = τ + ix); and the ellipsis contains less singular terms
of the OPEs. The fields TL/R are the energy-momentum
tensor of the left and right movers, which are given via
the Suguwara construction by TL = 1

3

∑

a : Ja
LJ

a
L :

and TR = 1
3

∑

a : Ja
RJ

a
R :. Notice the form of energy-

momentum tensors is similar to the Hamiltonian Eq. 2
but with an extra factor of 2π. The OPEs above involv-
ing the fields Φa and Φ are derived to the leading order
of ǫn/v.
These OPEs are sufficient to derive the desired RG

equations to the second order of the coupling constants.
For example, using the first two lines of Eq. 9, we can
derive another set of secondary OPEs:

(

∑

a=1,2,3

Ja
L(z)J

a
R(z̄)

)(

∑

b

nb(w, w̄)Φb(w, w̄)

)

∼
1

4

1

|z − w|2

(

∑

b

nb(w, w̄)Φb(w, w̄)

)

,

(

∑

a=1,2,3

Ja
L(z)J

a
R(z̄)

)

(v(w, w̄)Φ(w, w̄))

∼ −
3

4

1

|z − w|2
(v(w, w̄)Φ(w, w̄)) . (10)

The coupled RG equations (beta functions) for λ and
gn/v then read

β(λ) =
dλ

d ln l
= 2πλ2 −

π

2
g2n +

π

2
g2v,

β(gn) =
dgn
d ln l

= ǫngn −
π

2
λgn,

β(gv) =
dgv
d ln l

= ǫvgv +
3π

2
λgv. (11)

These RG equations are valid as long as we restrict our
analysis to the parameter region with λ, gn, gv ∼ ǫ, since

every term in the RG equations Eq. 11 would be at the
same order of ǫ2.
As we explained before, there is no general reason for

~φ, φ to become critical simultaneously in the bulk. Hence
let us ignore the Φ field first, and consider the coupled
RG equation for λ, gn only. If there is no bulk quantum
critical modes, an initial positive value λ = λ0 will be
marginally relevant, and open up an energy gap when it
flows to positive infinite. According to the LSM theorem,
and the nature of the SPT state, this 1d boundary can-
not be trivially gapped, hence a nonperturbative positive
λ would drive the system into an SO(3) invariant VBS
state with spontaneous symmetry breaking of translation
symmetry Tx. But by coupling to the boundary modes ~Φ
of quantum critical fluctuation, the beta functions have
an new unstable fixed point at

(λ∗, g∗n) =

(

2ǫn
π

,
4ǫn
π

)

. (12)

The two eigenvectors of RG flow expanded at the new
fixed point have scaling dimensions (8.9ǫn,−0.89ǫn).
Of course the RG analysis above is only at the lead-

ing nontrivial order of ǫ−expansion, and at this order
of accuracy, no other fixed point is found in the phase
diagram. The new fixed point found above separates
two phases: phase I where λ flows to positive infinity,
and phase II where λ and gn flow to negative and pos-
itive infinity respectively. Then both phases no longer
have scaling invariance, so both phases should have cer-
tain long range order considering the fact that there is
no topological order in one dimension [3]. Phase I with
λ → +∞ is the dimerized VBS phase as we discussed
before; phase II with (λ, gn) → (−∞,+∞) should be a
Néel ordered phase, i.e. the 1d boundary can develop the
Néel order before the bulk, even though the bulk is still
at a quantum critical point. A negative λ would enhance
the correlation of the Néel order parameter, and after in-
tegrating out ~Φ, a long range interaction proportional g2

would be generated between the Néel order parameters.
Hence the infrared limits λ → −∞ and g → +∞ of phase
II both favor the long range Néel order.
The correlation length critical exponent ν of this Néel-

VBS transition is ν ∼ 1/(8.9ǫn). At the transition point
(λ∗, g∗n) = (2ǫn/π, 4ǫn/π), the scaling dimensions of the
Néel and VBS order parameters can again be computed
to the leading order of ǫ−expansion:

∆~n =
1

2
+

πλ∗

2
=

1

2
+ ǫn,

∆v =
1

2
−

3πλ∗

2
=

1

2
− 3ǫn. (13)

