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Abstract

We perform novel energy and norm density resolved wave packet spreading
studies in the disordered Gross-Pitaevskii (GP) lattice to confine energy den-
sity fluctuations. We map the locations of GP regimes of weak and strong chaos
subdiffusive spreading in the 2D density control parameter space and observe
strong chaos spreading over several decades. We obtain a renormalization of
the ground state due to disorder, which allows for a new disorder-induced
phase of disconnected insulating puddles of matter due to Lifshits tails. Inside
this Lifshits phase, the wave packet spreading is substantially slowed down.
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1 Introduction

Disorder is inevitable naturally in all materials due to the impurities or defects caused
by external fields. Interacting wave dynamics in disordered and incommensurate lattice
structures are actively studied due to its complex properties [1]. Interacting waves can
be modeled with nonlinear terms approximating true quantum many-body physics of in-
teracting bosons. In the absence of interactions, Anderson localization (AL) leads to
exponential localization of eigenstates and a coherent halt of wave packet spreading [2].
The complete suppression of wave propagation has been manifested by a bevy of exper-
imental observation; including localization of light waves [3], photonic crystals [4], sound
waves [5], microwaves [6], and atomic matter waves [7, 8]. In the presence of nonlinear
wave interaction terms, delocalization can arise and ultimately lead to chaotic dynamics,
which destroys Anderson localization through incoherent spreading [9–11]. Notably, this
phenomenon was also studied experimentally with ultracold atomic gases [12]. As inter-
esting is the fact that experimental efforts are limited by the time of atomic condensate
control, which - assuming a natural dimensionless time scale of order t = 1 - yields the
largest realizable times of the order of t ∼ 104 (the typical natural time scale is of the
order of 10ms, and condensate control usually extends up to 10s). At these experimen-
tal time horizons, the observation of the onset of incoherent spreading was possible, but
a quantitative assessment of this process was not. Theoretical simulations can achieve
t ∼ 108 − 109 [1], and in special settings of unitary maps with discrete-time quantum
walks are reaching unprecedented times t ∼ 1012 [13]. These numbers demonstrate the
rare opportunity for computational studies being the superior testbed of the first choice.

Let us recap nonlinear wave packet spreading in simple terms. At the initial time t = 0,
a wave packet is assumed to have a compact distribution of finite norm A and energy H,
which extends over L lattice sites. Deprived of its nonlinear terms, the system manifests
AL through exponentially localized eigenstates, of which roughly L are excited by the
wave packet. Transforming into normal mode space yields a harmonic oscillator equation
for each AL eigenstate, with the nonlinear terms inducing a short-range coupling between
them. Assume that this dynamical system will be nonintegrable, characterized by nonzero
Lyapunov coefficients, and evolving chaotically in time. The consequent phase decoherence
of the normal modes removes the basis of existence for AL, and normal modes in the
boundary layer at the edges of the wave packet will be incoherently excited. The wave
packet will spread, and L2(t) ∼ tα increase in time. The assumption of complete dephasing
of all AL normal modes yields the strong chaos regime αs = 1/2 for nonlinearity originating
from two-body interactions [11]. However, the computationally tested asymptotic weak
chaos regime was observed to yield αw = 1/3. This result can be derived assuming that the
probability of a normal mode being resonant and chaotic is proportional to energy and/or
norm density in the wave packet [11] (notably this assumption results in dependence of
both αw and αs on the lattice dimension and different choices of N -body interactions [1]).
Whether the observed weak chaos spreading is asymptotic or will slow down, has been a
topic of debates and discussions [14], with still no answer in sight. What was confirmed in
computations, is the potentially long-lasting intermediate strong chaos regime [15] - but
notably only for systems with one integral of motion (energy) [15].

