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Abstract

We introduce a framework for calculating dynamical correlations in the Lieb-
Liniger model in arbitrary energy eigenstates and for all space and time, that
combines a Lehmann representation with a 1/c expansion. The nth term of
the expansion is of order 1/cn and takes into account all bn2 c + 1 particle-hole
excitations over the averaging eigenstate. Importantly, in contrast to a “bare”
1/c expansion it is uniform in space and time. The framework is based on a
method for taking the thermodynamic limit of sums of form factors that exhibit
non integrable singularities. We expect our framework to be applicable to any
local operator.

We determine the first three terms of this expansion and obtain an explicit
expression for the density-density dynamical correlations and the dynamical
structure factor at order 1/c2. We apply these to finite-temperature equilib-
rium states and non-equilibrium steady states after quantum quenches. We
recover predictions of (nonlinear) Luttinger liquid theory and generalized hy-
drodynamics in the appropriate limits, and are able to compute sub-leading
corrections to these.
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1 Introduction

The Lieb-Liniger model [1] is a key paradigm of integrable many-particle systems [3].
Moreover, it is directly relevant to a range of cold atom experiments both in and out
of equilibrium, see e.g. [4–9]. While the excitation spectrum at zero temperature [10]
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and thermodynamic properties [11] have been known for a long time, the exact solution
does not provide easy access to correlations functions as these encode more detailed in-
formation about the exact energy eigenstates. An exception is the case of impenetrable
bosons [12–25], which can be mapped onto non-interacting fermions. In absence of full
analytic solutions valuable insights on the large space and time asymptotic behaviours of
correlation functions at zero and low temperatures were gained by combining exact results
on spectral properties obtained from the Bethe Ansatz with with conformal field theory
(CFT) [26, 27] and Luttinger liquid theory [28, 29] and its recent extensions [30–34, 36].
The last two decades then witnessed remarkable progress in the computation of zero
temperature dynamical correlation functions by expressing them in terms of spectral rep-
resentations over the energy eigenstates of the model. On the one hand it became possible
to numerically evaluate the spectral sums to very high precision for large, finite sys-
tems [37, 38]. On the other hand remarkable analytic progress led to a fairly complete
understanding of the asymptotic behaviour at late times and large distances [39, 41, 42].
In contrast to ground state case and non-interacting theories [43–57] progress on deter-
mining finite temperature correlators in interacting integrable models has been much more
limited. The basic idea in interacting integrable models has been to again use spectral
representations and sum over “the most relevant” states, both for equal time [58–64] and
dynamical correlators [65–76]. These summations can again be approached either numer-
ically or analytically.

The numerical approach focuses on finite systems of about a hundred particles in
the case of the Bose gas and works in momentum space, i.e. considers the dynamical
structure factor as a function of frequency and momentum [71]. It then sums the dominant
contributions to the dynamical structure factor in the sense that the f-sum rule is satisfied
to a very high accuracy.

To make analytical progress it is essential to identify the classes of states that give the
dominant contributions in a given range of frequencies and momenta or space and time [39].
Known results suggest that in interacting theories this generally requires the summation
over an infinite number of states. Firstly, the large space and time asymptotics of zero
temperature dynamical correlators in interacting models has been shown to be determined
by an arbitrary number of (soft) particle-hole excitations over the ground state around the
Fermi points and the saddle points of the dispersions of elementary excitations [39, 77].
Secondly, it has been shown that the asymptotic behaviours of dynamical correlations
of semi-local operators in thermal and other finite entropy states involves an arbitrary
number of (soft) particle-hole excitations [78] over the macro state of interest. Truncating
this sum to a finite number of particle-hole excitations leads to a result that diverges
in time. In the zero temperature case it has been shown that it is possible to take the
thermodynamic limit of (partial) spectral sums and obtain a representation in terms of
(dressed) excitations in the thermodynamic limit [39, 77]. An analogous result for the
finite temperature/entropy case would be highly desirable, but is not known at present.
In Refs [73,75,76] such an expansion in terms of thermodynamic particle-hole excitations
was conjectured. It is based an phenomenological assumptions on how partial sums over
states in the finite volume combine into thermodynamic form factors. It also exhibits
singularities, whose regularization is not presently known.

Given this state of affairs it is highly desirable to obtain explicit results through ab
initio calculations that do not require any assumptions, i.e. carrying out the spectral sum
in a finite volume and then taking the thermodynamic limit exactly. In order to make
progress in this direction we consider the spectral sum in the framework of an expansion
in the inverse interaction strength c−1 around the impenetrable limit. Strong coupling
expansions have previously been used at zero temperature and for static correlators at
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finite temperatures [79–82]. More recently the 1/c contribution for the finite temperature
dynamical density-density correlation function was determined in [72]. This contribution
has a particularly simple structure similar to that of the impenetrable limit, that does
not carry over to the next orders, and as a consequence until now it has been unclear
how to determine higher orders in this expansion. In the following we develop a method
for calculating the higher orders of this expansion and apply it to obtain the contribution
to the dynamical density-density correlator at order c−2. The general idea of the 1/c
expansion, and more generally of strong coupling expansions in integrable models, is as
follows. A consequence of integrability is that N -particle energy eigenstates in a finite
volume can be labelled by N rapidity variables

|λ〉 = |λ1, . . . , λN 〉. (1)

These rapidities are in a one-to-one correspondence with sets of (half-odd) integers {Ij}
through the quantization conditions in the finite volume

{λ1, . . . , λN} ↔ {I1, . . . , IN}. (2)

The energy and momentum of these states are given by

E(λ) =

N∑
j=1

ε(λj) , P (λ) =

N∑
j=1

p(λj) , (3)

where ε(λ) and p(λ) parametrize the energy and momentum of a single-particle excitation
over the vacuum (reference) state. For the Bose gas we have ε(λ) = λ2 and p(λ) = λ.
Two-point correlation functions of a local operator O(x) in a given energy eigenstate |λ〉
thus have spectral representations of the form

〈λ|O(x, t)O†(0, 0)|λ〉
〈λ|λ〉

=
∞∑

M=0

∑
{µ1,...,µM}

|〈λ|O(0, 0)|µ〉|2

〈λ|λ〉〈µ|µ〉
ei
(
E(λ)−E(µ)

)
t−i
(
P (λ)−P (µ)

)
x , (4)

where the first sum runs over the particle number and the second over all M -particle
energy eigenstates. The matrix elements

FO(λ,µ) =
〈λ|O(0, 0)|µ〉√
〈λ|λ〉〈µ|µ〉

(5)

are also known as form factors and, as we will see, admit a 1/c-expansion

FO(λ,µ) =
∞∑
n=0

FO,n(I,J)

cn
, (6)

where I = {I1, . . . , IN} and J = {J1, . . . , JM} are the (half-odd) integers corresponding
to the rapidities λ1, . . . , λN and µ1, . . . , µM respectively. Similarly E(λ) and P (λ) can be
expanded in powers of c−1

E(λ) =
∞∑
n=0

En(I)

cn
, P (λ) =

∞∑
n=0

Pn(I)

cn
. (7)

Denoting the truncation of the sums to order O(c−j) by F
(j)
O (I,J), E(j)(I) and P (j)(I)

respectively, the 1/c-expansion at order O(c−j) is defined as

∞∑
M=0

∑
{µ1,...,µM}

|F (j)
O (I,J)|2ei

(
E(j)(I)−E(j)(J)

)
t−i
(
P (j)(I)−P (j)(J)

)
x . (8)
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We stress that the expansion sums certain 1/c contributions to all orders by virtue of
the fact that although the (exactly known) energies and momenta are expanded inside the
exponentials, the exponentials are not expanded in 1/c. In this sense the expansion is non-
perturbative, and in fact rather different from more standard (diagrammatic) approaches
pursued in [83]. As discussed in detail below (8) is in fact both a 1/c expansion and an
expansion in terms of number of particle-hole excitations. At order n in the expansion (i)
only excitations that involve at most bn2 c + 1 particle-hole pairs contribute, and (ii) all
terms up to O(c−n) contribute. Importantly, this “mixed” expansion has a well-defined
thermodynamic limit and is uniform in space and time. This is in contrast to both the bare
1/c expansion that is non-uniform, and the bare expansion in the number of particle-hole
excitations that is divergent in the thermodynamic limit.

Expectation values of the form (4) are relevant in two contexts.

1. By working in a micro-canonical ensemble dynamical response functions at finite
temperature can be cast in this form. In the following we will use this to determine
the finite temperature dynamical structure factor in the Lieb-Liniger model.

2. At late times after quantum quenches local observables relax to non-thermal sta-
tionary values [93–96]. It follows from the quench action approach [91, 92] to quan-
tum quenches that expectation values in the stationary state in fact involve non-
thermal energy eigenstates at finite energy densities. This has been used to study
the stationary behaviour of certain one-point functions after (particular) quantum
quenches [97–99, 101]. A natural extension is then to consider linear response func-
tions in such steady states [102,103]. These can be expressed in the form (4), where
|λ〉 corresponds to the non-equilibrium steady state relevant to the quench of inter-
est.

In the following we will consider both these cases and evaluate (4) for the density operator
and general |λ〉.

A brief summary of some of our key technical results is as follows. We show that the
1/c-expansion corresponds to an expansion in the number of particle-hole excitations. This
leads to a dramatic reduction in the complexity of the spectral sum that needs to be carried
out. Interestingly, the contributions of one particle-hole and two particle-hole excitations
are individually divergent in the infinite volume limit L→∞. Moreover they individually
depend on details of the “averaging state” |λ〉 beyond the root distribution function in
the thermodynamic limit. Crucially, their sum is not divergent and is independent of the
choice of representative state |λ〉, and is well-defined.

