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For quantum integrable systems the currents averaged with respect to a generalized Gibbs
ensemble are revisited. An exact formula is known, which we call “collision rate ansatz”.
While there is considerable work to confirm this ansatz in various models, our approach
uses the symmetry of the current-charge susceptibility matrix, which holds in great gen-
erality. Besides some technical assumptions, the main input is the availability of a self-
conserved current, i.e. some current which is itself conserved. The collision rate ansatz
is then derived. The argument is carried out in detail for the Lieb-Liniger model and
the Heisenberg XXZ chain. The Fermi-Hubbard is not covered, since no self-conserved
current seems to exist. It is also explained how from the existence of a boost operator a
self-conserved current can be deduced.

July 29, 2020

1



1 Introduction

Hydrodynamics is a universal tool to describe the long-wavelength dynamics of many-
body systems, both quantum and classical. The cornerstone of hydrodynamics is the
assumption of local equilibrium and its stable propagation in spacetime. Thereby the
complex dynamics of a many-body system is guided by interactions between conserved
charges only [1]. As a consequence, the dynamics is determined by a coupled set of conti-
nuity equations for the average charge densities and currents. Such a system closes only if
all local conservation laws are included. For a generic system one expects to have a few of
them, hence the description only involves a few coupled hyperbolic conservation laws. But
for integrable dynamics the conserved fields are labelled by a spectral parameter from the
real line, or even larger sets, depending on the model. Such generalized hydrodynamics
(GHD) is particularly useful for quantum integrable systems, for which, even numerically,
tracing the late-time dynamics is notoriously difficult mainly due to the rapid increase of
entanglement across distant spatial regions [2–4].

The hydrodynamics of integrable systems was accomplished in 2016 [5, 6], giving rise
to a flux of related studies [7–20], including the determination of Drude weights [21],
Green-Kubo type formulas for the transport coefficients [22,23], and applications to clas-
sical integrable systems [24–27]. On the ballistic spacetime scale GHD turns out to have
a particularly simple structure, since charge densities and currents evaluated with respect
to a generalized Gibbs ensemble (GGE) [28] can be written in terms of the thermody-
namic Bethe ansatz (TBA), which is already known as a systematic method in the study
of thermodynamics of quantum integrable systems. Compared to statics the novel key
element is the effective velocity veff(θ) as a function of the rapidity θ1. This quantity
describes the velocity of quasiparticles at the hydrodynamic scale and thereby expresses
current densities as a nonlinear functional of the charge densities. The functional form of
veff was first conjectured in [5,6]. In the former one finds a sketchy reasoning as well as an
argument from the crossing symmetry in case of relativistic field theories with diagonal
scattering. The effective velocity is written as the solution of a rate equation counting the
number of collisions per unit time experienced by a single tracer quasiparticle in a fluid
of quasiparticles distributed according to some GGE. In this article we use the notion
collision rate ansatz, as reflecting the physics intuition behind the defining formula for
veff .

While the formula for veff was rapidly adopted, satisfactory theoretical arguments have
become available only recently: the form factor expansion is used to establish the collision
rate ansatz for both diagonally-scattering relativistic field theories [30] and the XXZ spin-1

2

chain [31]. It was also demonstrated that thermodynamic form factor expansion2, a slight
generalization of the standard form factor expansion, yields the collision rate ansatz in

1The same quantity appeared in a different context even before [29], where no specific name of the
quantity was given.

2The rigour of this approach, however, is still largely missing and under development [32].
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the Lieb-Liniger model [23]. A distinct approach is used in [33], where the collision rate
ansatz is confirmed for the models solvable by nested Bethe ansatz by employing a relation
derived from long-range deformations of the chain. A generalization of the collision rate
ansatz to excited states has been accomplished in [34]. In addition, proofs for some specific
cases are available as well. For instance, in [35] the exact form of the current operators
and their averages are derived rigorously for the free fermion chain. The collision rate
ansatz for the spin current of the XXZ spin-1

2
chain is established in [36]. As obtained

very recently [37], the validity of the collision rate ansatz can be directly checked from
the exact current operators in the XXZ spin-1

2
.