The spreading wave packet is assumed to thermalize on time scales shorter than the one
on which it spreads. For systems conserving energy only, the energy density h(t) = H/L(t)
corresponds to some inverse temperature β(t), and while spreading h(t → ∞) → 0 and
thus β(t → ∞) → ∞, so the packet spreads and cools down. A thermal Gross-Pitaevskii
(GP) wave packet however conserves, in addition, the total norm A and must be charac-
terized by two energy h(t) and norm a(t) = A/L(t) densities which are related to some
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inverse temperature β(t) and chemical potential µ(t) [16]. The spreading dynamics then
correspond to moving along a line in the density parameter space {a, h} which connects
an initial point {a0, h0} with the origin. At variance to systems with only one integral of
motion, a GP lattice supports non-Gibbs phases [17], and hence the outcome will depend
on the chosen line, including heating upon spreading and possibly reaching infinite tem-
peratures at finite values of L. Computational studies of GP wave packet dynamics [15]
involved disorder averaging which was controlling a0 but not h0, therefore averaging over
fans of lines in the density parameter space.

In this work, we will unfold the density-resolved dynamics, which allows us to finally
identify a clean strong chaos regime, and the potential slowing down Lifshits phase regimes.
We observe strong chaos and map strong and weak chaos in the density parameter space,
including a localization regime coined Lifshits phase (LP) due to a disorder-induced ground
state renormalization.

2 Model definition

We consider the disordered Gross-Pitaevskii chain on N sites with Hamiltonian

H =

N∑
`=1

[
−J(ψ∗`ψ`+1 + ψ`ψ

∗
`+1) + ε`n` +

g

2
n2`

]
, (1)

where ψ` =
√
n`e

iφ` are complex scalars, and the integer ` enumerates the lattice sites.
ε` is a quenched uncorrelated on-site random potential taken to be uniformly distributed
within a box of size W : ε` ∈ [−W

2 ,
W
2 ]. W is a measure of the disorder strength, J is the

tunneling amplitude between neighboring sites, and g > 0 is the nonlinearity parameter
resulting from e.g. the repulsive two-body interaction between atoms. Energy (and the
inverse of time) can be measured in units of J which leaves us with two parameters: W, g.
Uniform rescaling of the norm |ψ`|2 is used to tune the nonlinearity parameter into g = 1.

For g = 0, the system (1) is reduced to an eigenvalue problem using ψ`(t) = Ψ`e
−iλt:

λΨ` = ε`Ψ` − (Ψ`+1 + Ψ`−1). It follows |λν | ≤ 2 + W/2, with all eigenvectors Ψ`,ν being
exponentially localized in space for any W 6= 0 [2]. The localization length ξ(λν) takes
its largest value ξ0 ≈ 96/W 2 for λν = 0 [18]. The typical core size of a corresponding
eigenvector at energy λ = 0 fluctuates with an average of the order of Vloc ≈ 3ξ0 [11]. This
follows from the numerical observation that the participation number of such a normalized
eigenstate Pν =

∑
` |Ψ`|4 ≈ 1.5ξν , whose random amplitude fluctuations result in another

factor of 2 for the size of the state (which accounts for a site amplitude being either
large or small with equal probability). The localization volume hosts Vloc eigenstates with

amplitudes of order V
−1/2
loc . That group of significantly overlapping eigenstates has Vloc

eigenvalues which are separated from each other by the average level spacing d(W ) =
(4 +W )/Vloc.

With J ≡ g ≡ 1 the final equations of motion ψ̇` = ∂H/∂iψ∗` read

iψ̇` = ε`ψ` + n`ψ` − (ψ`+1 + ψ`−1) . (2)

The above dynamics conserves the total norm A ≡
∑

` n` and the total energy H. The
partition function

Z =

∫ ∞
0

∫ 2π

0

∏
`

dφ`dn` exp[−β(H+ µA)], (3)

where β and µ are Lagrange multipliers associated with the total energy and the total
norm, respectively.
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Let us recap the equilibrium properties of the GP model assuming nonzero overall
densities h = H/N and a = A/N . For the ordered case W = 0 the microcanonical

