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Abstract

Quantum corrals can be considered as artificial atoms. By coupling many
quantum corrals together, artificial matter can be created at will. The atomic
scale precision with which the quantum corrals can be made grants the ability
to tune parameters that are difficult to control in real materials, such as the
symmetry of the states that couple, the on-site energy of these states, the
hopping strength and the magnitude of the orbital overlap. Here, we system-
atically investigate the accessible parameter space for the dominant platform
(CO molecules on Cu(111)) by constructing (coupled) quantum corrals of dif-
ferent sizes and shapes. By changing the configuration of the CO molecules
that constitute the barrier between two quantum corrals, the hopping inte-
gral can be tuned between 0 and -0.3 eV for s- and p-like states, respectively.
Incorporation of orbital overlap is essential to account for the experimental
observations. Our results aid the design of future artificial lattices.
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1 Introduction

The scanning tunneling microscope makes it possible to position adsorbates and vacancies
on surfaces with atomic scale accuracy [1]. This approach has been used to explore the
limits of data storage [2–5], to perform logic operations [6–9], to study chemical reactions
at the single molecule level [10–13], and to study the electronic and magnetic structure of
atomically well-defined structures [14,15].

With respect to studying electronic properties of extended systems, two complementary
approaches have been used. The first approach is based on coupling localized states of
either adatoms, vacancies or dangling bonds, [16–23]. By positioning such species with
atomic scale precision, artificial electronic molecules or lattices can be created and their
electronic structure studied. Initial experiments focused on the evolution of the electronic
structure with system size. However, more complicated and interesting phenomena can
also be studied, such as topological states of matter and Majorana bound states [21,24].

The second approach, following the ideas underpinning the quantum corral, is based on
patterning a 2D electron gas (2DEG) with a (periodic) scattering potential. In particular,
the CO on Cu(111)platform has been used to study the electronic structure of periodic and
non-periodic systems [25–31]. Here, the CO molecules act as repulsive scattering centers
for the surface state electrons of Cu(111) [32]. By placing these scattering centers with
atomic scale accuracy, a large variety of potential energy landscapes can be created for
electrons. For example, by creating a triangular lattice of CO molecules, the electrons
are confined to the anti-lattice, i.e. a honeycomb geometry [26]. Density of states mea-
surements revealed the emergence of a Dirac cone in the 2DEG, as observed in graphene.
Building on this approach, an electronic Lieb-lattice [27], quasi-crystal [28] and electronic
fractal [29] have been realized. Recently, it was shown that this material platform can also
be used to study topological states of matter [31,33].

One of the advantages of using artificial lattices is that it allows control over parameters
that cannot be controlled easily in real materials. These include the on-site energy, the
strength of the hopping parameter, orbital overlap, and which orbitals couple. However,
the values for the hopping parameter, on-site energy of each electronic site and overlap
are not immediately obvious given a certain configuration of CO/Cu(111). Currently,
determining these parameters is an involved iterative “reverse engineering” procedure
which includes first designing the lattice and performing a muffin tin calculation to check
that the features of interest are observable, which may take several iterations of design
changes. The resulting muffin tin band structure is compared to the output of a tight
binding calculation. The tight binding parameters are then adjusted such that the tight-
binding band structure matches the muffin tin result [33].

In this work, we systematically investigate the accessible tight binding parameter range
for the CO/Cu(111) platform by coupling quantum corrals into artificial molecules. The
report is arranged as follows. First, a background on the subject is given, and the experi-
mental details are discussed. We show how changing the size of rectangular and triangular
corrals affects their on-site energy and we determine the effective mass of the confined
electrons. We specifically focus on rectangular and triangular corrals, as these allow for
space-filling artificial lattices. Furthermore, we report experiments on coupling such units
into dimers and trimers and extract the tight binding parameters. We investigated the
coupling of both s-like and p-like orbitals. The coupling strength is adjusted with different
methods; both by changing the size of the potential barrier between the corrals, and by
changing the size of the corrals themselves. Finally, we studied the coupling of orbitals
with different symmetries.

