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Abstract

We employ tensor network methods for the study of the seniority quantum number - de-
fined as the number of unpaired electrons in a many-body wave function - in molecular
systems. Seniority-zero methods recently emerged as promising candidates to treat strong
static correlations in molecular systems, but are prone to deficiencies related to dynami-
cal correlation and dispersion. We systematically resolve these deficiencies by increasing
the allowed seniority number using tensor network methods. In particular, we investigate
the number of unpaired electrons needed to correctly describe the binding of the neon and
nitrogen dimer and the D¢, symmetry of benzene.
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1 Introduction

The quantum mechanical characterization of molecular systems is highly nontrivial due to its many-
body character. The need for approximate methods arises for all but the smallest problems. When
choosing a suitable approximate method, a consideration has to be made between the accuracy and
the complexity of the method. The well-known Hartree-Fock (HF) method provides a mean-field
solution for molecular systems rather cheaply. The deficit between the exact ground state energy
and the approximate Hartree-Fock energy is an important quantity in quantum chemistry and is
called the correlation energy. Often, the distinction between strong (static and nondynamical)
and weak (dynamical) correlation is made [1-4]. Although both strong and weak correlations are
electronic by nature, they have a different origin; the latter results mainly from the dynamical short-
range correlations of electrons, whereas static correlation originates from near-degeneracies of
several rivaling electron configurations. Many approximate methods often only excel in capturing
one type of correlation. For example, the complete active space self consistent field method
(CASSCF) [5, 6] and density matrix renormalization group (DMRG) [7-9] are capable of capturing
strong correlations, while coupled cluster (CC) [2,10] and perturbative methods [11] are more
suitable for dynamical correlations. In an effort to capture both types of correlation, combinations
of these methods have also been developed such as CASPT2 (CAS with perturbation theory up
to second order) [12,13], DMRG-CASPT2 [14,15], DMRG-NEVPT2 (DMRG with second-order
N-electron valence state perturbation theory) [16], p-DMRG [17], MRCC (multireference coupled
cluster) [18-20] and DMRG-TCC (DMRG-tailored coupled cluster) [21-23].

The majority of contemporary electronic structure methods start from a reference state, typically
the single-reference HF ground state, and systematically build in correlations by considering
elementary excitations from this reference. The conventional approach is to consider particle-hole
(ph) excitations from the HF ground state, as is common in CC [2] or truncated configuration
interaction (CI) methods [1]. This way, it is possible to construct a hierarchy of multiple n-ph
excitations which are assumed to be decreasing in importance with increasing n. Although tailor-
made for dynamical correlations, e.g. in CC theory, it is impractical for static (or non-dynamical)
correlation. It was recently observed [24] that the seniority scheme is much better suited to
capture static correlations associated with the entanglement structure of single-bond breaking
processes. Defined as the number of unpaired electrons in a Slater determinant, the seniority
quantum number organizes the Hilbert space by the amount of broken closed-shell singlet pairs
with respect to a set of (doubly degenerate) spin orbitals. For molecular systems dominated
by singlet-pairs bond structures, it was shown that most of the strong static correlation in a
system can already be captured in the subspace spanned by all determinants with zero seniority
(no unpaired electrons) [24-30]. Although this tremendously reduces the dimension of the
Hilbert space at hand, finding the exact doubly occupied configuration interaction (DOCI) wave
function is still an exponentially scaling problem. At first glance, the seniority scheme seems only
marginally more manageable than the full problem. Interestingly, the antisymmetric product of
one-reference orbital geminals (AP1roG) [28,31-33], also known as pair-coupled cluster doubles
(pCCD) [34-36], appears to provide a reliable approximation to the DOCI ground state solution
for a wide range of molecular systems [36] while staying computationally tractable at a mean-field
scaling computational cost [28,37].