Figure 1: Phase diagram of the microcanonical GP system. Black dashed line - ground
state h = −2a + a2/2 for W = 0. Red filled circles - the renormalized ground state for
W = 4. The red solid line connects the data and guides the eye. The black solid line
h = a2 corresponds to infinite temperature β = 0 for any strength of disorder. The four
shaded areas correspond to strong chaos (SC), weak chaos (WC), self-trapping (ST), and
Lifshits phase (LP). The tick label d(W = 4) marks the position where the norm density
equals the average level spacing d. The dotted black line represents the absolute minimum
energy line h = −(2 + W/2)a + a2/2 reachable for finite systems. SC spreading (W = 4,
Fig.4) is shown at t = 0 and t = 106 with orange diamonds connected by the orange dotted
line path. Inset: WC spreading (W = 4, Fig.3) is shown at t = 0 and t = 109 with green
circles, connected with the green dotted line path. We used a(t) = a(0)/L(t) by assuming
the wave packet is uniform while spreading at finite T . The initial states for ST and LP
(W = 4, Fig.2,5) are shown as a red triangle, and blue square, respectively.

ground state line h = −2a + a2/2 equals the grand-canonical zero temperature β = ∞
line, and the line h = a2 corresponds to the infinite temperature line β = 0 [17] (see Fig.1).
Pairs of densities in the Gibbs range −2a + a2/2 ≤ h ≤ a2 are addressable by pairs of
positive inverse temperature and chemical potential {β, µ}. The entire non-Gibbs density
range h > a2 is not captured by a positive temperature, while negative temperature
assumptions lead to a divergence of partition functions, and microcanonical dynamics
show strong deviations from expected ergodic behavior including self-trapping [17, 19].
The Gibbs-nonGibbs separation line in the density space was recently shown to persist for
entire classes of generalized GP lattice equations as well as their Bose-Hubbard quantum
counterparts, for any lattice dimension, and in the presence of disorder [20]. Remarkably
the addition of disorder for (1) leaves the infinite temperature line h = a2 invariant [16].
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3 Ground state renormalization

The zero-temperature ground state line of the ordered case h = −2a+a2/2 is renormalized
in the presence of disorder. This happens in the regime of small norm density (i.e. weak
nonlinearity) a < 1 due to the presence of Lifshits states which are sparsely distributed AL
eigenstates with eigenvalues close to the bottom of the AL spectrum, i.e. their distance
from the bottom ∆λ = λ + 2 + W/2 � 1. Such Lifshits states exist due to rare disorder
fluctuations with εl + W/2 < ∆λ over a simply connected chain segment of length L =
π/
√

2∆λ. The average distance between such regions dL ≈ (W/∆λ)L. As a result, one can
expect a set of disjoint puddles of norm distribution in real space for small norm density a.
Note also that for any finite system the ground state is bounded by h = −(2+W/2)a+a2/2
which is generated by the disorder realization ε` = −W/2.

Contrary, in the large norm density limit (i.e. for strong nonlinearity) the ground state
correction becomes weak since the nonlinear terms a2/2 are of leading order and disorder
has a minor impact.

In order to numerically compute the ground state, we note that ψ` can be gauged into
real variables as all the phases φ` = φ`′ to minimize the Hamiltonian (1). The remaining
task is to minimize a real function H for real variables ψ` for a given disorder realization.
We choose an initial set of ψ` under the constraint Na =

∑
` ψ`

2. We define a window of
lw = 5 adjacent sites and minimize the energy varying the amplitudes on these adjacent
sites using the Nelder-Mead simplex algorithm [21]. As the algorithm changes the total
norm in general, we perform a homogeneous renormalization of all amplitudes ψ` to restore
the required norm density a. We then shift the window by one lattice site and repeat the
procedure, until the whole lattice with N sites has been covered by minimization windows.
The procedure is repeated 10 times, after which full convergence is obtained. The chemical
potential

µ = ε` + gn` − (ψ`+1 + ψ`−1)/ψ` (4)

is defined through local relations and yields a ratio of the standard deviation to mean
which is less than 10−3, indicating the quality of our ground state computation. Finally,
we repeat the procedure for 100 different disorder realizations and compute the average
ground state energy density h and its standard deviation. The result is shown as red solid
circles in Fig.1 with their standard deviation for N = 1000, and W = 4. Optimizing small
parts of the lattice at a time immensely reduced the computational time, enabling us to
reach the ground states for larger system sizes, e.g. N = 50000.

4 Initial conditions

We prepare a wave packet on L ≈ Vloc consecutive sites in the center of a disordered lattice
(see table 1).