Before describing our results, we discuss the similarities and differences between quan-
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Figure 1: Modeling a circular quantum corral with the particle-in-a-box model. (a) The
real part of the wavefunction enclosed in a circular well, showing its shape for different
quantum numbers. (b) |Ψ|2, which is proportional to a measurement of differential conduc-
tance STM. (c) Differential conductance maps of a small quantum corral at two energies;
-0.17 V and 0.21 V. These correspond to the ` = 0, n = 1 (1s) and ` = 1, n = 1 (1p)
states.

tum corrals and real atoms. Artificial lattices built using CO/Cu(111) can be thought
of as systems of coupled quantum corrals. The first quantum corral was created by po-
sitioning Fe atoms in a (nearly) circular ring on Cu(111) [1]. The electronic behavior
within the corral can be readily understood in terms of a particle-in-a-box model [1, 34].
Fig. 1(a) shows wavefunctions of a particle-in-a-circular-box for a combination of the first
few quantum numbers. For circular corrals, the wavefunctions are characterized by the
principle and angular quantum numbers, n, `, respectively. n − 1 defines the number of
nodal lines in the radial direction from the center, while ` defines how many nodes occur
angularly. For non-circular symmetric corrals,the angular momentum quantum number
is not well-defined. However, the wave functions of circular, rectangular and triangular
corrals exhibit alternation of sign and nodal line patterns that are reminiscent of nodal
planes in atomic orbitals [30]. The lowest energy state has no nodal lines, the second
lowest has one, etc. [35, 36]. Based on these similarities, we refer to these states of the
quantum corral as s-like and p-like, respectively. The nodal line pattern of a particular
state of the quantum corral can be visualized by mapping the differential conductance
at the energy corresponding to that state. In principle, the spin quantum number ms is
also common between a 2D particle-in-a-box and a real atom, because ms only describes
whether an electron has spin +1

2 or −1
2 , and is a general property of electrons.

In contrast to 2D quantum corrals, three quantum numbers appear for real atoms. The
magnetic quantum number is not present in 2D systems. However, as we show below, px-
and py-like states do emerge in rectangular corrals [30]. Furthermore, the allowed values
of the quantum numbers are different for quantum corrals and real atoms. For example,
circular 2D quantum corrals feature 1p-type states (see Fig 1a,b), whereas in real atoms
a 1p state does not exist.

In addition to Fe atoms, a variety of other adsorbates can be used as scattering centers.
Because of the ease and reliability with which they can be manipulated, CO molecules are
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often used [6, 37, 38]. Carbon monoxide molecules on the Cu(111) surface are imaged as
depressions with standard metallic tips [39]. A DFT study has suggested that this is due
to destructive interference of the protruding orbital of oxygen atom with the states in the
tip [40].

Throughout this document, we show the designs of various corrals and indicate copper
atoms as orange dots and CO molecules as black dots with shading that represent the
apparent size of the CO molecule as viewed in STM. Corral dimensions are reported in
terms of the Cu(111) lattice constant a = 0.2556 nm [41].

1.1 Tight binding description of dimers and trimers

To create artificial dimers, we construct two connected corrals with an opening between
them to accommodate coupling. Fig. 2(a) shows an example of a structure consisting of
two coupled rectangular corrals.

The tight binding parameters of interest are the on-site energy, ε, the nearest and
next-nearest neighbor hopping parameters, t1 and t2 (not present for dimers) respectively,
and the overlap integral, s [42, 43], see Fig. 2. It was previously reported that the next-
nearest-neighbor hopping integral can be non-negligible in artificial lattices [27,29–31,33].
To determine the magnitude of t2, we also constructed and characterized trimers, see
Fig. 2(c).

A tight binding calculation of a dimer, taking into account only the lowest energy state
of each corral, results in the following expressions for the two states of the dimer

E+ =
ε1 + t1
1 + s

(1)

E− =
ε1 − t1
1− s

(2)

where the subscript indicates the sign with which the states of the corral are added.
The values of E+ and E− can be directly extracted from differential conductance spec-
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Figure 2: Coupling quantum corrals. (a) Example placements of CO molecules (black)
on Cu(111) (orange) to produce a dimer, a lone corral and a trimer. White ovals roughly
represent the spatial extent of the wave functions of the individual quantum corrals. (b)
and (c) show the molecular orbital diagrams for a dimer and a trimer, respectively. Red
represents a positive value of the wavefunction and blue negative.
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tra acquired at suitable positions above the dimer (taking the shape and extent of the
wavefunction into account). Since the spatial confinement of the electrons in the dimer is
different from those of isolated corrals (there is an extra available area when the barrier
between two corrals is removed, the on-site energy is different for coupled and individual
corrals. The resulting set of two equations with three unknowns (1 and 2) cannot be
solved. To determine values of ε1, t1 and s, we include calculations and measurements on
a trimer, as represented in Fig. 2(c).

