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Abstract: We compute the partition function of 2D Jackiw-Teitelboim (JT) gravity

at finite cutoff in two ways: (i) via an exact evaluation of the Wheeler-DeWitt wave-

functional in radial quantization and (ii) through a direct computation of the Euclidean

path integral. Both methods deal with Dirichlet boundary conditions for the metric

and the dilaton. In the first approach, the radial wavefunctionals are found by reduc-

ing the constraint equations to two first order functional derivative equations that can

be solved exactly, including factor ordering. In the second approach we perform the

path integral exactly when summing over surfaces with disk topology, to all orders in

perturbation theory in the cutoff. Both results precisely match the recently derived

partition function in the Schwarzian theory deformed by an operator analogous to the

TT deformation in 2D CFTs. This equality can be seen as concrete evidence for the

proposed holographic interpretation of the TT deformation as the movement of the

AdS boundary to a finite radial distance in the bulk.
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1 Introduction

Can the holographic dictionary of AdS/CFT be generalized to gravitational theories

defined on a finite patch of spacetime? This question has recently attracted renewed

attention due to the discovery of a new class of solvable irrelevant deformations of

two-dimensional conformal field theory, known as the TT deformation [1–3]. It was

conjectured in [4] (see also [5]) that the TT deformed CFT can be interpreted as the

holographic dual of a finite patch of asymptotically AdS3 spacetime. A key piece of

evidence in support of this conjectured duality is that the conformal Ward identity of

the CFT gets deformed into a second order functional differential equation that formally

matches with the Wheeler-DeWitt equation of AdS3 gravity. This relationship is akin

to the familiar duality between Chern-Simons field theory and Wess-Zumino-Witten

conformal field theory [6], and points to the possible identification between the wave

functionals of gravitational theories in D + 1-dimensions and partition functions of

a special class of D-dimensional QFTs.1 If such a precise relationship could indeed

be established, it would be an important generalization of the standard holographic

dictionary that would open up a new avenue for studying gravitational physics in the

bulk space-time.

However, while the new duality between AdS3 gravity and the TT deformed CFTs

passes several non-trivial checks, the precise status of the correspondence is still un-

clear. In particular, it was found that for large enough energies and fixed deformation

parameter, the energy spectrum of the boundary QFT complexifies, indicating a possi-

ble breakdown of unitary. This apparent breakdown has a natural interpretation from

the point of view of the bulk: it corresponds to a physical cut-off on the spectrum

of black hole states, that removes all black holes with Schwarzschild radii that would

extend beyond the finite radial cutoff. Nonetheless, the existence of this cut-off in the

energy spectrum raises several conceptual questions, that require better understanding

of the UV properties of the boundary QFT.

To circumvent the complications of field theory, in this paper we turn to analyzing

the problem in one dimension lower. In particular we will consider the finite cutoff ver-

sion of two-dimensional Jackiw-Teitelboim (JT) gravity with a negative cosmological

constant and its dual formulation in terms of a deformed version of Schwarzian quan-

tum mechanics proposed in [9, 10]. Traditionally, the JT path integral is computed

with Dirichlet boundary conditions in the limit where the proper boundary length and

boundary value for the dilaton become very large [11]. In that limit, JT gravity reduces

1For studies of higher-dimensional generalisations of the TT deformation and their potential holo-

graphic interpretation, see [7, 8].
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to a soluble 1D quantum theory, the Schwarzian theory [12–14].2 At finite cut-off, how-

ever, the boundary theory is expected to become highly non-linear and the computation

of the JT partition function in this regime has thus far been an open problem. In the

following, we will discuss two different ways to compute it, relying on either canonical

quantization or path integral quantization.

In the canonical approach one foliates the spacetime with a certain, usually time-

like, coordinate and parametrizes the metric in an ADM decomposition [28]. As a

result of diffeomorphism invariance, the quantum mechanical wave functionals satisfy

a set of local Wheeler-DeWitt constraints, that uniquely determine their dependence

on local data defined on the chosen foliation. In general these constraints are difficult

to solve, except possibly in the so-called mini-superspace approximation. Luckily, for

two-dimensional dilaton gravity theories, the constraints reduce to two first order func-

tional differential equations that can be solved exactly [29] [30] in the form of explicit

diffeomorphism invariant wavefunctionals of the boundary metric and dilaton profile.

The WDW wavefunctionals relevant for our analysis are defined through radial quan-

tisation in Euclidean signature. This provides a way to compute the path integral at

finite cutoff.

In the second approach, we compute the Euclidean path integral directly. Again,

the analysis at finite proper boundary length becomes more intricate as some of the

gravitational modes, that were frozen in the large volume limit, now become dynamical.

After integrating out the dilaton, the JT path integral localizes to one over a boundary

action given by the extrinsic curvature K of the boundary. By using constraints from

the SL(2,R) isometry of AdS2, we manage to express K in an expansion containing

solely powers of the Schwarzian derivative and its derivatives. This greatly facilitates

our computations and allows us to express the partition function as the expectation

value of an operator in the Schwarzian theory. Using integrability properties of the

Schwarzian theory, we manage to exactly compute the partition function to all orders

in a perturbative expansion in the cutoff.

Both the canonical and path integral approach use widely different techniques

to compute the finite cutoff partition function, yet, as expected from the equivalence

between the two quantisation procedures, the results agree. Moreover, we find a perfect

agreement between the result obtained via two approaches with a proposed deformation

of the Schwarzian partition function, analogous to the TT deformation for 2D CFTs

[9, 10]. Before diving in the computations, we first review (for completeness and later

reference) this one-dimensional analog of TT and then present a more detailed summary

of our results.

2For further investigations of Schwarzian quantum mechanics and JT gravity, see [12, 14–27].
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1.1 Review 1d TT

In previous work [9], a particular deformation of the Schwarzian quantum mechanics

was shown to be classically equivalent to JT gravity with Dirichlet boundary conditions

for the metric and dilaton. The deformation on the Schwarzian theory follows from a

dimensional reduction of the TT deformation in 2D CFTs 3. Explicitly the deformation

involves a flow of the action S of the quantum mechanical theory,

∂λS =

∫ 1

0

dθ
T 2

1/2− 2λT
(1.1)

where T is the trace of the stress-‘scalar’ of the quantum mechanical theory and λ is the

deformation parameter. By going from the Lagrangian to the Hamiltonian formulation,

we can write an equivalent flow for the Hamiltonian instead of S and find the flow of

the energy eigenvalues,4

∂λH =
H2

1/2− 2λH
⇒ E±(λ) =

1

4λ

(
1∓
√

1− 8λE
)
. (1.2)

Here E are the energy levels of the undeformed theory and matching onto the original

spectrum as λ→ 0 results in picking the minus sign for the branch of the root in (1.2).

In section 4 we will see that the other branch of the root will also make its appearance.

In the case of the Schwarzian theory, which has a partition function that can be exactly

computed [13],5

Z(β) =

∫ ∞
0

dE
sinh(2π

√
2CE)√

2Cπ3
e−βE =

e2Cπ
2/β

β3/2
, (1.3)

the deformed partition function is,

Zλ(β) =

∫ ∞
0

dE
sinh(2π

√
2CE)√

2Cπ3
e−βE+(λ). (1.4)

Let us make two observations. First, the integral over E runs over the full positive

real axis and therefore will also include complex energies E+(λ) when λ > 0, i.e. for

E > 1/8λ the deformed spectrum complexifies. This violates unitarity and needs to be

3This reduction is valid in the classical limit and should be seen as a motivation for the proposed

deformation. It would be interesting to extend it to a precise statement using the methods of [31].
4Since the deformation is a function of the Hamiltonian, the eigenfunctions do not change under

the flow.
5In the gravitational theory C is equal to φr, the renormalised boundary value of the dilaton.

Furthermore, here we picked a convenient normalisation of the partition function.
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dealt with. We will come back to this issue in section 4. Second, given that there is

a closed from expression of the original Schwarzian partition function, one can wonder

whether this is also the case for the deformed partition function. This turns out to be

the case. For the moment let us assume λ < 0 so that there are no complex energies,

then it was shown in [9] that the deformed partition function is given by an integral

transform of the original one, analogous to the result of [32] in 2D. The integral

transform reads,

Zλ(β) =
β√
−8πλ

∫ ∞
0

dβ′

β′3/2
e

(β−β′)2
8λβ′ Z(β′), (1.5)

Plugging (1.3) into this expression and performing the integral over β′ yields,

Zλ(β) =
βe−

β
4λ

√
−2πλ(β2 + 16Cπ2λ)

K2

(
− 1

4λ

√
β2 + 16Cπ2λ

)
. (1.6)

with the associated density of states given by

ρλ(E) =
1− 4λE√

2π3C
sinh

(
2π
√

2CE(1− 2λE)
)

(1.7)

Although we have derived this formula assuming that λ < 0, we will simply analytically

continue to λ > 0 to obtain the partition function of the deformed Schwarzian theory

that describes JT gravity at finite cutoff. One might be worried that this would not

yield the same as (1.4) and indeed there are a few subtleties involved in doing that

analytic continuation as discussed in the end of section 3 and in section 4.

1.2 Summary of results and outline

The purpose of this paper is give two independent bulk computation that reproduce the

partition function (1.4). In section 2 we present a derivation of the partition function

of JT gravity (with negative cosmological constant) at finite cutoff by computing the

radial Wheeler-de Witt (WdW) wavefunctional. Due to Henneaux it is known since the

80’s that the contraints of 2D dilaton gravity can be solved exactly in the full quantum

theory [29]. We will review this computation and fix the solution by imposing Hartle-

Hawking boundary conditions. In particular we find that

ΨHH[φb(u), L] =

∫ ∞
0

dM sinh(2π
√
M) e

∫ L
0 du

[√
φ2b−M−(∂uφb)2−∂uφ tan−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
.

(1.8)

This wavefunction is computed in a basis of fixed dilaton φb(u), where u corresponds to

the proper length along the boundary, and L the total proper length of the boundary.
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The above results obtained through the WdW constraint are non-perturbative in both

L and φb(u).

When considering a constant dilaton profile φb(u) = φb, the wavefunction (1.8)

reproduces the TT partition function in (1.4), with the identification

M → 2CE, φ2
b →

C

4λ
, L→ β√

4Cλ
, (1.9)

In terms of these variables, (1.8) matches with TT up to a shift in the ground state

energy, which can be accounted for by a boundary counterterm e−Ict = e−φbL added to

the gravitational theory. An important aspect that this analysis emphasizes if the fact

that, for JT gravity, studying boundary conditions with a constant dilaton is enough.

As we explain in section 2.2, if the wavefunction for a constant dilaton is known, the

general answer (1.8) is fixed by the constraints and does not constrain any further

dynamical information [33].

The partition function (1.4) is also directly computed from the path integral in

JT gravity at finite cutoff in section 3. We will impose dilaton and metric Dirichlet

boundary conditions, in terms of φb and the total proper length L. For the reasons

explain in the previous paragraph, it is enough to focus on the case of a constant

dilaton. It is convenient to parametrize these quantities in the following way

φb =
φr
ε
, L =

β

ε
, (1.10)

in terms of a renormalized length β and dilaton φr. We will refer to ε as the cutoff

parameter 6. When comparing with the TT approach this parameter is ε =
√

2λ (in

units for which we set φr → 1/2). In order to compare to the asymptotically AdS2 case

previously studied in the literature [11, 23], we need to take φb, L → ∞ with a fixed

renormalized length L/φb. In terms of the cutoff parameter, this limit corresponds to

ε→ 0, keeping φr and β fixed.

We will solve this path integral perturbatively in the cutoff ε, to all orders. We

integrate out the dilaton and reduce the path integral to a boundary action comprised

of the extrinsic curvature K and possible counter-terms. We find an explicit form of the

extrinsic curvature valid to all orders in perturbation theory in ε. A key observation

in obtaining this result is the realisation of a (local) SL(2,R) invariance of K in terms

of lightcone coordinates z = τ − ix, z = τ + ix:

K[z, z] = K

[
az + b

cz + d
,
az + b

cz + d

]
. (1.11)

6In Poincaré coordinates ε corresponds semiclassically to the bulk coordinate of the cutoff surface.
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Solving the Dirichlet boundary condition for the metric allows us to write K as a

functional of the Schwarzian derivative of the coordinate z.7 As we will explain in detail,

the remaining path integral can be computed exactly using integrability properties in

the Schwarzian theory to all orders in ε2.

Thus, by the end of section 3, we find agreement between the WdW wavefunctional,

the Euclidean partition function and the TT partition function from (1.4):

e−IctΨHH[φb, L]
non−pert.

= Zλ(β)
pert.
= ZJT[φb, L] . (1.12)

Here we emphasize again that we show that the first equality is true non-perturbatively

in ε (respectively in λ), whereas we prove the second equality to all orders in pertur-

bation theory.

In section 4 we discuss various extensions of the deformed partition function includ-

ing further corrections. In particular we discuss two types of corrections in the path

integral and in the integral over energies in (1.4): first, we analyze non-perturbative

terms in ε coming from contributions that cannot be written as a path integral on the

disk (the contracting branch of the wavefunction) and second, we speculate about non-

perturbative corrections coming from the genus expansion. Related to the first kind

of ambiguity, given the exact results we obtained for the wavefunctional and partition

function, we explore how the complexification of the energy levels (that we mentioned

above) can be cured. In particular, we propose that it requires the inclusion of the

other branch of the root in (1.2), but still results in a negative density of states. The

structure of the negative density of states suggests that the (unitary) partition function

is not an ordinary one, but one with a chemical potential turned on. Related to the

second type, we compute the partition function of the finite cutoff “trumpet” which is

a necessary ingredient when constructing higher genus hyperbolic surfaces. Finally, we

speculate about the range of the remaining Weil-Petersson integral which is needed in

order to compute the finite cutoff partition function when including the contribution

of surfaces with arbitrary topology.