The aim of this manuscript is to add a very different line of arguments for justifying the
collision rate ansatz in interacting quantum integrable systems. In fact, our argument is
more direct and resorts neither to form factor expansions nor deformations. Our method
is based on the availability of a self-conserved current. By this we mean a current, which
itself appears in the list of conserved charges. For the Lieb-Liniger model the particle
current is momentum which is itself conserved. Also, as well-known, in the XXZ spin-1

2

chain the energy current is self-conserved. However, for the Fermi-Hubbard model the
energy current is not conserved [38] and possibly the model has no self-conserved current at
all. More generally, the availability of a self-conserved current is ensured by the existence
of an algebra involving conserved charges and the boost operator, which can be written as
the first moment of some conserved charge density [39–41]. Such algebra is directly linked
to the global symmetry of the model (e.g. Lorentz or Galilean invariance) in continuum
systems, while in lattice systems it can be thought of as the lattice generalization of the
Lorentz algebra. Thus our result could be rephrased that the existence of the algebra-
generating boost operator alone suffices to validate the collision rate ansatz. It turns out
that our approach can be naturally extended to prove the collision rate ansatz for currents
associated to flows generated by higher conserved charges. Details will be presented in
Appendix A.

2 Collision rate ansatz for integrable field theories

Integrable quantum systems have an extensive number of (quasi-)local conserved charges.
To simplify, we shall focus on the case of single quasi-particle species with diagonal scat-
terings. The more complicated structure of the XXZ model will be discussed in Sect. 3.
The charges are denoted by Qj =

∫
dx qj(x), j = 0, 1, ... , in particular [H,Qj] = 0. In the

generalized Gibbs ensemble (GGE) each one of them is controlled by a chemical potential,
µj, and the corresponding density matrix reads

ρGGE =
e−

∑
j µjQj

Tr(e−
∑

j µjQj)
. (1)

From the field theory under consideration one has given a dispersion relation E(θ) as
a function of the rapidity θ with the momentum p(θ) = E ′(θ). In fact, our the argument
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will be written out in detail for the Lieb-Liniger, a Galilei-invariant field theory, but with
a notation which will make the application to other field theories straightforward. We
recall that for the Lieb-Liniger model E(θ) = 1

2
θ2 in units for which the bare particle mass

m = 1. Furthermore given is the two-body scattering matrix S(θ, ϑ), in terms of which
the two-particle differential scattering kernel is given by

T (θ, ϑ) = −i 1
2π
∂θ logS(θ, ϑ). (2)

The free energy of the system can be computed from the TBA equations

ε(θ) =
∞∑
j=0

µjhj(θ)−
∫
R

dϑT (θ, ϑ) log(1 + e−ε(ϑ)) (3)

with hj(θ) the one-particle eigenvalue associated to the charge Qj, hj(θ) = θj in our case.
From the pseudo-energy ε one obtains the occupation function n(θ) = 1/(1 + eε(θ)) =
ρ(θ)/ρtot(θ) with ρ the density of particles and ρtot the density of states, related through

ρtot(θ) = 1
2π
p′(θ) +

∫
R

dϑT (θ, ϑ)ρ(ϑ). (4)

In terms of these quantities, the GGE average of a charge density, q[hj] := 〈qj(0)〉GGE,
can be written as [43]

q[hj] = 〈ρhj〉 = 1
2π
〈p′nhdr

j 〉, (5)

Here, for any function f(θ) we use the shorthand 〈f〉 =
∫
R dθf(θ). The dressing transfor-

mation is defined through
fdr(θ) =

(
(1− Tn)−1f

)
(θ). (6)

In the context of GHD it was a major discovery that the current average also admits a
similar TBA expression [5, 6]. The microscopic current is defined through the continuity
equation ∂tqj(x, t) + ∂xjj(x, t) = 0. Then the time t = 0 total current is given by Jj =∫

dx jj(x, 0) and the corresponding GGE average equals j[hj] = 〈jj(0, 0)〉GGE. Since j[hj]
is linear in hj, in analogy to (5) one starts from the ansatz

j[hj] = 〈ρveffhj〉 = 1
2π
〈E ′nhdr

j 〉 (7)

with the effective velocity veff given as solution of the rate equation

veff(θ) =
E ′(θ)

p′(θ)
− 2π

∫
R

dϑ
T (θ, ϑ)

p′(θ)
ρ(ϑ)(veff(θ)− veff(ϑ)). (8)