In the case of a trimer, there are three energy states that correspond to bonding, non-
bonding and antibonding orbitals in molecules, as illustrated in Fig. 2(e). The energies of
these three states are given by equations 3, 4 and 5, respectively.

E1 =
ε1 + ε2 − 4st1 + t2 −

√
(−ε1 − ε2 + 4st1 − t2)2 − 4(1− 2s2)(ε1ε2 − 2t21 + ε2t2)

2(1− 2s2)
(3)

E2 = ε1 − t2 (4)

E3 =
ε1 + ε2 − 4st1 + t2 +

√
(−ε1 − ε2 + 4st1 − t2)2 − 4(1− 2s2)(ε1ε2 − 2t2 + ε2t2)

2(1− 2s2)
(5)

where t2 is the next-nearest-neighbor hopping parameter, ε1 is the on-site energy of each
of the outer two atoms (the same as in the dimer) and ε2 is the on-site energy of the
central atom, see Fig. 2(c). Since E1, E2 and E3 are also observable in experiment, we
now have a system of five equations (1 to 5) and five unknowns. This allows us to obtain
all tight binding parameters ε1, ε2, s, t1, and t2.

2 Methods

All experiments were performed at T ≈ 4.5 K in ultra-high vacuum with a ScientaOmicron
LT-STM. A Cu(111) surface was prepared by several repetitions of sputtering with Ar+

and annealing at 550◦ C. Carbon monoxide was leaked into the microscope chamber with
a direct line of sight onto the Cu(111) crystal mounted in the microscope head to achieve a
suitable coverage. Manipulation of carbon monoxide molecules was performed in feedback
with a bias voltage of 20 mA and a current setpoint of approximately 50 nA, depending
on the configuration of the tip apex. STM images were acquired in constant current
mode. Differential conductance spectra and maps were acquired with the tip at constant
height and using a standard lock-in amplifier technique. The frequency and amplitude
of the applied modulation was 271 Hz and 10 mV r.m.s. respectively. Integration time
for signal acquisition was 50 ms during spectra and 20 ms during maps. All differential
conductance spectra shown have been averaged over several measurements acquired at the
same position, and divided by an average of several spectra taken on bare Cu(111) with
the same tip apex to minimise the LDOS contribution from the tip [26].

Muffin tin calculations were performed to corroborate and supplement the experimental
data. This technique is well-established, and has been used before to simulate results on
the CO/Cu(111) platform with reasonable accuracy [27,29–31,33].
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3 Results

3.1 Individual Corrals

We first characterize rectangular corrals. Note that because of the triangular symmetry
of the underlying substrate, it is not possible to build perfectly square corrals. Fig. 3a
shows the schematic structure and dI

dV spectra of a rectangular corral with size 8
√

3a×14a.
Spectra taken at different positions exhibit peaks at different positions, corresponding to
specific eigenstates. For example, the lowest energy level (approximately -0.3 V) has the
highest local density of states (LDOS) in the center of the corral (black), whereas the
next highest energy level (-0.1 V) is mainly observed away from center (at red, blue and
green sites). The differential conductance map reveal the spatialextent of these states,
see the top row in Fig. 3b. The corresponding simulated maps are shown in the bottom
row of the same figure. In the case of degenerate levels, the modulus squared of the
relevant eigenfunctions were summed. The simulations are in excellent agreement with
the experimental observations.