Section 5 applies the computation from section 2 to the case of JT gravity with

a positive cosmological constant and finds the wavefunctional on a de Sitter time-slice

at finite time. This wavefunctional has some interesting behaviour, similar to the

Hagedorn divergence present in (1.6). We finish with a discussion of our results and

future directions in section 6.

Note: While this work was in progress, we became aware of a closely related

project by D. Stanford and Z. Yang [34]. They analyze finite cutoff JT gravity from

7This generalizes the computation of [11] which found the relation between the extrinsic curvature

and the Schwarzian derivative in the infinite cutoff limit.
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yet a different perspective, finding different results. We leave understanding how these

approaches are related for future work, but we believe they correspond to different ways

to regularize (and therefore define) the theory.

2 Wheeler-DeWitt wavefunction

In this section, we will start by reviewing the canonical quantization of 2D dilaton-

gravity following the approach of [29, 30]. In these references, the authors find the space

of exact solutions for both the momentum and Wheeler-DeWitt constraints. Later, in

subsections 2.3 and 2.4, we will focus on JT gravity, and we will explain how to impose

the Hartle-Hawking condition appropriately to pick a solution corresponding to finite

cutoff AdS2.

Let us consider the more general two dimensional dilaton gravity in Lorentzian

signature,

I =
1

2

∫
M

d2x
√
g[φR− U(φ)] +

∫
∂M

du
√
γuu φK, (2.1)

with an arbitrary potential U(φ). g is the two-dimensional space-time metric on M and

γ the induced metric on its boundary ∂M . The boundary term in (2.1) is necessary

in order for the variational principle to be satisfied when imposing Dirichlet boundary

conditions for the metric and dilaton. In (2.1) we could also add the topological term
1
2

∫
M
d2x
√
g φ0R +

∫
∂M

du
√
γuu φ0K = 2πφ0 which will be relevant in section 4.3.

It will be useful to define also the prepotential W (φ) by the relation ∂φW (φ) =

U(φ). In the case of JT gravity with negative (or positive) cosmological constant we

will pick U(φ) = −2φ (or U(φ) = 2φ) and W (φ) = −φ2 (W (φ) = φ2), which has as a

metric solution AdS2 (dS2) space with unit radius.

We will assume the topology of space to be a closed circle, and will use the following

ADM decomposition of the metric

ds2 = −N2dt2 + h(dx+N⊥dt)
2, h = e2σ (2.2)

where N is the lapse, N⊥ the shift, h the boundary metric (which in this simple case is

an arbitrary function of x) and we identify x ∼ x + 1. After integrating by parts and

using the boundary terms, the action can then be written as

I =

∫
d2x eσ

[ φ̇
N

(N⊥∂xσ + ∂xN⊥ − σ̇)

+
∂xφ

N

(
N∂xN

e2σ
−N⊥∂xN⊥ +N⊥σ̇ −N2

⊥∂xσ

)
− 1

2
NU(φ)

]
(2.3)
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where the dots correspond to derivatives with respect to t. As usual the action does

not involve time derivatives of fields N and N⊥ and therefore

ΠN = ΠN⊥ = 0, (2.4)

which act as primary constraints. The momenta conjugate to the dilaton and scale

factor are

Πφ =
eσ

N
(N⊥∂xσ + ∂xN⊥ − σ̇), Πσ =

eσ

N
(N⊥∂xφ− φ̇). (2.5)

With these equations we can identify the momentum conjugate to the dilaton with the

extrinsic curvature Πφ ∼ K, and the momentum of σ with the normal derivative of the

dilaton Πσ ∼ ∂nφ. The classical Hamiltonian then becomes

H =

∫
dx
[
N⊥P + e−σNHWdW

]
(2.6)

where

P ≡ Πσ∂xσ + Πφ∂xφ− ∂xΠσ, (2.7)

HWdW ≡ −ΠφΠσ +
1

2
e2σU(φ) + ∂2xφ− ∂xφ∂xσ, (2.8)

and classically the momentum and Wheeler-DeWitt constraints are respectively P = 0

and HWdW = 0.

So far the discussion has been classical. Now we turn to quantum mechanics by

promoting field to operators. We will be interested in wavefunctions obtained from

path integrals over the metric and dilaton, and we will write them in configuration

space. The state will be described by a wave functional Ψ[φ, σ] and the momentum

operators are replaced by

Π̂σ = −i δ

δσ(x)
, Π̂φ = −i δ

δφ(x)
, (2.9)

The physical wavefunctions will only depend on the boundary dilaton profile and metric.

Usually, when quantizing a theory, one needs to be careful with the measure and

whether it can contribute Liouville terms to the action. Such terms only appear when

in conformal gauge, which is not what we are working in presently. Actually, the ADM

decomposition (2.2) captures a general metric and is merely a parametrization of all

2D metrics and so we have not fixed any gauge. The quantum theory is thus defined

through the quantum mechanical version of the classical constraints (2.7) and (2.8) 8.

8From the path integral perspective, we are assuming an infinite range of integration over the

lapse. Different choices for the contour of integration can drastically modify the constraints after

quantization. We thank S. Giddings for discussions on this point.
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As a result, we do not need to include any Liouville term in our action in the case of

pure gravity. If matter would have been present, there could be Liouville terms coming

from integrating out the matter, but that is beyond the scope of this paper.

2.1 Solution

In references [29, 30], the physical wavefunctions that solve the dilaton gravity con-

straints are constructed as follows. The key step is to notice that the constraints P and

HWdW are simple enough that we can solve for Πσ and Πφ separately. For instance, by

combing ΠσP with the WdW constraint, we get

∂x(e
−2σΠ2

σ) = ∂x(e
−2σ(∂xφ)2 +W (φ)) ⇒ Πσ = ±

√
(∂xφ)2 + e2σ[M +W (φ)], (2.10)

with M an integration constant that is proportional to the ADM mass of the system

as we will see momentarily. It is then straightforward to plug this into the WdW

constraint to find an expression for Πφ. Quantum mechanically, we want the physical

wavefunction to satisfy,

Π̂σΨphys = ±Q[M ;φ, σ]Ψphys, Π̂φΨphys = ± g[φ, σ]

Q[M ;φ, σ]
Ψphys, (2.11)

where we defined the functions

Q[E;φ, σ] ≡
√

(∂xφ)2 + e2σ[M +W (φ)], g[φ, σ] ≡ 1

2
e2σU(φ)+∂2xφ−∂xφ∂xσ. (2.12)

Wavefunctions that solve these constraints also solve the momentum and Wheeler-

DeWitt constraints as explained in [29, 30]. In particular they solve the following

WdW equation with factor ordering,9(
g − Q̂Π̂φQ̂

−1Π̂σ

)
Ψphys = 0 (2.13)

The most general solution can be written as

Ψ = Ψ+ + Ψ−, Ψ± =

∫
dMρ±(M)Ψ±(M), (2.14)

where we will distinguish the two contributions

Ψ±(M) = exp

[
±i
∫
dx

(
Q[M ;φ, σ]− ∂xφ tanh−1

(
Q[M ;φ, σ]

2∂xφ

))]
, (2.15)

9Here we think of Q̂ as well as M̂ as operators. The physical wavefunctions can be written as linear

combinations of eigenfunctions of the operator M̂ with eigenvalue M .
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with the function Q defined in (2.12) which depends on the particular dilaton potential.

We will refer in general to Ψ+ (Ψ−) as the expanding (contracting) branch.

This makes explicit the fact that solutions to the physical constraints reduce the

naive Hilbert space from infinite dimensional to two dimensional with coordinate M

(and its conjugate). The most general solution of the Wheeler-DeWitt equation can

then be expanded in the base Ψ±(M) with coefficients ρ±(M). The new ingredient

in this paper will be to specify appropriate boundary conditions to pick ρ±(M) and

extract the full Hartle-Hawking wavefunction. We will see this is only possible for JT

gravity for reasons that will be clear in the next section.

It will be useful to write the physical wavefunction in terms of diffeomorphism

invariant quantities. This is possible thanks to the fact that we are satisfying the

momentum constraints. In order to do this we will define the proper length u of the

spacelike circle as

du = eσdx, L ≡
∫ 1

0

eσdx, (2.16)

where L denotes the total length. The only gauge invariant data that the wavefunction

can depend on is then L and φ(u), a dilaton profile specified as a function of proper

length along the boundary. The wavefunction (2.15) can be rewritten as

Ψ±(M) = e
±i
∫ L
0 du

[√
W (φ)+M+(∂uφ)2−∂uφ tanh−1

(√
1+

W (φ)+M

(∂uφ)2

)]
, (2.17)

which is then manifestly diffeomorphism invariant.

The results of this section indicate the space of physical states that solve the grav-

itational constraints is one dimensional, labeled by M . In the context of radial quanti-

zation of AdS2 that we will analyze in the next section, this parameter corresponds to

the ADM mass of the state, while in the case of dS2, it corresponds to the generator

of rotations in the spatial circle. Phase space is even-dimensional, and the conjugate

variable to M is given by

ΠM = −
∫
dx

e2σΠρ

Π2
ρ − 2(∂xφ)2

(2.18)

such that [M,ΠM ] = i.10

2.2 Phase space reduction

Having the full solution to the WdW equation, we now study the minisuperspace limit.

In this limit, the dilaton φ and boundary metric e2σ are taken to be constants. In

10The simplicity of the phase space of dilaton gravity theories was also noted in [35].
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a general theory of gravity, minisuperspace is an approximation. In JT gravity, as

we saw above, the physical phase space is finite-dimensional (two dimensional to be

precise). Therefore giving the wavefunction in the minisuperspace regime encodes all

the dynamical information of the theory, while the generalization to varying dilaton is

fixed purely by the constraints. In this section, we will directly extract the equation

satisfied by the wavefunction as a function of constant dilaton and metric, from the

more general case considered in the previous section.

If we start with the WdW equation and fix the dilaton and metric to be constant,

the functional derivatives then become ordinary derivatives and the equation reduces

to (
1

2
e2σU(φ)− Q̂∂φQ̂−1∂σ

)
Ψ(φ, σ) = 0. (2.19)

with Q̂ = (M̂ + W (φ))1/2. Due to the factor ordering, this differential equation still

depends on the operator M̂ , which is a bit unsatisfactory. Fortunately, we know that

a σ derivative acting on Ψ is the same as acting with Q2/g∂φ. In the minisuperspace

limit, we can therefore write (2.19) as

(LU(φ)− 2L∂L(L−1∂φ))Ψ(φ, L) = 0, (2.20)

where L is the total boundary length. This equation is the exact constraint that

wavefunctions with a constant dilaton should satisfy even though it was derived in

a limit. We can explicitly check this by using (2.15) and noticing that any physical

wavefunction, evaluated in the minisuperspace limit, will satisfy precisely this equation.

This equation differs from the one obtained in [33] by Ψhere = LΨthere and, therefore,

changes the asymptotics of the wavefunctions, something we will analyze more closely

in the next subsection.

2.3 Wheeler-DeWitt in JT gravity: radial quantization

In this section, we will specialize the previous discussion to JT gravity with a negative

cosmological constant. We fix units such that U(φ) = −2φ. We will analytically

continue the results of the previous section to Euclidean space and interpret them

in the context of radial quantization, such that the wavefunction is identified with

the path integral in a finite cutoff surface. Then, we will explain how to implement

Hartle-Hawking boundary conditions, obtaining a proposal for the exact finite cutoff

JT gravity path integral that can be compared with results for the analog of the TT

deformation in 1d [9, 10].
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Figure 1: (a) We show the slicing we use for Euclidean JT gravity in asymptotically AdS2,

which has disk topology (but not necessarily rigid hyperbolic metric). (b) Frame where the

geometry is rigid EAdS2 with r increasing upwards and a wiggly boundary denoted by the

blue curve.

Lets begin by recalling some small changes that appear when going from Lorenzian

to Euclidean radial quantization. The action we will work with is

IJT = −1

2

∫
M

√
gφ(R + 2)−

∫
∂M

√
γφK, (2.21)

and the ADM decomposition of the metric we will use is

ds2 = N2dr2 + h(dθ +N⊥dr)
2, h = e2σ , (2.22)

where r is the radial direction while θ ∼ θ + 1 corresponds to the angular direction

that we will interpret as Euclidean time. We show these coordinates in figure 1. In

terms of holography we will eventually interpret θ as related to the Euclidean time of

a boundary quantum mechanical theory.

As shown in figure 1, and as we will explicitly show in section 3, the radial quanti-

zation wavefunction is identified with the gravitational path integral at a finite cutoff

(inside the black circle) with Dirichlet boundary conditions

Ψ[φb(u), σ(u)] =

∫
DgDφ e−IJT[φ,g], with φ|∂ = φb(u), g|∂ = γuu = e2σ(u).

