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1. Introduction

Classical mechanics is Galilean invariant, i.e, time parameter t and position coordinate q(t)
are explicitly functions of each other. Since quantum mechanics is Galilean invariant there is
no simple way to build a locally Lorentz invariant theory with single particle interpretation (the
possible version known as Klein-Gordon has field theoretic realization). In GR, we have difficulty
to interpret time as we did in classical mechanics. Furthermore GR is locally Lorentz invariant. The
simple reason is that in the context of GR (or any other classical gauge theory for gravity ),time
t is just a coordinate and is no longer considered as a parameter (in non-relativistic mechanics
and QM the time t is an evolution parameter). As a result ,the analogue to coordinate (in the
variational process), the Riemannian metric gab(xc), ,a,b = 0...3 is a function of the all coordinates
xc = (t,xA),A = 1, ..3. That makes quantum gravity difficult to build. A way to address quantum
gravity is string theory [1] and the other well studied candidate is loop quantum gravity [2]. There is
also semi quantum gravity, when we keep the background classical and let fields simply propagate
on it. With both of these nice ideas , still we have the problem of “disappearance of time” [3]. If
we adopt any of these proposals, it seems that time problem remains unsolved both in the quantum
gravity and cosmology [4]. Time problem has a rather long history [5] . There is a simple way to
address quantum gravity without time considered in canonical quantization in metric variables:[6].
With all of the above historical backgrounds and many others, we are still looking for a fully
covariant canonical quantum theory for gravity which make sense same as we know for usual q
mechanics. It is necessary to find an appropriate representation for Lagrangian of the gravity (here
GR as the best tested one ).

With a suitable covariant definition of the conjugate momentum we define a Hamiltonian. Fur-
thermore we need to adopt a well defined phase space. In that phase space one can build Poisson
brackets easily, and then by replacing the classical bracket with the Dirac bracket, we can find a
suitable fully consistent Hamiltonian for quantum GR. Later, one can build an associated (func-
tional) Hilbert space and develop all the concepts of ordinary quantum mechanics systematically.
This is a plan to find a successful quantum theory for gravity or as it is known, quantum gravity.
During studying non standard classical dynamical systems I found a class of Lagrangian models
with second order time derivative of the position q̈(t)(configuration coordinate q(t)). It is easy to
show that a wide class of such models reduce to the position dependence mass (PDM) models as it
was investigated in literature [7]-[9]. It is obviously interesting to show that whether GR reduces to
such models. This is what I investigate in this letter. I show that the classical Einstein-Hilbert (EH)
Lagrangian reduces to the position-dependent -mass (PDM) model up to a boundary term. Then
I adopted the standard quantization scheme for a PDM system and I suggested a fully covariant
quantum Hamiltonian for GR. The functional wave equation for the metric proposed naturally and
then it was developed for quantum cosmology.

My observations initiated when I studied GR as a classical gauge theory [10]. As everyone
knew, GR has a wider class of symmetries provided by the equivalence principle. It respects gauge
transformations (any type of arbitrary change in the coordinates, from one frame to the other xa→
x̃a ) [10]. Consequently GR is considered just a classical gauge theory for gravity. There is also
a trivial hidden analogue between GR and classical mechanics (see table I). In GR as a classical
dynamical system (but with second order derivative of the position ), if we make an analogous
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Riemannian metric gab with the coordinate q(t) and if we use the spacetime derivatives of the
metric ∂cgab (which is proportional to the Christoffel symbols Γdab ), instead of the velocity , i.e,
the time variation of the coordinate q̇, and by adopting a symmetric connection , we can rewrite EH
Lagrangian in terms of the metric, first and second derivatives of it. It looks like a classical system
in the form of L(q, q̇, q̈) (see TABLE I). In this formal analogy, the classical acceleration term in
the classical models under study now q̈ is now replaced with the second derivative for metric i.e,
∂eΓdab. Integration part by part from this suitable representation of the EH Lagrangian reduces it to
a PDM system where we will need to define a super mass tensor as a function of the metric instead
of the common variable mass function m(q(t)) in classical mechanic.