The manuscript is organized as follows. In Section 2 we introduce the Lieb-Liniger
model and recall the key elements of its Bethe Ansatz solution. In Section 3 we report
some important intermediate results on the thermodynamic limit of expressions computed
within the Bethe Ansatz. In Section 4 we discuss the 1/c-expansion up to and including
O(c−2) of the Bethe Ansatz equations, energy eigenvalues, form factors and the spectral
representation of the density-density correlation function. These results are then used in
Section 5 to obtain a fully explicit expression for the dynamical density-density correlator
(and the related dynamical structure factor) in the thermodynamic limit, cf. equations
(171), (166), (178) and (187). This constitutes the main result of our work. In Section 7 we
obtain the asymptotic behaviour of the correlator and structure factor in various regimes.
In particular we perform non-trivial consistency checks of our formulas, and recover known
results from (nonlinear) Luttinger liquid theory and generalized hydrodynamics (GHD)
[85,86,90].
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2 Lieb-Liniger model

2.1 Definition

The Lieb-Liniger model [1,2] is a non-relativistic quantum field theory model with Hamil-
tonian

H =

∫ L

0
dx

[
ψ†(x)

(
− ~2

2m

d2

dx2

)
ψ(x) + cψ†(x)ψ†(x)ψ(x)ψ(x)

]
, (9)

where the canonical Bose field ψ(x) satisfies equal-time commutation relations

[ψ(x), ψ†(y)] = δ(x− y) . (10)

In the following we set ~ = 2m = 1 and impose periodic boundary conditions. In first
quantization (9) corresponds to a quantum mechanical system of N particles with positions
0 ≤ x1, ..., xN ≤ L and Hamiltonian

H =
N∑
k=1

−
(

∂

∂xk

)2

+ 2c
∑
j<k

δ(xj − xk) . (11)

For later convenience we define the density operator at position x

σ(x) = ψ†(x)ψ(x) , (12)

and its time-t evolved version σ(x, t) = eiHtσ(x)e−iHt.

2.2 The Bethe ansatz solution

2.2.1 The spectrum

The Lieb-Liniger model is solvable by the Bethe ansatz: the energy E and the momentum
P of an eigenstate |λλλ〉 with N bosons read

E(λλλ) =
N∑
i=1

λ2
i , P (λλλ) =

N∑
i=1

λi , (13)

where the rapidities λλλ = {λ1, .., λN} satisfy the following set of “Bethe equations”

eiLλk =
N∏
j=1
j 6=k

λk − λj + ic

λk − λj − ic
, k = 1, . . . , N. (14)

It is convenient to express them in logarithmic form

λk
2π

=
Ik
L
− 1

L

N∑
j=1

1

π
arctan

λk − λj
c

, (15)

with Ik an integer if N is odd, a half-integer if N is even. For c > 0, which we will assume
in this paper, all the solutions to this equation are real [3].
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2.2.2 The density form factors

As set out in the introduction, our aim is to calculate the density-density correlation
function in an eigenstate |λλλ〉

〈σ (x, t)σ (0, 0)〉 =
〈λλλ |σ (x, t)σ (0, 0)|λλλ〉

〈λλλ|λλλ〉
. (16)

Our strategy is to use a Lehman representation in terms of energy eigenstates |µµµ〉 =
|µ1, ..., µN ′〉, where {µ1, . . . , µN ′} are solutions to the Bethe equations (15)

〈σ (x, t)σ (0, 0)〉 =
∑
µµµ

|〈λλλ|σ (0) |µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
eit(E(λλλ)−E(µµµ))+ix(P (µµµ)−P (λλλ))

=

∞∑
N ′=0

∑
µ1<...<µN′

|〈λλλ|σ (0) |µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
eit(E(λλλ)−E(µµµ))+ix(P (µµµ)−P (λλλ)) .

(17)

The (normalized) form factors of local operators between two Bethe states have been
derived in Refs [104–109]. In the case of the density operator σ, the (square of the
normalized) form factor between two eigenstates |λλλ〉, |µµµ〉 with respective numbers of Bethe
roots N,N ′ reads

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
= δN,N ′

(∑N
i=1 µi − λi

)2

L2NNλλλNµµµ

∏
i 6=j(λi − λj)(µi − µj)∏

i,j(λi − µj)2

∏
i 6=j

λi − λj + ic

µi − µj + ic

×

∣∣∣∣∣∣ det
i,j 6=p

(V +
i − V

−
i )δij + i(µi − λi)

∏
k 6=i

µk − λi
λk − λi

(
2c

(λi − λj)2 + c2
− 2c

(λp − λj)2 + c2

)∣∣∣∣∣∣
2

.

(18)
Here p ∈ {1, ..., N} can be freely chosen,

V ±i =

N∏
k=1

µk − λi ± ic
λk − λi ± ic

, (19)

and Nλλλ is given by [110]

Nλλλ = det
i,j=1,...,N

[
δij

(
1 +

1

L

N∑
k=1

2c

c2 + (λi − λk)2

)
− 1

L

2c

c2 + (λi − λj)2

]
. (20)

3 Thermodynamic description of eigenstates

In a finite system of size L all eigenstates of the Hamiltonian are fully characterized by
a set of N Bethe numbers Ik, or equivalently a set of N Bethe roots λk. The purpose
of this section is to explain how to turn this description into one based on (continuous)
distribution functions of these roots in the thermodynamic limit L→∞ when N scales like
L. In particular, contrary to a common misconception, we emphasize that the usual “root
densities” defined below do not fully characterize an eigenstate in the thermodynamic
limit; this observation turns out to be of crucial importance in our calculation.
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3.1 Root density

In the thermodynamic limit, any sum of a non-singular (piece-wise continuous) function
f over the Bethe roots or Bethe numbers

SL[f ] =
1

L

∑
k

f(λk) , S̃L[f ] =
1

L

∑
k

f( IkL ) , (21)

is independent of the precise values taken individually by each Ik or λk, and depends only
on the number of Bethe roots or Bethe numbers in any given interval. This information
is encoded in the so-called root density ρ(λ) ≥ 0 and filling function 0 ≤ χ(ι) ≤ 1. They
are defined by the requirement that in the large L limit

Lρ(λ)dλ = number of Bethe roots in [λ, λ+ dλ] ,

Lχ(ι)dι = number of Bethe numbers Ik/L per length in [ι, ι+ dι]. (22)

In the thermodynamic limit the sums (21) can be turned into integrals over these functions

S∞[f ] =

∫ ∞
−∞

f(λ)ρ(λ)dλ , S̃∞[f ] =

∫ ∞
−∞

f(ι)χ(ι)dι . (23)

The same holds for multidimensional sums of a multivariate non-singular function f , with

SL[f ] =
1

Ln

∑
k1,...,kn

f(λk1 , . . . , λkn) , (24)

converging to

S∞[f ] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(λ1, ..., λn)ρ(λ1) . . . ρ(λn)dλ1 . . . dλn . (25)

As far as expressions of the form (21) and (24) are concerned, an eigenstate in the thermo-
dynamic limit is entirely characterized by the root density ρ(λ), or equivalently the filling
function χ(ι). To relate these two equivalent quantities, we introduce the function ϑ(λ) as
the L → ∞ limit of a function ϑ(λk) ≡ χ( IkL ) of the Bethe roots, where Ik is the integer
associated with λk. Using the Bethe equations (15) ϑ(λ) can be expressed in terms of χ
and ρ as

ϑ(λ) = χ

(
λ

2π
+

1

π

∫ ∞
−∞

arctan
(
λ−µ
c

)
ρ(µ)dµ

)
. (26)

The filling function χ(ι) and the root density are then related through

ρ(λ)

ϑ(λ)
=

1

2π
+

1

2π

∫ ∞
−∞

2c

c2 + (λ− µ)2
ρ(µ)dµ . (27)

It is customary to introduce the so-called hole density ρh(λ) defined by

ρ(λ)

ϑ(λ)
= ρ(λ) + ρh(λ) , (28)

which again contains equivalent information to ρ(λ) or χ(ι). When expressed in terms
of the particle and hole densities (27) is known as the thermodynamic limit of the Bethe
Ansatz equations [111]. Finally, the particle density is given by

D ≡
∫ ∞
−∞

ρ(x)dx = lim
L→∞

N

L
. (29)
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We introduce the Fermi momentum qF defined by

qF = πD . (30)

Although there is a simple relation between D and qF , we will in the following sometimes
use D and sometimes qF , depending on the physical context at hand. We also denote (in
the units where ~ = 2m = 1)

ωF = q2
F . (31)

3.2 Pair distribution function

3.2.1 Definition

Root densities entirely characterize the value of sums of the type (21) and (24) in the
thermodynamic limit. However, some functions of the Bethe roots cannot be expressed
solely in terms of root densities in the thermodynamic limit, and as a consequence can take
different values in the thermodynamic limit for states that have the same root density. An
example is provided by

ΣL[g] =
1

L3

∑
i 6=j

g(λi, λj)

(λi − λj)2
, (32)

that we will encounter below 1. The sum in (32) by definition depends on the joint
distribution function of pairs of roots separated by O(L−1), and the latter clearly contains
information beyond that contained in the root density (which does not distinguish between
roots separated by O(L−1)).

We first note that if we impose the constraint |λi − λj | > ε for a ε > 0 then ΣL[g]
vanishes in the thermodynamic limit. Hence, it only depends on g(λ, λ) and its derivatives
at λ. Taylor expanding g(λi, λj) for λi close to λj reduces the order of the pole and makes
the next terms vanish in the thermodynamic limit, so it depends only on g(λ, λ). Being a
linear functional of g it can be written in the thermodynamic limit in the form

Σ∞[g] =

∫ ∞
−∞

g(λ, λ)γ−2(λ)dλ , (33)

where the function γ−2(λ) depends on the state. We call γ−2(λ) a pair distribution function
as it encodes information about the joint distribution of pairs of Bethe roots. The index −2
relates to the fact that we are summing over the inverse square of the difference between
two Bethe roots. The pair distribution function γ−2(λ) characterizes certain properties of
the thermodynamic limit of an eigenstate and is unrelated to the root density ρ(λ). Two
states can have the same ρ(λ) but different γ−2(λ).