(2.23)

The geometry inside the disk in figure 1 is asymptotically EAdS2. From this path

integral we can derive the WDW and momentum constraints and therefore solving

the latter with the appropriate choice of state should be equivalent to doing the path

integral directly.
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The result of previous section implies that this path integral is given by a linear

combination of

Expanding branch: Ψ+(M) = e

∫ L
0 du

[√
φ2b−M−(∂uφb)2−∂uφb tan

−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
, (2.24)

Contracting branch: Ψ−(M) = e
−
∫ L
0 du

[√
φ2b−M−(∂uφb)2−∂uφb tan

−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
. (2.25)

We will focus on the purely expanding branch of the solution (2.24), as proposed in

[36] and [33] to correspond to the path integral in the disk and therefore set ρ−(M) = 0.

We will go back to possible effects coming from turning on this term later. Thus, we

will study the solutions

Ψdisk[φb(u), σ(u)] =

∫
dMρ(M) e

∫ L
0 du

[√
φ2b−M−(∂uφb)2−∂uφb tan

−1

(√
φ2
b
−M

(∂uφb)
2−1

)]
. (2.26)

To make a choice of boundary conditions that fix the boundary curve very close to the

boundary of the disk we will eventually take the limit of large L and φb.

2.4 Hartle-Hawking boundary conditions and the JT wavefunctional

To determine the unknown function ρ(M), we will need to impose a condition that picks

the Hartle-Hawking state. For this, one usually analyses the limit L→ 0 [37]. Such a

regime is useful semiclassically but not in general. From the no-boundary condition,

L → 0 should reproduce the path integral over JT gravity inside tiny patches deep

inside the hyperbolic disk; performing such a calculation is difficult. Instead, it will be

simpler to impose the Hartle-Hawking condition at large L→∞. In this case, we know

how to do the path integral directly using the Schwarzian theory. The derivation of the

Schwarzian action from [11] explicitly uses the no-boundary condition, so we will take

this limit instead, which will be enough to identify a preferred solution of the WdW

equation.

To match the wavefunction with the partition function of the Schwarzian theory, it

is enough to consider the case of constant dilaton and metric. Then, the wavefunction

simplifies to11

Ψ[φb, σ] =

∫
dMρ(M) e

∫ 1
0 dθe

σ
√
φ2b−M =

∫
dMρ(M) e

∫ L
0 du
√
φ2b−M (2.27)

with φb and σ constants. Expanding the root at large φb and large L = eσ gives,

Ψ[φb, σ] = eLφb
∫
dMρ(M) e

−L M
2φb

+...
(2.28)

11It is interesting to note that this partition function first appeared in [38].
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We find the usual divergence for large L and φ, which can be removed by adding to

(2.21) the counter term, Ict =
∫ L
0
du φb. In fact, we will identify the JT path integral

with this counter term as computing the thermal partition function at a temperature

specified by the boundary conditions. At large L and φb we know that the gravity

partition function is given by the Schwarzian theory:∫
DgDφ e−IJT[φ,g] → eLφb

∫
Df

SL(2,R)
eφb

∫ L
0 du Sch(tan π

L
f,u), (2.29)

where Sch(F (u), u) ≡ F ′′′

F ′
− 3

2

(
F ′′

F ′

)2
. By rescaling time we can see the path integral

only depends on L/φb which we will sometimes refer to as renormalized length. This

result can be derived by first integrating over the dilaton over an imaginary contour,

localizing the geometry to rigid AdS2. Then the remaining degree of freedom is the

shape of the boundary curve, from which the Schwarzian theory arises.

The Schwarzian partition function can be computed exactly and gives

ZSch(`) ≡
∫

Df
SL(2,R)

e
∫ `
0 du Sch(tan

π
`
f,u) =

(π
`

)3/2
e

2π2

` =

∫
dk2 sinh(2πk)e−`k

2/2 (2.30)

Applying this result to the JT gravity path integral with the replacement ` → L/φb
gives the partition function directly in the form of equation (2.28) where we can straight-

forwardly identify the Schwarzian density of states with the function of M as

ρHH(M) = sinh(2π
√
M), (2.31)

where the subscript indicates that we picked the Hartle-Hawking state. It is important

that we are able to compute the path integral of JT gravity for φb, L → ∞ but fixed

L/φb. This involves an exact treatment of the Schwarzian mode since otherwise we

would only obtain ρHH(M) in some limits. This ingredient was missing in [29, 30]

making them unable to identify the HH state from the full space of physical states.

To summarize, the solution of the gravitational constraints gives the finite cutoff

JT gravity path integral as

ΨHH[φb(u), L] =

∫ ∞
0

dM sinh(2π
√
M) e

∫ L
0 du

[√
φ2b−M−(∂uφb)2−∂uφ tan−1

(√
φ2−M
(∂uφ)2

−1
)]
. (2.32)

By construction, this matches the Schwarzian limit when φb and σ are constant.

When the dilaton is constant but σ(u) is not, it is clear that we can simply go

to coordinates dθ̃ = eσdθ in both the bulk path integral and the WdW wavefunction

and see that they give the same result. Since we can always choose time-slices with a
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constant value for the dilaton, this situation will suffice for comparing our result to the

analog of the TT deformation in the next subsection.

The more non-trivial case is for non-constant dilaton profiles. We provide a further

check of our result in appendix A.1, where we compare the wavefunctional (2.32) to

the partition function of JT gravity with a non-constant dilaton profile when the cutoff

is taken to infinity.

2.5 Comparison to TT

Let us now compare the wavefunctional (2.32) to the partition function obtained from

the 1D analog of the TT deformation (1.4). First of all, let us consider configurations

of constant φb, so ∂uφb = 0. This will simplify ΨHH to

ΨHH[φb, L] =

∫ ∞
0

dM sinh(2π
√
M)eφbL

√
1−M/φ2b . (2.33)

The partition function is then obtained by multiplying this wavefunction by e−Ict =

e−Lφb . The resulting partition function agrees with (1.4) with identifications:

M → 2CE, φ2
b →

C

4λ
, L→ β√

4Cλ
, (2.34)

up to an unimportant normalization. In fact, we can say a little more than just map-

ping solutions onto each other. In section 2.2 we showed that in the minisuperspace

approximation the wavefunctions satisfy (2.20). With the identifications made above

and the inclusion of the counter term, the partition function Zλ(β) satisfies[
4λ∂λ∂β + 2β∂2β −

(
4λ

β
− 1

)
∂λ

]
Zλ(β) = 0. (2.35)

This is now purely written in terms of field theory variables and is precisely the flow

equation as expected from (1.1), i.e. solutions to this differential equation have the

deformed spectrum (1.2). This is also the flow of the partition function found in two

dimensions in [39], specialised to purely imaginary modular parameter of the torus.

We will analyze the associated non-perturbative ambiguities associated to this flow in

section 4.

Let us summarise. We have seen that the partition function of the deformed

Schwarzian theory is mapped to the exact dilaton gravity wavefunctions for constant

φb and γuu. In fact, any quantum mechanics theory that is deformed according to (1.1)

will obey the quantum WdW equation (for constant φb and σ). This principle can be

thought of as the two-dimensional version of [36]. It is only the boundary condition at
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λ → 0 (or large φbL), where we know the bulk JT path integral gives the Schwarzian

theory, that tells us that the density of states is sinh(2π
√
M). Next, we will show that

the wavefunction for constant φb and γuu can be reproduced by explicitly computing

the Euclidean path integral in the bulk, at finite cutoff.

3 The Euclidean path integral

We will once again consider the JT gravity action, (2.21), and impose Dirichlet bound-

ary conditions for the dilaton field φ|∂M2 ≡ φb ≡ φr/ε, boundary metric γuu, and proper

length L ≡ β/ε and with the addition the counter-term,

Ict =

∫
du
√
γφ , (3.1)

whose addition leads to an easy comparison between our results and the infinite cutoff

results in JT gravity. As in the previous section we will once again focus on disk

topologies.

As discussed in section 2.4, the path integral over the dilaton φ yields a constraint

on the curvature of the space, with R = −2. Therefore, in the path integral we

are simply summing over different patches of AdS2, which we parametrize in Euclidean

signature using Poincaré coordinates as ds2 = (dτ 2+dx2)/x2. To describe the properties

which we require of the boundary of this patch we choose a proper boundary time u,

with a fixed boundary metric γuu = 1/ε2 (related to the fixed proper length L =∫ β
0
du
√
γuu). Fixing the intrinsic boundary metric to a constant, requires:

τ ′2 + x′2

x2
=

1

ε2
,

−t′2 + x′2

x2
=

1

ε2
, τ = −it . (3.2)

If choosing some constant ε ∈ R then we require that the boundary has the following

properties:

• If working in Euclidean signature, the boundary should never self-intersect. Con-

sequently if working on manifolds with the topology of a disk this implies that

the Euler number χ(M2) = 1.

• If working in Lorentzian signature, the boundary should always remain time-like

since (3.2) implies that −(t′)2 + (x′)2 = (x′ − t′)(t′ + x′) > 0.12 From now on we

will assume without loss of generality that t′ > 0.

12While fixing the metric γuu to be a constant is not diffeomorphism invariant, the notion of the

boundary being time-like (sgn γuu) is in fact diffeomorphism invariant.
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Both conditions are important constraints which we should impose at the level of

the path integral. Such conditions are not typical if considering the boundary of the

gravitational theory as the worldline of a particle moving on H2 or AdS2: in Euclidean

signature, the worldline could self-intersect, while in Lorentzian signature the worldline

could still self-intersect but could also become space-like. These are the two deficiencies

that [21, 22] encountered in their analysis, when viewing the path integral of JT gravity

as that of a particle moving in an imaginary magnetic field on H2.

For the purposes of this paper it will also prove convenient to introduce the light-

cone coordinates (with z = −ix+τ , z = ix+τ), for which fixing the intrinsic boundary

metric implies:

− 4z′z′

(z − z)2
=

1

ε2
. (3.3)

In Euclidean signature z = z∗, while in Lorentzian signature z, z ∈ iR. The con-

straint that the boundary is time-like implies that iz′ > 0 and iz′ < 0 (alternatively,

if assuming t′ < 0, iz′ < 0 and iz′ > 0). In order to solve the path integral for the

remaining boundary fluctuations in the 1D system it will prove convenient to use light-

cone coordinates and require that the path integral obeys the two properties described

above.

3.1 Light-cone coordinates and SL(2,R) isometries in AdS2

As is well known, AdS2, even at finite cutoff, exhibits an SL(2,R) isometry. This

isometry becomes manifest when considering the coordinate transformations:

E & L : z → az + b

cz + d
, z → az + b

cz + d
,

E : x+ iτ → a(x+ iτ) + b

c(x+ iτ) + d
, L : t+ x→ a(t+ x) + b

c(t+ x) + d
, (3.4)

It is straightforward to check that under such transformations the boundary metrics,

(3.2) and (3.3), both remain invariant. The same is true of the extrinsic curvature,

which is the light-cone parametrization of the boundary degrees of freedom can be

expressed as

K[z(u), z(u)] =
2z′2z′ + (z − z)z′z′′ + z′(2z′2 + (z − z)z′′)

4(z′z′)3/2
. (3.5)

Consequently, invariance under SL(2,R) transformations gives:

K[z, z] = K

[
az + b

cz + d
,
az + b

cz + d

]
, (3.6)
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Therefore, upon solving for z[z(u)] (as a functional of z(u)) we will find that

z[z(u)] ⇒ K[z] = K

[
az + b

cz + d

]
(3.7)

As we will see in the next subsection, such a simple invariance under SL(2,R) trans-

formations will be crucial to being able to relate the path integral of the boundary

fluctuations to that of some deformation of the Schwarzian theory. An important re-

lated point is that when solving for τ [x(u)] as a functional of x(u), the resulting extrinsic

curvature is not invariant under the SL(2,R) transformations, τ → aτ+b
cτ+d

. Rather this

is only a valid symmetry in the ε → 0 limit, for which x → 0, while τ is kept finite.

It is only in the asymptotically AdS2 limit that the transformation in the second line

of (3.4) can be identified with τ → aτ+b
cτ+d

. If keeping track of higher orders in ε, the

transformation on τ would involve a growing number of derivatives on the τ field which

should be proportional to the order of the ε-expansion.

3.2 Restricting the extrinsic curvature

Next, we discuss the expansion of the extrinsic curvature K[z] to all orders in pertur-

bation in ε:

K[z] =
∞∑
n=0

εnKn[z] , Kn[z] = Kn

[
az + b

cz + d

]
, (3.8)

We could in principle explicitly solve for z[z(u)] to first few orders in perturbation

theory in ε and then plug the result into (3.16). The first few orders in the expansion

can be solved explicitly and yield:

K0[z] = 1, K1[z] = 0, K2[z] = Sch(z, u),

K3[z] = −i ∂uSch(z, u) , K4[z] = −1

2
Sch(z, u)2 + ∂2u Sch(z, u) . (3.9)

The fact that all orders in Kn[z(u)] solely depend on the Schwarzian and its derivatives

is not a coincidence. In fact, one generally finds that:

Kn[z] = Kn[Sch(z, u), ∂u] . (3.10)

The reason for this is as follows. Kn[z] is a local function of z(u) since solving

for z[z(u)] involves only derivatives of z(u). The Schwarzian can be written as the

Casimir of the sl(2,R) transformation, z → a z+b
c z+d

[11]. Because the rank of the sl(2,R)

algebra is 1, higher-order Casimirs of sl(2,R) can all be expressed as a polynomial
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(or derivatives of powers) of the quadratic Casimir. Since local functions in u that

are SL(2,R) invariant, can also only be written in terms of the Casimirs of sl(2,R)

this implies that they should also be linear combinations of powers (or derivatives of

powers) of the quadratic Casimir, which is itself the Schwarzian.