Notwithstanding its salient features, there remain several challenges that need to be overcome
in order to make the AP1roG wave function quantitatively accurate. The outstanding challenges,
which are shared by all methods expressed in the seniority scheme, are (i) the incorporation of
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dynamical correlation and (ii) the choice of a preferential orbital set, also referred to as the orbital
optimization (OO) problem. Another challenge (iii) is the apparent lack of London dispersion
correlations in the seniority-zero methods which are crucial to model large-size molecular systems.

The lack of dynamical correlation in the zero seniority wave functions is well illustrated by the
poor description of the correlation energy of the Ne atom, as well as the near-constant parallelity
error in the bond dissociation curve of the nitrogen dimer [28,38,39]. Dynamical correlation is
generally encoded in a set of Slater Determinants with a few ph excitations from the HF reference
state. Consequently, methods targeting these excitations, such as (multi-reference) perturbation
theory [38,40], linearized CC [35,41], extended random phase approximiation (ERPA) [42] or
selected configuration interaction (CI) [43], are very well equipped to capture those correlations.
However, systematic generalizations of these methods in order to include dynamical correlation
from higher-order ph excitations prove either technically and computationally demanding, or break
the size consistency of the reference AP1roG wave function.

Size consistency of the AP1roG wave function, or by extension any seniority-zero method, is
guaranteed when the spin orbitals are optimized such that the energy is in a variational mini-
mum [44]. Unfortunately, current optimization methods result into a single unique set of spin
orbitals, which can lead to nonphysical symmetry breaking effects in resonating bond structures,
such as the aromatic structures in benzene [33], or incorrect characterizations of covalent triplet-
bond couplings, such as in the nitrogen dimer [44].

Regardless the size consistency and correct description of the static correlations associated with
bond-dissociation processes, seniority-zero methods have recently been identified as essentially free
from London dispersion energy [45], which is remarkable given that 2-electron systems are exactly
described by (orbital optimized) seniority-zero methods, capturing the non-covalent Lennard-Jones
1/R® behavior of the dispersion energy in the large R — 0o separation limit of the hydrogen dimer.

In order to obtain a global understanding of the deficiencies of the seniority-zero methods,
it is quintessential to include all possible broken-pair excitations from higher seniority sectors
in a systematic way. Higher seniority subspaces have been studied in the past years using CI
approaches, [24,29,34,46,47], or energy renormalization group (ERG) approaches [48]. The
limiting factor of these methods is the pernicious computational scaling whenever no truncation in
the Slater determinants is considered. While dynamical correlation is typically included with just a
few ph excitations from the HF reference state, corresponding to low-seniority quantum states, it is
not clear at present how many broken pairs are needed to restore the correct symmetries or include
London dispersion. As a result, there is a need for an analytic method that can assess seniority
non-zero contributions in a systematic way at a favorable computational scaling.

In this paper, we use the concept of seniority in junction with tensor network states. In
contrast to many other quantum many-body methods, tensor network states consider the whole
collection of Slater determinants, and approximate the exact quantum states by restricting the
amount of entanglement between local degrees of freedom. Tensor network states are capable
of encoding local symmetries of quantum states [49]; therefore they provide a good framework
to investigate broken pair excitations, as seniority can be related to the irrep label of the su(2)
quasi-spin algebra [50]. In practice, the idea is to perform DMRG in a subspace of the Hilbert space
up to a fixed global seniority quantum number, and increase the seniority quantum number until
full convergence of the correlation energy is obtained. This procedure will be explained in detail in
Section 2. In the proceeding sections, we will present results for the nitrogen dimer (Section 3.1),
benzene (Section 3.2) and the neon dimer (Section 3.3), to discuss higher-seniority properties of
dynamical correlation, symmetry breaking/restoration and dispersion respectively.
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2 Methodology

2.1 Tensor networks

Pioneered by Steve White in 1992 [7, 8], tensor networks have proven to be a natural language
for the entanglement in strongly correlated many body systems. In the tensor network state,
each tensor represents a ‘local’ physical degree of freedom. By connecting them in a network,
correlations between the different physical degrees of freedom can be encoded through their virtual
degrees of freedom. The exact layout of the network influences the entanglement structure that can
be represented; it is easier to correlate physical degrees of freedom that are close in the network.