For rectangular quantum corrals, there are two quantum numbers that determine the
energy of the system and the shape of the wavefunction; nx and ny. By comparing the ex-
perimental data to the results of the particle-in-a-box model, we can assign wave functions
to the differential conductance maps and peaks in differential conductance spectra. For

nx, ny= (1,1)
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Figure 3: Differential conductance measurements on rectangular and triangular quantum
corrals. (a) dI/dV spectroscopy acquired at the positions marked in the inset figure. (b)
Top: experimental differential conductance maps (of size 6 nm × 6 nm) acquired at the
energies stated; bottom: |Ψ|2 calculated according to the particle in a box model. The
quantum numbers are labeled above each peak in the dI/dV and above each LDOS map.
(c), (d) same as (a) and (b) but for triangular quantum corral. The images depict an area
of 6.25 nm × 6.25 nm.
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the first few energy levels, we may draw an analogy to real atoms based on the number
of nodal lines in Ψ that intersect the center of the corral. The nx = 1, ny = 1 (no nodal
lines) resembles an atomic s-orbital. Similarly, the nx = 1, ny = 2 (and nx = 2, ny = 1)
(one nodal line) and nx = 2, ny = 2 (two nodal lines), have a similar nodal line structure
as p- and d−type orbitals in atoms. The next highest state is the 2s-like state.

We now apply the same procedure to triangular corrals. An equilateral triangular
corral is constructed with side lengths 12

√
3a. dI

dV spectroscopy was conducted at different
positions, see Fig. 3c. The lowest energy peak is observed at approximately -0.27 eV
and has the highest amplitude in the center of the corral (s−like). state. The second
energy level is mainly localized near the corners (p-like orbital). dI

dV maps acquired at the

peaks observed in the dI
dV spectra are shown in Fig. 3d. For a particle-in-a-triangular-box,

there are two quantum numbers; p and q. The calculated eigenfunctions corresponding
to the first four energy levels are shown in the bottom row of Fig. 3b. For the first two
states, there is excellent agreement between experimental and simulated maps. The energy
difference between the third (p = 2, q = 0) and fourth (p = 5/3, q = 2/3) lowest energy
states of a particle in a triangular box is small. Consequently, both states contribute to
the experimentally observed contrast at V = 0.17 V.

3.2 Corral size and on-site energy

We now consider how altering the size of a corral affects the energies of the lowest levels,
i.e. the on-site energies. We first focus on rectangular corrals. Fig. 4a shows a series
of rectangular quantum corrals that were constructed. Differential conductance spectra
acquired at the centers of the corrals are shown in Fig. 4b. As the corral is reduced in
size, the ground state shifts to higher energies. The second peak for S1 at higher energies
corresponds to a 2s-like orbital, vide infra. Note that peaks become progressively broader
with increasing energy. We attribute this to two factors. First, the scattering potential of
the CO molecules is finite (0.9 eV with respect to the onset of the surface state band when
a radius of 0.3 nm is used). Hence, electrons with higher energy effectively experience a
lower barrier height. Secondly, the number of CO molecules per unit area is larger for
smaller corals, resulting in an increased coupling between surface and bulk states [44].

To rationalize the experimental observations, we model our system using a particle-in-
a-box model with finite potential barriers [36]. For a 2-dimensional rectangular box with
finite barriers, the energies are given by

E =
2h̄2

m∗

(
u2
nx

L2
x

+
u2
ny

L2
y

)
(6)

where m∗ = 0.42me, the effective mass of the Cu(111) surface state electrons, and Lx and
Ly correspond to the length of the box in the x and y direction, respectively. The variables
unx and uny , take the role of quantum numbers for which the following expressions hold

uni =
√
u2

0 − v2
i =

{
vi tan(vi)

−vi cot(vi)
(7)

with u0 =
√

2m∗V0Li
2h̄ , vi =

√
2m∗(V0−E)Li

2h̄ and ui =
√

2m∗ELi
2h̄ .

No analytical solutions exist for these equations and one has to rely on graphical or
numerical methods. For a given V0, Li and effective mass, the values of uni are fixed,
and can be thought of as analogous to the quantum number in the energy equation that
describes a particle in a 2D rectangular box with infinite barriers. To calculate the values
of un, we use V0 = 0.9 eV [27, 29–31, 33] and m∗ = 0.42me [45, 46]. The values of Lx and

7



SciPost Physics Submission

0.0 0.2-0.4 0.2
Voltage (V)

dI
/d

V 
(a

rb
itr

ar
y 

un
its

)

(b)
S1

S2 S3

S4 S5

S6

(a)

