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Abstract

We employ the Gross-Pitaevskii equation to study acoustic emission generated
in a uniform Bose gas by a static impurity. The impurity excites a sound-wave
packet, which propagates through the gas. We calculate the shape of this
wave packet in the limit of long wave lengths, and argue that it is possible to
extract properties of the impurity by observing this shape. We illustrate here
this possibility for a Bose gas with a trapped impurity atom – an example
of a relevant experimental setup. Presented results are general for all one-
dimensional systems described by the nonlinear Schrödinger equation and can
also be used in nonatomic systems, e.g., to analyze light propagation in nonlin-
ear optical media. Finally, we calculate the shape of the sound-wave packet for
a three-dimensional Bose gas assuming a spherically symmetric perturbation.
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1 Introduction

Time evolution of weakly perturbed quantum gases and liquids is often visualized as the
dynamics of collective excitations, e.g., phonons. For example, the response of super-
fluid helium-4 to various weak perturbations is interpreted as generation of elementary
excitations in the Landau’s theory of superfluidity [1–3]. Similar approaches are used
to understand cold atoms [4], polaritons [5, 6], and other quantum many-body systems.
The general idea is that low-energy perturbations lead to certain occupancies of collective
modes, whose dynamics determines the later state of the system. Looking at the problem
from another angle, the population of collective modes after excitation carries informa-
tion about perturbation. This information could potentially be used to study the source
of perturbation, as done in acoustic emission testing in classical solids [7]. To exploit
this possibility, one first one needs to study theoretically the question “Can one hear the
shape of a drumstick?”1, i.e., one needs to understand what information is carried in the
sound-wave packet generated by perturbation.

In this work, we use a weakly-perturbed Bose gas to address the question, and inves-
tigate the possibility of reconstructing perturbing potential from sound waves. We choose
to model the problem using the Gross-Pitaevskii equation (GPE) – the standard tool for
studying degenerate Bose gases [9]. Our work focuses on the linear regime of the GPE,
which has sound waves as elementary excitations. Nonlinear phenomena supported by
the GPE (e.g., solitons, shock waves [10]) are not important for our study, and will be a
subject of our future work. For simplicity, we focus on a quasi-one-dimensional Bose gas
that can be modelled by a one-dimensional GPE [11–13], and only briefly discuss what
happens in higher spatial dimensions.

Our work is summarized in Fig. 1. A static impurity inserted in a homogeneous Bose
gas creates a defect in the Bose gas and two sound waves, which contain information
about the spatial profile of the impurity. One can learn later properties of the impurity by
analyzing the emitted sound. This could allow one to extract properties of the impurity
even if its exact location is not known. We illustrate this idea by studying time evolution
of the system upon an introduction of a single weakly-interacting impurity of a general
kind. The problem is motivated, in particular, by Bose gases with a localized defect [4] or
with a massive moving impurity [14].

Our findings are applicable to all systems that are described by the nonlinear Schrödinger
equation (NLSE), e.g., to optical pulses propagating inside lossless optical fiber [15], be-
cause the Gross-Pitaevskii equation is mathematically equivalent to the NLSE. Further-
more, our results for weak couplings can be applied to other one-dimensional Hamil-
tonians with similar linear excitations, e.g., to the Fröhlich model with a static impu-
rity (cf. Ref. [16]).

The organization of this paper is as follows. In section 2, we introduce the model
(the GPE), which we analyze in the linear regime. In section 3, we compare the results
obtained in the linear regime to the numerically exact solution of the Gross-Pitaevskii
equation. In section 4, we illustrate our findings for a relevant cold-atom set-up, where
the role of perturbation is played by an impurity atom. In section 5, we briefly discuss a
weakly-pertubed Bose gas in three spatial dimensions. We conclude in section 6 with a
summary of our findings and future directions.

1We formulate this question in reminiscence of a classic “Can one hear the shape of a drum?” (Ref. [8]).
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Figure 1: An illustration of the system. A Bose gas which is homogeneous at t < 0 is
perturbed at t = 0. At t > 0, the impurity (perturbation) creates a defect in the density of
the Bose gas, which resembles the shape of the impurity. Moreover, the impurity generates
sound waves, which carry away information about the spatial profile of the impurity.