First and foremost, these tensor network methods have established themselves in the field of
condensed matter physics as a wide range of successful tensor networks have been developed
for numerous problems. Some notable examples are matrix product states (MPS) [7,8,51-53],
projected entangled pair states (PEPS) [54] and the multiscale entanglement renormalization
ansatz (MERA) [55]. They all provide, in their own way, an efficient representation of certain
entanglement structures.

In quantum chemistry, tensor networks have also proven their worth in the study of molecules
with strong correlations [9,56-65]. Quantum chemists don’t traditionally study molecules in a
Hilbert space built from completely local basis functions (e.g. a grid in three dimensions), but
atomic orbital basis sets such as Gaussian-type or Slater-type orbitals are used. These sets give
electrons the right flexibility needed for chemistry while the basis size is kept small. On the flip side,
the loss of locality in the basis functions makes a suitable network for the entanglement between
the physical degrees of freedom less straightforward than for most condensed matter problems.
Furthermore, in an atomic orbital basis set, the long range two-body coulomb interactions in the
Hamiltonian become four-point interactions. The loss of locality and the need for an efficient
evaluation of the Hamiltonian has ensured that the most simple networks are still the most preferred
ones. The density matrix renormalization group (DMRG) is, by far, the most popular tensor network
method in quantum chemistry and corresponds with the optimization of the linear MPS. Another
option for a simple tensor network is the three-legged tree tensor network state (T3NS) [66,67]. It
is a subclass of the more general tree tensor networks (TTNS) [63-65] and was recently introduced
by some of us. In this paper, we use these two networks for the study of several chemical systems
in restricted seniority subspaces. In the next sections we explain the implementation of restricted
seniority for the case of DMRG. However, the ideas are readily adaptable to T3NS and were
implemented for both cases in our in-house T3NS-code [68].

2.2 Seniority and tensor networks

The non relativistic quantum chemical Hamiltonian to study is given by

— f - - A
H= E tij E ciacj0+2 E Viiki E CiCirCirCko ey
1] o

ijkl oT

where i, j,k and [ are the indices of the orbitals and ¢ and 7 index the spin of the electrons.
This Hamiltonian showcases several symmetries, e.g. the particle conservation and total spin
symmetry of the electrons. These symmetries can be easily exploited in tensor networks by writing
the different tensors in an invariant form under group action of the symmetry [60, 67, 69-76].
Although the seniority is not a symmetry of the quantum chemical Hamiltonian, it is still possible
to apply the same idea. In this case, we write each tensor in the network in an invariant form for
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the seniority. For example, the tensors of rank three present in the MPS can be made invariant by
imposing the following restriction for the tensor elements:

Ta,b,c = 0: if Vg + Vp 7é Ve s (2)

b
é =0, if vy + vy # v, (3)
a C

where a, b and ¢ denote the (physical or virtual) degrees of freedom of T and v,, v; and v, are
their respective seniority numbers which is well-defined; each state in the degrees of freedom a,
b, and c are eigenstates of the seniority operator. In this example, the seniority number of the
first two degrees of freedom of the tensor sum up to the seniority number of the third one. This
reflects the fact that seniority is an additive feature, as unpaired electrons from different orbitals
all contribute to the total seniority of the state. It is clear that this restriction implies a kind of
flow for the seniority number in the network which is indicated in Eq. (3) by the directed edges.
An example of an MPS wave function built from three of these invariant tensors with the flow
indicated is given by

a b c
W) = Z Avac,a,aBab,p Cﬁ,c,targetlabc> = tét Vrget : 4)

a,f3,target

or graphically

The physical degrees of freedom (the occupancies of the spatial orbitals) are denoted by a, b and
¢ in this example and have a seniority v € {0,1}. a and f are virtual degrees of freedom. The
vacuum state enters the MPS at the leftmost degree of freedom (vac) and has a seniority v =0,
while the last degree of freedom represents the targeted state |¥). The graphical depiction implies
for each connected edge a summation over its corresponding indices, as is common in the tensor
network language [49, 54,67,77-79].