Table 1: Length of initial wave packets L for chosen W
W 1 2 3 4 6 8

L 361 91 37 21 10 6

For a2/2 − 2a ≤ h ≤ a2/2 + 2a, we choose an initial state with a homogeneous norm
distribution ψ` =

√
aeiφ` . We fix the phase differences

∆φ = φ` − φ`+1 = arccos

(
h

2a
− a

4

)
. (5)
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We then adjust the phase on one of the sites to tune the total energy such that H = Lh
(and disregard disorder realizations for which the adjustment can not be realized).

For h > a2/2 + 2a or h < a2/2− 2a, we use the ground state renormalization method,
replacing the original energy with |H−Lh| and strictly varying only the amplitudes of the
wave function on the L sites of the wave packet. With that, we can prepare density resolved
wave packets which are characterized by a pair of initial density values {a0, h0}, and a
corresponding point in the phase diagram Fig.1. A spreading wave packet is characterized
by a pair of time-dependent densities a(t) and h(t) moving along a straight line connecting
the initial phase diagram point with the origin.

Parametrizing the line as h(t) = ca(t) and assuming a(t) � 1/g, we approximate the
partition function by its interaction-free limit g = 0 and derive h = −µ

β (µ2 − 4)−1/2 + 1
β

and a = 1
β (µ2 − 4)−1/2 for the ordered case. The line parametrization then finally yields

β = − 2c
a(4−c2) and µ = −4+c2

2c .

We can expect a number of qualitatively different spreading outcomes for the disordered
case depending on the choice of the initial density values. If h0 > 0 and the initial point
is in the Gibbs phase, the origin-connecting line will cross the infinite temperature line.
Therefore the wave packet will heat up to infinite temperatures, enter the non-Gibbs phase,
and is expected to show features of self-trapping, fragmentation, and condensation. For
h0 = 0 and c = 0 it follows h(t) = 0, the temperature will gradually increase and will reach
infinite values at infinite times. If −2a0 + a20/2 < h0 < 0 (i.e. c < 0), the wave packet
may heat up to some finite temperature, but will asymptotically gradually cool down and
reach potentially zero temperature upon approaching the origin at infinite times. Finally,
if h0 < −2a0 + a20/2, the wave packet can evolve in the Lifshits phase.

5 Computational details

We integrate Eq.2 using a symplectic method SBAB2 [22,23] for several different disorder
realizations with time step size ∆t = 0.1 unless mentioned otherwise.

The wave spreading is characterized by two main ingredients. The second moment
m2 ≡

∑
`(l−l̄)2|ψ`(t)|2/A2 measures the width of the wave packet. Here l̄ =

∑
` l|ψ`(t)|2/A2

is the center of the wave packet. Participation number P ≡ A2/
∑

` |ψ`|4 characterizes the
bulk of the wave-packet and allows us to compute the compactness index C ≡ P 2/m2.
If C ∼ 1, then the wave packet is close to a thermal distribution, while C � 1 indicates
either fragmentation of the wave packet into a set of essentially disjoint pieces or a part
of the wave packet staying localized with another part spreading [1]. In order to observe
whether asymptotic subdiffusion m2 ∼ tα is recorded, we compute

α(t) ≡ d〈log10m2〉
d log10 t

. (6)

The obtained function α(t) is additionally smoothened using a Hodrick-Prescott filter
with a standard deviation of the output of less than 2% [24].

6 Observation of weak and strong chaos

In the absence of nonlinear interactions g = 0, a wave packet will evolve in time without
appreciable spreading. We plot the evolution of its norm density versus space and time in
Fig.2(a). After some short initial dynamics during which the field established exponentially
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Figure 2: Different regimes of density resolved wave packet spreading. The evolution of
the norm density |ψ`|2 is plotted versus log10 t. (a) Anderson localization (AL): g = 0, h =
−0.277. (b) weak chaos (WC): g = 1, h = 0. (c) Lifshits phase (LP): g = 1, h = −0.277.
(d) self-trapping (ST): g = 1, h = 0.277 (here ∆t = 0.05). For all cases a = 0.1,W = 4,
and one and the same disorder realization are used here for all regimes.

localized tails in space, the wave packet evolution essentially halts, signaling Anderson
localization.