Alternatively, we can prove that Kn[z(u)] is a functional of the Schwarzian by

once again noting that Kn[z(u)] only contains derivatives of z(u) up to some finite

order. Then we can check explicitly how each infinitesimal SL(2,R) transformation

constrains Kn[z(u)]. For instance, translation transformations z → z + b imply that

Kn solely depends on derivatives of z(u). The transformation z(u) → az(u) implies

that Kn[z(u)] depends solely on ratios of derivatives with a matching order in z between

the numerator and denominator of each ratio, of the type (
∏

k z
(ki))/(

∏
k z

(k̃i)). Finally

considering all possible linear combinations between ratios of derivatives of the type

(
∏

k z
(ki))/(

∏
k z

(k̃i)) and requiring invariance under the transformation z(u)→ 1/z(u),

fixes the coefficients of the linear combination to those encountered in arbitrary prod-

ucts of Schwarzians and of its derivatives.

Once again, we emphasize that this does not happen when using the standard

Poincaré parametrization (3.2) in τ and x. When solving for τ [x] and plugging into

K[τ(u)], since we have that K[τ(u)] 6= K[aτ(u) + b/(cτ(u) + d)] and consequently

K[τ(u)] is not a functional of the Schwarzian; it is only a functional of the Schwarzian

at second-order in ε. This can be observed by going to fourth order in the ε-expansion,

where

K4[τ(u)] =
τ (3)(u)2

τ ′(u)2
+

27τ ′′(u)4

8τ ′(u)4
+
τ (4)(u)τ ′′(u)

τ ′(u)2
− 11τ (3)(u)τ ′′(u)2

2τ ′(u)3
, (3.11)

which cannot be written in terms of Sch(τ(u), u) and of its derivatives.

3.3 Finding the extrinsic curvature: perturbative terms in K[z(u)]

The previous subsection identified the abstract dependence of the extrinsic curvature

as a function of the Schwarzian. To quantize the theory, we need to find the explicit de-

pendence of Kn on the Schwarzian. To do this, we employ the following trick. Consider

the specific configuration for z(u):13

z(u) = exp(au) , Sch(z, u) = −a
2

2
. (3.12)

Since K[z(u)] is a functional of the Sch(z, u) and of its derivatives to all orders in

perturbation theory in ε, then Kn[z(u) = exp(au)] = Kn[Sch(z, u), ∂u] = Kn[a]. On the

13While (3.12) is, in fact, a solution to the equation of motion for the Schwarzian theory it is not

necessarily a solution to the equation of motion in the theory with finite cutoff.
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other hand, when using a specific configuration for z(u) we can go back to the boundary

metric constraint (3.3) and explicitly solve for z(u). Plugging-in this solution together

with (3.12) into the formula for the extrinsic curvature K[z(u), z(u)] (3.5), we can find

Kn[a] and, consequently, find the powers of the Schwarzian in Kn[Sch(z, u), ∂u].

The metric constraint involves solving the first order differential equation

− 4 a eauz′

(eau − z)2
=

1

ε2
, (3.13)

whose solution, to all orders in perturbation theory in ε, is given by

z(u) = eau
(

1− 2a2ε2 − 2aε
√
−1 + a2ε2

)
. (3.14)

We can plug this solution for z(u) together with the configuration z(u) = exp(au)

to find that

K [z(u) = exp(au)] =
√

1− ε2a2 . (3.15)

Depending on the choice of branch one can reverse the sign of (3.15) to find that

K [z(u) = exp(au)] = −
√

1− ε2a2 which corresponds to the considering the exterior of

an AdS2 patch as our surface (instead of a regular AdS2 patch). This is analogous to

the contracting branch in of the WDW functional in (2.25).

Consequently, it follows that in a perturbative series in ε we find:14

K±[z(u)] = ±
(√

1 + 2ε2 Sch(z, u) + derivatives of Sch.
)
, (3.16)

where we find that the quadratic term in ε for the + branch of (3.16) agrees with

the expansion of K in terms of ε in JT gravity in asymptotic AdS2 [11] (which found

that K[z(u)] = 1 + ε2Sch(z, u) + . . . ). The + branch in (3.16) corresponds to compact

patches of AdS2 for which the normal vector points outwards; the − branch corresponds

to non-compact surfaces (the complement of the aforementioned AdS2 patches) for

which the normal vector is pointing inwards. While the + branch has a convergent

path integral for real values of φr, for a normal choice of countour for z(u), the path

integral of the − branch will be divergent. Even for a potential contour choice for which

the path integral were convergent, the − branch is non-perturbatively suppressed by

O(e−
∫ β
0 duφb/ε) = O(e−1/ε

2
). Therefore, for now, we will ignore the effect of this different

branch (−) and set K[z(u)] ≡ K+[z(u)]; we will revisit this problem in section 4 when

studying non-perturbative corrections in ε.

14The terms containing derivatives of the Schwarzian are not necessarily total derivatives and thus

we need to explain why they do not contribute to the path integral.
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In principle, one can also solve for the derivative of the Schwarzian in (3.16) fol-

lowing a similar strategy to that outlined above. Namely, it is straightforward to find

that when Sch(z, u) = aun, for some n ∈ Z, then z(u) is related to a Bessel function.

Following the steps above, and using the fact that ∂n+1Sch(z, u) = 0 for such configu-

rations, one can then determine all possible terms appearing in the extrinsic curvature.

However, since we are interested in quantizing the theory in a constant dilaton config-

uration, we will shortly see that we can avoid this more laborious process.

Therefore, the JT action that we are interested in quantizing is given by:

IJT = −
∫ β

0

du

ε2
φr

(√
1 + 2ε2 Sch(z, u)− 1 + derivatives of Sch.

)
, (3.17)

where we have added the correct counter-term needed in order to cancel the 1/ε2

divergence in the ε→ 0 limit.

While we have found K[z(u)] and IJT to all orders in perturbation theory in ε,

we have not yet studied other non-perturbative pieces in ε (that do not come from

the − branch in (3.16)). Such corrections could contain non-local terms in u since all

terms containing a finite number of derivatives in u are captured by the ε-perturbative

expansion. The full solution of (3.13) provides clues that such non-perturbative cor-

rections could exist and are, indeed, non-local (as they will not be a functional of the

Schwarzian). The full solution to (3.13) is

z(u) = eau

(
1− 2a2ε2 + 2aε

(
√
−1 + a2ε2 − 2ε

ε√
−1+a2ε2 + C1e

u
ε

√
−1+a2ε2

))
, (3.18)

for some integration constant C1. When C1 6= 0, note that the correction to z(u) in (3.18)

are exponentially suppressed in 1/ε and do not contribute to the series expansion Kn.

However, when taking C1 6= 0, (3.18) there is no way of making z(u) periodic (while it is

possible to make z(u) periodic). While we cannot make sure that every solution has the

feature that non-perturbative corrections are inconsistent with the thermal boundary

conditions, for the remainder of this section we will only focus on the perturbative

expansion of K[z(u)] with the branch choice for the square root given by (3.16). We

will make further comments about the nature of non-perturbative corrections in section

4.

3.4 Path integral measure

Before we proceed by solving the path integral of (3.17), it is important to discuss the

integration measure and integration contour for z(u). Initially, before imposing the

constraint (3.3) on the boundary metric, we can integrate over both z(u) and z(u),
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with the two variables being complex conjugates in Euclidean signature. However,

once we integrate out z(u) we are free to choose an integration contour consistent with

the constraint (3.3) and with the topological requirements discussed at the beginning

of this section. Thus, for instance if we choose z(u) ∈ R then the constraint (3.3)

would imply that z′(u) > 0 (or z′(u) < 0); this, in turn, implies that we solely need

to integrate over strictly monotonic functions z(u). The boundary conditions for z(u)

should nevertheless be independent of the choice of contour; therefore we will impose

that z(u) is periodic, z(0) = z(β). Of course, this implies that z(u) has a divergence.

In order to impose that the boundary is never self-intersecting we will impose that

this divergence occurs solely once.15 Such a choice of contour therefore satisfies the

following two criteria:

• That the boundary is not self-intersecting.

• The boundary is time-like when going to Lorentzian signature. This is because

redefining z(u)→ zLor.(u) = −iz(u) ∈ R leaves the action invariant and describes

the boundary of a Lorentzian manifold. Since i(zLor.)′ > 0, it then follows that

the boundary would be time-like.

Furthermore, while we have chosen a specific diffeomorphism gauge which fixes

γuu = 1/ε2, the path integral measure (as opposed to the action) should be unaffected

by this choice of gauge and should rather be diffeomorphism invariant. The only pos-

sible local diffeomorphism invariant path integral measure is that encountered in the

Schwarzian theory [12, 13, 40] and, in JT gravity at infinite cutoff [23]:

Dµ[z] =
∏

z∈[0,β)

dz(u)

z′(u)
. (3.19)

In principle, one should also be able to derive (3.19) by considering the symplectic form

for JT gravity obtained from an equivalent sl(2,R) BF-theory. In [23] this symplectic

form (which in turn yields the path integral measure (3.19)) was derived in the limit

ε→ 0. It would however be interesting to rederive the result of [23] at finite ε in order

to find a more concrete derivation of (3.19).

To summarize, we have therefore argued that both the path integration measure,

as well as the integration contour, in the finite-ε theory, can be taken to be the same

as those in the pure Schwarzian theory.

15All this is also the case in the Schwarzian theory whose classical solution is τ(u) = tan(πu/β). [11]

has found that if considering solutions where τ(u) diverges multiple times (τ(u) = tan(nπu/β) with

n ∈ Z) then the fluctuations around such solutions are unbounded, and the path integral is divergent

(one can still make sense of this theory though, as explained in [24]).
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3.5 Finite cutoff partition function as a correlator in the Schwarzian theory

The path integral which we have to compute is given by

ZJT [φb, L] =

∫
z′(u)>0

Dµ[z] exp

[ ∫ β

0

du

ε2
φr

(√
1 + 2ε2Sch(z, u)− 1+

+ derivatives of Sch.

)]
, (3.20)

Of course, due to the agreement of integration contour and measure, we can view (3.20)

as the expectation value of the operator in the pure Schwarzian theory with coupling

φr:

ZJT [φb, L] = 〈Odeformation〉 ≡ (3.21)

≡
〈

exp

[ ∫ β

0

du

ε2
φr

(√
1 + 2ε2Sch(z, u)− 1− ε2 Sch(z, u) + derivatives of Sch.

)]〉
.

A naive analysis (whose downsides will be mention shortly) would conclude that, since

in the pure Schwarzian theory, the Schwarzian can be identified with the Hamiltonian

of the theory (− H
2φ2r

= Sch(z, u)), then computing (3.21) amounts to computing the

expectation value for some function of the Hamiltonian and of its derivatives. In the

naive analysis, one can use that the Hamiltonian is conserved and therefore all deriva-

tives of the Schwarzian in (3.21) can be neglected. The conservation of the Hamiltonian

would also imply that the remaining terms in the integral in the exponent (3.21) are

constant. Therefore, the partition function simplifies to

ZJT [φb, L] =naive

〈
exp

[
βφr
ε2

(√
1− ε2

φ2
r

H − 1 +
ε2

2φ2
r

H

)]〉
. (3.22)

which can be conveniently rewritten in terms of the actual boundary value of the dilaton

φb = φr/ε and the proper length L = β/ε as

ZJT [φb, L] =naive

〈
exp

[
Lφb

(√
1− H

φ2
b

− 1 +
H

φb

]〉
. (3.23)

The result for this expectation value in the Schwarzian path integral is given by

ZJT [φb, L] =naive

∫
ds s sinh(2πs)e

Lφb

(√
1− s2

φ2
b

−1
)

(3.24)

where we have identified the energy of the Schwarzian theory in terms of the sl(2,R)

Casimir for which (for the principal series) E = C2(λ = is + 1
2
) + 1

4
= s2 (see [21, 22,
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26, 41]). The result (3.24) agrees with both the result for the WDW wavefunctional

presented in section 2 (up to an overall counter-term) and with the results of [9, 10]

(reviewed in the introduction), obtained by studying an analogue of the TT deformation

in 1d.16

As previously hinted, the argument presented above is incomplete. Namely, the

problem appears because correlation functions of the Sch(z, u) are not precisely the

same as those of a quantum mechanical Hamiltonian. While at separated points cor-

relation functions of the Schwarzian are constant (just like those of 1d Hamiltonians),

the problem appears at identical points where contact-terms are present. Therefore,

the rest of this section will be focused on a technical analysis of the contribution of

these contact-terms, and we will show that the final result (3.24) is indeed correct even

when including such terms.