S1 S2 S3 S4 S5 S6

1 nm
Ba

ck
gr

ou
nd

 c
or

re
ct

ed

(nm-2)
ux uy

Lx Ly

22

22 +( )

0.0

0.2

-0.2O
n-

sit
e 

en
er

gy
 (e

V)

s-like rectangular corral
p-like rectangular corral

5.04.03.0

0.0 0.2-0.4 0.40.2
Voltage (V)

(p2+pq+q2)/A (nm-2)
0.1 0.30.2 0.6 0.70.4 0.5

0.0

0.2

-0.2

O
n-

sit
e 

en
er

gy
 (e

V)

0.4

s-like triangular corral
p-like triangular corral

1 nm

S7 S8

S8

S9 S10

S7

S9

S10

(d)

(e)

(f)

dI
/d

V 
(a

rb
itr

ar
y 

un
its

)
Ba

ck
gr

ou
nd

 c
or

re
ct

ed

0.4

(c)

Figure 4: (a) Geometries of the rectangular corrals investigated. (b) dI
dV spectra taken at

the centers of the rectangular corrals shown in (a). (c) On-site energy as a function of
u2
nx
/L2

x + u2
ny
/L2

y. Green and red points represent experimental data for s- and p- like
states respectively. Light red and light green points represent the energies calculated using
a muffin tin model. Solid lines represent a linear fit to the experimental data. (d)-(f) Same
as (a)-(c) but for triangular corrals.

Ly are determined by assuming that the dimensions of the boxes are defined by the edges
of the CO molecules which have a diameter of 0.6 nm [27,29–31,33].

Figure 4c shows a plot of the on-site energy versus u2
nx
/L2

x +u2
ny
/L2

y for the lowest and
second lowest states. Dark (light) green and red (light red) correspond to experimental
(muffin tin) data of s-and p-like states, respectively. The experimental energies were
determined by fitting Gaussian curves to each peak and finding the centers. The muffin
tin-derived energies were calculated with the aforementioned values for V0, m∗ and CO
diameter. For both states, the energy depends linearly on u2

nx
/L2

x + u2
ny
/L2

y. From the
gradient, we determine the effective electron masses to be 0.48±0.01me and 0.46±0.01me

for the s-like and p-like states, respectively. These values are close to the effective electron
mass of the unconfined surface state electrons.

An effective mass close to the mass of the Cu(111) surface state electrons suggests that
the behavior of the electrons is dominated by the confinement induced by the CO molecules
and that the interaction between the electrons and the periodic potential generated by the
Cu surface can to first order be neglected. A small offset is visible between the lines for the
s− and p-like data, which we attribute to the fact that the confining potential is effectively
lower for higher energy states.

We applied a similar procedure to triangular corrals. Figure 4d shows the geometry
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of several triangular corrals that were realized, and Fig. 4e shows spectra acquired at the
centres. The states of triangular corrals shift to higher energies the smaller the corral
becomes. The data can be rationalized using a particle-in-a-box model using infinite
barriers (analytical solutions for the finite barrier case are not available). The energy
eigenvalues of a particle in an equilateral triangular box are given by

Ep,q =
h2

2
√

3m∗A
(p2 + pq + q2), (8)

where p, q are the quantum numbers, h is Planck’s constant, m∗ is the effective electron
mass and A is the area of the triangle [35,47,48]. As shown in Fig. 4f, the experimentally
determined on-site energy depends linearly on the inverse surface area, in agreement with
equation (8).

3.3 Coupling Corrals

We now turn to coupled quantum corrals and show how tight-binding parameters can
be extracted from experimental data. After a dimer is constructed (example shown in
Fig. 5a), dI

dV spectra are acquired on two positions. We do this to make use of the different
spatial localization of the E+ and E− states. Specifically, the anti-bonding E− state has
a node between the two corrals (the position denoted by an orange dot in the inset of
Fig. 5a). Only the bonding E+ state appears in the differential conductance spectrum
taken at that site and we can fit the spectrum with a single Gaussian. Conversely, the
anti-bonding E− state has higher intensity at the outer regions of the dimer (red dot in
Fig. 5a).