2 Formalism

Our system consists of N repulsively interacting bosons that can be described via the
one-dimensional GPE. The system is confined to a ring of length L, otherwise it does
not experience any external potential at t < 0. We focus on the thermodynamic limit
N(L) → ∞, assuming homogeneous density ρ = N/L at t < 0. At t = 0 the system is
weakly perturbed, and we study the time evolution at t > 0 using the equation

i~
∂φ

∂t
= − ~2

2m

∂2φ

∂x2
+ gN |φ|2φ+ ηV (x)φ, (1)

where φ(x, t) is the order parameter, m is the mass of a boson, g determines the strength
of the interaction between the atoms in the gas, V and η define the geometry and strength
of the perturbation potential, respectively. For simplicity, we focus on parity-symmetric
potentials, i.e., V (−x) = V (x), that are real and decay exponentially fast at infinity.
Otherwise, there are no assumptions on the form of V , moreover, the generalization for
nonsymmetric potentials is straightforward. Note that an important Gaussian perturba-
tion has been extensively studied in Refs. [17–21] – these works provide reference points
for our study. The function φ obeys the initial condition φ(x, 0) = 1/

√
L. It is periodic,

φ(x, t) = φ(x+ L, t), and it is normalized as
∫
|φ(x, t)|2dx = 1. For later convenience, we

associate a length scale, l, with the potential V , and define the healing length of the gas
as ξ = ~√

2mgρ
.

We assume that the strength of the perturbation is a small parameter, η → 0, that
allows us to expand φ as

φ(x, t) =
1 + ηf(x, t)√

L
e−i

gρ
~ t + η2F (x, t) + . . . . (2)

We are interested in the evolution of the function f(x, t). To compute it, we study the
equation

i~
∂f

∂t
= − ~2

2m

∂2f

∂x2
+ ρg(f + f∗) + V (x). (3)

Note that the form of the ansatz (2) ensures the non-standard form of the linearized GPE
in Eq. (3).

Consider first V (x) = 0. In this case, Eq. (3) is well-known: it describes excitations of
a uniform Bose gas, and is solved using the Bogoliubov transformation

f (0)(x, t) =

∫ ∞
−∞

dk
(
uke

ikx−iωt − v∗ke−ikx+iωt
)
, (4)
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where uk and vk obey the Bogoliubov-de Gennes system of equations:

~ωuk −
~2k2

2m
uk − ρg(uk − vk) = 0,

~ωv∗k +
~2k2

2m
v∗k − ρg(u∗k − v∗k) = 0, (5)

whose eigenvalues are

ωk = |k|
(
~2k2

4m2
+
ρg

m

)1/2

. (6)

The frequency ωk defines the Bogoliubov’s excitations spectrum whose relevance for exci-
tations of 1D Bose gases is confirmed by the Bethe ansatz results [22, 23]. Note that for
long wave lengths (k → 0) the spectrum is phonon-like

ωk = c|k|, (7)

where c =
√

ρg
m is the speed of sound in the gas. There also exist the so-called zero and

“lost” modes that are consequences of the Nambu-Goldstone theorem [24, 25] due to the
U(1) symmetry breaking [26–30], but their contribution to f (0) is negligible, and we do
not consider them here. Equations (5) and (6) allow us to calculate the function f (0):

f (0)(x, t) =
1

2π

∫
dkfk(x, t)e

ikx; fk = uk

(
e−iωkt − ρgeiωkt

~ωk + εk + ρg

)
, (8)

where εk = ~2k2
2m . For later convenience, we have assumed that uk is real, thus u∗−k = uk.

The coefficients uk are determined by the initial conditions, f (0)(x, t = 0).
We now proceed to the V (x) 6= 0 case, for which the solution f(x, t) is written as

f(x, t) = f (0)(x, t) + fsp(x), (9)

where fsp(x) is a special solution to Eq. (3), which does not depend on time because V does
not depend on time. The initial conditions demand that f (0)(x, t = 0) = −fsp(x), which
fully determines the function f (0). In order to find fsp we consider the inhomogeneous
ordinary differential equation

Lfsp = V (x), (10)

where L = ~2
2m

d2

dx2
− ρg(I +K) is the linear differential operator in Eq. (3), with I and K

being the unity and the complex conjugation operators, respectively. We write the Green’s
function, G(x, x′) = G(x− x′), of this operator as

G(x− x′) = − 1

2π

∫
eik(x−x

′)

εk + 2ρg
dk,

[
LG(x− x′) = δ(x− x′)

]
, (11)

which allows us to solve Eq. (10) as

fsp(x) =

∫
G(x− x′)V (x′)dx′ or fsp(x) = − 1

2π

∫
dk
Ṽ (k)e−ikx

εk + 2ρg
, (12)

where Ṽ (k) =
∫
V (x)eikxdx is the Fourier transform of the potential V (x). The inverse

Fourier transform is then V (x) = 1
2π

∫
Ṽ (k)e−ikxdk.