The simplest example is that of (translationally invariant) free fermions, where the
Bethe roots reduce to the single-particle momenta. Here we may construct two sequences
of eigenstates labelled by an integer n, with momenta {λi = ni

L |i = 1, . . . , N} and {µ2i =
2ni
L , µ2i+1 = 2ni+1

L |i = 1, . . . , N/2} respectively. In the thermodynamic limit both states
are described by a root density ρ(λ) = 1/n, but the pair distribution functions are different:

γ−2(λ) = π2

3n2 for the first state and γ−2(λ) = 1 + π2

12n2 +
∑

m 6=0
1

(2nm+1)2 for the second
one.

1The summand does not need to be singular for this to happen: Another example is L
∑
i g(λi)(λi+1 −

λi)
2 if the Bethe roots are ordered λ1 < λ2 < ... < λN .
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3.2.2 (Generalized) micro-canonical ensemble and representative states

The (generalized) micro-canonical ensemble average of a local operator O(x) is a priori
defined as

1

CL

∑
ν

〈ν|O(x)|ν〉
〈ν|ν〉

, (34)

where the sum is over an appropriate “shell” of simultaneous eigenstates of the Hamiltonian
and the local conservation laws of the theory. CL is the number of terms in the sum. In
a large but finite volume this means that for thermal averages we fix the energy within
a window that contains an exponential (in system size) number of eigenstates. In the
case of generalized micro-canonical ensembles we fix the eigenvalues of (some or all) of
the local conservation laws in an analogous fashion [91,112]. It is believed that almost all
states in the sum in (34) have identical local properties, and hence the sum over states
can be replaced by an expectation value with respect to a single typical state |λ〉 in the
thermodynamic limit

lim
L→∞

1

CL

∑
ν

〈ν|O(x)|ν〉
〈ν|ν〉

= lim
L→∞

〈λ|O(x)|λ〉
〈λ|λ〉

. (35)

The state |λ〉 is sometimes called a representative state and we follow this terminology
here. We note that in practice there is a great deal of freedom in choosing a representative
state in a large, finite volume.

3.2.3 Average over representative states

As we have seen above, the thermodynamic limit of the sum (32) cannot generally be
expressed as an integral over the root density, but depends on the choice of representative
state in the finite volume. The thermodynamic limit of these sums involves the separate
function γ−2(λ) defined in (33). As we will see in the following, in our calculations of
the density-density correlation function the dependence of certain intermediate quantities
on γ−2(λ) eventually compensate and the end result depends only on the root density.
However, it is a priori possible that in other calculations involving sums of form factors
no such cancellations will occur and the end result will indeed depend on the choice of
representative state through γ−2(λ) or an analogous quantity.

We now make the following observation. As we have discussed above, averages with
respect to a Bethe state |λλλ〉 often emerge upon simplifying averages over exponentially (in
system size) many representative states corresponding to a given root density ρ(λ). By
construction such averages will depend only on the density. This then poses the question
what value (32) takes after averaging over all representative states with same root density
in the thermodynamic limit. We now address this issue.

First, we need to define properly which states in a large finite volume L are acceptable
representative states for a given root density. We define a sequence of sets of states to be
complete for the root density ρ if the corresponding sequence of sets of solutions to the
Bethe equations (SL)L∈N all give rise to the density ρ in the thermodynamic limit, and if
the number of elements of the set SL satisfies

log |SL| = LSYY[ρ] + o(L) , (36)

where SYY[ρ] is the Yang-Yang entropy [11]

SYY[ρ] =

∫ [(
ρ(λ) + ρh(λ)

)
log
(
ρ(λ) + ρh(λ)

)
− ρ(λ) log ρ(λ)− ρh(λ) log ρh(λ)

]
dλ . (37)

11
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In order to build such a set in a large finite volume let us consider a root density ρ(λ) at a
given particle density D =

∫
ρ(λ)dλ. Given the root density we may introduce a particle

counting function by

z(λ) =

∫ λ

−∞
ρ(x)dx . (38)

Next we choose a “coarsening function” εL with the property that εL → 0 and LεL →∞
when L → ∞ — for example one can take εL = 1√

L
. We now split the real axis into nL

“bins” [xL,j , xL,j+1] containing bLεLc Bethe roots by defining xL,1, ..., xL,nL+1 such that
z(xL,i) = iεL for 1 ≤ i ≤ nL + 1 = bD/εLc.

Finally we define SL as the set containing all the states in a finite volume L that
contain exactly bLεLc Bethe roots in each of the nL bins [xL,i, xL,i+1]. All states in
SL have NL = (bD/εLc − 1)bLεLc Bethe roots, which for L → ∞ by construction are
distributed with density ρ(λ). The number of elements of SL will depend on the number
of “vacancies” in each of the bins, which in turn depend on the values of all the Bethe
roots since they interact via the Bethe equations. However, asymptotically in L, we have
KL,i = bL(xL,i+1 − xL,i)(ρ(xL,i) + ρh(xL,i))c vacancies in each of the bins, so that

|SL| =
nL∏
i=1

(
KL,i +O(L0)

bLεLc

)
. (39)

Using Stirling’s formula in the large-L limit one has

log |SL| = LSYY[ρ] + o(L) , (40)

which shows that SL is indeed a complete set of representative states for a given root
density ρ(λ).

We can now state our result for the average of (32) over all representative states with
root density ρ(λ):

lim
L→∞

1

|SL|
∑

{λi}i∈SL

1

L3

∑
i 6=j

g(λi, λj)

(λi − λj)2
=
π2

3

∫ ∞
−∞

g(λ, λ)(ρ(λ) + ρh(λ))ρ(λ)2dλ . (41)

A proof of (41) is given in Appendix B.

We note that if we instead sum over rapidities distributed regularly according to the
inverse of the counting function z−1(λ) without imposing that the rapidities are solutions
of the Bethe equations, the sum takes a different value:

lim
L→∞

1

L3

∑
i 6=j

g(z−1(i/L), z−1(j/L))

(z−1(i/L)− z−1(j/L))2
=
π2

3

∫ ∞
−∞

g(λ, λ)ρ(λ)3dλ . (42)

If we sum over rapidities distributed regularly according to the inverse of the counting
function z−1(λ) and impose the Bethe equations, the sum (32) is not easily expressed in
terms of ρ, but takes a value different from either (42) or (41). Hence formula (41) is both
non-trivial and non-intuitive.

3.3 Principal values

3.3.1 Single principal value

The sums (24) can be expressed in terms of root densities in the thermodynamic limit,
provided f is non-singular. We have seen in the previous section that for functions f with

12
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a quadratic singularity the thermodynamic limit value of the sum cannot be expressed in
terms of the root density. We now turn to functions that are singular but integrable in a
principal value sense. This is the case of the sum

Σ̃L[g] =
1

L2

∑
i,j
i 6=j

g(λi, λj)

λi − λj
. (43)

We will assume that g and ρ are continuous. Symmetrizing the sum, we have

Σ̃L[g] =
1

2L2

∑
i,j
i 6=j

g(λi, λj)− g(λj , λi)

λi − λj
. (44)

The function F (x, y) = g(x,y)−g(y,x)
x−y is regular, so that it has the form of (24) and its

thermodynamic limit can be expressed in terms of ρ according to

Σ̃∞[g] =
1

2

∫ ∞
−∞

∫ ∞
−∞

g(λ, µ)− g(µ, λ)

λ− µ
ρ(λ)ρ(µ)dλdµ . (45)

Since the integrand is finite, one can remove a small shell |λ − µ| < ε with an error of
O(ε), and then un-symmetrize the sum. This yields

Σ̃∞[g] = −
∫
g(λ, µ)

λ− µ
ρ(λ)ρ(µ)dλdµ , (46)

with the following usual definition of the principal value integral

−
∫

F (λ)

λ− µ
dλ = lim

ε→0

∫
|λ−µ|>ε

F (λ)

λ− µ
dλ . (47)

Hence, sums of type (43) can indeed be expressed in terms of root densities.
In contrast partial sums like

1

L

∑
i
i 6=j

g(λi, λj)

λi − λj
, (48)

at fixed j cannot be expressed in terms of the root density in the thermodynamic limit.

3.3.2 Double principal values

Higher-dimensional sums of the form

Σ̃L[g] =
1

L3

∑
i,j,k
i 6=j
j 6=k

g(λi, λj , λk)

(λi − λj)(λj − λk)
, (49)

can be treated likewise, but with subtleties hiding in the fact that i can be equal to k.
Separating out the term with i = k and symmetrizing the remaining sum gives

Σ̃L[g] =
1

6L3

∑
i 6=j
j 6=k
i 6=k

∑
σ∈S3

g(λσ(i), λσ(j), λσ(k))(λσ(k) − λσ(i)) sgn (σ)

(λi − λj)(λj − λk)(λk − λi)
− 1

L3

∑
i 6=j

g(λi, λj , λi)

(λi − λj)2
.

(50)
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The first term is regular so that (25) can be used, while the second term is of the type (32)
and can be expressed in terms of γ−2(λ). In the first term we can remove the region where
|λ−µ| < ε or |λ−ν| < ε or |ν−µ| < ε with an error that is O(ε), and then un-symmetrize
the integral. One obtains

Σ̃∞[g] = =

∫
g(λ, µ, ν)ρ(λ)ρ(µ)ρ(ν)

(λ− µ)(µ− ν)
dλdµdν −

∫ ∞
−∞

g(λ, λ, λ)γ−2(λ)dλ , (51)

where the simultaneous principal value in the triple-integral is defined as

=

∫
F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν = lim

ε→0

∫
|λ−µ|>ε
|µ−ν|>ε
|λ−ν|>ε

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν . (52)

As shown in Appendix A.1 this can be expressed in terms of the successive principal value
triple-integral according to a Poincaré-Bertrand-like formula

=

∫
F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν = −

∫
F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν +

π2

3

∫ ∞
−∞

F (λ, λ, λ)dλ . (53)

where we defined

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν =

∫
dµ−
∫

dν
1

µ− ν
−
∫

dλ
F (λ, µ, ν)

λ− µ

=

∫
dµ lim

ε→0

∫
|ν−µ|>ε

dν
1

µ− ν
lim
ε′→0

∫
|µ−λ|>ε′

dλ
F (λ, µ, ν)

λ− µ
.