The only difference with implementing a U(1)-symmetry of the system, e.g. particle conservation
or conservation of the spin projection, is the needed summation over the renormalized states of
the target edge in Eq. (4). This is necessary as the seniority is not a conserved quantum number.
Eigenstates of the Hamiltonian are not necessarily eigenstates of the seniority operator and the
target state can be a linear combination of Slater determinants with different seniority numbers.
To target such a state, the final states at the edge called target should be a set of eigenstates of the
seniority operator which combine to the targeted state when summed.

The set of possible seniority numbers for the wave function is

()

Qz{neN: n mod 2 = N,,, mod 2 },

[Ny =Ny | < n < min (Nyor, 2k — Nior)

with k the number of spatial orbitals, Ny (N, ) the number of electrons with spin up (down) and Ny,
the total number of electrons. For every renormalized state in the last bond, we have Ve € Q2. By
TESTICtiNG Viarger tO @ SUDSEL S, 1.€. Vigrger € S € (2, ground states in seniority-restricted subspaces
can be targeted.

In a similar fashion, one could use also use other non-conserved quantum numbers than
the seniority. For example we could use the excitation number with respect to the Hartree Fock
wave function. By only allowing Slater determinants with a certain amount of excitations, tensor
networks can be used as an approximate configuration interaction (CI) solver with arbitrary allowed
excitation levels.
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2.2.1 Suboptimal decomposition

When using a wave function ansatz as shown in Eq. (4), we impose a restriction on the left
renormalized states at each splitting of the network. Due to the fact that a vacuum state enters in
the left most bond (vac) and all tensors used are invariant under the seniority operator, the left
renormalized states need to have a well defined seniority number. This restriction does not hold
for the right renormalized states since multiple states with different seniority exit at the right most
bond (target).

This restriction results in the need of a possibly larger bond dimension than when discarding
seniority. We illustrate this using a wave function with three electrons in three spatial orbitals:

1
o) = E[ITJ)®IT)+I—,N)®IT)] (6)
1

In Eq. (7), the Schmidt decomposition for a partitioning between the first two and the last orbital
is given. At this partitioning only a virtual bond dimension of one is needed to represent the
state. However, when we impose that the left states, i.e. the states in the first two orbitals, of the
decomposition should also be eigenstates of the seniority operator, the needed bond dimension at
this partitioning increases to two, confer Eq. (6).

2.3 DOCI and tensor networks

Restricting the calculation to configurations with v = 0, i.e. all electrons are paired, is easily done
with the aforementioned method. However, it is more efficient to directly implement the quantum
chemical Hamiltonian projected on the DOCI-subspace where only paired electrons are allowed.
The DOCI-Hamiltonian is given by

HDOCI _2Ztlln +Z 1]1] l]]l)nln] +Zvujjbj jo (8)

7]

where bj and b; are the bosonic pair creation and annihilation operators and n; is the pair number
operator at orbital i. They are given by
T —
b, = cchll , b; =c;jcip )

and
n;=b!b; . (10)

This Hamiltonian only scales quadratically with the number of orbitals in contrast with the quartic
scaling of the full Hamiltonian. TNS calculations in the DOCI subspace can be performed with a
lower polynomial scaling, as stated in Table 1 for the DMRG and T3NS.

We find that DOCI ground state wave functions have in general lower entanglement than
their corresponding FCI ground state wave function; accurate results for DOCI can be obtained
with a much lower bond dimension. The synergy between the lower polynomial scaling and the
lower bond dimension needed, makes DOCI-TNS very fast and a good option for initializing tensor
network calculations in the FCI space. For example, DOCI calculations with 162 electron pairs and
261 spatial orbitals have been executed in a few minutes on a common laptop.
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CPU time Memory

QC-DMRG: O (k*D?+k°D?) O (k*D?)

DOCI-DMRG: 0 (k2D?) 0 (k2D?)
QC-T3NS:  O(k*D*+k°D*) O(k*D?+kD?)
DOCI-T3NS: O (k2D*) O (k?D? + kD?)