Therefore, Eq. (9) takes the form

f(x, t) =

∫
dke−ikx

[
uk

(
e−iωkt − ρg

εk + ~ωk + ρg
e+iωkt

)
− Ṽ (k)

2π(εk + 2ρg)

]
. (13)
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Taking into account the initial condition f(t = 0) = 0, we find

fk(t) =

[
(εk + ~ωk + gρ)e−iωkt − gρeiωkt

]
Ṽ (k)

2π(εk + ~ωk)(εk + 2gρ)
. (14)

The function fsp(x) is real, since Ṽ (k) = Ṽ (−k), and εk = ε−k. Note that in the special
case k = 0 the analyticity of the fk allows us to evaluate the limit that yields

f0(t) =
Ṽ (0)

4πρg
− it

2

Ṽ (0)

2π~
. (15)

This mode is related to the Nambu-Goldstone mode that appeares from the breaking of
the translational invariance [31]. The real and imaginary parts of the function f(x, t) are
written as

Re(f) =
1

2π

∫
dk
Ṽ (k)e−ikx

εk + 2ρg
(cosωkt− 1) , (16a)

Im(f) = − 1

2π

∫
dk
Ṽ (k)e−ikx

εk + 2ρg

(
1 +

2ρg

εk + ~ωk

)
sinωkt. (16b)

We have shown that the knowledge of fk grants access to Ṽ (k), hence, if there is an
apparatus to measure the occupation of the excitation spectrum one can learn properties
of the perturbing impurity. Next, we analyze fk for perturbations with long wavelengths,
i.e., we focus on the limit ξ � l where the GPE works best. In the energy domain, this
limit reads

~2k2pert
2m

� gρ, (17)

where kpert = 1/l determines the range of Ṽ (k). Equation (17) allows us to simplify fk
and to write the real and imaginary parts of f as

Re(f) ' 1

4πgρ

∫
dkṼ (k) (cos(c|k|t)− 1) e−ikx, (18)

Im(f) ' − 1

2π~c

∫
dkṼ (k)

sin(c|k|t)
|k| e−ikx. (19)

It is worthwhile noting that the derivative of Im(f) is related to the time-dependent part
Re(f). Using the convolution theorem for inverse Fourier transform, we obtain

Re[f(x, t)] ' 1

4gρ
(V (x− ct) + V (x+ ct)− 2V (x)) , (20)

Im[f(x, t)] ' − 1

2~

∫ t

0
dt′
(
V (x− ct′) + V (x+ ct′)

)
. (21)

These equations show that two counterpropagating sound waves are formed upon excita-
tion of the Bose gas2. For t� ml2/~, the zero mode supports a phase difference between
parts of the Bose gas, e.g, Im(f(|x| → ∞, t)− f(0, t)) ' Ṽ (0)/(2c).

One can extract information about the perturbing potential by observing the density
of the Bose gas. Indeed, the density of the gas n(x, t) = N |φ|2 is written as n(x, t) =
ρ(1 + 2ηRe(f)) or

n(x, t) = ρ+
η

g

[
1

2
V (x− ct) +

1

2
V (x+ ct)− V (x)

]
. (22)

2Note that the imaginary part can also be written as Im(f) '
∫∞
−∞

rdr
4c|r|~ [V (x− r − ct)− V (x− r + ct)].
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Note that
∫

Refdx = 0 to ensure correct normalization of |φ(x, t)|2. In the linear regime,
the density of the gas at t > 0 is fully defined by ρ and the shape of the perturbation
potential. The perturbation creates a stationary defect in the density of the gas given
by V (x). It also leads to two waves propagating in the opposite directions with the
speed of sound, V (x ± ct). One can learn about the shape of the impurity by observing
the propagation of these sound waves. Furthermore, one can speculate that the running
waves can potentially be useful for short-distance communication between different points
of the Bose gas provided that V is tailored to the needs of information transfer.