Table 1: Analogy between classical mechanics and GR

Model Position first derivative second derivative mass

Classical PDM q(t) q̇(t) q̈(t) scalar m(q)
GR gab ∂dgab ∂e∂dgab super mass tensor Mabldeh given in eq.(2.6)

In this letter, I focus on the classical EH action for GR as an analogy to the model investigated
in the former above. The notation for Einstein-Hilbert action is

SEH =
∫

d4xLGR (1.1)

The key idea is to realize GR as a classical dynamical system with second order derivative.
The Einstein field equations are derived as a standard variational problem subjected to a set of
appropriate boundary conditions. Since the idea of GR is to find the best geometry for a given
source of matter fields, it is formally equivalent to the classical mechanics. By combining all these
similarities I end up to an equivalent representation of EH action as a classical Lagrangian in the
form :

LGR = L(|g|,∂a|g|,gbc,gbc,Γa
bc,∂dΓ

a
bc). (1.2)

here |g| ≡ det(gµν) is determinant of the metric tensor, and ∂β is coordinate derivative. We can
write the above Lagrangian formally in a more compact form as

LGR = LGR(|g|,∂ |g|,g,g,∂g,∂g). (1.3)

here we abbreviated by g≡ gab , g≡ gab ,|g| ≡ det(gab) =
1

det(g) ,
1
2 g.∂g≡ Γa

bc , ∂g = Γbla ≡ gbl,a +

gla,b− gba,l . We adopt metricity condition ∇agbc = |g|−1/2∂a(|g|1/2gbc) ≡ |g|−1/2∂ (|g|1/2g) = 0,
∂ .g = −g.∂g.g. The plan of this letter is as following: In Sec. (2) I showed that GR Lagrangian
reduces to a PDM fully classical system with a super mass tensor of rank six. In Sec. (3) I built
a consistent super phase space as well as a set of Poisson brackets. As an attempt to break the
complexity of the field equations, I show that gravitational field equations reduced top a set of
first order Hamilton’s equations. In Sec. (4) I define quantum Hamiltonian simply by replacing
the classical brackets with Dirac brackets. Functional wave equations are proposed and by solving
them we can obtain generic wave function for a fully canonical quantized Riemannian metric. As
a concrete example,in Sec. (5) I solve functional wave equation for a cosmological background.
Some asymptotic solutions are presented. The last section is devoted to summarize results.
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2. Super Mass Tensor for GR as PDM classical system

We adopt the conversion of indices as [11]. The EH action for GR In units 16πG≡ 1 is

SEH =
∫

M
d4x
√

gR≡
∫

M
d4xLGR. (2.1)

The Ricci scalar R is composed of the metric and its first and second derivatives. The first aim
is to express the integrand (Lagrange density LGR) is as the form from which PDM kinetic term
is obvious. We note that the Lagrangian density eq. (2.2) is a purely kinetic form, with a PDM
effective mass. This adequate representation can be obtained from the definition of Γbla, this will be
clear if we rewrite the Lagrangian in following equivalent form(note that the Lagrangian enjoys an
exchange of indices symmetry a→ d in the first two terms),in action presented in eq.(1.3) one can
eliminate the second derivative term ∂degab simply by integrating by part and using the metricity
condition ∇agbc = 0, by taking into the account all the above requirements a possible equivalent
form for Lagrangian of the GR is given by:

LGR =
1
2

√
|g|
(

galgbe
Γbla∂

hgeh +gbegdh
Γbld∂

lgeh +
1
2

galgbdgte
ΓtldΓbea−

1
2

galgbdgte
ΓtlaΓbed

)
.(2.2)

and SEH =
∫

d4xLGR +B.T here by B.T we mean boundary term defined as

B.T =
∫

∂M

√
|hAB|hBDhAL

ΓBLA|xD=constant +
∫

∂M

√
|hAB|hBDhAL

ΓBLD|xA=constant . (2.3)

We can re express the above GR Lagrangian in our convenient notations as

LGR =
1
2

√
|g|
(

g.∂g.g.∂g+g.g.∂g.∂g+
1
2

g.g.g.∂g.∂g− 1
2

g.∂g.g.g.∂g
)
. (2.4)

Note that by ”.” we mean tensor product(we adopt Einstein summation rule). From the above
representation we can realize {g,g} as two fields , in analogy to the Dirac Lagrangian where the
fermionic pairs ψ, ψ̄ appeared . The difference here is due to the fact that the pair of objects g,g
depend on each other as we know g.g = δ , the Kronecker delta, however in the Dirac Lagrangian
the norm ψψ̇ 6= I. In our program we wont use this duality and we will focus on the coordinates
representation of the GR Lagrangian, i.e, eq.(2.2) . If we substitute the definition of Gamma terms
and combine the theory, we obtain the final form for the Lagrangian as a PDM system for coordinate
gab(or as a tensor version for k-essence [12]):