Differential conductance maps were acquired at approximately the energies of the cen-
ters of each of the two peaks. The state at lower energy is delocalized over the entire
structure, whereas the state at higher energy has a node between the two corrals. This is
reminiscent of bonding and anti-bonding molecular orbitals, respectively.

Next, a trimer is constructed from the same-sized units as the dimer. To determine the
experimental values of E1, E2 and E3, we again exploit the different spatial distributions
of these three states. Muffin tin calculations show that the intensity of the E2 state is very
low at the center corral. Hence, the two peaks in the differential conductance spectrum
taken at this position (grey curve in Fig. 5d) can be assigned to E1 and E3, respectively.
The obtained energies can then be used in the fitting procedure of the spectrum acquired
at a corral at the end of the trimer (red curve in Fig. 5c and d). Taking these values and
solving equations 1 to 5 results in the tight binding parameters listed in Table I.

Table 1: Tight binding parameters extracted from Fig. 5.
Parameter Value

ε1 −0.22± 0.02 eV
ε2 −0.23± 0.01 eV
s 0.5± 0.3
t1 −0.14± 0.06 eV
t2 −0.02± 0.03 eV

The on-site energy of the individual corral of this size is -0.19 ± 0.02 eV, see Fig. 4c.
We find an on-site energy of −0.22 ± 0.02 eV and −0.23 ± 0.01 eV for the sites in the
dimer and central site in the trimer, respectively. This lowering of the on-site energy can
be understood from the increased area that is available due to the removal of the CO
molecules to couple the sites. Two CO molecules have been removed from the barrier, i.e.
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Figure 5: (a) dI
dV spectra on two different positions of a dimer. Locations indicated by dots

in the inset. (b) Differential conductance maps were acquired at the approximate energies
where the maxima of the peaks lie. (c) Bottom: dI

dV spectra acquired at the positions
shown in corresponding colors in the top left diagram. LDOS maps (from muffin tin
calculations) at E1 = -0.26 eV, E2 = -0.22 eV, E3 = -0.18 eV, respectively. (d) Gaussian
fitting procedure applied to the same two spectra to find the energies of interest. The
shaded regions in each plot represent the individual Gaussians, which when summed, lead
to the curves represented by dashed lines. The centers of the Gaussians correspond to E1,
E2 and E3 (labeled).

an additional area of 2×π(0.3)2 = 0.56 nm2 is available for the electrons. The magnitude
of the overlap integral, s, is significant and therefore must be included in tight binding
parameters to yield accurate answers.

The same experiments and simulations were performed for coupling triangular corrals.

3.4 Tuning parameters

We now systematically investigate how the tight binding parameters depend on changing
the gap width between corrals for both s- and p-like states. For this, we created dimers
out of rectangular quantum corrals with dimensions 6

√
3a× 10a (same as in the previous

section) and 8
√

3a×14a. (Note that to calculate the area from these dimensions, the area
that the CO molecules occupy must be subtracted). First, two corrals of equal size were
constructed directly next to each other with the barrier fully closed; that is to say that the
same barrier configuration that separates the two corrals separates the corrals from their
surroundings. Fig. 6a shows the schematic of a lone corral with dimension 8

√
3a × 14a,

and the dimer with a full wall of CO molecules separating the corrals. The second column
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Figure 6: (a) From left to right, first the geometry of the coupled corral is shown. The sec-
ond column demonstrates coupling of s-like orbitals: dI

dV spectra acquired at the positions

indicated by the color code and corresponding dI
dV maps taken at the indicated energies.

The third column focuses on coupling of p-like orbitals.

shows spectra taken at the positions marked in the designs. The peaks associated with
the s-type orbitals occur at the same energy for the two systems, indicating that there is
virtually no coupling between the corrals in the dimer with this barrier configuration (the
hopping parameter is zero). The same observation is made for the p-type states (right
hand side of the figure). This is significant because it has been assumed that coupling of
electronic sites to the surrounding 2DEG plays a large role in broadening [31]. The results
reported here suggest that a “full barrier” would result in negligible coupling between
states in a lattice and the surrounding 2DEG.