To understand the physics behind the density presented in Eq. (22), a few insights are
needed. First of all, the propagation of a sound wave in the one-dimensional Bose gas can
be described by the massless (1+1) Klein-Gordon equation3 whose general (d’Alembert’s
solution) is v(x− ct) + w(x+ ct), where the functions v and w must be determined from
the initial conditions. Note that we should expect v = w due to the mirror symmetry of
our problem. To find the form of v, note that the stationary GPE must describe well the
system at around x = 0 for t→∞, i.e., long after the perturbation is tuned on. In other
words, the Thomas-Fermi approximation must be valid at t → ∞ close to the impurity
potential, which explains the last term in Eq. (22). The three terms (v(x− ct), v(x+ ct),
and V ) must all enter in the final result for the density since we work in the linear regime.
The function v can then be found from the initial condition 2v(x) − V (x) = 0, giving a
clear explanation for the form of n(x, t).
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Figure 2: Time evolution of the density of the Bose gas, n(x, t)/ρ − 1. A solution of the
GPE is shown by the solid blue curves; the linearized solution is presented using red dots.
The perturbation potential is given by Eq. (23). Numerical calculations are implemented
for N = 1500, g = 1.0

( ~
ml

)
, and different values of η. The density of the Bose gas at

t = 0 is ρ = 50/l, which ensures that ξ � l. Panels (a) and (b) show the snapshots at

t ≈ {3.5
(
ml2

~

)
, 7.1

(
ml2

~

)
} for η = 0.5. Panels (c) and (d) demonstrate the densities at

t ≈ {3.5
(
ml2

~

)
, 7.1

(
ml2

~

)
} for η = 5.

3The Klein-Gordon equation follows from Eq. (3).
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3 Exact solution versus linearization

The linearized solution obtained above neglects the higher order terms in the expansion
of Eq. (2). To estimate the accuracy of this approximation, we compare the linearized
solution to a numerical solution of the GPE. For the sake of discussion, we consider the
perturbation potential,

V (x) =
~2

ml2
√
π

(
2
(x
l

)2
− 1

)
exp

[
−1

2

(x
l

)2]
, (23)

inspired by the second excited eigenstate of a harmonic oscillator. This choice is made to
ensure that the numerical solution of the GPE would be well-behaved and would clearly
show the shape of the running waves.

In Fig. 2, we compare the normalized density of the gas, n(x, t)/ρ − 1, to 2ηRe(f)
from Eq. (22). The numerically ‘exact’ density is given by L|φ(num)|2−1 where φ(num) is a
solution of the GPE. This solution is obtained using the pseudospectral method (equipped
with the fast Fourier transform routine) for space discretization, in combination with the
Runge-Kutta time-stepping scheme [32]. In Fig. 3, we compare the phase of the numericall
‘exact’ solution to that obtained by linearization.
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Figure 3: Time evolution of the phase of the Bose gas, arg(φ). A solution of the GPE is
shown by the solid blue curves; the linearized solution is presented using red dots. The
perturbation potential is given by Eq. (23). Numerical calculations are implemented for
N = 1500, g = 1.0

( ~
ml

)
, and different values of η. The phase is taken relative to the phase

at x = −L/2 to ensure that it is well-defined. Panels (a) and (b) show the snapshots at

t ≈ {3.5
(
ml2

~

)
, 7.1

(
ml2

~

)
} for η = 0.5. Panels (c) and (d) demonstrate the phases at

t ≈ {3.5
(
ml2

~

)
, 7.1

(
ml2

~

)
} for η = 5.

Figures 2 and 3 show that the results obtained via linearization agree well with our
numerical solution of the GPE. Linearization captures the behavior of the solution even
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after a long evolution time, when the running waves are clearly separated. For strong inter-
actions, the nonlinear effects of the GPE muddle the quantitative comparison (especially
for the phase of the gas); still a qualitative agreement is observed. Note that the shape of
the sound waves in Fig. 2 resembles the shape of the impurity even for rather large values
of the perturbation parameter, η, for which the density variation can be approximately
7%. The effect of this size is within reach of current experimental setups, allowing one
to extract properties of the impurity from the generated sounds waves. The presence of
the left- and right-moving wave packets is useful for averaging out random noise. Note
also that one can study the impurity from the static defect created by the impurity in the
density of the Bose gas, provided that the position of the impurity is known.

4 A mobile impurity in a Bose gas

Finally, we discuss a system where observation of the sound waves examined above may
provide a valuable tool for a weakly destructive measurement of the perturbation’s prop-
erties. Such systems can be Bose gases with localized or slowly moving defects [4, 14], or
systems with mobile impurities.