Table 1: Resource requirements for DMRG and T3NS with renormalized operators for
the full quantum chemical Hamiltonian (Eq. (1)) or the DOCI Hamiltonian (Eq. (8)) for
k spatial orbitals. The maximal virtual bond dimension is denoted by D.

3 Applications

We discuss some calculations with the seniority-restricted tensor network code. As these calculations
are orbital dependent, several types of orbitals are considered. The effect of allowing progressively
more broken pairs is also studied within each orbital set. In Section 3.1 and Section 3.3, the
dissociation of the nitrogen and neon dimer are considered, respectively. Section 3.2 discusses the
benzene molecule, a system demonstrating artificial Dg;, symmetry breaking in the seniority-zero
subspace [33].

Coupled cluster natural orbitals and Léwdin orthogonalized atomic orbitals are obtained with
PySCF [80-82]. DOCI-optimized orbitals are generated through an in-house DOSCF code and were
carefully checked to correspond to the lowest possible DOCI energy, i.e. the global minimum [44].
The seniority-restricted tensor network calculations were executed with our own T3NS-code [68].
All seniority-restricted tensor network calculations are MPS calculations. We exploit the spin
symmetry and the reported bond dimensions for the tensor networks are reduced bond dimensions;
renormalized states belonging to the same multiplet are represented by one reduced renormalized
state, thus reducing the needed bond dimension. Seniority-restricted tensor network calculations
are, just as regular tensor network calculations, not exact; the accuracy can be controlled by
the bond dimension. The following calculations use a large enough bond dimension to ensure
quantitatively accurate potential energy surfaces.

3.1 Nitrogen dimer

Characterized by a triple bond breaking, the nitrogen dimer is a much visited test case for new
quantum chemical methods, and has already been investigated as such in the seniority framework
by Bytautas et al. [24] using an active space in the cc-pVDZ basis with D,;,-symmetry adapted
MOs. Here, we study the nitrogen dimer in a cc-pVDZ basis set with all electrons correlated,
however the DMRG results are qualitatively similar to the results in [24]. Seniority-restricted
spin-adapted DMRG with a reduced bond dimension up to a 1000 is used to optimize the ground
state in the different subspaces. The allowed seniority increases from 0 (DOCI) up to 10 for the
largest calculations, allowing 5 electron pairs to be broken. In Fig. 1, the dissociation curves are
given for calculations within the different seniority subspaces. Calculations were performed for
canonical orbitals (Fig. 1a), DOCI-optimized orbitals (Fig. 1b) and CCSD natural orbitals (Fig. 1c).
Although the DOCI-optimized orbitals are optimized for the seniority-zero subspace specifically
they also perform better in higher seniority subspaces, albeit marginally. Eventually for v < 8 and
onward, all orbital sets give quasi-FCI energies.
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Figure 1: Dissociation curves at different seniority subspaces for the nitrogen dimer.

Results for canonical orbitals (a), DOCI-optimized orbitals (b) and CCSD natural orbitals
(c) are given. For (c), only results where CCSD converged are plotted.

In Ref. [32], it is shown that the seniority-two sector decouples from the seniority-two-plus-zero
sector up to first order for DOCI-optimized orbitals; only a small correction should occur due to
the introduction of single broken pairs in this orbital set. Putting this first order decoupling to the
test, we notice indeed a small energy correction for the DOCI-optimized orbitals, smaller than for
canonical orbitals. In Fig. 2, the weights of the different seniority subspaces are plotted for the
ground state in both canonical and DOCI-optimized orbitals. It is yet another illustration that for
DOCI-optimized orbitals (Fig. 2b) the seniority-two subspace is less important than for canonical
orbitals (Fig. 2a). However, a first order decoupling is not an exact one; there are other orbital
sets possible which give even smaller energy corrections. This is illustrated by the natural orbitals

(Fig. 1c) which give even smaller energy corrections when allowing single broken pairs in this

system.
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Figure 2: Weights of the different seniority subspaces for the ground state wave function
of the nitrogen dimer. Results for canonical orbitals (a), DOCI-optimized orbitals (b) and
Lowdin orthogonalized atomic orbitals (c) are given.