The generating functional

To organize the calculation we will first present a generating functional for the Schwarzian

operator in the undeformed theory. This generating functional is defined by

ZSch[j(u)] ≡
∫

Dµ[z]

SL(2,R)
e
∫ β
0 duj(u)Sch(z(u),u), (3.25)

for an arbitrary function j(u) which acts as a source for Schwarzian insertions. This

path integral can be computed repeating the procedure in [13], which we also review

in appendix A.1. The final answer is given by

ZSch[j(u)] ∼ e
∫ β
0 du

j′(u)2
2j(u)

∫
ds s sinh(2πs)e−

s2

2

∫ β
0

du
j(u) . (3.26)

We will use (3.26) to evaluate the integrated correlator (3.21), by rewriting it as

〈Odeformation〉 =

[
exp

(∫ β

0

du

ε2
φr :

(√
1 + 2ε2

δ

δj(u)
− 1 +K

[
∂u

δ

δj(u)

])
:

)

×ZSch[j(u)]

]∣∣∣∣
j(u)=0

, (3.27)

whereK
[
∂u

δ
δj(u)

]
is a placeholder for terms containing derivative terms of the Schwarzian

and, equivalently, for terms of the from . . . ∂u
δ

δj(u)
. . . . Finally, : O : is a point-splitting

operation whose role we will clarify shortly.

16We identify the deformation parameter λ = ε2

4φr
in [9, 10].
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Computing the full path integral

To understand the point splitting procedure necessary in (3.30), we start by analyzing

the structure of correlators when taking functional derivatives of ZJT [j(u)]. Schemati-

cally, we have that(
δ

δj(u1)
. . .

δ

δj(un)
ZSch[j(u)]

)∣∣∣∣
j(u)=φr

= a1 + a2[δ(uij)] + a3[∂uδ(uij)] + . . . , (3.28)

where a1 is a constant determined by the value of the coupling constant φr and a2[δ(uij)]]

captures terms which have δ-functions in the distances uij = ui− uj, while a3[∂uδ(uij)]

contains terms with at least one derivative of the same δ-functions for each term.17 The

. . . in (3.28) capture potential higher-derivative contact-terms.

If in the expansion of the square root in the exponent of (3.27) one takes the

functional derivative δ/δj(u) at identical points then the contact terms in (3.28) become

divergent (containing δ(0), δ′(0), . . . ). An explicit example about such divergences is

given in appendix C when evaluating the contribution of K4[z] in the perturbative

series. In order to eliminate such divergences we define the point-splitting procedure

:
δn

δj(u)n
:≡ lim

(u1, ..., un)→u

δ

δj(u1)
. . .

δ

δj(un)
. (3.29)

Such a procedure eliminates the terms containing δ(0) or its derivatives since we first

evaluate the functional derivatives in the expansion of (3.30) at separated points.

The structure of the generating functional also suggests that when integrating the

correlator (3.28) the contribution of the derivatives of δ(uij) vanish after integration

by parts since we will be evaluating (3.30) for constant dilaton values. As we explain

in more detail in appendix C, the origin of the derivatives of δ(uij) is two-fold: they

either come by taking functional derivatives δ/δj(u) of the term exp
(∫ β

0
du j

′(u)2

2j(u)

)
in

ZSch[j(u)], or they come from the contribution of the derivative terms K
[
∂u

δ
δj(u)

]
. In

either case, both sources only contribute terms containing derivatives of δ-functions (no

constant terms or regular δ-functions). Thus, since such terms vanish after integration

by parts, neither K
[
∂u

δ
δj(u)

]
nor exp

(∫ β
0
du j

′(u)2

2j(u)

)
contribute to the partition function.

17For example, when n = 2 the exact structure of (3.28) is computed in [13] and is reviewed in

appendix C.
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Consequently, we have to evaluate

〈Odeformation〉

=

(∫
ds s sinh(2πs) exp

[ ∫ β

0

du

ε2
φr

(
:

√
1 + 2ε2

δ

δj(u)
: −1

)]
e−

s2

2

∫ β
0 du 1

j(u)

)∣∣∣∣
j(u)=0

.

(3.30)

To avoid having to deal with the divergences eliminated by the point-splitting discussed

in the continuum limit, we proceed by discretizing the thermal circle into β/δ units of

length δ (and will ultimately consider the limit δ → 0).18 Divergent terms containing

δ in the final result correspond to terms that contain δ(0) in the continuum limit and

thus should be eliminated by through the point-splitting procedure (3.29). Therefore,

once we obtain the final form of (3.30), we will select the universal diffeomorphism

invariant δ-independent term.

To start, we can use that

e−
s2δ

2j(u) =
1

2πi

∫ −c+i∞
−c−i∞

dαu

[
−
πY1(2

√
αu)√

αu

]
e−

2αuju
s2δ (3.31)

where we have introduced a Lagrange multiplier αu for each segment in the thermal

circle. The integration contours for all αu are chosen along the imaginary axis for some

real constant c. The next step is to apply the differential operator in the exponent in

(3.30) to (3.31), (
e
∫ β
0 duφr

ε2

(
:
√

1+2ε2 δ
δj(u)

:−1
)) ∏

u∈[0,β)

e−
2αuju
s2δ

∣∣∣∣
ju=0

=

=

(
e
∫ β
0 duφr

ε2

(
:
√

1+2ε2 δ
δj(u)

:−1
))

e−
∫ β
0 du 2αuju

s2δ2

∣∣∣∣
ju=0

= : exp

 ∑
u∈[0,β)

δφr
ε2

(√
1− 4αuε2

s2δ2
− 1

) : , (3.32)

where : · · · : indicates that we will be extracting the part independent of the UV cutoff,

δ, when taking the limit δ → 0. Thus, we now need to compute

ZJT [φb, L] =
1

2πi
:

∫ ∞
0

ds s sinh(2πs)

∫ −c+i∞
−c−i∞

(∏
dαu

)[
−
πY1(2

√
αu)√

αu

]
× e

∑
u∈[0,β)

δφr
ε2

(√
1− 4αuε2

s2δ2
−1
)

: . (3.33)

18Sums and products of the type
∑
u∈[0,β) and

∏
u∈[0,β) will iterate over all β/δ intervals.
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In order to do these integrals we introduce an additional field σu, such that

e
δφr
ε2

(√
1− 4αuε2

s2δ2
−1
)

=

∫ ∞
0

dσu

σ
3/2
u

√
− δφr

2πε2
e
− 2σuαuφr

s2δ
+ δφr

2σuε2
(1−σu)2 , (3.34)

where in order for the integral (3.34) to be convergent, we can analytically continue φr
to complex values. We can now perform the integral over αu using (3.31), since αu now

appears once again in the numerator of the exponent:

ZJT [φb, L] = :

∫ ∞
0

ds s sinh(2πs)

×
∫ ∞
0

 ∏
u∈[0,β)

dσu

σ
3/2
u

√
− δφr

2πε2

 e
∑
u∈[0,β)

[
− s2δ

2σuφr
+ δφr

2σuε2
(1−σu)2

]
: . (3.35)

We now change variable in the equation above from σu → 1/σ̃u and perform the Laplace

transform, once again using (3.34). We finally find that (when keeping the finite terms

in δ) the partition function is given by:19

ZJT [φb, L] ∼
∫ ∞
0

ds s sinh(2πs) e
βφr
ε2

(√
1− s2ε2

φ2r
−1
)

∼
∫ ∞
0

ds s sinh(2πs) e
β
4λ

(√
1−4λs2/φr−1

)
, (3.36)

where we defined λ = ε2/(4φr). This partition function agrees with the naive result

(3.24) obtained by replacing the Schwarzian with the Hamiltonian of the pure theory.

Consequently, we arrive to the previously mentioned matching between the Euclidean

partition function, the WDW wavefunctional and the partition function of the TT

deformed Schwarzian theory,

e−IctΨHH [φb, L] = Zλ=ε2/(4φr)(β) = ZJT [φb, L] . (3.37)

As a final comment, the Euclidean path integral approach hides two ambiguities.

First, as we briefly commented in section 3.3, the finite cutoff expansion of the extrinsic

curvature might involve terms that are non-perturbatively suppressed in ε. As we have

mentioned before, such terms can either come from considering non-local terms in the

extrinsic curvature K[z(u)] or by considering the contribution of the negative branch

in (3.16). Second, even if these terms would vanish, the perturbative series is only

19Once again to integrate over σ̃u we have to analytically continue φr to complex values. Finally, to

perform the integral over s in (3.36) we analytically continue back to real values of φr and, equivalently,

φb.
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asymptotic. Performing the integral (3.36) over energies explicitly gives a finite cutoff

partition function

ZJT [φb, L] =
Lφ2

be
−Lφb

L2 + 4π2
K2

(
−
√
φ2
b(L

2 + 4π2)
)
. (3.38)

This formal result is not well defined since the Bessel function is evaluated at a branch

cut 20. The ambiguity related to the presence of this branch cut can be regulated by

analytic continuation; for example, in L → Leiε, and the ε → 0 limit we find different

answers depending on the sign of ε. The ambiguity given by the choice of analytic

continuation can be quantified by the discontinuity of the partition function Disc Z for

real φ and L.

A similar effect is reproduced by the contracting branch of the wavefunction from

the canonical approach, there are two orthogonal solutions to the gravitational con-

straint Ψ±, defined by their small cutoff behavior Ψ± ∼ e±φLZ±, where Z± is finite.

In the language of the Euclidean path integral, the different choice of wavefunctionals

correspond to different choices for the square root in the extrinsic curvature (3.16). Im-

posing Hartle-Hawking boundary conditions fixes Ψ+, which matches the perturbative

expansion of the Euclidean path integral. The corrections to the partition function

from the other branch are exponentially suppressed Ψ−/Ψ+ ∼ e−
1
ε2 .

As previously hinted, contributions from turning on Ψ− are not only related to the

choice of branch for K[z(u)], but is the same as the branch-cut ambiguity mentioned

above for (3.38). To see this, we can notice that Disc Z is a difference of two functions

that separately satisfy the WDW equation and goes to zero at small cutoff. Therefore

it has to be of the same form as the Ψ− branch given in (2.25).

4 The contracting branch and other topologies

In this section, we will analyze two different kinds of non-perturbative corrections to

the partition function. First we will study corrections that are non-perturbative in the

cutoff parameter ε in sections 4.1 and 4.2, which come from turning on the contracting

branch of the wavefunction. Then, we will comment on non-perturbative corrections

coming from non-trivial topologies in section 4.3.

20This can be tracked to the fact that we are sitting at a Stokes line. It is curious that this explicit

answer gives a complex function even though the perturbative terms we found from the path integral

are all real (this phenomenon also happens in more familiar setups like WKB [42]).
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4.1 Unitarity at finite cutoff

Given the exact form of the wavefunction for general cutoff surfaces, we can study some

of the more detailed questions about TT in AdS2. One such question is whether the

theory can be corrected to become unitary. As can be seen from the expression for

the dressed energy levels (1.2), the energies go complex whenever λ > 1/(8E). This is

unsatisfactory if we want to interpret the finite cutoff JT gravity partition function as

being described by a 0+1 dimensional theory, just like the Schwarzian theory describes

the full AdS2 bulk of JT gravity. There are a few ways in which one can go around

this complexification.

Firstly, we can truncate the spectrum of the initial theory so that E is smaller

than some Emax. This is totally acceptable, but if we want to have an initial theory

that describes the full AdS2 geometry, we cannot do that without making the flow

irreversible. In other words, the truncated Schwarzian partition function is not enough

to describe the entire JT bulk. The second option is to accept there are complex energies

along the flow but truncate the spectrum to real energies after one has flowed in the

bulk. In 1D this was emphasized in [9] (and in [1, 4] for 2D CFTs). The projection

operator that achieves such a truncation will then depend on λ and, in general, will

not solve the flow equation (2.35) of the partition function. A third option is that we

use the other branch of the deformed energy levels E− (see (1.2)) to make the partition

function real. In doing so, we will be guaranteed a solution to the Wheeler-de-Witt

equation. Let us pursue option three in more detail and show that we can write down

a real partition function Zλ(β) with the correct (Schwarzian) boundary condition at

λ→ 0.

The solution to the TT flow equation (2.35) that takes the form of a partition

function is,

Znon−pert.
λ (β) =

∫ ∞
0

dEρ+(E)e−βE+(E,λ) +

∫ ∞
−∞

dEρ−(E)e−βE−(E,λ). (4.1)

Here, we took the ranges of E to be such that E± are bounded from below. As λ→ 0,

we see that the first term goes to some constant (as we already saw previously), but

the second term goes to zero non-perturbatively in λ as e−β/(2λ). From the boundary

condition λ → 0 we can therefore not fix the general solution, but only ρ+(E) =

sinh(2π
√

2CE). If we demand the partition function to be real, then both integrals

over E in (4.1) should be cutoff at E = 1/(8λ) and it will therefore not be a solution to

(2.35) anymore, because the derivatives with respect to λ can then act on the integration
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Figure 2: In orange, we show the undeformed density of states sinh(2π
√
E) of JT

gravity at infinite cutoff. In dashed black, we show the density of states of the theory

with just the branch of the root, E−, that connects to the undeformed energies, until

the energy complexifies. In blue, we show the density of states ρλ(E) of the deformed

partition function (4.3) which includes non-perturbative corrections in λ. Above we

have set ρ̂(E) = 0 and λ = 1/4 and C = 1/2, the black line therefore ends at E = 1
4λ

=

1. The vertical dashed line indicates the energy beyond which ρ̂ has support.

limit. However, by picking

ρ− =

{
− sinh(2π

√
2CE) 0 < E < 1

8λ

ρ̂(E) E < 0
, (4.2)

with ρ̂(E) an arbitrary function of E, the boundary terms cancel and we obtain a valid

solution to (2.35) and the associated wavefunction Ψ = eLφbZ will solve the WDW

equation (2.20). The final partition function is then given by (see appendix B for

details),

Znon−pert.
λ (β) =

πβe−
β
4λ

√
2λ(β2 + 16Cπ2λ)

I2

(
1

4λ

√
β2 + 16Cπ2λ

)
+

∫ 0

−∞
dEρ̂(E)e−βE−(E,λ).