We choose to consider a homogeneous Bose gas with a mobile impurity atom trapped
by an external potential. A mobile impurity could be used to study properties of the Bose
gas [33–35], to simulate Bose polarons [36], and to store and process quantum informa-
tion [37, 38]. These applications have already motivated a number of works to study the
quench dynamics of impurities in similar setups [36, 39–43]. In this work, we investigate
the corresponding time dynamics of the Bose gas.

We assume that the impurity occupies a certain state of the harmonic trap, and argue
that information about this state can be extracted in a weakly destructive manner by
observing the density of the Bose gas following a sudden change of the boson-impurity
interaction. For simplicity, we focus on an impurity that is either in the ground, |g〉, or in
the first excited, |e〉, states. A more challenging measurement of a general quantum state:
|g〉+A|e〉, where A is some complex number, requires knowledge of both the density and
the phase of the Bose gas. A corresponding discussion is left for future studies.

To study the dynamics of the impurity we employ a strong coupling approach [44–46],
which is based on the Hartree approximation to the wave function. The system (Bose gas
plus impurity) is described within this approach by the system of coupled equations

i~
∂φ

∂t
= − ~2

2m

∂2φ

∂x2
+ gN |φ|2φ+ gib|ψ|2φ, (24)

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+

~2x2

2ml4
ψ + gibN |φ|2ψ, (25)

where φ is the order parameter of the Bose gas, and ψ describes the impurity; gib is
the strength of the boson-impurity interaction. The impurity is trapped by an external
harmonic oscillator, ~2x2

2ml4
. For simplicity, we assume that the impurity and a boson are of

equal masses. We again consider ξ � l, which means that the density distortion created
by the impurity has a range, which is smaller than the oscillator length. Interestingly, this
condition is also required to define a one-dimensional Bose polaron [43,47,48].

In the limit of small values of gib, Eq. (24) maps onto Eq. (1) with

ηV (x) = gibe
−x2/l2/(

√
πl) (26)

for the ground state and

ηV (x) = 4gibx
2e−x

2/l2/(
√
πl3) (27)

8



SciPost Physics Submission

for the excited state. The Bose gas is homogeneous at t < 0, which means that in the
leading order in gib, only the phase of the impurity atom is affected. By changing gib
one creates a sound wave in the Bose gas with amplitude proportional to gib, whereas the
corresponding change of the state of the impurity is of the order g2ib. Let us show that the
sound wave indeed contains information about the state of the impurity. To this end, we
solve Eqs. (24) and (25) numerically and via linearization. The comparison is presented
in Fig. 4. We see that numerical results agree well with linearization. As expected, the
shape of the sound wave is given by the state of the impurity. If the impurity is used to
store information in the form of either |g〉 or |e〉, then the read-out of this information
can be achieved from the sound waves emitted upon the change of gib. The measurement
process is weakly destructive, since the state of the impurity is perturbed as ∼ g2ib upon
the change of gib, and the observation of the density of the Bose gas may (in principle)
have no effect on the impurity.

Figure 4: Comparison between the numerical solution of Eqs. (24), (25) (blue line) and
the corresponding linear approximation (red dots) for an impurity initialized either in
the ground state |g〉 (top) or the first excited state |e〉 (bottom) of a harmonic oscillator.

Plotted are the densities of the Bose gas at t ≈ 7.1
(
ml2

~

)
. Numerical calculations are

implemented with N = 1500, g = 1.0
( ~
ml

)
, and gib = g. The density of the Bose gas at

t = 0 is ρ = 50/l.

5 Higher Dimensions

We can use the theoretical methods of section 2 to analyze a weakly perturbed Bose gas
described by the d-dimensional Gross-Pitaevskii equation:

i~
∂φd
∂t

= − ~2

2m

∂

∂~x

∂

∂~x
φd + gN |φd|2φd + ηVd(~x)φd, (28)

9
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where Vd is the d-dimensional perturbing potential, and φd is the corresponding order
parameter. Let us briefly discuss the solution to the GPE in the linear regime. Following
Eq. 2, we expand the function φd as in the form

φd '
1 + ηfd

L
d
2

exp

(
− igρt

~

)
, (29)

where L is the linear dimension of the system, and derive the function fd as

Re(fd) =
1

(2π)d

∫
ddk

Ṽd(~k)e−i
~k~x

εk + 2ρg
(cosωkt− 1) , (30a)

Im(fd) = − 1

(2π)d

∫
ddk

Ṽd(~k)e−i
~k~x

εk + 2ρg

(
1 +

2ρg

εk + ~ωk

)
sinωkt, (30b)

where k = |~k|, Ṽd(~k) =
∫
Vd(~x)ei

~k~xddx is the Fourier transform of the potential in d

spatial dimensions; by assumption, Ṽ (−~k) = Ṽ (~k). The energies ωk and εk are defined as
in section 2.