(54)

It can also be expressed as

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν =

∫
dν−
∫

dµ
1

µ− ν
−
∫

dλ
F (λ, µ, ν)

λ− µ

=

∫
dλ−
∫

dµ
1

λ− µ
−
∫

dν
F (λ, µ, ν)

µ− ν

=

∫
dµ−
∫

dλ
1

λ− µ
−
∫

dν
F (λ, µ, ν)

µ− ν
,

(55)

and

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν = lim

ε,ε′→0

∫
|λ−µ|>ε
|µ−ν|>ε′

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν , (56)

as shown in Appendices A.2. Using these principal value integral identities we can rewrite
(51) in the form

Σ̃∞[g] = −
∫
g(λ, µ, ν)ρ(λ)ρ(µ)ρ(ν)

(λ− µ)(µ− ν)
dλdµdν +

∫ ∞
−∞

g(λ, λ, λ)

[
π2

3
ρ(λ)3 − γ−2(λ)

]
dλ . (57)

3.4 Examples of root densities

The calculations presented in this paper hold for a generic piece-wise continuous root
density ρ(λ). Two applications we have in mind is to thermal states and non-equilibrium
steady states after quantum quenches, and we now discuss specific root densities that arise
in these contexts.
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3.4.1 Thermal states

Thermal states are characterized by root densities that maximise the Yang-Yang entropy
at inverse temperature β [11]. Defining the so-called dressed energy εdr(λ) by

ϑ(λ) =
1

1 + eβεdr(λ)
, (58)

the filling function ϑ(λ) of a thermal state is such that

εdr(λ) = λ2 − h− 1

2πβ

∫ ∞
−∞

2c

c2 + (λ− µ)2
log(1 + e−βεdr(µ))dµ . (59)

Here h is a chemical potential that is used to fix the desired particle density D. In practice
one first solves the nonlinear integral equation (59) and then uses (58) to determine ρ(λ)
from the linear integral equation (27).

A particular case of thermal states is the zero temperature ground state, obtained in
the limit β →∞. Its root density satisfies

ρ(λ) =
1

2π
+
c

π

∫ Q

−Q

ρ(µ)

c2 + (λ− µ)2
dµ , (60)

with Q defined such that ∫ Q

−Q
ρ(λ)dλ = D . (61)

3.4.2 Non-equilibrium steady states

Refs [97, 99] considered a particular interaction quench in the Lieb-Liniger model, where
the system is initially in the ground state of (9) for c = 0, and is subsequently time-evolved
with the Lieb-Liniger Hamiltonian at a finite value of c. The root density characterizing
the steady state reached at late times was determined in [99] and remarkably allows for a
closed form solution

ρss(λ) =
τ

4π
(
1 + a(λ/c)

) da(λ/c)

dτ
, (62)

where τ = 1
c

∫∞
−∞ ρss(x)dx and

a(x) =
2πτ

x sinh(2πx)
I1−2ix(4

√
τ)I1+2ix(4

√
τ) , (63)

with I the modified Bessel function.

4 1/c expansion of the Lieb-Liniger model

In this section we perform an expansion around the limit c→∞ at order 1/c2 of the energy
levels and form factors in the Lieb-Liniger model, at fixed L and fixed Bethe numbers.
We then expose the consequences it has on the spectral sum (17) in Section 4.3.3.
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4.1 The Bethe equations

The Bethe equations (15) admit a regular 1/c expansion at large c. In the following, in
order to expand the form factor at order 1/c2 we will need the value of the Bethe roots at
order 1/c3. The Bethe equations (15) at order 1/c3 read

λi =
2πIi
L
− 2

cL

N∑
k=1

(λi − λk) +
2

3c3L

N∑
k=1

(λi − λk)3 +O(c−5) . (64)

This gives the following expression for the Bethe roots in terms of the Bethe numbers at
order 1/c3

λi =
2π

1 + 2D
c

Ii
L

+
4π

c(1 + 2D
c )

1

L

N∑
j=1

Ij
L

+
1

3πc3

(
2π

1 + 2D
c

)4
1

L

N∑
j=1

(
Ii − Ij
L

)3

+O(c−4) . (65)

The alert reader will have noticed that some of the terms contain higher powers of 1/c
than the order at which we are working, that is 1/c3. We find it useful throughout the
manuscript to retain certain “resummed” expressions of 1/c as they appear in calculations,
both for clarity and convenience since they often happen to compensate each other. In
any case, keeping these resummed expressions in 1/c does not affect the validity of the
equations at the order considered.

4.2 The form factors

4.2.1 Leading order in 1/c of the form factor between two generic states

The behaviour of the 1/c expansion of a form factor (18) between states |λλλ〉 and |µµµ〉
depends on the “relative positions” of the Bethe numbers of one state to the other. To see
this, let us determine the leading order in 1/c of the form factor (18) without making any
assumptions on the eigenstates |λλλ〉 and |µµµ〉. It is then straightforward to see that when
c→∞

V +
j − V

−
j =

2

ic

N∑
k=1

(µk − λk) +O(c−2)

Nλλλ = 1 +O(c−1) ,

(66)

while the non-diagonal term in the determinant appearing in the form factor is of order
O(c−3). We conclude that

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

(
∑

i µi − λi)
2N

L2N

(
2

c

)2N−2
∏
i 6=j(λi − λj)(µi − µj)∏

i,j(λi − µj)2
(1 +O(c−1)) . (67)

We see that the order in 1/c of this expression entirely depends on the roots λk and µk.
To be specific, let us now denote by Ik and Jk the Bethe numbers of λλλ and µµµ respectively,
and define

ν = N − |{Ik} ∩ {Jk}| , (68)

the number of Bethe numbers present in λλλ and absent from µµµ. If λi and µj have different
Bethe numbers, then from (65) we have λi − µj = O(c0), whereas if they have the same
Bethe number then at least λi − µj = O(c−1). It follows that

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
= O(c−2(ν−1)) . (69)
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Hence expanding in 1/c naturally orders the Lehman representation (17) into an expansion
in terms of number of particle-hole excitations of µµµ above λλλ, i.e. of the number of changes
in the Bethe numbers of µµµ compared to those of λλλ. This means that if one considers (17)
at order c−m, then only intermediate states µµµ with ν ≤ m

2 + 1 contribute to the sum.
We note however that the converse is not true: restricting (17) to e.g. one-particle-hole
excitations would still involve arbitrarily high orders in 1/c.

Since our goal is to compute correlations at order 1/c2, we only need to investigate the
restriction of (67) to one- and two-particle-hole excitations.

4.2.2 Order 1/c2 of form factors involving a single particle-hole excitation

In this section we consider one-particle-hole excitations of the state |µµµ〉 above |λλλ〉. Up to
reordering the roots, we can assume that the Bethe numbers Ik of λλλ differ from those Jk
of µµµ only at a single position a:

∀i 6= a Ii = Ji , Ja − Ia ≡ n 6= 0 . (70)

Since the excited particle cannot coincide with an already existing particle, we also have
the constraint

∀i 6= a Ia + n 6= Ii . (71)

This has the following consequences at order 1/c3 on the value of the Bethe roots. Using
(65) we have

µa = λa +
2πn

L(1 + 2D/c)

(
1 +

2

cL

)
+O(c−3) , (72)

while for i 6= a, we obtain

µi = λi +
4πn

cL2(1 + 2D/c)

(
1− (λi − λa)2

c2
+

2πn

c2L
(λi − λa)−

1

3c2

(
2πn

L

)2
)

+O(c−4) .

(73)
Using (72) and (73) we can determine the various terms entering the expression of the
form factor at order c−2

∏
i 6=j

λi − λj + ic

µi − µj + ic
= 1− 1

c2

(
2πn

L

)2∑
i 6=a

1 +
4πn

Lc2

∑
i 6=a

λi − λa ,

V +
i − V

−
i =

4πn

icL

(
1− (λi − λa)2

c2

)
,

∏
i 6=j
i 6=a
j 6=a

(λi − λj)(µi − µj)
(λi − µj)2

= 1 +

(
4πn

cL2

)2∑
i 6=j
i 6=a
j 6=a

1

(λi − λj)2
,

∏
i 6=a

(λi − λa)2

(µi − λa)2
= 1− 8πn

cL2(1 + 2D/c)

∑
i 6=a

1

λi − λa

+
(4πn

cL2

)2
[
2

(∑
i 6=a

1

λi − λa

)2

+
∑
i 6=a

1

(λi − λa)2

]
, (74)
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∏
i 6=a

(µi − µa)2

(λi − µa)2
= 1 +

8πn

cL2(1 + 2D
c )

∑
i 6=a

1

λi − λa − 2πn
L(1+ 2D

c
)

+
(4πn

cL2

)2
[
2
(∑
i 6=a

1

λi − λa − 2πn
L(1+ 2D

c
)

)2
+
∑
i 6=a

1

(λi − λa − 2πn
L(1+ 2D

c
)
)2

]
,

N∏
i=1

1

(λi − µi)2
=

4(1 + 2D
c )2N

(1 + 2
cL)2

c2N−2L4N−2

n2N (4π)2N

×
[
1 +

2

c2

∑
i 6=a

(
(λi − λa)2 − 2πn

L
(λi − λa) +

1

3

(
2πn

L

)2)]
,

Nλλλ = Nµµµ =

(
1 +

2D

c

)N−1

, (75)

i(µl − λl)
∏
k 6=l

µk − λl
λk − λl

(
2c

(λl − λj)2 + c2
− 2c

(λp − λj)2 + c2

)
= O(c−4). (76)