(4.3)

Notice that when we redefine E such that we have the canonical Boltzman weight in

the second term of (4.3), the support of ρ̂ is for E > 1
2λ

, because for this redefined

energy E = 0 maps to 1
2λ

. Let us comment on this partition function. First, because of

the sign in (4.2), the first part of (4.3) has a negative density of states and turns out

the be equal to (1.7) with support between 0 ≤ E ≤ 1
2λ

, see Fig. 2. Second, there is a

whole function worth of non-perturbative ambiguities coming from the second term in
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(4.3) that cannot be fixed by the Schwarzian boundary condition. From the Euclidean

path integral approach, assuming that the extrinsic curvature does not receive non-

perturbative corrections, we could fix ρ̂(E) = 0 by choosing an appropriate analytic

continuation on L when defining the partition function.

4.2 Relation to 3D gravity

The analysis in the previous section can be repeated in the context of 3D gravity and

TT deformations of 2D CFTs on a torus of parameters τ and τ . The deformed partition

function satisfies an equation similar to (2.35) derived in [39]. This is given by

−∂λZλ =

[
8τ2∂τ∂τ + 4

(
i(∂τ − ∂τ )−

1

τ2

)
λ∂λ

]
Zλ (4.4)

The solutions of this equation, written in a form of a deformed partition function, can

be written as

Z(τ, τ , λ) =
∑
±, k

∫ ∞
E0

dEρ±(E)e−τ2E±(E,k)+2πikτ1 (4.5)

where τ = τ1 + iτ2 and τ = τ1 − iτ2. Here we have set the radius to one and

E±(E, k) =
1

4λ

(
1∓
√

1− 8λE + 64π2k2λ2
)
. (4.6)

As usual we pick the minus sign of the root as that connects to the undeformed energy

levels at λ = 0. The energy levels of the deformed partition function complexify when

Ec = 1
8λ

+ 8k2π2λ2. So we would like to cutoff the integral there. Similarly, a hard

cutoff in the energy will not solve the above differential flow equation anymore. We

can resolve this by subtracting the same partition function but with the other sign of

the root in (4.6). This is again a solution, but (again) with negative density of states.

4.3 Comments about other topologies

Finally, we discuss the contribution to the path integral of manifolds with different

topologies. The contribution of such surfaces is non-perturbatively suppressed by

e−φ0χ(M), where χ(M) is the Euler characteristic of the manifold.

We start with surfaces with two boundaries of zero genus, where one boundary has

the Dirichlet boundary conditions (1.10) and the other ends on a closed geodesic with

proper length b. The contribution of such surfaces to the partition function, referred to

as “trumpets”, has been computed in the infinite cutoff limit in [23]. We can repeat the

method of section 2.4 to a spacetime with the geodesic hole of length b by applying the
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WDW constraints to the boundary on which we have imposed the Dirichlet boundary

conditions. This constraint gives the trumpet finite cutoff partition function

Ztrumpet[φb, L, b] =
φbLe

−φbL
√
L2 − b2

K1

(
−
√
φ2
b(L

2 − b2)
)
. (4.7)

The partition function diverges as L → b, indicating the fact that the boundary with

Dirichlet boundary conditions overlaps with the geodesic boundary.

In order to construct higher genus surfaces or surfaces with more Dirichlet bound-

aries one can naively glue the trumpet to either a higher genus Riemann bordered

surface or to another trumpet. In order to recover the contribution to the partition

function of such configurations we have to integrate over the closed geodesic length b

using the Weil-Petersson measure, dµ[b] = db b. However, if integrating over b in the

range from 0 to ∞ for a fixed value of L we encounter the divergence at L = b.

One way to resolve the appearance of this divergence is to once again consider

the non-perturbative corrections in ε discussed in section 4.1 for the trumpet partition

function (4.7). We can repeat the same procedure as in 4.1 by accounting for the other

WDW branch thus making the density of states of the “trumpet” real. Accounting for

the other branch we find that

Znon−pert.
trumpet [φb, L, b] =

2πφbLe
−φbL

√
L2 − b2

I1

(√
φ2
b(L

2 − b2)
)
, (4.8)

where we set the density of states for negative energies for the contracting branch to

0. Interestingly, the partition function (4.8) no longer has a divergence at L = b which

was present in (4.7) and precluded us previously from performing the integral over b.

We could now integrate 21

Znon−pert.
cyl. [φb1 , L1, φb2 , L2] =naive

∫ ∞
0

db bZnon−pert.
trumpet [φb1 , L1, b]Z

non−pert.
trumpet [φb2 , L2, b] , (4.9)

to obtain a potential partition function for the cylinder.22

Besides the ambiguity related to the non-perturbative corrections, there is another

issue with the formula for the cylinder partition function (4.9). Specifically, for any

21Alternatively, one might hope to directly use WDW together with the results of [23] for arbitrary

genus to directly compute the partition function at finite cutoff. However, as pointed out in [43], the

WDW framework is insufficient for such a computation; instead, computing the full partition function

requires a third-quantized framework which greatly complicates the computation.
22While unfortunately we cannot compute the integral over b exactly it would be interesting to check

whether the partition function for the cylinder can be reproduced by a matrix integral whose leading

density of states is given by the one found from the disk contribution.
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value of the proper length L1 and L2 and for a closed geodesic length b (with b < L1

and b < L2) there exist cylinders for which the Dirichlet boundaries intersect with the

closed geodesic of length b. Such surfaces cannot be obtained by gluing two trumpets

along a closed geodesic as (4.9) suggests when using the result (4.7). Given that the

partition function (4.8) does not have a clear geometric interpretation when including

the contributions from the contracting branch, it is unclear if (4.9) accounts for such

geometries. Given these difficulties, we hope to revisit the problem of summing over

arbitrary topologies in the near future.

As another example of non-trivial topology, one can study the finite cutoff path

integral in a disk with a conical defect in the center. Such defects were previously

studied at infinite cutoff in [24]. The answer from the canonical approach is given by

Zdefect[φb, L] =
φL√

L2 + 4π2α2
K1

(
−
√
φ2
b(L

2 + 4π2α2)
)
, (4.10)

where α is the opening angle, and α = 1 gives back the smooth disk wavefunction.

This function is finite for all L.

5 de Sitter: Hartle-Hawking wavefunction

As a final application of the results in this paper, we will study JT gravity with positive

cosmological constant, in two-dimensional nearly dS spaces. We will focus on the

computation of the Hartle-Hawking wavefunction, see [33], and [44]. The results in

these references focus on wavefunctions at late times, with an accurate Schwarzian

description. Using the methods in this paper, we will be able to compute the exact

wavefunction at arbitrary times.

The Lorentzian action for positive cosmological constant JT gravity is given by

IJT =
1

2

∫
M

√
gφ(R− 2)−

∫
∂M

√
γφK. (5.1)

Following section 2.3, we use the ADM decomposition of the metric

ds2 = −N2dt2 + h(dθ +N⊥dt)
2, h = e2σ (5.2)

where now t is Lorentzian time and θ the spatial direction. We will compute the

wavefunction of the universe Ψ[L, φb(u)] as a function of the total proper length of the

universe L and the dilaton profile φb(u) along a spatial slice. The proper spatial length

along the boundary is defined by du = eσdθ. The solution satisfying the gravitational
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t

Figure 3: Frame in which geometry is rigid dS2. Time runs upwards. We show the wiggly

curve where we compute the wavefunction in blue (defined by its length and dilaton profile).

constraints is given by

Ψ+[φb(u), L] =

∫
dMρ(M)e

−i
∫ L
0 du

[√
φ2b−M+(∂uφb)2−∂uφb tanh−1

(√
1+

φ2
b
−M

(∂uφb)
2

)]
, (5.3)

where the index + indicates we will focus on the expanding branch of the wavefunction.

This is defined by its behavior Ψ+ ∼ e−i
∫ L
0 du φb(u) in the limit of large universe (large

L).

To get the wavefunction of the universe, we need to impose the Hartle-Hawking

boundary condition. We will look again to the limit of large L, and for simplicity,

we can evaluate it for a constant dilaton setting ∂uφb = 0 (this is enough to fix the

expanding branch of the wavefunction completely).

As explained in [33], one can independently compute the path integral with Hartle-

Hawking boundary conditions in this limit by integrating out the dilaton first. This

fixes the geometry to be rigid dS2, up to the choice of embedding of the boundary curve

inside rigid dS2, see figure 3. Then the result reduces to a Schwarzian path integral

parametrizing boundary curves, just like in AdS2. The final result for a constant dilaton

and total length L is given by

Ψ+[φb, L] ∼ e−iφbL
∫
dM sinh (2π

√
M)e

iL M
2φb , Lφb →∞, φb/L fixed. (5.4)

This boundary condition fixes the function ρ(M) in (5.3), analogously to the procedure

in section 2.4.

Then the final answer for the expanding branch of the Hartle-Hawking wavefunction
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of JT gravity is

Ψ+[φb, L] =

∫ ∞
0

dM sinh(2π
√
M)e

−i
∫ L
0 du

[√
φ2b−M+(∂uφb)2−∂uφb tanh−1

(√
1+

φ2
b
−M

(∂uφb)
2

)]
.

(5.5)

The same result can be reproduced for constant values of φb(u) = φb by following

the procedure in section 3, writing the extrinsic curvature along the spatial slice as a

functional of the Schwarzian derivative. Following the same steps as in section 3.5, one

could then recover the wavefunction (5.5) by computing the Lorentzian path integral

exactly, to all orders in cutoff parameter ε.

The procedure outlined so far parallels the original method of Hartle and Hawking

[37]. First, we solve the WDW equation, which for this simple theory can be done

exactly. Then, we impose the constraints from the no-boundary condition. The only

subtlety is that, while Hartle and Hawking impose their boundary conditions in the

past, we are forced to impose the boundary condition at late times. This is a technical

issue since the limit L→ 0 is strongly coupled. Nevertheless, we could, in principle, do

it at early times if we would know the correct boundary condition in that regime.

A different procedure was proposed by Maldacena [45]. The idea is to compute the

no-boundary wavefunction by analytic continuation, where one fills the geometry with

‘−AdS’ instead of dS.23 We can check now in this simple model that both prescriptions

give the same result. For simplicity, after fixing the dilaton profile to be constant, one

can easily check that the result (5.5) found following Hartle and Hawking matches with

the analytic continuation of the finite cutoff Euclidean path integral in AdS computed

in section 3.

For a constant dilaton profile, we can perform the integral to compute the wave-

function

Ψ+[φb, L] =
Lφ2

b

L2 − 4π2 − iε
K2

(
i
√
φ2
b(L

2 − 4π2 − iε)
)
, (5.6)

where the iε prescription is needed to make the final answer well defined (see also

section 4). This wavefunction satisfies the reduced WDW equation 24

(Lφ− L∂L(L−1∂φ))Ψ[L, φ] = 0. (5.7)

One interesting feature of this formula is the fact that it also satisfies the naive no-

boundary condition since Ψ+[L→ 0, φb]→ 0. Nevertheless, even though it behaves as

23For a review in the context of JT gravity see section 2.3 of [33].
24This differs from the wavefunction written in [33] since we found a modification in the WDW

equation. The solutions are related by Ψhere = LΨthere. The Klein-Gordon inner product defined in

[33] should also be modified accordingly.
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Figure 4: Plot of the wavefuntion ΨHH,real for φb = 1/4. The vertical dashed line

indicates the location, L = 2π, where the expanding branch Ψ+ of the wavefunction

(5.6) diverges, but ΨHH,real remains finite.

expected for small lengths, it has a divergence at Ldiv = 2π (the Bessel function blows up

near the origin). Semiclassically, the geometry that dominates the path integral when

L = 2π is the lower hemisphere of the Euclidean S2 (dashed line in figure 3). This is

reasonable from the perspective of the JT gravity path integral since this boundary is

also a geodesic, but it would be nice to understand whether this divergence is unique

to JT gravity, or would it also be present in theories of gravity in higher dimensions.

We can also comment on the TT interpretation of dS gravity. For large L it

was argued in [33] that a possible observable in a dual QM theory computing the

wavefunction can be Ψ+[L] ∼ Tr[eiLH ], with an example provided after summing over

non-trivial topologies by a matrix integral (giving a dS version of the AdS story in

[23]). We can extend this (before summing over topologies) to a calculation of the

wavefunction at finite L by TT deforming the same QM system. This is basically an

analytic continuation of the discussion for AdS2 given in previous sections.

So far we focused on the expanding branch of the wavefunction following [33]. We

can also find a real wavefunction analogous to the one originally computed by Hartle

and Hawking [37], which we will call ΨHH,real. This is easy to do in the context of JT

gravity and the answer is

ΨHH,real[L, φb] =
πLφ2

b

L2 − 4π2
I2

(
i
√
φ2
b(L

2 − 4π2)
)

(5.8)

This wavefunction is real, smooth at L = 2π and also satisfies ΨHH,real[L→ 0, φb]→ 0.