LGR =
1
2

√
|g|Mabldeh

∂agbl∂dgeh. (2.5)

here Mabldeh = |g|−1/2 ∂ 2LGR
∂ (∂agbl)∂ (∂dgeh)

is defined as super mass tensor. An alternative form for (2.5)

is LGR =

√
|g|

2 M∂g∂g. It is equivalent to the classical Lagrangian of PDM systems L = 1
2 M(q)q̇2

for one dimensional, position dependent mechanical system. As we expected in GR, the mass term
transformed to a higher order (here rank six) tensor. The explicit form for the super mass tensor is
expressed as following:
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|g|1/2M = |g|1/2Ma1b1l1d1e1h1 =
1
4

gal gbd gte × (2.6)(
δ

a1
a δ

b1
b δ

l1
e +δ

b1
a δ

a1
b δ

l1
e −δ

l1
a δ

b1
b δ

a1
e

)(
δ

d1
d δ

h1
l δ

e1
t −δ

h1
d δ

d1
l δ

e1
t +δ

e1
d δ

h1
l δ

d1
t

)
−1

4
gal gbd gte

(
δ

a1
b δ

b1
d δ

l1
e +δ

b1
b δ

a1
d δ

l1
e −δ

b1
b δ

l1
d δ

a1
e

)(
δ

d1
a δ

h1
l δ

e1
t −δ

h1
a δ

d1
l δ

e1
t +δ

e1
a δ

h1
l δ

d1
t

)
+

1
4

gal gbd gte
(

δ
d1
a δ

e1
b δ

h1
e +δ

e1
a δ

d1
b δ

h1
e −δ

h1
a δ

e1
b δ

d1
e

)(
δ

a1
d δ

l1
l δ

b1
t −δ

l1
d δ

a1
l δ

b1
t +δ

b1
d δ

l1
l δ

a1
t

)
)

−1
4

gal gbd gte
(

δ
d1
b δ

e1
d δ

h1
e +δ

e1
b δ

d1
d δ

h1
e −δ

e1
b δ

h1
d δ

d1
e

)(
δ

a1
a δ

l1
l δ

b1
t −δ

l1
a δ

a1
l δ

b1
t +δ

b1
a δ

l1
l δ

a1
t

)
)

+gal
δ

d1
a gbe gdh

δ
e1
e δ

h1
h

(
δ

b1
b δ

a1
d δ

l1
l +δ

a1
b δ

l1
d δ

b1
l −δ

b1
b δ

l1
d δ

a1
l

)
+gal gbe gdh

δ
d1
d δ

e1
e δ

h1
h

(
δ

a1
a δ

b1
b δ

l1
l +δ

l1
a δ

a1
b δ

b1
l −δ

l1
a δ

b1
b δ

a1
l

)
+gal

δ
a1
a gbe gdh

δ
b1
e δ

l1
h

(
δ

e1
b δ

d1
d δ

h1
l +δ

d1
b δ

h1
d δ

e1
l −δ

e1
b δ

h1
d δ

d1
l

)
+gal gbe gdh

δ
a1
d δ

b1
e δ

l1
h

(
δ

d1
a δ

e1
b δ

h1
l +δ

h1
a δ

d1
b δ

e1
l −δ

h1
a δ

e1
b δ

d1
l

)
.

Having the Lagrangian of GR given in eq. (2.5), one can define a canonical pair of position
conjugate momentum (g, p) and construct a phase space. This is what we are going to do in next
section.

3. Super phase space

The phase space description of the classical model presented in eq.(2.5) is very straightfor-
wardly done, by defining the super conjugate momentum tensor is

prst =
∂LGR

∂ (∂rgst)
=

√
g

2

(
Mrstdeh

∂dgeh +Mablrst
∂agbl

)
. (3.1)

Note that the mass tensor Mrstdeh∂dgeh = Mablrst∂agbl . A possible classical Hamiltonian will
be

HGR =
1

2
√
|g|

MabldehMrstabl prstMuvwdeh puvw. (3.2)

A possible Poisson’s bracket {F,G}P.B adopted to this system is:

{F(gmn, pstu),G(gmn, pstu)}P.B = ∑

(
∂F

∂gab

∂G
∂ prst −

∂F
∂ prst

∂G
∂gab

)
.. (3.3)

or in our notation it simplifies to the following expression

{F(g, p),G(g, p)}P.B = ∑

(
∂F
∂g

∂G
∂ p
− ∂F

∂ p
∂G
∂g

)
. (3.4)

and specifically for our super phase coordinates (gab, prst) , I I postulate that

{gab, prst}P.B = cr
δ

rs
ab. (3.5)
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Here δ rst
ab is the generalized Kronecker defined as [13]

δ
rst
ab = 2!δ s

[aδ
t
b] (3.6)

In the above Poisson’s bracket, with structure constants cr provide a classical minimal volume for
super phase space (zero for Poisson’s bracket same objects ). We have now full algebraic structures
in the super phase space and canonical Hamiltonian. As a standard procedure, we can write down
Hamilton’s equations as first order reductions of the Euler-Lagrange equations derived from the
Lagrangian given in eq. (2.5)(Einstein field equations). This is one of the main results of this letter
and I will address it in the next short section.

3.1 Reduction of the Einstein Field Equations (EFE) to Hamilton’s equation via covariant
Hamiltonian

The set of Hamilton’s equations derived from the Hamiltonian (6.3), are defined automatically
using the Poisson’s bracket are given as following:

∂agbl = {gbl,HGR}P.B =
∂HGR

∂ pabl
, (3.7)

∂a pabl = {pabl,HGR}P.B =−∂HGR

∂gbl
. (3.8)

We explicitly can write this pair of Hamilton’s equation given as follows:

2
√

g
∂agbl = Ma′b′l′dehMrsta′b′l′Muvwdeh×

(
δ

u
a δ

v
b δ

w
l prst +δ

r
aδ

s
bδ

t
l puvw

)
. (3.9)

− 2
√

g
∂a pabl = Ma′b′l′deh prstMrsta′b′l′ puvw ∂Muvwdeh

∂gbl
+Ma′b′l′deh prstMuvwdeh

∂Mrsta′b′l′

∂gbl
(3.10)

+
∂Ma′b′l′deh

∂gbl
prstMrsta′b′l′ puvwMuvwdeh +Ma′b′l′deh ∂ prst

∂gbl
Mrsta′b′l′ puvwMuvwdeh

+Ma′b′l′deh prstMrsta′b′l′
∂ puvw

∂gbl
Muvwdeh.

This set of first order partial differential equations are considered the first phase space alter-
native to the original gravitational field equations. These equations are considered as important
results of my current letter. When we succeed to write a covariance Hamiltonian, the Hamilton’s
equations are first order version of the Einstein field equations. In my knowledge this is the first
time in literature when a first order Hamiltonian version of the gravitational field equations. The
set of equations given in (3.7,3.8) are defined when a first first order Hamiltonian version of the
field equations for a generic Lorentzian metric. I believe that one can integrate this system as a
general non autonomous dynamical system for a given set of the appropriate initial values of the
metric and super momentum given as a specific initial position xa

0 (not specific time as is commonly
considered as the initial condition in QG literature) .A remarkable observation that the system may
possess chaotic behavior and doesn’t suffer from Cauchy’s problem. We have now the classical
Hamiltonian and the set of Poisson brackets. Now we can develop a qunatum version and obtain
qunatum Hamiltonian for GR. This will be done in the next section.
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4. Quantization of GR

In this section, I’m going to define appropriate forms for Dirac brackets simply by defining,

π̂
rst ≡−ih̄r ∂

∂ ĝst
, (4.1)[

ĝab, π̂
rst
]
= ih̄r

δ
st
ab (4.2)

Instead of the usual fundamental reduced planck constant (dirac constant) h̄ we required to define a
vector one, the reason is that even the classical phase space spanned by the

(
gab, prst

)
one has more

degrees of freedom (dof), basically is 105(= 10× 104) dimensional for a Riemannian manifold.
The Dirac constant h̄ is proportional to the minimum volume of the phase space V0 defined as

ω0 =
∫

D(gab, prst). (4.3)

where the D(gab, prst) is a measure for the super phase space and D(gab, prst) is a covariant volume
element. We obviously see that the ω0 is related to the dof of the system, for example if the
system has f numbers of dof, then the minimal volume of the phase space is given as h̄ f and here
h̄ ∝ f−1 log(ω0), note that in our new formalism f = 105� 1, as a result the effective ||h̄r|| � h̄.