Its physical interpretation has been mentioned already, but can now be stated more pre-
cisely. θ is the spectral parameter of the tracer quasi-particle, which is moving in a fluid
characterized by the density ρ(ϑ). The bare velocity of the tracer particle is E ′/p′, which
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is modified through collisions with fluid particles. Under integral the first factor is the
jump size of either sign and the second factor is the number of collisions per unit time [10].
Our task is to establish the ansatz (8) on the basis of a given microscopic model, for which
purpose a convenient form of the effective velocity is

veff(θ) =
(E ′)dr(θ)

(p′)dr(θ)
. (9)

The first input to our proof are the charge-charge and current-charge susceptibility
matrices which are defined by [21]

Cij =

∫
R

dx〈qi(x, 0)qj(0, 0)〉cGGE = − ∂

∂µj
qi, (10)

Bij =

∫
R

dx〈ji(x, 0)qj(0, 0)〉cGGE = − ∂

∂µj
ji (11)

with the superscript referring to connected correlation functions. The matrix C is symmet-
ric by construction. Less obvious, but also B is symmetric. Making use of the conservation
laws, spacetime stationarity, and clustering of connected correlation functions [5,23], one
arrives at

〈ji(x, t)qj(0, 0)〉cGGE = 〈jj(x, t)qi(0, 0)〉cGGE, (12)

which implies the symmetry of B. In fact the symmetry holds in more general situations,
and the precise condition of its validity is discussed in [44].

The second input is the existence of a self-conserved current. For the Lieb-Liniger
model J0 = Q1, hence J0, which is the total current associated to the particle number
operator Q0 = N , is self-conserved. As will be discussed, for other models there might be
a different self-conserved current. The symmetry of B yields then the following nontrivial
identity

∂µ1qj = ∂µ0jj. (13)

Next note that by linearity in hj the left identity of (7) still holds provided veff(θ) is
replaced by the yet unknown current density v̄(θ). Therefore (13) becomes∫

R
dθhj(θ)∂µ0

(
ρ(θ)v̄(θ)

)
=

∫
R

dθhj(θ)∂µ1ρ(θ), (14)

satisfied for all j. Since the space spanned by hj’s is complete one arrives at the pointwise
identity

∂µ0
(
ρv̄
)

= ∂µ1ρ. (15)

To be shown is v̄ = veff .
From differentiating the TBA equations with respect to µ0, µ1 the relations

∂µ0n = −n(1− n)(p′)dr, ∂µ1n = −n(1− n)(E ′)dr, (16)
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hold and imply
∂µ1(p

′)dr = ∂µ0(E
′)dr. (17)

Using

ρveff =
1

2π
n(E ′)dr, (18)

one arrives at

∂µ0(ρv
eff) =

1

2π
∂µ0((E

′)drn) =
1

2π

(
(E ′)dr∂µ0n+ n∂µ0(E

′)dr
)

=
1

2π

(
(p′)dr∂µ1n+ n∂µ1(p

′)dr
)

=
1

2π
∂µ1((p

′)drn) = ∂µ1(ρ
totn) = ∂µ1ρ. (19)

Altogether we obtained ∂µ0
(
ρ(v̄ − veff)

)
= 0. Hence ρ(v̄ − veff) is pointwise constant in

µ0. From the TBA equation (3) one infers that the pseudo-energy ε(θ) ' µ0 for µ0 →∞,
thus n(θ) = 1/(1 + eε(θ)) → 0. Since ρtot(θ) is uniformly bounded in µ0, also ρ vanishes.
Physically one would expect that v̄ is locally bounded for large µ0 and hence ρv̄ → 0
pointwise when µ0 → ∞. We need this property as an additional assumption. If so, we
conclude that the free constant must be zero, establishing

v̄ = veff . (20)

The only property needed for the above argument is the existence of a self-conserved
current. In Galilei-invariant theories with the particle number conservation, the number
current equals the momentum and our requirement is satisfied. Thereby our argument
can be extended to other Galilei-invariant theories such as the Gaudin-Yang model [47],
which is solved by a nested Bethe ansatz. In relativistic field theories Lorentz invariance
ensures a distinct self-conserved current. In this case, the energy current J2 coincides
with the momentum operator Q1, from which ∂µ1qj = ∂µ2jj follows. In single-species
models with diagonal-scatterings, the dispersion relation has the relativistic form p(θ) =
m sinh θ, E(θ) = m cosh θ, m the particle mass, and the task then boils down to show