We plotted the wavefunction in Fig. 4. For large universes this state has an expanding

and contracting branch with equal weight.
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Finally, the results of this section can be extended to pure 3D gravity with positive

cosmological constant Λ = 2/`2. Using Freidel reconstruction kernel, the wavefunction

Ψ[e±] satisfying WDW, as a function of the boundary frame fields e±, is given by

Ψ+[e±] = e
i `
16πGN

∫
e
∫
DE e

−i `
8πGN

∫
E+∧E−

Z(E + e). (5.9)

This is the most general, purely expanding, solution of WDW up to an arbitrary func-

tion of the boundary metric Z(E). We can fix Ψ+ uniquely by looking at the late time

limit, or more accurately, boundary metrics with large volume. In this limit Freidel

formula gives Ψ+[Te±] ∼ eiSc.t.(T,e)Z(e) for large T . The first term is rapidly oscillating

with the volume T at late times and we see the finite piece is precisely the boundary

condition we need Z(e). The path integral calculation of the finite piece Z(e) was done

in [44] for the case of a boundary torus (see their equation 4.121 and also [46]) and

gives a sum over SL(2,Z) images of a Virasoro vacuum character. We leave the study

of the properties of this wavefunction for future work.

6 Discussion

JT gravity serves as an essential toolbox to probe some universal features of quantum

gravity. In the context of this paper, we have shown that the WDW wavefunctional

at finite cutoff and dilaton value in AdS2 agrees with an explicit computation of the

Euclidean path integral; this, in turn, matches the partition function of the Schwarzian

theory deformed by a 1D analog of the TT deformation. Consequently, our computation

serves as a check for the conjectured holographic duality between a theory deformed

by TT and gravity, in AdS, at a finite radial distance.

Finite cutoff unitarity

Beyond providing a check, our computations indicate paths to resolve several open

problems related to this conjectured duality. One such issue is that of complex energies

that were present when deforming by TT (both in 1 and 2D), and were also present in

the WDW wavefunctional when solely accounting for the expanding branch. However,

from the WDW perspective, one could also consider the contribution of the contracting

branch, and, equivalently, in the Euclidean path integral, one could also account for

the contribution of non-compact geometries. In both cases, such corrections are non-

perturbative in the cutoff parameter ε or, in the context of TT , in the coupling of the

deformation λ. Nevertheless, we have shown that there exists a linear combination

between the two wavefunctional branches that leads to a density of states which is real
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for all energies. Thus, this suggests that a natural resolution to the problem of complex

energy levels is the addition of the other branch, instead of the proposed artificial cutoff

for the spectrum once the energies complexify [4]. While the problem of complex energy

levels is resolved with the addition of the contracting branch, a new issue appears: the

partition function now has a negative density of states. This new density of states

implies that, even with such a resolution, the partition function is not that of a single

unitary quantum system. In three bulk dimensions, one has a similar state of affairs.

The energy levels again complexify, and the other branch of the solution space can

cure this, with the caveat that the density of states will become negative. A possible

resolution consistent with unitarity would be that the finite cutoff path integral is not

computing a boundary partition function but something like an index, where certain

states are weighted with a negative sign.

A related issue that leads to the ambiguity in the choice of branches is that the

non-perturbative piece of the partition function that cannot be fixed by the λ → 0

boundary condition. This ambiguity can be cured by putting additional conditions

on the partition function. Fixing the λ-derivative of Znon−pert.
λ (β) does not work, but

for instance Znon−pert.
λ (β) → 0 as β → 0 would be enough to fix the partition function

completely. One other possibility, motivated by the bulk, is to fix the extrinsic curvature

K at ε→ 0. This will eliminate one of the two branches and, therefore, also ρ̂ in (4.3).25

One can also try to foliate the spacetime with different slices, for instance, by taking

constant extrinsic curvature slices.26 In 3D, this was done explicitly in [48] for a toroidal

boundary and in [49] for more general Riemann surfaces. In particular, for the toroidal

boundary, it was found that the wavefunction in the mini-superspace approximation

inherits a particular modular invariance, and it would be interesting to compare that

analysis to the one done in [39].

In the AdS3/CFT2 context, it would also be interesting to understand the non-

perturbative corrections to the partition function purely from the field theory. As the

TT deformation is a particular irrelevant coupling, it is not unreasonable to suspect

that such corrections are due to instanton effects contributing at O(e−1/λ). The fate of

such instantons can be studied using, for example, the kernel methods [32, 50] or the

various string interpretation of TT [51, 52]; through such an analysis, one could hope

to shed some light on the complexification of the energy levels.

Application: Wavefunction of the universe

25However, such a resolution appears to bring back the complex energies.
26Appendix A.2, in fact, provides a non-trivial check of the form of the extrinsic curvature K[z(u)]

by considering boundary conditions with fixed extrinsic curvature slices. We will provide further

comments about such boundary conditions in [47].
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The techniques presented in this paper also apply to geometries with constant pos-

itive curvature. We do this calculation in two ways. On one hand we solve the WDW

constraint that this wavefunction satisfies, imposing the Hartle-Hawking boundary con-

dition. On the other hand, we compute the wavefunction as an analytic continuation

from the Euclidean path integral on ‘-AdS’. As expected, we find that both results

match. We also analyze two possible choices to define the wavefunction. The first

solely includes the contribution of the expanding branch and has a pole when the size

of the universe coincides with the dS radius. The second is a real wavefunctional, which

includes the non-perturbative contribution of the contracting branch and is now smooth

at the gluing location. It would be interesting to identify whether this divergence is

present in higher dimensions or if it is special to JT gravity. We also leave for future

work a better understanding of the appropriate definition of an inner product between

these states.27 Finally, we outlined how a similar analysis can be used to find the no-

boundary wavefunction for pure 3D gravity with a positive cosmological constant, the

simplest example corresponding to a toroidal universe.

Sum over topologies

An important open question that remains unanswered is the computation of the JT

gravity partition function when including the contribution of manifolds with arbitrary

topology. While we have determined the partition function of finite cutoff trumpets

using the WDW constraint, this type of surface is insufficient for performing the gluing

necessary to obtain any higher genus manifold with a fixed proper boundary length. It

would be interesting to understand whether the contribution of such manifolds to the

path integral can be accounted for by using an alternative gluing procedure that would

work for any higher genus manifold.

For the cylinder, we can actually avoid the gluing. From a third quantisation point

of view, one way to think about the cylinder partition function, or double trumpet, is

as the propagator associated to the WDW equation in mini-superspace,[
−Lφ+ L∂L(L−1∂φ)

]
Ψcylinder(φ, φ

′, L, L′) = δ(L− L′)δ(φ− φ′). (6.1)

This avoids the integral over b and since the WDW equation (6.1) is just the propa-

gator of a massive particle in a constant electric field28, we can solve it with standard

methods. The resulting propagator is proportional to a Hankel function of the geodesic

27In the limit of large universes, some progress in this direction was made in [33].
28In the coordinates u = φ2 and v = L2, (2.20) reduces to

(
∂u∂v + 1

4 −
1
2v∂u

)
Ψ = 0. This is the KG

equation for m2 = 1 and external gauge field A = i
vdv. Notice that the mini-superspace is Lorentzian,

whereas the geometries Ψ describes are Euclidean.
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distance on mini-superspace, but does not have the same form as the double trumpet

computed in [23] once L,L′, φ and φ′ are taken large. In fact, it vanishes in that limit.

Furthermore, there is a logarithmic divergence when the geodesic distance in mini-

superspace vanishes, i.e. when L = L′ and/or φ = φ′. There are several reasons for

this discrepancy. The obvious one would be that the cylinder is not the propagator in

third quantisation language, but this then raises the question, what is this propagator?

Does it have a geometric interpretation? It would be interesting to understand this

discrepancy better and what the role of the third quantised picture is.

Coupling to matter & generalizations

Finally, it would be interesting to understand the coupling of the bulk theory to

matter. When adding gauge degrees of freedom to a 3D bulk and imposing mixed

boundary conditions between the graviton and the gauge field, the theory is dual to

a 2D CFT deformed by the JT deformation [53].29 In 2D, the partition function of

the theory coupled to gauge degrees of freedom can be computed exactly even at finite

cutoff; this can be done by combining the techniques presented in this paper with those

in [54] 30 . It would be interesting to explore the possibility of a 1D deformation,

analogous to the JT deformation in 2D, which would lead to the correct boundary

dual for the gravitational gauge theory. Since gauge fields do not have any propagating

degrees of freedom in 2D, it would also be interesting to explore the coupling of JT

gravity to other forms of matter.31 In the usual finite cutoff AdS3/TT deformed CFT

correspondence, adding matter results in the dual gravitational theory having mixed

boundary conditions for the non-dynamical graviton [57]. Only when matter fields are

turned off are these mixed boundary conditions equivalent to the typical finite radius

Dirichlet boundary conditions. In 2D this was done for the matterless case in [10] and

it would be interesting to generalise this to include matter.
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A Additional checks

A.1 WDW with varying dilaton

In this section we will check our formula (2.32) in the case of a varying dilaton with an

arbitrary profile φb(u). We will still work in the limit of large L and φb such that we

are working near the boundary of AdS2. Expanding the solution of the WDW equation

gives

ΨHH[φb(u), L] =

∫
dMρHH(M) exp

[∫ L

0

du

(
φb −

M

2φb
+

(∂uφb)
2

2φb
+ . . .

)]
(A.1)

where the dots denote terms that are subleading in this limit. The first term produces

the usual divergence piece
∫ L
0
du φb(u). The second term after integrating over M would

produce the Schwarzian partition function with an effective length given by ` =
∫ L
0

du
φb(u)

,

which can be interpreted as a renormalized length. The final answer is then

ΨHH[L, φ] = e
∫ L
0 duφb(u)ZSch

(∫ L

0

du

φb(u)

)
e

1
2

∫ L
0 du

(∂uφb)
2

φb . (A.2)

Now we will show the full answer, including the last term in (A.2), 1
2

∫ L
0
du (∂uφ)2

φ
, can

be reproduced by the Euclidean path integral through the Schwarzian action.

For a varying dilaton the bulk path integral of JT gravity can be reduced to∫
DgDφ e−IJT[φ,g] → e

∫ L
0 duφb(u)

∫
Df

SL(2,R)
e
∫ L
0 duφb(u) Sch(F (u),u), F = tanπf (A.3)

For simplicity we will assume that φb(u) > 0. Following [13] we can compute this path

integral using the composition rule of the Schwarzian derivative

Sch(F (ũ(u)), u) = Sch(F, ũ)(∂uũ)2 + Sch(ũ, u). (A.4)
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We can pick the reparametrization to be ∂uũ = 1/φb(u). This implies in terms of the

coordinate ũ the total proper length is given by L̃ =
∫ L
0
du/φb(u). This simplifies the

Schwarzian term and we can write the second term as∫ L

0

du φb(u)Sch(ũ, u) =
1

2

∫ L

0

du
(∂uφb)

2

φb
(A.5)

up to total derivative terms that cancel thanks to the periodicity condition of the

dilaton. Then we can rewrite the path integral as∫
DgDφ e−IJT[φ,g] → e

∫ L
0 duφb(u)+

1
2

∫ L
0 du

(∂uφb)
2

φb

∫
Df

SL(2,R)
e
∫ L̃
0 dũ Sch(F,ũ), (A.6)

= e
∫ L
0 duφb(u)+

1
2

∫ L
0 du

(∂uφb)
2

φb ZSch

(
L̃ =

∫ L

0

du

φb

)
(A.7)

which matches with the result coming from the WDW wavefunction (A.2). This is

a nontrivial check of our proposal that ΨHH in (2.32) computes the JT gravity path

integral at finite cutoff.

A.2 JT gravity with Neumann boundary conditions

To provide a further check of the form of the extrinsic curvature K at finite cutoff (3.17),

we can study the theory with Neumann boundary conditions, when fixing the extrinsic

curvature K[z(u)] = Kb instead of the boundary dilaton value φr and when fixing the

proper length L to be finite in both cases.32 We will work in Poincaré coordinates (3.2).

Since Kb > 0 it means (in our conventions) that we are considering a vector encircling a

surface with genus 0 (normal vector pointing outwards). On the Poincaré plane, curves

of constant Kb are circles, semi-circles (that intersect the H2 boundary) or lines. All of

them can be parametrized in the Poincaré boundary coordinates τ(u) and x(u) as:

τ(u) = a+ b cos(u) , x(u) = d+ b sin(u) , Kb =
d

b
,

√
γuu =

b

d+ b sinu
,

(A.8)

with b, d ∈ R. Note that if we want the circle above to be fully contained within the

Poincaré half-plane (with x > 0) we need to require that d > 0 and d ≥ b which implies

Kb ≥ 1. Thus, for contractible boundaries which contain the surface inside of them we

must have Kb ≥ 1.

For this value of Kb, the boundary proper length is restricted to be

β

ε
=

∫
du
√
γuu =

2π√
(Kb + 1)(Kb − 1)

. (A.9)

32A more detailed analysis of the theory with such boundary conditions will be presented in [47].
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Therefore, the partition function with Neuman boundary conditions should solely iso-

late configurations which obey (A.9). A non-trivial check will be to recover this geomet-

ric constraint by going from the partition function with Dirichlet boundary conditions

(for which we obtained the action (3.17)) and the partition function with Neumann

boundary conditions.