To avoid non-Gibbs dynamics or a subsequent cooling of the wave packet, we choose
h0 = 0. A localized Anderson mode of the linear system will be interacting with d(W )
neighboring other modes in the presence of nonlinear interactions. For a > d, that interac-
tion is expected to exhibit strong resonances and lead to efficient norm mixing among the
participating modes [1]. Upon further wave packet spreading, the norm a(t) will decrease,
and cross over into the asymptotic regime of weak chaos a < d. The evolution of the norm
density of a wave packet in the weak chaos regime is plotted versus space and time in
Fig.2(b). At variance to the case of Anderson localization Fig.2(a), the wave packet grows
in size with increasing time.

The weak chaos regime is characterized by m2 ∼ t1/3, as reported in Ref. [11]. We
confirm these findings in our computations as shown in Fig.3. We launch wave packets for
various values of W and a(t = 0) < d(W ). Both second moment m2(t) and participation
number P (t) indicate subdiffusive spreading (Fig.3 (a,b)). The compactness index C(t ∼
108) ≈ 3, as expected for a thermalized system (Fig.3(c)). A quantitative evaluation of
the time dependence of the exponent α(t) indicates its asymptotic convergence to α(t →
∞) ≈ 1/3.

In order to observe intermediate strong chaos m2 ∼ t1/2, we simply need to increase
the initial norm density a > d. The evolution of the norm density of a wave packet in the
strong chaos regime is qualitatively similar to the weak chaos evolution Fig.2(b). The wave
packet will spread in the strong chaos regime until some time at which a(t) ≈ d, which will
mark the crossover to weak chaos. That crossover was observed for Klein-Gordon lattices
in Ref. [15]. However the attempt to observe strong chaos and the crossover to weak chaos
for the GP lattice failed [15]. The main reason is that the initial norm density a of the wave
packet was controlled, but the initial energy density h was fluctuating when choosing and
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averaging over different disorder realizations [25, 26]. As a result, qualitatively different
regimes of strong chaos, self-trapping, and Lifshits phases were mixed into one curve.
Interestingly the results in Ref. [11] were obtained for single-site excitations which did
control both norm and energy, but the strong chaos regime was not observed because
single-site excitations get self-trapped. Fig.4 shows our results when controlling both
initial densities and performing density-resolved spreading studies. Both second moment
m2(t) and participation number P (t) indicate subdiffusive spreading (Fig.4 (a,b)). The
compactness index C(t ∼ 108) ≈ 3, as expected for a thermalized system (Fig.4(c)). We
observe strong chaos with α(t) reaching the value 1/2 and keeping this value for several
decades in time, before slowly decaying, presumably to its asymptotic value 1/3.
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Figure 3: Density resolved weak chaos wave packet spreading. h = 0, a < d. (a) log10m2(t)
vs. log10 t. Dashed dotted line: m2(t) ∼ t1/3. (b) log10 P vs. log10 t. Dashed dotted line:
P (t) ∼ t1/6. (c) C vs. log10 t. (d) α vs. log10 t. Horizontal line: α = 1/3. The parameters
are: a = 0.0025 and W = 2 for (b)lue line, a = 0.05 and W = 4 for (g)reen line, a = 0.245
and W = 6 for (r)ed line, a = 0.9 and W = 8 for (bl)ack line. The system size N = 210,
the number of disorder realizations is 200.

7 Lifshits phase and self-trapping

In the Lifshits phase, the spreading of the wave packet is slowing down dramatically. The
evolution of the norm density of a wave packet in the Lifshits phase is plotted versus
space and time in Fig.2(c). It shows very little difference to the linear case of Anderson
localization in Fig.2(a). The second moment grows slightly (blue line Fig.5(a)), while the
participation number is essentially frozen (blue line Fig.5(b)). The compactness index
drops with increasing time (blue line Fig.5(a)). The derivative α(t) (blue line Fig.5(d))
shows a slow increase.