Next, CO molecules are removed from the center of the barrier, see Fig. 6b-d. As
described before, dI

dV spectra were acquired at the barrier between the corrals, and near the
outer edge. By fitting Gaussian curves and finding their centers, we determine the energy
level spacing between the bonding and anti-bonding states. Differential conductance maps
were taken to verify the resemblance of these states to bonding and antibonding orbitals.
The difference in energy between the two states increases with increasing gap width in the
CO barrier between the two corrals. Furthermore, the states shift down in energy due to
the effectively larger area that the electrons can occupy.

The most natural interpretation of the experimental data for the system without bar-
rier, Fig. 6d, is to use a particle-in-a-rectangular-box model. In this picture, the lower
energy state corresponds to the ground state with quantum numbers nx = 1 and ny = 1.
The second state is the nx = 2, ny = 1 state, etc. However, it is also possible to in-
terpret the results in the framework of two coupled quantum corrals. The lowest energy
state of the rectangle can be thought of as the bonding combination of s-like orbitals of
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Figure 7: (a) The size of the gap in the barrier between the two corrals (red arrow) is the
distance between the closest CO molecules in the barrier (gray arrow), minus two times
the apparent size of the CO molecules (gray circle, blue arrow, 0.3 nm). (b) From left to
right: gap dependence of the hopping parameter, the on-site energy and overlap for s-like
states, respectively. Dark and right colors represent data from rectangular corrals with
sizes 8

√
3a× 14a and 6

√
3a× 10a, respectively. (c) Same as (b) but now for p-like states.

the two quantum corrals. Similarly, the second lowest state would be the anti-bonding
combination.

The bonding combination of the px-like states, where x is the horizontal direction,
shows vertical nodal lines at the centers of the individual corrals and enhanced intensity
in the barrier region between the corrals (see right hand side of Fig. 6). The nodal line
pattern of the map at higher energy can be rationalized by assuming that both the anti-
bonding px-like state as well as the py-like state contribute to the contrast. The energy
difference between p-like bonding and antibonding states is larger than for the s-like states.

Similar experiments were performed for coupled 6
√

3a× 10a dimers (data not shown).
From the available data on both corral sizes, tight binding parameters for coupling of
both s-like and p-like states were derived. The results are shown in Fig. 7. The size of the
gap in the barrier between the corrals is defined as the distance between the closest CO
molecules of the barrier, minus two times the apparent radius of the CO molecules (0.3
nm, see Fig. 7a). For both s- and p-like states and for both corral sizes, the data points
for the hopping parameter (t), the on-site energy (ε), and the orbital overlap (s) can be
fitted with an exponential function (dotted lines). By tuning the gap width, the hopping
parameter can be varied between 0 eV and ∼ −0.3 eV and ∼ −0.16 eV for s- and p-like
states, respectively. We find that the on-site energy depends on the width of the gap in
the barrier. The parameters depend more sensitively on gap width for the smaller corral.
This can be rationalized from the additional area that becomes available to the confined
electrons upon removing CO molecules (the relative increase in available area is larger for
the smaller corral). Finally, the magnitude of the orbital overlap increases with gap width.
Note that for unconfined electrons (infinite gap width) the overlap should be one. Fig. 7b
suggests that at least up to a gap width of ≈ 1.5 nm, the hopping parameter and overlap
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Figure 8: (a) Coupled rectangular corrals with a barrier that largely inhibits the coupling of
s and px-type states, while coupling of py-like states is clearly observed. x and y directions
are specified in the figure. (b) Differential conductance spectra taken at the positions
indicated in (a). (c) Differential conductance maps taken at the indicated energies. (d-f)
same as (a-c) but for coupled triangular corrals.

are similar for the two different corral sizes.

3.5 State selective coupling

Since CO molecules can be removed selectively, it becomes possible to create geometries
that allow coupling of p-type states only. Consider the geometries of coupled rectangular
and triangular corrals shown in Fig. 8a and d. The amplitude of s-type wave functions is
small at the position of the gaps in the barrier. Hence, coupling of s-type states should
be small. In contrast, p-type states have significant amplitude at these positions and
consequently these states should couple strongly. We first focus on the rectangular corrals.
Fig. 8b shows differential conductance spectra taken at the positions indicated in Fig. 8a.
A total of three peaks are observed. The amplitude of each peak differs from position
to position. The peak at lowest energy corresponds to the ground state, i.e. it involves
s-type states. At the energies corresponding to the s-type states, we only observe one
peak, indicating that these states do not couple (coupling strength below the detection
limit of our experiment). In contrast, the spectrum of the barrier region (gray) features
a peak around 90 mV, whereas the spectrum taken at the corner of the corral (blue) has
a peak at 170 mV. The corresponding differential conductance maps, Fig. 8c, reveal that
the spatial extent of these states can be understood by considering coupling of py-type
states. For the triangular corral, similar observations are made. This confirms the idea
that artificial lattices allow coupling of one type of state only [49]. Note that this provides
a degree of freedom that is not available in real materials.