A remarkable observation is that the super mass tensor M = Mabldeh is a homogeneous (or-
der 6) of the metric tensor. Using the formalism of quantization for PDM systems the canonical
quantized Hamiltonian for GR is:

∧HGR(ĝab,
∂

∂ ĝst
) =−1

2
f 1/2
rstuvwh̄r ∂

∂ ĝst

[
f 1/2
rstuvwh̄u ∂

∂ ĝvw

]
. (4.4)

here the auxiliary, scaled super mass tensor frstuvw is

frstuvw ≡ |g|−1/4MabldehMrstablMuvwdeh. (4.5)

It is adequate to write the quantum Hamiltonian in the following closed form:

∧HGR(ĝab, π̂
mnp) =

1
2

[
|g|−1/2MMM

]1/2
π̂

[
|g|−1/2MMM

]1/2
π̂. (4.6)

where p is contravariant component of the super momentum p , etc. The above quantization of
Hamiltonian is covariant since we didn’t specify time t from the other spatial coordinates xA. The
model is considered as a timeless model, i.e, there is no first order time derivative in the final wave
equation like ∂

∂ t , and the associated functional second order wave equation which is fully locally
Lorentz invariant as well as general covariant is expressed as:

−1
2

f 1/2
rstuvwh̄r ∂

∂ ĝst

[
f 1/2
rstuvwh̄u ∂

∂ ĝvw
Ψ(ĝab)

]
= EΨ(ĝab)

Note that in our suggested functional wave equation for Ψ(ĝab), we end up by the covariant (no
first order derivative) of the functional Hilbert space, furthermore all the physical states are static
(i.e., no specific time dependency) and consequently we have a covariant full evolution for our
functional. I believe that my model is a subclass of the timeless models of QG. Building qunatum
gravity via timeless phase space investigated in the past by some authors mainly recent work [14].
Our approach is completely different and independent from the others. We will study qunatum
cosmology as a direct application of our wave equation in the next section.
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5. Quantum cosmology

In flat, Friedmann-Lemaître-Robertson-Walker (FLRW) model with Lorentzian metric gab =

diag(1,−a(t)Σ3) where Σ3 is the unit metric tensor for flat space, in coordinates xa = (t,x,y,z) ,
the non vanishing elements of the super mass tensor defined in eq.(2.6) are

Mabldeh =−12a−2
δ

a0
δ

d0
δ

BL
δ

EH (5.1)

here B,L,E,H = 1,2,3 and the auxiliary scaled super mass tensor frstuvw

frstuvw =−3a1/2

4
δu0δr0δVW δST . (5.2)

The functional wave equation reduces to the hypersurfaces σ3 coordinates XA = (x,y,z):

3h̄2
0a1/2

8
∂ 2Ψ(ĝAB)

∂ ĝSS∂gVV
= EΨ(ĝAB) (5.3)

and in the coordinates for FLRW metric it reduces simply to the following ordinary differential
equation

aΨ
′′(a)−Ψ

′(a)− 32Ea5/2

3h2
0

Ψ(a) = 0 (5.4)

Here prime denotes derivative with respect to the a. If we know boundary conditions, one can
build an orthonormal set of eigenfunctions using the Gram Schmidt process. Furthermore the
above single value wave equation can be reduce to a standard second order differential equation for
wave function Ψ(a) =

√
aφ(a),

φ
′′(a)−

(32Ea1/2

3h2
0

+
3

4a2

)
φ(a) = 0 (5.5)

It is hard to find an exact solution for the above wave equation but there are exact solutions for
asymptotic regimes:

φ(a) ∝

{
a3/2 if a→ 0
exp[16

√
2E

5
√

3h0
a5/4] if a→ ∞

(5.6)

and one can build an exact solution via Poincare’s asymptotic technique, i.e, by suggesting φ(a) =
ζ (a)a3/2 exp[16

√
2E

5
√

3h0
a5/4] and ζ (a) will come as a transcendental (hypergeometric) function(

ζ (a) =
32/5h̄4/5e−

2
15

(
8
√

6ea5/4
h̄ +3

)
64 5
√

5a

5c1Γ

(
1
5

)
I− 4

5

16
√

2e
3 a5/4

5h̄

+32 5
√

2c2Γ

(
4
5

)
I 4

5

16
√

2e
3 a5/4

5h̄

(5.7)

here Iν(y) is the modified Bessel function of the first kind
and the eigenvalue E (positive, negative or zero ) can be discrete as well as continuous (bound

states for E < 0 ). Remarkable is for vanishing energy state, E = 0, the generic wave function is
given by