As a last observation we note that the largest change in energy occurs when including the
seniority-four subspace, and this for all orbital sets in Fig. 1. This trend was also noticed in Ref. [24]
for the nitrogen dimer in nonlocal orbitals. When including up to seniority four the energies are
close to FCI around the binding distance; however, the binding energy itself is still overestimated
due to missing dynamical correlation at the dissociation (values are given in Table 2 for both
canonical and DOCI-optimized orbitals).

Intuitively, we would expect a much larger error when excluding the seniority-six subspace
as Hund’s rule dictates dissociation to two nitrogen atoms with each three unpaired electrons.
However, seniority and pairing is an orbital-dependent concept [44]; we need to keep in mind
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| =0 »<2 v<4 v<6 v<8 »<10
424 382 377 338 322 322
383 405 367 333 321 321

canonical
DOCI-optimized

Table 2: Binding energies in mE;, for seniority-restricted calculations in both canonical
and DOCI-optimized orbitals.

that Hund’s rule applies to a nitrogen atom with orbitals localized around that atom. To study
the interpretation of Hund’s rule in non-local orbitals, we consider a toy model of two sets of
three orbitals (p,, p,p,) and (p;, p’y, p.). Each set of orbitals mimics the local p-orbitals of each
nitrogen atom which are singly occupied and couple together to a S = 3/2 state, as dictated by
Hund’s rule. Our tensor network calculations target over the whole dissociation curve a singlet
state for the dimer, so the two toy-nitrogen atoms should couple as [3/2,3/2]°. Mimicking non-local
orbitals, we rotate the orbitals pairwise as follows:

Ty =pycosBO +p’sinb, T} =—p, sin6 + p’ cos O
Ty =pycosO +p sinf, Ty =—pysinf +p; cos 0
0 =p,cos6 +p;sin6, 0" =—p,sin6 +p, cos 6 .
1.0
0.8 2 6
0.6
<
0.4
0.0 / I \5 3
0 12 G 3 3 Vi 2
0 [rad]

Figure 3: Toy model of two nitrogen atoms with both S = 3/2 respecting Hund’s rule. The
two atoms couple together to a singlet. The figure represents the weights of the different
seniority sectors for local (0, 7/2), delocalized (7/4) orbitals and everything in between.

In Fig. 3, the weights of the different seniority sectors is given for the [3/2,3/2]° coupled toy wave
function in function of the rotation angle 6. As can be seen in this model seniority-six is actually of
no importance when working with delocalized orbitals (6 = 7/4). Instead, the correct dissociation
can be described with only seniority-zero-plus-four and both seniorities equally important.

Both canonical orbitals and the DOCI-optimized orbitals are delocalized for the 2p-orbitals
in this system. This dominating importance of the seniority zero and four for the wave function

10
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at dissociation is very clear in Fig. 2a and Fig. 2b. The other seniority sectors have very small
contributions in comparison. As an illustration, we also included calculations with Lowdin orthogo-
nalized atomic orbitals in Fig. 2c. As these orbitals are localized, it corresponds with 8 = 0 in Fig. 3.
These orbitals do give rise to a very important seniority-six subspace at dissociation, as predicted
by Hund’s rule. Evenmore, all seniority sectors smaller than six express a superexponential decay.

3.2 Benzene
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Figure 4: Benzene in a STO-6G basis set for different distortion angles. The minimal
energies and the corresponding distortion angles for increasing seniority subspaces are
given in the inset. A graphical depiction of the in-plane distortion of the aromatic ring in
benzene is also shown.

In this section, the in-plane distortion of benzene is studied. The exact nature of the distortion
is given in the inset in Fig. 4 and is characterized by the angle 6. At § = 60° the Dg;, symmetric
equilibrium structure geometry of benzene is obtained. At other angles, the distortion introduces
alternating shorter and longer carbon-carbon bonds. For this system Boguslawski et al. [33] showed
that benzene (6 = 60°) is not the equilibrium structure within the seniority-zero subspace; an
artificial symmetry breaking occurs when allowing orbital optimization.