∂µ2(ρv
eff) = ∂µ1ρ. (21)

This can be confirmed in a similar fashion as above by noting that hdr
2 (θ) = Edr(θ) =

2πρtot(θ). We therefore conclude

∂µ2
(
ρ(v̄ − veff)

)
= 0. (22)

Since h2(θ) = m cosh θ > 0, this time in the µ2 →∞ limit n(θ)→ 0. Assuming a similar
behavior of v̄ as in the Lieb-Liniger model, i.e. ρv̄ → 0 when µ2 → ∞, we finally have
v̄ = veff .

As in the non-relativistic cases, the above argument for relativistic theories can be
straightforwardly generalized to other relativistic models such as the sine-Gordon model
and theO(N) non-linear sigma model, in which cases the energy current is quasi-conserved.
However, the situation is different for integrable spin chains, which do not possess an evi-
dent continuous symmetry implying the existence of a self-conserved current. As discussed
in Sect. 4, the boost operator could be useful tool in finding such a current.
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3 Collision rate ansatz for the XXZ spin-1
2 chain

For the XXZ spin-1
2

chain the energy current is self-conserved. Because of strings in the
Bethe equations the structure of the charges is more involved than for Lieb-Liniger. Thus
the model is an interesting test for our method.

The hamiltonian of the XXZ model reads

H = J
∑
n∈Z

(SxnS
x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1), (23)

where we set J = 1. The TBA structure of the chain strongly depends on the value
of ∆ [48] and, as a consequence, the Drude weight changes sensitively with the isotropy
parameter ∆ [6, 45, 46]. However the energy current is self-conserved for any value of ∆,
which is the only requirement for our argument to work. For concreteness, we focus on
the gapless regime here (|∆| < 1), but the gapped regime can be handled in a similar
fashion.

The structure of TBA for the gapless XXZ spin-1
2

chain can be arranged so as to
become rather similar to that for the Lieb-Liniger model. This is achieved by choosing
particular values of ∆, which are called roots of unity,

∆ = cosω,
ω

π
=

1|
|ν1

+
1|
|ν2

+ · · ·+ 1|
|ν¯̀

(24)

with ¯̀ the length of the continued fraction and some positive integers ν1, · · · , ν`−1 ≥ 1,
ν` ≥ 2, ` = 1, ..., ¯̀, using Pringsheim’s notation. The number of strings equals s =∑¯̀

`=1 ν`, hence finite for such a ∆. The set of string labels is denoted by S = {1, ...., s}.
The resulting TBA equations now involve various types of strings [48]. Apart from the
fact that there are more particle types (strings), as a further modification of the TBA
equations, the overall sign of p′j(λ) depends on the type j ∈ S. This is a consequence of
a reparametrization of rapidities so as to make the differential scattering kernel Tjk(λ)
symmetric, which in turn induces a change to the integration measure

∫
dλ 7→

∑
j σj

∫
dλ

[23]. Here σj = sign(qj), where qj is related to the parity of j-th string and depends on
∆ [48].

In the gapless phase of XXZ, ρtot
j (λ) is given by ρtot

j (λ) = σj(p
′
j)

dr(λ)/(2π), where for
any function fj(λ) the dressing transformation is defined by

fdr
j (λ) = fj(λ)−

∑
k∈S

σk

∫
R

dϑTjk(λ− ϑ)nk(ϑ)fdr
k (ϑ). (25)

Note that by convention the sign of T is opposite to the one used in the previous section.
It will be convenient to work with integral operators. They act on functions over R× S,
which are equipped with the standard scalar product

〈f, g〉 =
∑
j∈S

∫
R

dλfj(λ)gj(λ). (26)
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Then, employing integral operators, (25) becomes

fdr = (1 + Tnσ)−1f = σ(σ + Tn)−1f. (27)

To be complete, in the gapless phase of the XXZ spin-1
2

chain the bare momentum
pj(λ) and the differential scattering kernel Tjk(λ− µ) are

pj(λ) = pnj
(λ|vj) = 2vj tan−1

[
(cot

njω

2
)vj tanh

λ

2

]
, (28)

Tjk(λ) =
1

2π

[
p′|nj−nk|(λ|vjvk) + 2p′|nj−nk|+2(λ|vjvk)