In the phase space of JT gravity K[z(u)] and φ(u) are canonical conjugate variables

on the boundary. Therefore, in order to switch between the two boundary conditions

at the level of the path integral, we should be able to integrate out φr(u) to obtain the

partition function with Neumann boundary conditions. Explicitly we have that,33

ZN[Kb(u), L] =

∫ φ̃b+i∞

φ̃b−i∞
Dφb(u)ZJT [φb(u), L] e

1
ε

∫ β
0 duφb(u)(1−Kb(u))

=

∫ φ̃b+i∞

φ̃b−i∞
Dφb(u)

∫
DφDgµν e

φ0χ(M)−Sbulk[φ,gµν ]+
1
ε

∫
duφb(u)(K−Kb(u))

∼
∫
DφDgµν e

φ0χ(M)−Sbulk[φ,gµν ]
∏
u∈∂M

δ(K(u)−Kb(u)) . (A.10)

which of course fixes the extrinsic curvature on the boundary. To simplify our com-

putation, we will work with the “renormalized” extrinsic curvature Kb,r, defined as

Kb ≡ 1 + ε2Kb,r and choose a constant value for Kb,r.

Using the formula (3.17) for K[z(u)] in (A.10) we can rewrite the second line in

terms of a path integral for the Schwarzian mode z(u):

ZN
[
Kb = 1 + ε2Kb,r, L = β/ε

]
=

∫
dµ[z(u)]

SL(2,R)

∏
u∈∂M

δ

(√
1 + 2ε2Sch(z(u), u)− 1− ε2Kb,r

+ derivatives of Sch.

)
. (A.11)

One set of solutions for which the δ-function in (A.11) are the configurations for which

the Schwarzian is a constant (related to Kb,r) for which all the derivatives of the

Schwarzian vanish.34 Specifically, for such configurations which obey z(0) = z(β),

33Where φ̃b is some arbitrary constant which is used to shift the contour along the real axis.
34It is possible that there are other solutions which we do not account for in (A.11) that do not

have Sch(z(u), u) constant but have the sum between the non-derivative terms and derivative terms

in (A.11) still yield the overall constant 1 + ε2Kb,r. While we do not analyze the possible existence

of these configuration, it is intriguing that they do not affect the result of (A.12). We will once again

ignore non-perturbative corrections in ε.
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we have that z(u) = tan(πu/β), which yields:√
1 + 4ε2

π2

β2
− 1 = ε2Kb,r ⇒ β

ε
=

2π√
ε2Kb,r(2 + ε2Kb,r)

=
2π√

(Kb + 1)(Kb − 1)

(A.12)

which exactly matches the constraint (A.9). This is a strong consistency check that

the relation between the deformed Schwarzian action (3.17) and the extrinsic curvature

when moving to finite cutoff.

B General solution to (2.35)

In this appendix we present a more general analysis of the differential equation (2.35),

which we reproduce here for convenience,[
4λ∂λ∂β + 2β∂2β −

(
4λ

β
− 1

)
∂λ

]
Zλ(β) = 0. (2.35)

In particular, since (1.4) appears (at least naively) to not converge and the integral

transform (1.5) is not well-defined for the sign of λ, i.e. λ > 0, which is appropriate for

JT gravity at finite cutoff, the solution to the differential equation provides a solution

for the partition function for that sign.

To solve the differential equation (2.35) it is useful to decouple λ and β. This can

be done by defining R = β/(8λ) and eσ = β/(2C) and writing the problem in terms of

R and σ. The differential equation becomes,

−R2(∂2R + 4∂R)Z + (∂2σ − ∂σ)Z = 0 (B.1)

By using seperation of variables we find that the general solution is,

Z(R, σ) =

∫ ∞
−∞

dνe−νσ
√
Re−2R

(
aνK1/2+ν(−2R) + bνK1/2+ν(2R)

)
(B.2)

where ν is the related to the seperating contant. We are interested in find the solution

with the Schwarzian boundary condition at R → ∞. Expanding the above general

solution for R→∞ we find

Z0 = lim
R→∞

Z(R, σ) = −i
√
π

2

∫ ∞
−∞

dνe−νσaν . (B.3)
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Notice that the bν coefficients do not play any role, since the Bessel function with

positive argument goes as e−4R. The function Z0 is given by Schwarzian partition

function,

Z0 =

(
1

2Ceσ

)3/2

eπ
2e−σ , (B.4)

Expanding this in eσ fixes the coefficients aν and after resumming using the multiplica-

tive theorem for the Bessel Ks(z) functions,

α−sKs(αz) =
∞∑
n=0

(−1)n

2nn!
(α2 − 1)nznKs+n(z), (B.5)

we find the solution with the boundary condition (B.3) to be,

Z(R, σ) = i
1√

2πC3

R3/2e−2R−σ/2

Reσ + π2
K2

(
−2
√
R2 + π2Re−σ

)
+

∫ ∞
0

dνe−νσbν
√
Re−2RKν+1/2(2R). (B.6)

The first term is precisely the deformed Schwarzian partition function found in [9].

The second term is there because the boundary condition at R→∞ is not enough to

fully fix the solution. They are non-perturbative corrections to the partition function,

discussed in 4. In that same section a proposal is presented how to fix, or at least

partially, the bν . In particular, by requiring Z(R, σ) to be real. We know that Ks(z) is

real for z > 0 and since R > 0, we need bν to be complex in general. The Bessel Ks(z)

functions have a branch cut at the negative real axis and furthermore for integer s we

have,

Ks(−z) = (−1)sKs(z) + (log(z)− log(−z))Is(z)⇒ K2(−z) = K2(z)− iπI2(z), (B.7)

where we used z > 0 and real after the implication arrow. Notice that here we also

picked a particular branch of the logarithm so that log(−z) = log(z)+iπ. This choice is

motivated by the fact that asR→∞ the density of states of the corresponding partition

function is positive. Consequently, to make Z(R, σ) real we need the imaginary part of

bν , b
Im
ν , to satisfy.

1√
2πC3

R3/2e−2R−σ/2

Reσ + π2
K2

(
2
√
R2 + π2Re−σ

)
+

∫ ∞
0

dνe−νσbImν
√
Re−2RKν+1/2(2R) = 0.

(B.8)
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But this is the same matching as we did to implement the boundary condition (B.3),

up to some signs. In fact, picking bImν = −(−1)νaν does the job and we get

Z(R, σ) =

√
π

2C3

R3/2e−2R−σ/2

Reσ + π2
I2

(
2
√
R2 + π2Re−σ

)
+ Z̃(R, σ), (B.9)

where

Z̃(R, σ) =

∫ ∞
−∞

dνe−νσ
√
Re−2RcνK1/2+ν(2R) (B.10)

with cν real. Going back to the λ and β variables, we find

Zλ(β) =

√
π

2λ

βe−
β
4λ

β2 + 16Cπ2λ
I2

(
1

4λ

√
β2 + 16Cπ2λ

)
+ Z̃(β, λ). (B.11)

If one insists on getting a partiton function as a solution, i.e a solution that can be

written as a sum over energies weighted by some Boltzmann factor, we can find solution

in a simpler way. The ansatz is then

Zλ(β) =
∑
E

g(λ)e−βEλ(E). (B.12)

Plugging this in the differential equation (2.35) we precisely find the energy levels in

(1.2) and g(λ) = 1, i.e. the density of states is not changed under the flow. If we

consider a continuous spectrum we thus find (4.1).

C Details about regularization

Some explicit perturbative calculations for K[z(u)]

Since the discussion is section 3.5 is mostly formal, in this appendix we will compute

the finite cutoff partition function to leading order in the cutoff ε. The unrenormalized

quantities are L = β/ε and φb = φr/ε. We want to reproduce the answer from WdW

or TT which is given in (3.38). Expanding at small ε gives

logZTT =
2π2φr
β

+
3

2
log
(φr
β

)
− ε2

(2φrπ
4

β3
+

5π2

β2
+

15

8φrβ

)
+O(ε4) (C.1)

We want to reproduce the ε2 term evaluating directly the path integral over the

mode z(u). Removing the leading 1/ε2 divergence we need to compute

ZJT[ε] =

∫
Dz

SL(2,R)
e
∫ β
0 duφrK2eε

∫ β
0 duφrK3+ε2

∫ β
0 duφrK4+..., (C.2)

– 47 –



where K2[z(u) = Sch(z, u) gives the leading answer and K3[z(u)] and K4[z(u)] are

both given in (3.9) and contribute to subleading order. This integral is easy to do

perturbatively. First we know that the expectation value of an exponential operator is

equal to the generating function of connected correlators. Then any expectation value

over the Schwarzian theory gives

log
〈
eεO[z]

〉
Sch

= logZ0 + ε〈O[z]〉+
ε2

2
〈O[z]O[z]〉conn + . . . . (C.3)

Using this formula we can evaluate the logarithm of the partition function to order ε2

in terms of K3 and K4 as

logZJT = logZSch + ε

∫ β

0

du φr〈K3〉+
ε2

2

∫ β

0

dudu′ 〈K3K
′
3〉+ ε2

∫ β

0

du φr〈K4〉+O(ε3).

(C.4)

The first correction is K3 = −i∂uSch(z, u), which is a total derivative. This guarantees

that, for a constant dilaton profile, the first two terms vanish since
∫
du〈K3〉 = 0 and∫ ∫

dudu′ 〈K3K
′
3〉 = 0. The second correction is

K4 = −1

2
Sch(z, u)2 + ∂2uSch(z, u) (C.5)

Then, since the second term in K4 is a total derivative it can be neglected, giving

logZJT = logZSch −
ε2

2
φr

∫
〈Sch(z, u)2〉+O(ε3). (C.6)

Using point-splitting we can regulate the Schwarzian square. Schwarzian correlators

can be obtained using the generating function. The one-point function is

〈Sch(z, u)〉 =
1

β
∂φr logZ =

2π2

β2
+

3

2φrβ
(C.7)

The two point function is given by

〈Sch(z, u)Sch(z, 0)〉 = − 2

φr
〈Sch(z, 0)〉δ(u)− 1

φr
δ′′(u) + 〈: Sch(z, u)2 :〉 (C.8)

where we define the renormalized square Schwarzian expectation value as

〈: Sch(z, u)2 :〉 =
4π4

β4
+

10π2

β3φr
+

15

4β2φ2
r

. (C.9)

This term only gives the right contribution matching the term in the TT partition

function
ε2

2
φr

∫
〈: Sch(z, u)2 :〉 = ε2

(2φrπ
4

β3
+

5π2

β2
+

15

8φrβ

)
. (C.10)

If evaluating K4[z(u)] without using the point-splitting procedure prescribed in section

3.5 then one naviely evaluates (C.9) at identical points. The divergent contributions

can precisely be eliminated with the point-splitting prescription (3.29).
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Why derivatives of the Schwarzian don’t contribute to the partition function

Here we discuss in more detail why terms in K[z(u)] containing derivatives of the

Schwarzian do not contribute to the partition function (with constant dilaton value φr)

after following the point-splitting procedure (3.29). As mentioned in section 3.5 the

schematic form of Schwarzian correlators is given by(
δ

δj(u1)
. . .

δ

δj(un)
ZSch[j(u)]

)∣∣∣∣
j(u)=φr

= a1 + a2[δ(uij)] + a3[∂uδ(uij)] + . . . , (C.11)

where the derivatives in the δ-function terms above come by taking functional deriva-

tives of the term exp
(∫ β

0
du j

′(u)2

2j(u)

)
in ZSch[j(u)]. After following the point-splitting

prescription (3.29) none of the functional derivatives of the form (C.11) that we will

have to consider in the expansion of the exponential will be evaluated at identical points

and therefore (C.11) will not contain terms containing δ(0) or its derivatives.

Consequently, note that when series-expanding the exponential functional deriva-

tive in (3.27), terms that contain derivatives in K
[
∂u

δ
δj(u)

]
would give terms with

contributions of the form∫ β

0

du1· · ·
∫ β

0

dua· · ·
∫ β

0

duN

(
. . . ∂ua

δ

δj(ua)
. . . ZJT [j(u)]

) ∣∣∣∣
j(u)=φr

=

=

∫ β

0

du1· · ·
∫ β

0

dua· · ·
∫ β

0

duN
[
a2[∂uδ(uai)] + a3[∂

2
uδ(uai), ∂uδ(uai)∂uδ(uak)] + . . .

]
= 0 , (C.12)

where we note that a1 vanishes after taking the derivative ∂ua .

In the second to last line we have that a2[∂uδ(uai)] contains first order derivatives

in δ(uai) and a3[∂
2
uδ(uai), ∂uδ(uai)∂uδ(uak)] contains second-order derivatives acting on

δ-functions involving ua. Since the functions above only contain δ-functions involving

other coordinates than ua, all terms in the integral over ua vanish after integration by

parts; consequently, the last line of (C.12) follows. Note that if we consider dilaton

profiles that are varying φr(u) such derivative of δ-function in fact would contribute

after integration by parts. Consequently, it is only in the case of constant dilaton where

such derivative terms do not give any contribution.

A very similar argument leads us to conclude that all other terms containing deriva-

tives of δ-functions in (C.11), vanish in the expansion of the exponential functional

derivative from (3.27) when the δ-function is evaluated at non-coincident points. There-

fore, since the term exp
(∫ β

0
du j

′(u)2

2j(u)

)
only gives rise to terms containing derivatives of

δ(u), this term also does not contribute when evaluating (3.27).
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