We use DOCl-optimized orbitals in the STO-6G basis set to study this artificial symmetry
breaking with all electrons correlated. We chose STO-6G as the distortion angle of the minimal
energy DOCI structure is particularly large for this basis set. The tensor network calculations are
executed with a reduced bond dimension of 1000.

In Fig. 4 the results for the ground state in the different seniority subspaces are given. In
accordance with Boguslawski et al. [33], we notice that, indeed, the ground state is not found at
6 = 60° in the seniority zero subspace. When the breaking of one pair is allowed in this orbital
set, the correction is rather small and the correct symmetry is not restored; as expected due to the
aforementioned first order decoupling of the seniority-zero and seniority-two subspace in these

11
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orbitals.
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Figure 5: Weights of the different seniority subspaces for the ground state wave function
of the in-plane distorted benzene in DOCI-optimized orbitals.

When including progressively higher seniorities, the stable configuration moves closer to the
expected Dg;, symmetric benzene. The potential energy surface enjoys a large qualitative correction
when including the seniority-four subspace in the calculations. However the predicted most stable
configuration is still off by 0.59°. The inclusion of seniority-six further improves the quality of the
potential energy surface, but only at seniority-eight the correct symmetry seems to be recovered,
at least up to the resolution of our performed calculations. At this point, the results become very
close to the full seniority results. In Fig. 5, the weights of the different seniority sectors in the
ground state during distortion are also given. These weights do not express the large changes as
were seen during dissociation of the nitrogen dimer in Fig. 2. This is quite expected as the bond
breaking of the nitrogen dimer is a far more outspoken change than the small benzene distortions
in this section.

3.3 Neon dimer

The neon dimer, constituted by just two noble gas atoms, is very weakly bonding. Although the
electrons do not form covalent bonds between the two atoms, it expresses some bonding character
due to weak dispersion forces. In Ref. [83], an empirically fitted potential curve results in a binding
energy of —134uE,;, and a binding distance of 3.091 A.

As the binding of the neon dimer is rather weak and due to dynamical correlations, it will
be very sensitive to the chosen basis set size. For an accurate description of the potential energy
curve, a large basis set should be chosen and basis set superposition errors (BSSE) should be taken
into account appropriately [84]. A clear example of the importance of BSSE-corrections is the
dissociation curve on the Hartree-Fock level. At this level of theory no binding is expected as the
Hartree-Fock solution is dispersion-free. However, when using small basis sets, one would find a
binding neon dimer at the Hartree-Fock level if one neglects to correct the BSSE [84].

We study the neon dimer in the aug-cc-pVDZ basis; it was found that this basis set has a
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favorable tradeoff between mitigating BSSE and numerical stability issues of larger basis sets.
Calculations with different seniority sectors are executed while using DOCI-optimized orbitals with
a frozen 1s core. Reduced bond dimensions up to 800 are used for the DMRG calculations. As the
aug-cc-pVDZ basis is a rather small basis for capturing dispersion forces, appropriately removing
BSSE is important. This is done by using the Boys and Bernardi counterpoise correction [85].
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Figure 6: Dissociation curves for the neon dimer without BSSE-correction. The energies
at large separation distances is given in the inset.

In Fig. 6 the raw uncorrected results are given for the different calculations. For all seniority
calculations the neon dimer seems to be bonding. However, for seniority-zero and seniority-
two-plus-zero the bonding seems to be very weak; only for v < 4 calculations and higher the
bonding character is qualitatively corresponding with the full seniority case. For the counterpoise
correction, equivalent calculations as for the dimer are executed but where one neon atom is
replaced by a chargeless, electronless ghost atom. This way, we can approximately correct for the
extra stabilization each neon monomer experiences by the extra added basis functions of the other
monomer. The BSSE-corrected dissociation energy for the dimer at distance r is then given by