To illustrate Eqs. (30), let us analyze them in three spatial dimensions in the infrared
limit (kpert → 0):

Re(f3) = −V3(~x)

2ρg
+

1

4π2ρg
A(~x, t), (31a)

Im(f3) = − 1

2π2~

∫ t

0
A(~x, T )dT, (31b)

where

A(~x, t) =

∞∑
l=0

l∑
m=−l

(−i)lY m
l

(
~x

x

)∫ ∞
0

k2dkṼ m
l (k)jl(kx) cos(ckt), (32)

here x = |~x|, Y m
l is the (l,m) spherical harmonic, and Ṽ m

l (k) =
∫

dΩY m
l

(
~k
k

)
Ṽ3(~k)

defines the angular amplitudes of the perturbing potential. The function A(~x, t), thus
also f3, contains only the (l,m) harmonics for which Ṽ m

l 6= 0. Therefore, by analyzing
the profile of A one can learn about the angular structure of the potential. We are
interested in the behavior of f3 far outside the range of the potential, i.e., in the limit
x → ∞. Therefore, we approximate the spherical Bessel functions by their asymptotics,
jl(kx) ' sin(kx− lπ/2)/(kx), which leads to the expression

A '
∑
l,m

(−i)l
2x

Y m
l

(
~x

x

)∫
kdkṼ m

l (k)

(
sin

(
k(x− ct)− lπ

2

)
+ sin

(
k(x+ ct)− lπ

2

))
.

(33)
The second term in the integrand is highly oscillating for x → ∞, and we can neglect it.
The resulting expression for A then reads as

A '
∑
l,m

(−i)l
2x

Y m
l

(
~x

x

)∫
kdkṼ m

l (k) sin

(
k(x− ct)− lπ

2

)
, (34)

it is clear that A does not vanish only in the region close to x = ct, which is what we
expect for sound propagation. We leave the study of the general expression for A for
future studies. Instead, we focus on a spherically symmetric potential (l = 0) for which
Eq. (33) is exact for all values of x, and can be easily evaluated

A(~x, t) = π2
(
x− ct
x

V3(x− ct) +
x+ ct

x
V3(x+ ct)

)
. (35)
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The corresponding three-dimensional density is written as

n3(~x, t) = ρ3 +
η

g

(
x− ct

2x
V3(x− ct) +

x+ ct

2x
V3(x+ ct)− V3(x)

)
, (36)

where ρ3 = N/L3 is the density of the unperturbed Bose gas. The density n3 has a
structure which is very similar to what has been obtained in one spatial dimension: The
perturbation creates a defect and a running wave, whose shape is fully determined by the
shape of the spherically symmetric perturbing potential. For long times, the term V3(x+ct)
is small, since V3 is an integrable function. In this limit, the density is determined by the
defect and the spherical outgoing wave as

n3(~x, t) ' ρ3 +
η

g

(
x− ct

2x
V3(x− ct)− V3(x)

)
. (37)

The form of the function n3 implies the possibility to study the perturbing potential by
analyzing the generated sound-wave packet, which, however, requires a more complicated
procedure than the corresponding one-dimensional analogue.

The physics behind Eq. (36) is similar to that in one spatial dimension. Indeed,
the propagation of sound in three spatial dimensions for l = 0 can be described by the
massless (1+1) Klein-Gordon equation on a semi-infinite line. The corresponding solution

is v(ct−x)−v(x+ct)
x . The solution should also include a time-independent term that describes

the defect in the Bose gas. According to the Thomas-Fermi approximation to the density
profile, this defect is given by −η

gV3(x). The form of v then follows from the initial
condition, n3(t = 0) = ρ3.