3.6 Coupling corrals of different sizes

Finally, we investigate the coupling of two corrals of different sizes, i.e. with different
on-site energies for the s- and p-like states. Fig. 9a shows the arrangement of such a
polar dimer, with the barrier between corrals fully removed to maximize coupling. The
dI
dV spectra show the typical peaks associated with bonding and antibonding states. The
corresponding differential conductance maps reveal that the lower (higher) energy state of
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Figure 9: (a) Schematic structure of anisometric dimer consisting of a 6
√

3a× 12a corral
coupled to a 5

√
3a × 10a corral. Differential conductance spectra acquired on positions

highlighted in the inset. (b),(c) differential conductance maps of the two states observed
in the dI

dV spectra (energies indicated in the Figure). (d)-(f) same as (a-c), but now for

a 6
√

3a × 12a corral coupled to a 4
√

3a × 8a corral. Inset scale bar (white) represents a
length of 1 nm

the dimer is primarily localized on the larger (smaller) corral, see Fig. 9b and c. This is in
agreement with a tight binding model of a dimer with constituents with different on-site
energy.

In general, electronic states couple if they spatially overlap and if they have a similar
energy. Hence, if the sizes of the two corrals differ sufficiently, it is possible to couple the
s-like state of a smaller corral with a p-like state of a larger corral. We therefore created a
dimer consisting of a 6

√
3a×12a to a 4

√
3a×8a corral, see Fig. 9d. The dI

dV spectra reveal
two states with different spatial localization. The corresponding differential conductance
maps show that the lower energy s-like state of the smaller corral couples with a p-like
state of the larger corral. Similarly, the higher energy state can be thought of as an
antibonding combination between s- and p-like states (note the nodal line at interfaces
between the two corrals).

4 Conclusion

To conclude, we have studied the coupling of rectangular and triangular quantum corrals
into dimer and trimer structures. These shapes were chosen as they can be used as
building blocks of artificial lattices. The electronic structure of the coupled corrals can be
understood using a tight binding model also used for the coupling of atoms to molecules.
Importantly, we investigated the available tight binding parameter space accessible with
the CO/Cu(111) platform, and showed how these parameters depend on the configuration
of the coupled quantum corrals.

We first verified that the particle in a box model provides a good qualitative description
of the electronic structure of rectangular and triangular quantum corrals. We determined
the on-site energies of s- and p- like states of different sized corrals to confirm the re-
lationship between on-site energy of the corral and box size. From this, we determined
the effective masses of electrons in these systems to be on the order of 1 me, significantly
above the value for unconfined Cu(111) surface state electrons (0.42 me).

We outlined a method to extract tight binding parameters (nearest and next near-
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est neighbor hopping parameters, overlap and on-site energy) by constructing dimers and
trimers of corrals. By removing CO molecules from the barrier between corrals, expo-
nential relationships were found between the tight binding parameters and the size of the
gap in the barrier between the corrals. The hopping integral can be tuned between 0 and
-0.3 eV and -0.16 eV for s- and p-like states, respectively, by tuning the configuration of
CO molecules in the barrier. In most cases, the overlap is not negligible and this term
should be taken into account when modelling artificial molecules and lattices. Finally, we
showed that in these coupled quantum corrals, one can control which states couple. For
example, by appropriate placement of CO molecules coupling of s− and px-like states can
be inhibited, while allowing coupling of py-like states. Furthermore, it is possible to couple
s- and p-like states.

The results presented here are useful for future work on artificial lattices made using
CO on Cu(111). A hypothetical lattice with certain desired coupling strengths and on-site
energies can be designed by estimating the required unit size and barrier gap width from
the trends reported here.
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