Edissoc(r) = ENe—Ne(r) - ENe—ghost(r) - Eghost—Ne(r) . (11)

The same level of theory should be used for these ghost calculations as for the original cal-
culation. This poses a difficulty since the seniority restricted calculations are not size consistent;
Egissoc(r — ©0) does not tend to zero as is desired. Assume we have executed a dimer calculation
with v < 4, using ghost calculations with the same v < 4 will over-correct, while ghost calculations
at the lower v < 2 will under-correct. We try to solve this problem by both over- and under-
correcting and shift both curves to O in the dissociation limit. Results for these BSSE-corrections
are given for different seniority sectors in Fig. 7 with the grayed area indicating where the exact
BSSE-correction is expected to be. From Fig. 7a and Fig. 7b, it seems that the weak bonding
character present in Fig. 6 for v =0 and v < 2 practically or completely disappears when taking
BSSE-corrections into account. When correcting v < 4 calculations, the over-corrected dissociation
underestimates the dissociation energy a bit with respect to the FCI BSSE-corrected calculations
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while the under-corrected dissociation overestimates the dissociation energy, as can be expected.
It seems thus that calculations with seniority-zero and seniority-two do not model the needed
dispersion and at least seniority-four is needed. This suggests the breaking of at least one electron
pair at each Ne atom is needed, inducing polarization effects in each atom which give rise to the
dispersion energy.
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Figure 7: Dissociation curves for the neon dimer with and without BSSE correction for
different seniority subspaces. When BSSE-correction is performed, the used seniority
subspace for the ghost atom calculation is given in brackets in the legend. The dissociation
curve for a full-seniority calculation with full BSSE-correction is also shown in each
subfigure. Results are shown for v =0 (a), v < 2 (b) and v < 4 (c) subspace calculations.

Finally, we notice that the FCI dissociation energy with BSSE-correction is a factor of three
smaller than empirical measurements and the bond length is overestimated. This is quite normal
when studying dynamical correlations in small basis sets. The limited basis set does not allow all
the needed flexibility for the stabilization of the dimer.
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4 Conclusion

In this paper, the concept of seniority is joined with tensor network methods. By using seniority-
invariant tensors in a tensor network, we can force all the renormalized states in the virtual bonds
to be eigenstates of the seniority operator. This allows for arbitrary seniority-restricted calculations.
For DOCI (doubly occupied configuration interaction) calculations, we can immediately implement
the DOCI-projected quantum chemical Hamiltonian in Eq. (8). This results in a very fast tensor
network calculation, partly because of the simpler Hamiltonian, partly because the correlations in
the seniority-zero subspace for molecular systems are easily captured by tensor networks; even
for very large systems, a bond dimension of less than 100 suffices for energies within chemical
accuracy of the exact DOCI energy.

Several systems are studied within different seniority subspaces. For the dissociation of the
nitrogen dimer, only a quantitative dissociation curve can be obtained when at least two pairs
are allowed to be broken. This can be theoretically explained due to Hund’s rule. The in-plane
distortion of benzene and its artificial Dg;, symmetry breaking in the seniority-zero subspace [33]
is also studied. A large correction of the artificial symmetry breaking occurs when including
seniority-four, however up to eight unpaired electrons are needed for a complete restoration of
the correct benzene point group symmetry in the used basis set. Finally, also the dissociation of
the neon dimer is considered. At the seniority-zero level of theory the neon dimer is non-binding;
DOCI does not capture the dispersion forces needed for the weak binding characteristic of neon.
Only at seniority-four and onward, the dispersion forces are adequately picked up.

For all systems, the seniority-two subspace has only a small contribution to the total wave
function when using DOCI-optimized orbitals; as expected by the theoretical first order decoupling
between seniority-zero and seniority-two subspaces in these types of orbitals [32]. However, a first
order decoupling is not an exact decoupling and other orbital sets can be found which attribute
even less importance to the seniority-two subspace. An example of this is given by the natural
orbitals of the nitrogen dimer in Fig. 1c.
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