6 Conclusion

To summarize, population of collective modes provides information on the properties of
their source. To illustrate this, we have calculated excitations generated in a Bose gas
by a static impurity. In the linear regime, these excitations have been expressed through
the potential imposed by the impurity. As a relevant example, we have considered a one-
dimensional Bose gas with a trapped impurity atom. The impurity has been initialized
in either the ground or the first excited states of a harmonic oscillator, although, it is
not difficult to argue that our analysis can be extended to more complicated cases. For
example, one could measure not only motional but also internal states of an impurity,
provided that the impurity-gas interaction strength, gib, depends on the pseudospin of the
impurity.

Our work implies that one can hear the shape of a drumstick in a one-dimensional
Bose gas in the infrared limit, and motivates to go beyond our analysis. Outside the
infrared limit, Eq. (14) poses an invertability problem for the potential V (x) and becomes
our next goal. Another future direction is to extend our discussion to higher-dimensional
systems with non-spherically symmetric potentials (which might be relevant for molecules
in quantum gases [49]), and to assess beyond-mean-field effects which are particularly
important for one-dimensional quantum gases.
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in one dimension: beyond the Fröhlich paradigm, New Journal of Physics 19(10),
103035 (2017), doi:10.1088/1367-2630/aa8a2e.

[43] S. I. Mistakidis, A. G. Volosniev, N. T. Zinner and P. Schmelcher, Effective approach
to impurity dynamics in one-dimensional trapped Bose gases, Physical Review A
100(1), 013619 (2019), doi:10.1103/PhysRevA.100.013619.

14

https://doi.org/10.1016/j.aop.2014.12.009
https://doi.org/10.1140/epjb/e2008-00407-3
https://doi.org/10.1140/epjb/e2008-00407-3
https://doi.org/10.1137/1.9780898719680
https://doi.org/10.1103/PhysRevLett.91.240407
https://doi.org/10.1103/PhysRevLett.94.040404
https://doi.org/10.1103/PhysRevA.84.031602
https://doi.org/10.1103/PhysRevA.85.023623
https://doi.org/10.1088/1367-2630/9/11/411
https://doi.org/10.1103/PhysRevA.95.053618
https://doi.org/10.1103/PhysRevLett.110.015302
https://doi.org/10.1103/PhysRevA.92.023623
https://doi.org/10.1103/PhysRevA.93.033610
https://doi.org/10.1088/1367-2630/aa8a2e
https://doi.org/10.1103/PhysRevA.100.013619


SciPost Physics Submission

[44] F. M. Cucchietti and E. Timmermans, Strong-coupling polarons in di-
lute gas Bose-Einstein condensates, Phys. Rev. Lett. 96, 210401 (2006),
doi:10.1103/PhysRevLett.96.210401.

[45] K. Sacha and E. Timmermans, Self-localized impurities embedded in a one-
dimensional Bose-Einstein condensate and their quantum fluctuations, Phys. Rev.
A 73, 063604 (2006), doi:10.1103/PhysRevA.73.063604.

[46] M. Bruderer, W. Bao and D. Jaksch, Self-trapping of impurities in bose-einstein
condensates: Strong attractive and repulsive coupling, EPL (Europhysics Letters)
82(3), 30004 (2008), doi:10.1209/0295-5075/82/30004.

[47] A. G. Volosniev and H.-W. Hammer, Analytical approach to the Bose-polaron problem
in one dimension, Phys. Rev. A 96, 031601 (2017), doi:10.1103/PhysRevA.96.031601.

[48] L. Parisi and S. Giorgini, Quantum Monte Carlo study of the Bose-polaron problem
in a one-dimensional gas with contact interactions, Phys. Rev. A 95, 023619 (2017),
doi:10.1103/PhysRevA.95.023619.

[49] C. P. Koch, M. Lemeshko and D. Sugny, Quantum control of molecular rotation, Re-
views of Modern Physics 91(3), 035005 (2019), doi:10.1103/RevModPhys.91.035005,
1810.11338.

15

https://doi.org/10.1103/PhysRevLett.96.210401
https://doi.org/10.1103/PhysRevA.73.063604
https://doi.org/10.1209/0295-5075/82/30004
https://doi.org/10.1103/PhysRevA.96.031601
https://doi.org/10.1103/PhysRevA.95.023619
https://doi.org/10.1103/RevModPhys.91.035005
1810.11338

	Introduction
	Formalism
	Exact solution versus linearization
	A mobile impurity in a Bose gas
	Higher Dimensions
	Conclusion
	References