+ · · ·+ 2p′|nj+nk|−2(λ|vjvk) + p′|nj+nk|(λ|vjvk)
]
. (29)

where nj and vj are the length and the parity of the j-th string. For instance, when
ω = π/ν with 2 ≤ ν ∈ N, those nj, qj, vj’s are given by [48]{

nj = j, vj = 1, qj = ν − nj, j = 1, 2, . . . , ν − 1,

nν = 1, vν = −1, qν = −1, j = ν.
(30)

At the roots of unity, there is a family of quasi-local conserved charges Q
(s)
n labeled by in-

tegers n ∈ N and half-integer s ∈ 1
2
N, which corresponds to the higher-spin representation

of Uq(sl(2)) [50]. The energy current is Q
(1/2)
2 , hence conserved. Writing the one-particle

eigenvalue of the charges as h
(s)
n,j(λ), the GGE average of charge and currents densities

take a form similar to the continuum case,

q[h] = 〈h, ρ〉 =
1

2π
〈h, n(σ + Tn)−1p′〉, (31)

j[h] = 〈h, veffρ〉 =
1

2π
〈h, n(σ + Tn)−1E ′〉. (32)

Now, let us consider the energy current j[E], where E = h
(1/2)
1 . Using h

(1/2)
2 =

−1
2
(sinω)E ′ and E = −1

2
(sinω)p′ [6], it follows that

j[E] =
1

2π
〈E, n(σ + Tn)−1E ′〉 = 〈p′, n(σ + Tn)−1h

(1/2)
2 〉

= 〈h(1/2)
2 , n(σ + Tn)−1p′〉 = q[h

(1/2)
2 ], (33)

which is in agreement with Q
(1/2)
2 = JE and also implies q[E ′] = j[p′]. Having these

relations at our disposal, let us proceed to the proof. As in the field theory case, (13) and
its consequence (15) are the key identities. The only difference to these identities is that

the self-conserved current is J
(1/2)
1 = Q

(1/2)
2 . Denoting the Lagrange multipliers associated

to Q
(1/2)
2 and Q

(1/2)
1 by µ2 and µ1, respectively, we notice first that

ρtot∂µ2n = −n(1− n)(h
(1/2)
2 )drρtot = 1

2
(sinω)n(1− n)(E ′)dr (p′)dr

2πσ
= − 1

2π
n(1− n)σ(E ′)drEdr = 1

2π
σ(E ′)dr∂µ1n, (34)
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which implies ∂µ2(p
′)dr = ∂µ1(E

′)dr. As a final step,

∂µ2ρ = ρtot∂µ2n+ n∂µ2ρ
tot =

σ

2π

(
(E ′)dr∂µ1n+ n∂µ1(E

′)dr
)

= ∂µ1(ρv
eff), (35)

which then yields ∂µ1 [ρj(λ)(v̄j(λ)− veff
j (λ))] = 0.

For given j the energy one-particle eigenvalue equals Ej(λ) = −1
2
(sinω)p′j(λ) with the

property that either Ej(λ) > 0 or Ej(λ) < 0. In the former case, we let µ1 → ∞. From
the TBA it follows that nj(λ)→ 0 in this limit. In the latter case we let µ1 → −∞ and,
as before, conclude that nj(λ)→ 0. Finally, once again assuming a similar behavior of v̄j
as in the previous continuum cases, i.e. ρj v̄j → 0 for each string j under either µ1 → −∞
or µ1 →∞, the free constant vanishes and ρj(λ)(v̄j(λ)− veff

j (λ)) = 0 for all j, λ, implying
the desired result, v̄j(λ) = veff

j (λ).