Putting everything together we have at order c−2

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

(1 + 2D
c )2

(1 + 2
cL)2

1

L2

[
1 +

4

cL(1 + 2D
c )

2πn

L

∑
i 6=a

( 1

λi − λa − 2πn
L(1+ 2D

c
)

− 1

λi − λa

)

+
4

c2L2

(2πn

L

)2
(
− L2

12

∑
i 6=a

1 +
∑
i 6=j
j 6=a

1

(λi − λj)2
+ 2
(∑
i 6=a

1

λi − λa − 2πn
L(1+ 2D

c
)

− 1

λi − λa

)2

+
∑
i 6=a

1

(λi − λa − 2πn
L(1+ 2D

c
)
)2

)]
+O(c−3) . (77)

4.2.3 Order 1/c2 of form factors involving two particle-hole excitations

We now consider two particle-hole excitations. Up to re-ordering the roots of µµµ, we can
assume its Bethe numbers differ from those of λλλ only at positions a and b 6= a, and thus
assume

∀i 6= a, b Ii = Ji , Ja − Ia ≡ n 6= 0 , Jb − Ib ≡ m 6= 0 . (78)

Since the excited particles cannot coincide with an already existing particle, we also have
the constraints

∀i 6= a, b Ia + n 6= Ii , ∀i 6= a, b Ia +m 6= Ii . (79)

Moreover we must also exclude the case where one of the excited particles fill the hole left
by the other, since this reduces to a single particle-hole excitation and is therefore already
covered. The corresponding constraint is

Ia + n 6= Ib , Ib +m 6= Ia . (80)

Finally we have to exclude the case where the two excited particles coincide

Ia + n 6= Ib +m. (81)
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From (65) we obtain

µi =


λi + 4π(n+m)

c
(

1+ 2D
c

)
L2

+O(c−3) if i 6= a, b

λa + 2πn

L
(

1+ 2D
c

) + 4π(n+m)

c
(

1+ 2D
c

)
L2

+O(c−3) if i = a

λb + 2πm

L
(

1+ 2D
c

) + 4π(n+m)

c
(

1+ 2D
c

)
L2

+O(c−3) if i = b .

(82)

We can now investigate the form taken by (67) for these values of roots. At leading
order in 1/c we have∏

i 6=j(λi − λj)(µi − µj)∏
i,j(λi − µj)2

=
(λa − λb)2(µa − µb)2

(λa − µb)2(λb − µa)2

1∏
i(λi − µi)2

(1 +O(c−1)) , (83)

which, when substituted in (67) yields the following leading order expression of the form
factor for two-particle-hole excitations

|〈λλλ|σ(0)|µµµ〉|2

〈λλλ|λλλ〉〈µµµ|µµµ〉
=

4

c2L4

(n+m)4

n2m2

(λa − λb)2(λa − λb + 2π(n−m)
L(1+2D/c))2

(λa − λb + 2πn
L(1+2D/c))2(λa − λb − 2πm

L(1+2D/c))2
+O(c−3) .

(84)

4.3 The Lehmann representation

We can now write the Lehmann representation (17) for the density-density correlation
functions at order 1/c2. As explained in the previous section, only one and two particle-
hole excitations contribute to (17) at order 1/c2, and the corresponding form factors were
computed at this order in the previous subsections. This leaves us with working out the
phases in the corresponding terms in (17) at order 1/c2.

4.3.1 The phase for a single particle-hole excitation

For excitations with one particle and one hole, it follows from (72) and (73) that

x
(
P (µµµ)− P (λλλ)

)
+ t
(
E(λλλ)− E(µµµ)

)
= x

2πn

L
− t
[

8πn

cL2(1 + 2D
c )

∑
i

λi

+
( 2πn

L(1 + 2D
c )

)2
(1 + 4

cL + 4D
c2L

) +
4πn

L(1 + 2D
c )
λa

]
+O(c−3) . (85)

It will be convenient to perform the following change of variable x′ defined as

x′ = x(1 + 2D
c )− 4δL

c
t , (86)

where

δL =
1

L

N∑
i=1

λi . (87)

Then the phase becomes

x(P (µµµ)− P (λλλ)) + t(E(λλλ)− E(µµµ)) = −t 2πn

L(1 + 2D
c )

[
2πn

L(1 + 2D
c )

+ 2λa +O(L−1)

]
+ x′

2πn

L(1 + 2D
c )

+O(c−3) . (88)

For later convenience we define

δ ≡ lim
L→∞

δL =

∫ ∞
−∞

xρ(x)dx . (89)
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4.3.2 The phase for two particle-hole excitations

Using (82)

x(P (µµµ)− P (λλλ)) + t(E(λλλ)− E(µµµ)) = x
2π(n+m)

L
+ t

[
λ2
a −

(
λa +

2πn

L
(
1 + 2D

c

))2

+ λ2
b −

(
λb +

2πm

L
(
1 + 2D

c

))2
− 8π(n+m)

cL2
(
1 + 2D

c

)∑
j

λj

− 16π2

L4(1 + 2D
c )2c2

(n+m)2
∑
i

1− 16π2

L3(1 + 2D
c )2c

(n+m)2

]
+O(c−3) .

We can express this in terms of x′ as well

x(P (µµµ)− P (λλλ)) + t(E(λλλ)− E(µµµ)) = x′
2π(n+m)

L
(
1 + 2D

c

) + t

[
λ2
a −

(
λa +

2πn

L
(
1 + 2D

c

))2

+ λ2
b −

(
λb +

2πm

L
(
1 + 2D

c

))2
+O(L−1)

]
+O(c−3) . (90)

4.3.3 The sum over intermediate states

So far we have expanded all the terms arising in (17) at order 1/c2, at a fixed L for
arbitrary eigenstates |λλλ〉 and |µµµ〉 with fixed Bethe numbers. We have shown that the
sum truncates to one- and two-particle-hole excitations, and that the resulting terms are
well-defined functions of the excitation parameters n and m.

However, as the Lieb Liniger model is a field theory and not a lattice model it features
an infinite number of particle-hole states even if L is finite, so that (17) is still an infinite
sum even if it involves only one- and two-particle-hole excitations. This creates two notable
problems. The first one is that we encounter infinite sums of the type

∑∞
k=−∞ k

neik
2t+ikx

for n = 0, 1, 2 which are ill-defined as functions of x, t (except if n = 0 and t 6= 0). The
explanation for this behaviour is that 〈σ (x, t)σ (0, 0)〉, similarly to the propagator of a
quantum particle, should be understood as a probability amplitude that is meant to be
integrated against a smooth and localized function of x and t, or, stated differently, that it
must be understood as a distribution in x, t. The second problem is that the 1/c expansion
of a form factor 〈λλλ|σ(0)|µµµ〉 has been performed for fixed Bethe numbers, whereas in the
spectral sum at fixed c there are always excited states with Bethe roots larger than c. This
poses a potential problem of commuting two limits.

In order to address these problems we are going to impose that all the rapidities
involved in the spectral sum (17) are smaller than a certain cut-off Λ, that can be taken
as large as desired. Firstly, this imposes a restriction of the state |λλλ〉, in which we are
calculating our expectation value. We require that for all roots |λj | < Λ, i.e. that the
density ρ(λ) vanishes for |λ| > Λ; this is a mild restriction in the following sense. In
practice we are interested in the dynamical response in macro states characterized by root
distributions ρ(λ) that decay faster than |λ|−2 for λ→∞, which is a necessary condition
for the energy density of the state to be finite (for example in the thermal state the decay
is Gaussian). We therefore can always approximate ρ(λ) to any given accuracy by a root
density ρΛ(λ), which vanishes outside the interval [−Λ,Λ]. Moreover this truncation can
be done in an infinitely differentiable way, so it does not affect the regularity of the root
density ρ(λ). Secondly, this cut-off also restrains the sum (17) to excited states |µµµ〉 such
that the |µi| < Λ, which removes the problem of possible excited rapidities becoming
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larger than c. Hence we define a Λ-regularized correlation function 〈σ (x, t)σ (0, 0)〉Λ as

〈σ (x, t)σ (0, 0)〉Λ =
∑
µµµ

∀i, |µi|<Λ

|〈λλλ|σ (0) |µµµ〉|2

〈λλλ |λλλ〉 〈µµµ|µµµ〉
eit(E(λλλ)−E(µµµ))+ix(P (µµµ)−P (λλλ)) . (91)

The correlator 〈σ (x, t)σ (0, 0)〉Λ defined in this way and expanded in 1/c has a regular
thermodynamic limit L → ∞, as we will see below. Now, in order to recover the true
correlation functions (17), one would like to then take the limit Λ → ∞. It turns out
that such a limit of 〈σ (x, t)σ (0, 0)〉Λ seen as a function of x, t does not exist. To be more
specific one encounters problematic terms of the form

In(Λ|t, x) =

∫ Λ

−Λ
µne−itµ

2+ixµdµ , n = 0, 1, 2, (92)

for which the limit Λ → ∞ does not exist (except for n = 0 if t 6= 0). However, the
limit exists in a distribution sense, i.e. the integral of In(Λ|t, x) over any smooth localized
function of x, t has a well-defined limit when Λ → ∞. This is all we require, since the
correlation function is in any case meant to be integrated with a smooth localized function
of x, t.

To take the limit we perform an integration by part and obtain

In(Λ|t, x) =
xIn−1(Λ|t, x)

2t
+

(n− 1)In−2(Λ|t, x)

2it
+
e−ixΛ(−1)n−1 − eixΛ

2it
e−itΛ

2
Λn−1 . (93)

In particular we have

I1(Λ|t, x) =
x

2t
I0(Λ|t, x) +

e−ixΛ − eixΛ

2it
e−itΛ

2

I2(Λ|t, x) =
(( x

2t

)2
+

1

2it

)
I0(Λ|t, x)− e−ixΛ + eixΛ

2it
e−itΛ

2
Λ + x

e−ixΛ − eixΛ

4it2
e−itΛ

2
,

(94)
where

lim
Λ→∞

I0(Λ|t, x) =

∫ ∞
−∞

e−itµ
2+iµxdµ , if t 6= 0 ,

I0(Λ|t, x) =
eixΛ − e−ixΛ

ix
, if t = 0. (95)

Terms like e−itΛ
2∓ixΛΛn and eixΛ do not have limits when Λ → ∞ as a function of x, t.