One can see that compared with the SU(2)1 CFT, the
Néel order correlation is suppressed while the VBS order
correlation is enhanced at the new transition fixed point,
since λ∗ > 0. This also implies that this Néel-VBS tran-
sition has no enlarged symmetry of SU(2)L × SU(2)R.
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An enlarged SU(2)L ×SU(2)R ∼ SO(4) symmetry would
guarantee that the Néel and VBS order parameters have
the same scaling dimension, because (~n, v) transform as
a vector under SO(4). Many previous studies suggest
that at an unconventional quantum critical point between
two phases with different spontaneous symmetry break-
ing, an enlarged emergent symmetry in the infrared is
often expected due to a series of dualities [28–34]. But
in our current case we expect the infrared symmetry at
the Néel-VBS transition is still the microscopic symmetry
SO(3)×G.
As we mentioned before, suppose we integrate out the

field ~Φ in Eq. 5, a long range interaction in space-time
will be generated between the Néel order parameter. The
scenario is similar to the spin-1/2 chain with a long range
spin-spin interaction, the only difference is that in the lat-
ter case the long range interaction is instantaneous and
only nonlocal in space. Recently a direct transition be-
tween the Néel and VBS order was found in a spin-1/2
chain with nonlocal two-spin interaction and local four-
spin interaction [8, 9]. It was found numerically that at
the direct Néel-VBS transition the scaling dimension of
the Néel order parameter is greater than the VBS or-
der parameter, which is fundamentally different from the
SU(2)1 CFT, but consistent with our RG calculations
Eq. 13. We also note that a previous RG analysis was
performed for 1d spin-1/2 system with an instantaneous
nonlocal spin interaction, but the Néel-VBS transition
was not found therein. Instead the previous analysis
identified a transition between the true long range Néel
order and a quasi-long range order at the parameter re-
gion ǫn < 0 and λ < 0 with our notation [35].

So far we have assumed that the fields ~n, v and ~Φ,Φ
have the same velocity in our effective 1d theory Eq. 5,
hence the theory we considered so far has a Lorentz in-
variance. We can also turn on a weak velocity difference
between these two sets of fields, and analyze how it flows
under RG. This velocity anisotropy corresponds to mod-
ifying the correlation function of ~Φ:

Cn(x, 0)ab = 〈Φa(x, τ)Φb(0, 0)〉

=
δab

(

(1− δv
2 )2x2 + (1 + δv

2 )2τ2
)3/2

. (14)

Here we have assumed that the velocity of ~Φ exceeds
the velocity of ~n by a factor of (1 + δv) (to the first
order of δv). We have taken ǫn = 0 for the leading order
calculation. δv can flow under RG as it is the “seed” for
velocity difference. Based on symmetry, the RG flow of
δv should look like

dδv

d ln l
= −αg2nδv. (15)

And eventually we will plug in the fixed point value of
gn = g∗n. Based on previous experience, at an interacting

fixed point, a weak velocity anisotropy is often irrele-
vant [36, 37], since intuitively in the infrared all the in-
teracting modes are expected to have the same velocity.
Hence we expect α > 0, i.e. a weak velocity difference
between the boundary and bulk will be irrelevant at the
Néel-VBS transition fixed point.
To evaluate α, we expand the correlation function of

~Φ to the leading order of δv:

Cn(x, 0) =
1

|z|3
−

3

2

δv

|z|5
z2 + z̄2

2
+O(δv2) (16)

Using the OPEs in Eq. 10, the second order perturabtion
of gn would generate the following term:

−
1

2
g2n

(

∑

a

na(z, z̄)Φa(z, z̄)

)(

∑

b

nb(w, w̄)Φb(w, w̄)

)

∼ −
3g2n

4|z − w|4
− g2n

1

4

1

|z − w|2

∑

a=1,2,3

Ja
L(w)J

a
R(w̄)

+ g2nδv
9

32

1

|z − w|2
(TL(w) + TR(w̄)) + · · · (17)

Here we only kept the terms that will lead to nonzero ef-
fect under real space RG. The last term in Eq. 17 would
contribute a renormalization (or acceleration) for the ve-
locity of ~n. Under rescaling, the ratio between the two
velocities reduces by a factor:

1 + δv →
1 + δv

1 + g2nδv
9π2

8 ln l
, (18)

which leads to the RG equation for δv:

dδv

d ln l
= −

9π2

8
(g∗n)

2δv, (19)

which confirms our expectation that δv is an irrelevant
perturbation at the Néel-VBS transition fixed point.
Suppose we start with δv > 0, namely the velocity of

~n is smaller than ~Φ, the velocity of ~n will increase under
RG. This means that in this case the system will quali-
tatively behave like z < 1, where z is the dynamic criti-
cal exponent (not to confuse with the chiral coordinate).
On the contrary, if we start with δv < 0, the velocity
of ~n would decrease under RG, which means that effec-
tively z > 1. The former scenario is analogous to a spin
chain with instantaneous spatial nonlocal interaction [9],
which is equivalent to taking the velocity of the effective
action of ~Φ and Φ to infinity in our effective 1d theory
Eq. 5. Although our calculation is for δv > 0, rather
than taking the velocity in the ~Φ action to be infinity,
the “acceleration” of the modes derived here (including
z < 0) is qualitatively consistent with what was observed
in Ref. [9] at the Néel-VBS transition in a spin-1/2 chain
with nonlocal spatial interactions.
In the phase diagram Fig. 1, on the side of the Néel

order, the path of the RG flow towards the long range
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FIG. 2: The plot of ln[3πGn(k)(1 + A(g∗′
n
)2)] against

ln[1/|k|], where Gn(k) is given by Eq. 20. From top to bot-
tom, A(g∗′

n
)2 = 0, 1/2, 2, and 5.