4 Boost operator in spin chains

As we saw in the previous section, the existence of a self-conserved current gives rise to
the collision rate ansatz. One then might wonder how such a current can be obtained
in general. Indeed, even without invoking integrability, the existence of a self-conserved
current can be directly inferred from either Galilei or Lorentz symmetry of the quantum
field theory under consideration. This is no longer true for spin chains where such a
continuous symmetry is absent and a self-conserved current has to be found along an
alternative route. An essential tool for this task turns out to be the boost operator. First
we briefly recall its basic property in the context of XYZ spin-1

2
chain H =

∑
j∈Z h(j),

where

h(j) = −1

2
(JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
jS

z
j+1). (36)

A tower of conserved charges can be systematically obtained by the row-to-row transfer
matrix as

log T (λ) =
∞∑
n=0

λn

n!
Qn, (37)

hence

Qn =
dn

dλn
log T (λ)

∣∣∣∣
λ=0

. (38)

Let us consider some operator O which is constructed from a local density o(j) through
O =

∑
j∈Z o(j). Then the boost operator is defined through

K[O] =
∑
j∈Z

jo(j). (39)
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The boost operator associated to the Hamiltonian3 K[H] =
∑

j∈Z jh(j) indeed generates
a boost, which is evident from the commutation relation with the transfer matrix

[K[H], T (λ)] = ∂λT (λ), (40)

which in turn amounts to [39,40]

[K[H], Qn] = iQn+1. (41)

The fact that the boost operator K[H] generates the conserved charges recursively bears
momentous implications. We recall the continuity equation in spin chains

i[H, qn(j)] = jn(j)− jn(j + 1). (42)

Multiplying j to both sides and summing over j, we formally obtain

i[H,K[Qn]] =
∑
j∈Z

jn(j). (43)

As was remarked in [33] the relation (43) is only formal, and is in general plagued by the
divergence stemming from the charge density with an infinitely large coefficient. Never-
theless such a divergence can always be circumvented by subtracting a conserved charge
Qn with a correspondingly diverging prefactor.

In spin chains, it is conventional to choose Q0 = N =
∑

n S
z
n and Q1 = H. Then,

choosing n = 1 in (41) and (43), we observe that J1 =
∑

j∈Z j1(j) is a self-conserved
current, i.e.

Q2 =
∑
j∈Z

j1(j). (44)

Note that the above construction of a self-conserved current suggests J1 being actually
the only self-conserved current under the Hamiltonian flow.

In fact, the recursive commutation relations (41) and (43) can be thought of as the
lattice analogue of the Poincaré algebra. Indeed, in the continuum limit the XYZ spin
chain becomes the relativistic massive Thirring/sine-Gordon model [40]. The upshot of
this limit is that the first few commutation relations (41) reduce to the usual Poincaré
algebra in (1+1)-dimension, which is closed in itself,

[H,P ] = 0, [K[H], H] = iP, [K[H], P ] = iH. (45)

Using (43) this implies JE = P , which is what one would expect from Lorentz invariance.
Naturally one can further take the non-relativistic limit of the Poincaré algebra, which

is nothing but the Galilean algebra. In particular, when the resulting theory has U(1)-
symmetry (e.g. conserves particle number), such as the Lieb-Liniger model, the Galilean
algebra is centrally extended to the Bargmann algebra whose commutation relations read

[H,P ] = 0, [K[N ], H] = iP, [K[N ], P ] = iN, (46)

3We shall call it simply “the boost operator” unless otherwise stated.
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where N = Q0 is the U(1) charge. This algebra then entails J0 = P , which again is
merely a consequence of Galilean invariance.

So far we have demonstrated that the XYZ spin-1
2

chain, hence also the XXZ spin-1
2

chain, possesses a self-conserved current j1 thanks to the boost operator that satisfies the
properties specified above. This is also true for other integrable spin chains, provided that
there is a boost operator which satisfies (41) and (43). A natural question is then, whether
there are integrable systems which for some reason fail to have a boost operator of the form
(39)? The answer is yes, and a notable example is the Fermi-Hubbard model (FHM), for
which the energy current is not conserved [38]. This is consistent with the fact that FHM
does not have the standard boost operator, and the lack of it suggests that there could
be no self-conserved current at all. In fact, at the root of the existence of such a boost
operator is the lattice Lorentz invariance of the system whose algebra is given by the ladder
commutation relations (41) [40]. The invariance under a lattice Lorentz boost manifests
itself through the R-matrix of the system being of the form R(λ, µ) = R(λ − µ), hence
invariant under a boost. The lattice Lorentz invariance reduces to the standard continuum
Lorentz invariance in the continuum limit. FHM does not allow such invariance, since the
model does not admit any continuum limit under which Lorentz invariance is achieved.
Indeed, the low-energy physics of FHM is not a Luttinger liquid, but instead charges
and spin carry gapless excitations with different velocities, which implies that the physics
depends on the frame.