In a distribution sense however, they vanish when Λ→∞ in the sense that their integral
with any smooth localized function of x, t vanishes when Λ → ∞. Hence we obtain that
when Λ→∞ In(Λ|t, x) tends to In(t, x) with In(0, x) = 0 and

I1(t, x) =
x

2t
I0(t, x) ,

I2(t, x) =

(( x
2t

)2
+

1

2it

)
I0(t, x) ,

I0(t, x) =

∫ ∞
−∞

e−itµ
2+iµxdµ , t 6= 0.

(96)

One notices that these limits are exactly those obtained by introducing a small imaginary
part in time and taking Λ→∞

In(t, x) = lim
ε→0+

∫ ∞
−∞

µne−i(t−iε)µ
2+ixµdµ . (97)
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However, such a small imaginary part cannot be incorporated from the beginning in (91),
since E(λλλ)− E(µµµ) can take both signs when |λλλ〉 is not the ground state.

These limits will be useful in the following sections in order to take the limit Λ → ∞
of the Λ-regularized correlation functions.

At order 1/c2 we therefore have the following decomposition

〈σ (x, t)σ (0, 0)〉Λ = D2 + CΛ
1 (x, t) + CΛ

2 (x, t) +O(c−3) , (98)

where CΛ
1,2(x, t) are defined in the following. Introducing the convenient notations

λa,n ≡ λa +
2πn

L(1 + 2D
c )
, (99)

and

L′ = L(1 +
2D

c
), (100)

we have the following contribution at order c−2 of the one-particle-hole excitations

CΛ
1 (x, t) =

(1 + 2D
c )2

L2

N∑
a=1

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

[
1 +

4

cL

2πn

L′

∑
i 6=a

(
1

λi − λa − 2πn
L′
− 1

λi − λa

)

+
4

c2L2

(2πn

L′

)2
(
− L2

12

∑
i 6=a

1 +
∑
i 6=j
j 6=a

1

(λi − λj)2
+ 2
(∑
i 6=a

1

λi − λa − 2πn
L′
− 1

λi − λa

)2

+
∑
i 6=a

1

(λi − λa − 2πn
L′ )2

)]
exp

(
ix′(λa,n − λa) + it

(
λ2
a − λ2

a,n

))
.

We already neglected a global factor (1 + 2
cL)2 that is 1 in the thermodynamic limit, as

well as a O(L−1) contribution in the exponential. We also used 1
L2c2

= 1
L′2c2 +O(c−3) at

order c−2.
In Figure 1 we show the distribution of Bethe numbers for the particle-hole excitations

that are summed over in (101). Compared to the representative state we have changed a
single integer.

. . . . . . . . . . . . .

Figure 1: Sketch of a one-particle-hole excitation: positions of the momenta of the repre-
sentative state (empty circles) and the intermediate state (filled circles) respectively, and
position of the holes (dots).

For the two particle-hole excitations the sum in (17) is over the set {a, b} and over
n,m with the constraint µa < µb. Since the form factor is symmetric upon swapping a, b
and n,m simultaneously, this constraint can be taken into account with a factor 1/2 and
with imposing µa 6= µb. The sum over {a, b} as a set can be transformed into a sum over
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a 6= b as a couple with a factor 1/2 as well. Hence we have the leading contribution of the
two particle-hole excitations

CΛ
2 (x, t) =

1

c2L4

∑
a6=b

∑
n

∀i, λa,n 6=λi
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

(n+m)4

n2m2

(λa − λb)2(λa − λb + 2π
L′ (n−m))2

(λa − λb + 2π
L′ n)2(λa − λb − 2π

L′m)2

× exp

(
it
[
λ2
a − λ2

a,n + λ2
b − λ2

b,m

]
+ ix′[λa,n − λa + λb,m − λb]

)
. (101)

In Figure 2 we show the distribution of Bethe numbers for the two particle-hole ex-
citations that are summed over in (101). Compared to the representative state we have
changed two integers.

. . . . . . . . . . . . .

Figure 2: Sketch of a two particle-hole excitation: position of the momenta of the repre-
sentative state (empty circles) and the intermediate state (filled circles) respectively, and
position of the holes (dots).

4.4 Examples of root densities

In this subsection we complete the 1/c expansion of the model by determining the expan-
sions of the root densities introduced in Section 3.4.

4.4.1 Hole density

We introduced earlier the hole density ρh(λ) in (28) with ϑ(λ) given in terms of ρ(λ) in
(27). The hole density is a function of the root density ρ(λ), and for a generic ρ(λ) it
reads at order c−2

ρh(λ) =
1 + 2D

c

2π
− ρ(λ) +O(c−3) , (102)

where we recall that D is defined in (29).

4.4.2 Thermal states

Thermal states at finite inverse temperature β <∞ are defined in terms of the nonlinear
integral equation for the dressed energy (59) and the thermodynamic limit of the Bethe
Ansatz equations (27). These can be expanded in 1/c without difficulty, and we obtain
the following result for the particle density at order 1/c2

ρ(x) =
1

2π

A(c, β)

1 + eβx2+B(c,β)
, (103)

where

A(c, β) = 1−
Li 1/2(−eβh)
√
πβc

+
Li 2

1/2(−eβh) + Li−1/2(−eβh) Li 3/2(−eβh)

πβc2
+O(c−3),

B(c, β) = −βh+
Li 3/2(−eβh)
√
πβc

−
Li 1/2(−eβh) Li 3/2(−eβh)

πβc2
+O(c−3) . (104)
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We recall that h is the chemical potential used to fix the particle number D. In order to
derive (104) we used the following relations∫ ∞

−∞

dx

1 + ex2+y
= −
√
π Li 1/2

[
−e−y

]
∫ ∞
−∞

log(1 + e−x
2−y)dx = −

√
π Li 3/2

[
−e−y

]
.

(105)

4.4.3 Zero temperature ground state

Equation (60) for the ground state root density can be expanded in 1/c to yield

ρ(λ) =
1 + 2D

c

2π
111|λ|<Q +O(c−3) ,

Q =
qF

1 + 2D
c

+O(c−3) . (106)

Here 111P is the indicator function, equal to 1 if the affirmation P is true and 0 if it is false.
The Luttinger parameter K = (2πρ(Q))2 [3] is

K = 1 +
4D

c
+

4D2

c2
+O(c−3) . (107)

5 The thermodynamic limit of correlation functions

In this section we perform explicitly the sum over intermediate states in (98) at order 1/c2

in the infinite volume limit L→∞.

5.1 One particle-hole excitations

Our starting point is CΛ
1 (x, t) as defined in (101). In the following we consider the differ-

ent orders in the 1/c-expansion and derive integral representations of the corresponding
contributions to CΛ

1 (x, t) in the thermodynamic limit. As we have noted before, we re-
tain certain resummed expressions in this expansion for convenience, an example being
the factor (1 + 2D

c ). When we refer to a given order of the 1/c-expansion this should be
understood modulo such factors.

5.1.1 Order c0

Let us focus first on the leading order O(c0), namely

A0 =
(1 + 2D

c )2

L2

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

eix
′(λa,n−λa)+it(λ2

a−λ2
a,n) . (108)

We rewrite this as

A0 =
(1 + 2D

c )2

L2

∑
a

∑
n

|λa,n|<Λ

eix
′(λa,n−λa)+it(λ2

a−λ2
a,n)

−
(1 + 2D

c )2

L2

∑
a

∑
k

|λk|<Λ

eix
′(λk−λa)+it(λ2

a−λ2
k) . (109)
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Using (25) the sums over a and k can be turned into integrals over the root density ρ(λ),

and the sum over n into an integral with density
1+ 2D

c
2π . Altogether we find

A0 = (1 + 2D
c )2

∫ ∞
−∞

dλ ρ(λ)

∫ Λ

−Λ
dµ ρh(µ)eit(λ

2−µ2)+ix′(µ−λ) +O(L−1) , (110)

where we used the expression (102) for the hole density ρh at order c−2.

5.1.2 Order c−1

We next turn to the c−1 term

A1 = 4
(1 + 2D

c )2

cL3

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

2πn

L′

∑
i 6=a

(
1

λi − λa − 2πn
L′
− 1

λi − λa

)

× eix′(λa,n−λa)+it(λ2
a−λ2

a,n) . (111)

We rewrite this as

A1 = 4
(1 + 2D

c )2

cL3

∑
a

∑
i 6=a

∑
n

λa,n 6=λi
|λa,n|<Λ

2πn

L′

(
1

λi − λa − 2πn
L′
− 1

λi − λa

)

× eix′(λa,n−λa)+it(λ2
a−λ2

a,n)

−4
(1 + 2D

c )2

cL3

∑
a

∑
i 6=a

∑
k
k 6=i
|λk|<Λ

(λk − λa)
(

1

λi − λk
− 1

λi − λa

)

× eix′(λk−λa)+it(λ2
a−λ2

k) . (112)

This term involves either a sum over regularly spaced integers n that becomes an integral
with density 1+2D/c

2π in the thermodynamic limit, or sums of the type (43) that can be
expressed as principal part integrals over the root density. We obtain

A1 =
4(1 + 2D

c )2

c

∫ ∞
−∞

dλ ρ(λ)

∫ Λ

−Λ
dµ(µ− λ)

[
−
∫

ρ(u)

u− µ
du−−

∫
ρ(u)

u− λ
du

]
× eit(λ2−µ2)+ix′(µ−λ)

(
1 + 2D

c

2π
− ρ(µ)

)
+O(L−1) . (113)

Introducing the Hilbert transform ρ̃ of ρ by

ρ̃(λ) = −
∫

ρ(u)