Ψ(a) = N0 +Na2, a ∈ [0,∞) (5.8)

More details about qunatum cosmology will appear in my forthcoming paper in preparation [15].
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6. Note about ADM decomposition formalism and reduced phase space

Working with an extended phase space with a conjugate momentum with one more index
doesn’t look very friendly at all, although that is the unique way to define a fully covariant form for
the phase space as well as a purely kinetic Lagrangian for GR. If one adopt the ADM decomposition
of the metric gab as follows[16, 17],

ds2 = gabdxadxb = hABdxAdxB +2NAdxAdx0 +(−N2 +hABNANB)(dx0)2 (6.1)

here x0 is time, A,B = 1,2,3 refer to the spatial coordinates and hAB is spatial metric. It is easy to
show that the set of the first order Hamilton’s equations presented in the previous section reduces
to the ADM equations, only if one consider t as dynamical time evolution. Basically if we recall
the super conjugate momentum

π
rs =

∂LGR

∂ ġst
=

√
g

2

(
M0stdeh

∂dgeh +Mabl0st
∂agbl

)
. (6.2)

Builiding the Hamiltonian in a standard format as

H ADM
GR =

1
2
√
|g|

MabldehM0stablπ
stM0vwdehπ

vw. (6.3)

Briefly I wanna to mention here that although my formalism is worked with covariant derivative
without specifying any coordinate as time (so technically is a timeless technique)if one reback to the
standard metric decomposition in ADM and use the 0 component of super conjugate momentum,
again we can recover ADM Hamiltonian. I emphasis here that my construction was based on purely
geometrical quantization of the GR action rather opting a standard time coordinate .

7. Final remarks

The canonical covariant quantization which I proposed here is a consistent theory. I started
it by basic principles, just by rewriting the GR action in a suitable form the Lagrangian reduced
to a purely kinetic theory with position dependence mass term. In this equivalent form of the
Lagrangian, gradient of the metric tensor appears as a hypothetical scalar field. With such a simple
quadratic Lagrangian, I defined a conjugate momentum corresponding to the metric tensor. Mass
term for graviton derived as tensor of rank six . I developed a classical Hamiltonian using the metric
and its conjugate momentum. It is remarkable that one can write classical Hamilton’s equations for
metric and momentum (super phase space coordinates) are analogous to the second order nonlinear
Einstein field equations. Later I replaced Poisson’s brackets with Moyal(Dirac) and I defined a
quantum Hamiltonian for GR. There is no time problem in this formalism because theory is fully
covariant from the beginning. As a direct application I investigated qunatum cosmology, i.e and
wave function for a homogeneous and isotropic Universe. I showed that wave equation simplifies
to a linear second order ordinary differential equation with appropriate asymptotic solutions for
very early and late epochs. In my letter I used an integration part by part to reduce GR Lagrangian
to a form with first derivatives of the metric. The price is to define two boundary terms on the
spatial boundary regions. Those terms vanish in any asymptotic flat(regular) metric. I notice here
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that even if we didn’t remove second derivative terms using integration by part, it was possible to
define a second conjugate momentum rabcd = ∂LGR

∂ (∂a∂bgcd)
corresponding to the second derivative of

the metric ∂a∂bgcd . If I impose a Bianchi identify between gab, prst ,rabcd , it is possible to fix this
new momentum in terms of the other one and the metric. A suitable Legendre transformation from
the GR Lagrangian

HGR = prst
∂rgst + rabcd(∂a∂bgcd)−LGR (7.1)

with the Bianchi identity,

{gab,{pcde,r f ghi}P.B}P.B +{pcde,{r f ghi,gab}P.B}P.B +{r f ghi,{gab, pcde}P.B}P.B = 0. (7.2)

I obtain a standard Hamiltonian without this new higher order momentum. Consequently the
method of finding a Hamiltonian based on the super phase spaces which I defined by gab, prst

in Sec. II and the one with one more conjugate momentum i.e, gab, prst ,rabcd leads to the same
result. I will demonstrate this in a forthcoming longer paper[15].
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