This being said, it is actually possible to define a slightly generalized boost operator
in FHM, which still satisfies (41) [49]. As a caveat, the generalized boost operator is
not exactly the same as (39) and the connection to the conservation laws (42) is lost.
Therefore a self-conserved current in FHM, if it should exist, has to be looked for by
other means.

5 Conclusions

In this article, we proved the collision rate ansatz for a wide class of quantum integrable
systems, once the existence of a self-conserved current is ensured. It turns out that the
existence of such a self-conserved current is directly linked to the boost operator, which
is written as the first moment of some charge density. When such a boost operator forms
an algebra with conserved charges, the continuity equation and the algebra immediately
give a self-conserved current. In fact, the construction of a self-conserved current can be
immediately extended to the generalized currents describing the flow of other conserved
charges. Generalized currents jnm(j) associated to Qn are defined by the continuity equa-
tion [16,33]

i[Qm, qn(j)] = jnm(j)− jnm(j + 1) (47)

for each flow generated by Qm. Of course, m = 1 corresponds to the standard Hamiltonian
flow. We then find that along each m-th flow there is always a self-conserved total current
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∑
j∈Z j1m(j) = J1m = Qm+1: the collision rate ansatz for such generalized currents are

provided in the appendix A. Indeed, such a boost operator has been used to implement
long-range deformations of integrable spin chains, from which the finite-volume diagonal
matrix elements of current operators were obtained [33]. It would be very interesting to
figure out the connection between the use of the boost operator in our proof and the one
in [33], with the hope to better understand the overarching role of the boost operator in
GHD.

Finally, let us remark that the approach followed here is in spirit the same as the one
for the classical Toda lattice [51]. In this model the stretch current equals the negative of
the momentum, hence is indeed conserved. We expect that our approach will be applicable
to a larger variety of integrable systems, both quantum and classical, provided that the
system has a self-conserved current.
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A Generalized current

In this appendix, we shall demonstrate that the proof we presented in the main text
can be readily generalized to generalized currents, which are defined by the generalized
Heisenberg equation (47). Below, focusing on the case of the XXZ spin-1

2
chain, we derive

the collision rate formula for the generalized current jjk:

jjk := 〈jjk(0)〉GGE =
∑
a∈S

∫
R

dθ

2π
σa(h

′
k,a)

drnahj,a. (48)

In what follows let us suppress the string indices and the summation over them, which
play no role in the proof. First we note that Bijk := ∂

∂µi
jjk satisfies Bijk = Bjik, which

can be shown as in the usual current-charge susceptibility matrix Bij [52]. As remarked in
the conclusion, the generalized bridging pair J1m = Qm+1 exists in the XXZ chain. This
implies that we have an identity Bj1k = B1jk = Cj,k+1, i.e.

∂

∂µ1

jjk =
∂

∂µk+1

qj. (49)

From the continuity equation, we can again assume that jjk should be of the following
form

jjk =

∫
dθ

2π
σh̄knhj. (50)
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The remaining task is then to show h̄k = (h′k)
dr. For that we establish

1

2π

∂

∂µ1

(σ(h′k)
drn) =

∂

∂µk+1

ρ, (51)

which is a simple matter to check. First,

ρtot ∂

∂µk+1

n = −σ (p′)dr

2π
(1− n)hdr

k+1 = −ασ (p′)dr

2π
(1− n)(h′k)

dr

= −σh
dr
1

2π
(1− n)(h′k)

dr =
σ(h′k)

dr

2π

∂

∂µ1

n, (52)

where α = −1
2

sinω, and we used hk+1 = αh′k and h1 = αp′ in the XXZ chain [48]. This
then further implies

n
∂

∂µk+1

ρtot =
σn

2π

∂

∂µ1

ρtot. (53)

Combining these (51) is confirmed, yielding a relation that generalizes the usual case

∂

∂µk+1

[na(h̄k,a − (h′k,a)
dr)] = 0, (54)

where we restored the string indices. The rest of arguments are the same as before: we
take either µk+1 → ±∞, making sure that na(θ) → 0 under the limit for each string
species a. Assuming the good behavior of h̄k,a(θ), i.e. na(θ)h̄k,a(θ)→ 0 when µk+1 →∞
or µk+1 → −∞, the sought statement h̄k(θ) = (h′k)

dr(θ) is shown.
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