λ− u
du , (114)

permits us to rewrite this contribution in the form

A1 = −
4(1 + 2D

c )2

c

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)

[
ρ̃(µ)− ρ̃(λ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+O(L−1) . (115)
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5.1.3 Order c−2: first contribution

We now consider contributions involving the factor(∑
i 6=a

1

λi − λa − 2πn
L′
− 1

λi − λa

)2

=
∑
i 6=a
j 6=a

1

(λi − λa)(λj − λa)

+
∑
i 6=a
j 6=a

1

(λi − λa − 2πn
L′ )(λj − λa − 2πn

L′ )
− 2

∑
i 6=a
j 6=a

1

(λi − λa − 2πn
L′ )(λj − λa)

, (116)

which are more delicate. The first term on the right hand side gives rise to a contribution

A2 = 8
(1 + 2D

c )2

c2L4

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

(
2πn

L′

)2∑
i,j
i 6=a
j 6=a

1

(λi − λa)(λj − λa)

× eix′(λa,n−λa)+it(λ2
a−λ2

a,n) . (117)

We rewrite this as

A2 =8
(1 + 2D

c )2

c2L4

∑
a

∑
n

|λa,n|<Λ

(
2πn

L′

)2∑
i,j
i 6=a
j 6=a

eix
′(λa,n−λa)+it(λ2

a−λ2
a,n)

(λi − λa)(λj − λa)

− 8
(1 + 2D

c )2

c2L4

∑
a

∑
k

|λk|<Λ

(λk − λa)2
∑
i,j
i 6=a
j 6=a

eix
′(λk−λa)+it(λ2

a−λ2
k)

(λi − λa)(λj − λa)
. (118)

The two terms are of the form (49) and we apply (57) to express them in terms of the
root density ρ(λ) and the pair distribution function γ−2(λ) defined in (33), with a triple
integral with successive principal values defined in (54). This yields

A2 =− 8

c2

∫ Λ

−Λ
dµρh(µ)e−itµ

2+ix′µ−
∫

(µ− λ)2ρ(λ)ρ(u)ρ(v)

(u− λ)(λ− v)
eitλ

2−ix′λdλdudv

− 8

c2

∫ ∞
−∞

dλ

∫ Λ

−Λ
dµ(µ− λ)2ρh(µ)

[
π2

3 ρ(λ)3 − γ−2(λ)
]
eit(λ

2−µ2)+ix′(µ−λ)dλdµ

+O(c−3) +O(L−1) . (119)

The definition of the successive principal value integral allows us to rewrite it in terms of
ρ̃, to give

A2 =
8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)2ρ̃(λ)2eit(λ

2−µ2)+ix′(µ−λ)

− 8

c2

∫ ∞
−∞

dλ

∫ Λ

−Λ
dµ(µ− λ)2ρh(µ)

[
π2

3 ρ(λ)3 − γ−2(λ)
]
eit(λ

2−µ2)+ix′(µ−λ)dλdµ

+O(c−3) +O(L−1) . (120)

5.1.4 Order c−2: second contribution

The second term on the right hand side of (116) is particularly cumbersome to deal with.
We first treat the case i = j separately, and for all terms with i 6= j we apply a partial
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fraction decomposition with respect to n, so that we have only one n appearing in the
denominator. Finally we split the sum over n as the difference of sums over vacancies and
particles. Specifically, we have for f(u) = u2eix

′u+it(λ2
a−(λa+u)2))∑

i,j,n
∀k, λa,n 6=λk
|λa,n|<Λ
i,j 6=a

f(2πn
L′ )

(λi − λa − 2πn
L′ )(λj − λa − 2πn

L′ )
=

∑
i,n

λa,n 6=λi
|λa,n|<Λ
i 6=a

f(2πn
L′ )

(λi − λa − 2πn
L′ )2

−
∑
i,k
i 6=k
|λk|<Λ
i 6=a

f(λk − λa)
(λi − λk)2

+
∑
i,j,n

λa,n 6=λi
|λa,n|<Λ
i,j 6=a, i 6=j

f(2πn
L′ )

(λj − λi)(λi − λa − 2πn
L′ )
−

∑
i,j,n

λa,n 6=λj
|λa,n|<Λ
i,j 6=a, i 6=j

f(2πn
L′ )

(λj − λi)(λj − λa − 2πn
L′ )

−
∑
i,j,k

i 6=j, i6=k
|λk|<Λ
i,j 6=a

f(λk − λa)
(λj − λi)(λi − λk)

+
∑
i,j,k

i 6=j, j 6=k
|λk|<Λ
i,j 6=a

f(λk − λa)
(λj − λi)(λj − λk)

. (121)

In all these terms, the conditions i, j 6= a only give rise to subleading contributions in
L, so that they can be discarded. The first term on the right hand side of (121) gives rise
to a contribution to CΛ

1 (x, t) of the form

A3 = 8
(1 + 2D

c )2

c2L4

∑
a

∑
n

λa,n 6=λi
|λa,n|<Λ

(
2πn

L′

)2∑
i

i 6=a

eix
′(λa,n−λa)+it(λ2

a−λ2
a,n)

(λi − λa − 2πn
L′ )2

.
(122)

As this is proportional to L−4 and only involves three sums the dominant contribution
arises from the double pole. Using

∑
n6=0

1
n2 = π2

3 for the sum over n, we obtain

A3 =
8

c2

∫ ∞
−∞

(λ− µ)2ρ(λ)
π2

3

ρ(µ)

(2π)2
eit(λ

2−µ2)+ix′(µ−λ)dλdµ+O(c−3) +O(L−1) . (123)

5.1.5 Order c−2: third contribution

The second term on the right hand side of (121) gives rise to a contribution

A4 = −8
(1 + 2D

c )2

c2L4

∑
a

∑
i,k

i,k 6=a
i 6=k

(λk − λa)2

(λi − λk)2
eix
′(λk−λa)+it(λ2

a−λ2
k) . (124)

The sum is of the form (32) and according to (33) in the thermodynamic limit gives rise
to integrals over the pair distribution function

A4 = − 8

c2

∫ ∞
−∞

(λ− µ)2ρ(λ)γ−2(µ)eit(λ
2−µ2)+ix′(µ−λ)dλdµ+O(c−3) +O(L−1) . (125)

5.1.6 Order c−2: fourth contribution

The third and fourth terms in (121) are “hybrid” terms mixing sums over λi’s and sums
over regularly distributed n’s. They give rise to a contribution to CΛ

1 (x, t) of the form

A5 = 16
(1 + 2D

c )2

c2L4

∑
a

∑
i,j

i,j 6=a
i 6=j

∑
n

λa,n 6=λi
|λa,n|<Λ

(
2πn

L′

)2 eix
′(λa,n−λa)+it(λ2

a−λ2
a,n)

(λi − λa − 2πn
L′ )(λj − λi)

. (126)
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By symmetrizing over i, j, one obtains a sole pole in n, but since n is regularly distributed
and avoids only the pole one can convert the sum into a principal value integral. This
leads to integrals with two successive principal values

A5 =
16

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµ

1

2π
(µ− λ)2eit(λ

2−µ2)+ix′(µ−λ)−
∫

du
ρ(u)

u− µ
−
∫

dv
ρ(v)

v − u
+O(c−3) +O(L−1) . (127)

This can be simplified further by expressing the rightmost double integral in terms of ρ̃(λ).
To that end, let us consider the integral of this term as a function of µ with an arbitrary
continuous function ϕ(µ). Using (53) we have∫

dµϕ(µ)−
∫

du
ρ(u)

µ− u
−
∫

dv
ρ(v)

u− v
= =

∫
ϕ(µ)ρ(u)ρ(v)

(µ− u)(u− v)
dµdudv− π

2

3

∫
ϕ(µ)ρ(µ)2dµ . (128)

Under the simultaneous principal value triple integral it is legitimate to decompose
1

(µ−u)(u−v) = 1
µ−v ( 1

µ−u + 1
u−v ) and split the integral into two since |µ− v| > ε:

=

∫
ϕ(µ)ρ(u)ρ(v)

(µ− u)(u− v)
dµdudv = =

∫
ϕ(µ)ρ(u)ρ(v)

(µ− v)(µ− u)
dµdudv + =

∫
ϕ(µ)ρ(u)ρ(v)

(µ− v)(u− v)
dµdudv . (129)

We then use (53) to express the two simultaneous principal value triple integrals in terms
of successive principal value integrals∫

dµϕ(µ)−
∫

du
ρ(u)

µ− u
−
∫

dv
ρ(v)

u− v
=

∫
dµϕ(µ)−

∫
dv

ρ(v)

µ− v
−
∫

du
ρ(u)

µ− u
− π2

∫
ϕ(µ)ρ(µ)2dµ

+

∫
dµϕ(µ)−

∫
dv

ρ(v)

µ− v
−
∫

du
ρ(u)

u− v
. (130)

The first integral on the right hand side is
∫
ϕ(µ)ρ̃(µ)2dµ while the third equals minus

the left hand side. Using that this identity holds for any continuous function ϕ(µ) we
conclude that

−
∫

dλ
ρ(λ)

µ− λ
−
∫

du
ρ(u)

λ− u
=

1

2
ρ̃(µ)2 − π2

2
ρ(µ)2 . (131)

Putting everything together we obtain

A5 =
8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµ

1

2π
(µ− λ)2ρ̃(µ)2eit(λ

2−µ2)+ix′(µ−λ)

− 8π2

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµ

1

2π
(µ− λ)2ρ(µ)2eit(λ

2−µ2)+ix′(µ−λ) +O(c−3) +O(L−1) .