In the non-Gibbs regime, the GP dynamics turn non-ergodic, with the field ψl(t) form-
ing strongly localized self-trapped large-amplitude excitations which are persisting on a
background of delocalized waves [17, 27–29]. The self-trapped field part appears to con-
dense in a way such that the remaining background field part can evolve at an infinite tem-
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Figure 4: Density resolved strong chaos wave packet spreading. h = 0, a > d. (a)
log10m2(t) vs. log10 t. Dashed dotted line: m2(t) ∼ t1/2. (b) log10 P vs. log10 t. Dashed
dotted line: P (t) ∼ t1/4. (c) C vs. log10 t. (d) α vs. log10 t. Horizontal line: α = 1/2.
The parameters are: a = 0.047 and W = 1 for (b)lue line, a = 0.19 and W = 2 for (g)reen
line, a = 0.4 and W = 3 for (r)ed line, a = 0.79 and W = 4 for (bl)ack line. The system
size N = 213, the number of disorder realizations 200 for W = 1, 500 for W = 2, 750 for
W = 3, 1000 for W = 4.

perature in a Gibbs regime. Since the wave packet spreading process is a non-equilibrium
one, we are lacking a clear condition to determine the precise amount of condensed norm.
We can only speculate (and observe) that a background fraction of the wave packet will
continue to be depleted but yet spread possibly with characteristics of strong and weak
chaos. The evolution of the norm density of a wave packet in the self-trapping regime
is plotted versus space and time in Fig.2(d). We clearly observe a remaining strongly
localized self-trapped part of the wave packet at the origin, which is much more localized
than its Anderson localization counterpart in Fig.2(a). The background part of the wave
packet instead spreads qualitatively similar to the weak (and strong) chaos case Fig.2(b).
Consequently, the second moment of the wave packet grows in time due to the spreading
of the background part (red line Fig.5(a)). At the same time, the participation number
drops as time increases, which indicates a slow but steady formation of self-trapped ex-
citations on very few lattice sites (red line Fig.5(b)). The compactness index evolution
(red line Fig.5(c)) confirms these findings very well. Finally, the derivative α(t) (red line
Fig.5(d)) indicates that the background wave packet part may reach asymptotic weak
chaos characteristics at times which are not accessible by our computational resources.

The wave packet spreading in both the Lifshits phase and the self-trapping regime is
characterized by a substantial slowing down from the subdiffusive spreading as observed
for weak and strong chaos. At the same time, the self-trapping enforces highly localized
almost single site excitations to be formed, at variance to the Lifshits phase dynamics
where the wave packet structure resembles the Anderson localization case.
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Figure 5: Density resolved wave packet spreading in the Lifshits phase (b)lue lines, and
the self-trapping regime (r)ed lines. (a) log10m2(t) vs. log10 t. (b) P vs. log10 t. (c) C
vs. log10 t. (d) α vs. log10 t. Lifshits phase: h = −0.277. Self-trapping regime: h = 0.277.
Other parameters: W = 4, a = 0.1, N = 210, averaging over 200 disorder realizations for
LP, 100 for ST.

8 Conclusion

We have analyzed energy and norm density resolved wave packet spreading studies in the
disordered Gross-Pitaevskii (GP) lattice. We managed to confine energy density fluctua-
tions, which were not controlled in previous studies. We mapped the locations of the GP
regimes of weak and strong chaos sub-diffusive spreading in the two-dimensional density
control parameter space and observed strong chaos spreading over several decades. A
number of qualitatively different wave packet spreading outcomes were identified. Posi-
tive energy densities are doomed to bring the wave packet into a non-Gibbs regime with
potential fragmentation of the packets into a self-trapped condensate part and an infinite
temperature background capable of spreading infinitely. One of the intriguing quantities
is the ratio of the norm in the two field components and its asymptotic time dependence.
Will the self-trapped component take over the entire wave packet norm at large enough
times, or will some finite remain in the infinite temperature background? Zero energy
densities keep the wave packet in the Gibbs regime and may lead to the entire packet
heating up to infinite temperatures upon infinite spreading. Negative energy densities in
the Gibbs regime can bring the wave packet closer to the ground state, and therefore zero
temperatures upon spreading. Finally, initializing the wave packet in the Lifshits regime
shows strong suppression of subdiffusive spreading. But even in this case, we notice a
speedup of the spreading process with some potential fragmentation of the wave packet.
It appears that there are a number of interesting and hard open problems to be addressed
in future work.
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