FIG. 3: The RG flow of (λ, gv). As long as the initial value
gv is nonzero, both parameters will flow to positive infinity,
which implies that the boundary will likely develop the Ising-
VBS order before the bulk.

order can be complicated. It may take a long RG scale
and hence large system size to reveal the true long range
order. For example, on part of the phase diagram, λ
changes its sign and eventually flow away to the negative
nonperturbative regime. While λ changes sign, gn first
decreases its magnitude from the initial value g0, then
after reaching its minimum g∗′n along the RG flow, gn
keeps increasing and eventually become nonperturbative.
Hence it is possible that for a relatively large intermedi-
ate scale, the system behaves like gn ∼ g∗′n . The effect of
this nonmonotonic RG flow can be illustrated by a sim-
ple perturbation theory to the correlation function of the
Néel order parameter:

Gn(x) = 〈~n(x) · ~n(0)〉

∼
3

2

1

|x|
+

3

4

∫

d2x1d
2
x2

(g∗′n )2

|x− x1||x1 − x2|3−2ǫn |x2|

+ O(g∗′n )4 + · · · . (20)

Hence Gn(k) in the momentum-frequency space k =
(k, ω) reads

Gn(k) ∼
1

G(0)(k)−1 − Σ(k)
, (21)

where G(0)(k) = 3π/|k|, Σ(k) = −A(g∗′n )2|k|1−2ǫn/(3π),
and A > 0 for 0 < ǫn < 1/2. The system will have
enhanced spin-spin correlation function compared with
the SU(2)1 CFT of the spin-1/2 chain, as was observed
in numerical simulations [4, 6, 7]. The mixture of the
two terms in G−1(k) may yield results that appear to be
power-law correlation with different scaling dimensions,
which is illustrated in Fig. 2, where we have fixed ǫn =
5/22ǫ but chosen different g∗′n . This nonuniversal power-
law like scaling of spin correlation was also observed in
recent numerics concerning the edge states of the AKLT
state during a bulk phase transition [6, 7].

Now we briefly consider the situation when the bulk
undergoes a disorder-order quantum phase transition be-
tween the AKLT state and the Ising like VBS order,
which is described by order parameter φ. The boundary
mode of φ is Φ ∼ ∂yφ, and it couples to the VBS order pa-
rameter v at the boundary CFT. In this case, the coupled
RG flow of λ and gv in Eq. 5 is relatively simple: as long
as we start with nonzero (λ0, gv0), both gv and λ quite
generally flow to positive infinity, which corresponds to
a nonzero long range order of v. Hence the 1d boundary
of the system should develop the Ising-VBS order before
the bulk. when the bulk is tuned closer and closer to
a VBS (Ising) transition, the boundary will go through
a transition between the gapless SU(2)1 CFT state to a
VBS phase, before the bulk actually hits criticality. This
boundary transition should be in the same universality
class as the transition from an SU(2)1 CFT to a VBS
phase in a purely one-dimensional spin-1/2 chain with
both nearest and next nearest neighbor Heisenberg inter-
actions (see, for example, Ref. 38 for the one-dimensional
transition). We note that this transition is not an ordi-
nary 1 + 1d Ising transition and, hence, is different from
the “extraordinary transition” studied in the standard
boundary criticality literature. But if we start with a
negative initial value λ0, it may take a long RG time
before the coupling constants become positive and non-
perturbative. Hence the VBS order parameter may still
appear to have quasi long range correlation for a finite
system.

In conclusion, we have found that there can be a direct
continuous quantum phase transition between the long
range antiferromagnetic Néel order, and the VBS order,
in an effective 1d spin-1/2 system with nonlocal inter-
actions (Eq. 5). Due to the nonlocality of the model,
even in a 1d system with a continuous SO(3) spin sym-
metry there can be a long range Néel order. Within
the accuracy of our method, the effective spin-1/2 sys-
tem Eq. 5 arises from coupling the 1d boundary of a
2d SPT phase to bulk quantum critical modes. Our re-
sults were drawn from a controlled renormalization group
study, and the critical exponents extracted (including the
anomalous dimensions of order parameters and the dy-
namical exponent) are qualitatively consistent with the
Néel-VBS transition found numerically in recent simu-
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lation of a spin-1/2 chain with spatially instantaneous
nonlocal interactions [8, 9]. If a 1d system has local in-
teractions only, there can only be spontaneous discrete
symmetry breaking. Previous numerical and analytical
works [39–41] have studied the analogue of deconfined
quantum critical point between two phases that sponta-
neously break different discrete symmetries.
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the Simons Foundation. The authors thank Anders
Sandvik and Leon Balents for helpful discussions.
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