(132)

5.1.7 Order c−2: fifth contribution

The fifth and fourth terms on the right hand side of (121) are of the form (49) and give
rise to a contribution

A6 = −16
(1 + 2D

c )2

c2L4

∑
a

∑
i,j,k

i,j,k 6=a
i 6=j, i6=k

(λk − λa)2

(λj − λi)(λi − λk)
eix
′(λk−λa)+it(λ2

a−λ2
k) . (133)
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Applying (57) with successive principal values and then using (131) we find

A6 =− 8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρ(µ)(µ− λ)2ρ̃(µ)2eit(λ

2−µ2)+ix′(µ−λ)

+
8π2

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµ(µ− λ)2ρ(µ)3eit(λ

2−µ2)+ix′(µ−λ)

− 16

c2

∫ ∞
−∞

∫ ∞
−∞

(λ− µ)2ρ(λ)
[
π2

3 ρ(µ)3 − γ−2(µ)
]
eit(λ

2−µ2)+ix′(µ−λ)dλdµ

+O(c−3) +O(L−1) . (134)

5.1.8 Order c−2: sixth contribution

Finally, the last term in (116) gives rise to a contribution

A7 = −16
(1 + 2D

c )2

c2L4

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

(
2πn

L′

)2∑
i,j
i 6=a
j 6=a

eix
′(λa,n−λa)+it(λ2

a−λ2
a,n)

(λi − λa − 2πn
L′ )(λj − λa)

. (135)

By again decomposing the sum over n as a sum over vacancies minus a sum over particles
we find

A7 =− 16

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)2ρ̃(λ)ρ̃(µ)eit(λ

2−µ2)+ix′(µ−λ)

+O(c−3) +O(L−1) . (136)

5.1.9 Result for the contribution of one particle-hole excitations

We leave the remaining contributions to CΛ
1 (x, t) untouched, i.e. in sum form, since they

will be cancelled by contributions from two particle-hole excitations to the correlator. Our
final result for CΛ

1 (x, t) is thus given by

CΛ
1 (x, t) = ΩΛ

1 + (1 + 2D
c )2

∫ ∞
−∞

dλ ρ(λ)

∫ Λ

−Λ
dµ ρh(µ)

[
1− 4

c
(µ− λ)(ρ̃(µ)− ρ̃(λ))

+
8

c2
(µ− λ)2(ρ̃(µ)− ρ̃(λ))2 − 8π2

c2
(µ− λ)2[ρ(µ)]2

]
eit(λ

2−µ2)+ix′(µ−λ)

− 8

c2

∫ ∞
−∞

dλ

∫ Λ

−Λ
dµ(λ− µ)2ρh(µ)

[
π2

3
[ρ(λ)]3 − γ−2(λ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+
8

c2

∫ ∞
−∞

dλ

∫ ∞
−∞

dµ(λ− µ)2ρ(λ)

[
ρ(µ)

12
− 2π2

3
[ρ(µ)]3 + γ−2(µ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+O(c−3) +O(L−1) , (137)

where we have defined

ΩΛ
1 = − 1

c2L2

∑
a

∑
∀k, λa,n 6=λk
|λa,n|<Λ

[
1

3

∑
i

i 6=a

1− 4

L2

∑
i,j
i 6=j
j 6=a

1

(λi − λj)2
− 4

L2

∑
i

i 6=a

1

(λi − λa − 2πn
L′ )2

]

×
(2πn

L′

)2
eit[λ

2
a−λ2

a,n]+ix′[λa,n−λa] . (138)
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5.2 Two-particle-hole excitations

5.2.1 A partial fraction decomposition

The computation of CΛ
2 (x, t) defined in (101) is slightly different. In order to proceed we

decompose the form factor into partial fractions with respect to n, and then m:

(n+m)4

n2m2

(λa − λb)2(λa − λb + 2π(n−m)

L(1+ 2D
c

)
)2

(λa − λb + 2πn
L(1+ 2D

c
)
)2(λa − λb − 2πm

L(1+ 2D
c

)
)2

=

(
2πn

L′

)2
[

1

(2πm
L′ )2

+
2

(λa − λb)2πm
L′

+
1

(λa − λb − 2πm
L′ )2

+
2

(λa − λb)(λa − λb − 2πm
L′ )

]

+
2πn

L′

[
2

2πm
L′

+
2(λa − λb)

(λa − λb − 2πm
L′ )2

+
2

λa − λb − 2πm
L′

]

+

[
2(λa − λb)

2πm
L′

+
(λa − λb)2

(λa − λb − 2πm
L′ )2

+
2(λa − λb)

λa − λb − 2πm
L′

]

+
(2πn

L′

)−1
[
−2(λa − λb) + 2

2πm

L′
−

2(2πm
L′ )2

λa − λb
+

2(λa − λb)2

λa − λb − 2πm
L′

]
+
(2πn

L′

)−2(2πm

L′

)2

+
(
λa − λb +

2πn

L′

)−1
[

2(λa − λb)−
2(λa − λb)2

2πm
L′

− 2
2πm

L′
+

2(2πm
L′ )2

λa − λb

]

+
(
λa − λb +

2πn

L′

)−2
[

(λa − λb)2 − 2(λa − λb)
2πm

L′
+

(
2πm

L′

)2
]
. (139)

We now use that the sum is invariant under the simultaneous reparametrisations n′ =

m − L′(λa−λb)
2π and m′ = n + L′(λa−λb)

2π (which corresponds to swapping the position of
the two excited particles) to bring all the poles into poles in n or m, the only exceptions
being [2πn

L′ (λa − λb − 2πm
L′ )]−1 and [2πm

L′ (λa − λb + 2πn
L′ )]−1 which cannot be transformed

further. Next we use the invariance under swapping n,m and a, b simultaneously (which
corresponds to renaming dummy variables) to bring all the poles into poles in m only,
with the exception of [2πm

L′ (λa − λb + 2πn
L′ )]−1. We obtain

CΛ
2 (x, t) =

4

c2L4

∑
a6=b

∑
n

∀i, λa,n 6=λi
|λa,n|<Λ

∑
m

∀j, λb,m 6=λj
λb,m 6=λa,n
|λb,m|<Λ

eix
′[λa,n−λa+λb,m−λb]+it

[
λ2
a−λ2

a,n+λ2
b−λ

2
b,m

]

×
[
n2

m2
+ 2

(2πn
L′ )2

(λa − λb)2πm
L′

+ 2
n

m
+ 2

λa − λb
2πm
L′

− (λa − λb)2

2πm
L′ (λa − λb + 2πn

L′ )

]
. (140)

We now carry out the sums over m and b in order to bring this to a form similar to the
contribution from one particle hole excitations. We will denote the resulting five terms by
Σi for i = 1, . . . , 5 and treat them one at a time.
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5.2.2 First term Σ1

In this subsection we take the thermodynamic limit of

Σ1 =
4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

n2

m2
eit[λ

2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb] . (141)

We begin by splitting the exponential factor

eit[λ
2
b−λ

2
b,m]+ix′[λb,m−λb] =

(
eit[λ

2
b−λ

2
b,m]+ix′[λb,m−λb] − 1

)
+ 1. (142)

Performing the sum over m for the second term in (142) gives

Σ1 = Σ̃1 +
1

c2L2

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

(2πn

L′

)2
eit[λ

2
a−λ2

a,n]+ix′[λa,n−λa]

×
[

1

3

∑
i

i 6=a

1− 4

L2

{ ∑
i,j

i 6=j, j 6=a
|λj |<Λ

1

(λi − λj)2
+
∑
j

j 6=a

1

(λa − λj + 2πn
L′ )2

}]
, (143)

where

Σ̃1 =
4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

n2

m2
eit[λ

2
a−λ2

a,n]+ix′[λa,n−λa]

[
eit[λ

2
b−λ

2
b,m]+ix′[λb,m−λb]−1

]
.

(144)
The advantage of this representation is that the pole in m is now only of order 1. Writing
the sum over m as a sum over m 6= 0 minus sums over particles one obtains

Σ̃1 =
4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m6=0
|λb,m|<Λ

n2

m2

[
eit[λ

2
b−λ

2
b,m]+ix′[λb,m−λb] − 1

]
eit[λ

2
a−λ2

a,n]+ix′[λa,n−λa]

− 4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
i
i 6=b
|λi|<Λ

(
2πn
L′

)2

(λb − λi)2

[
eit[λ

2
b−λ

2
i ]+ix′[λi−λb] − 1

]
eit[λ

2
a−λ2

a,n]+ix′[λa,n−λa]

− 4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

(
2πn
L′

)2

(λb − λa − 2πn
L′ )2

[
eit[λ

2
b−λ

2
a,n]+ix′[λa,n−λb] − 1

]

× eit[λ
2
a−λ2

a,n]+ix′[λa,n−λa] . (145)

The first term is a sum over regularly spaced integers m with only a simple pole. In the
thermodynamic limit it can therefore be expressed in terms of a principal value integral

with a constant density
1+ 2D

c
2π . The second term is of type (43) and gives rise to an integral
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over the root density ρ(λ) in the thermodynamic limit. The last term is negligible in L.
We find

Σ1 =ΩΛ
2 +

4Ax′,t
c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)2eit(λ

2−µ2)+ix′(µ−λ)

+O(Λ−1L0) +O(L−1) , (146)

where we defined

Ax,t =

∫ ∞
−∞

du−
∫ ∞
−∞

dv
ρ(u)ρh(v)

(u− v)2
(eit(u

2−v2)+ix(v−u) − 1) , (147)

and

ΩΛ
2 =

1

c2L2

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

(
2πn

L

)2

eit[λ
2
a−λ2

a,n]+ix′[λa,n−λa]

×
[

1

3

∑
i

i 6=a

1− 4

L′2

{ ∑
i,j

i 6=j, j 6=a
|λj |<Λ

1

(λi − λj)2
+
∑
j

j 6=a

1

(λa − λj + 2πn
L′ )2

}]
. (148)

5.2.3 Second term Σ2

The next contribution is

Σ2 =
4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

2(2πn
L′ )2

(λa − λb)2πm
L′

eit[λ
2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb] .

(149)

Writing the sum over m again as sums over vacancies minus particles we have

Σ2 =
8

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m6=0
|λb,m|<Λ

(2πn
L′ )2

(λa − λb)2πm
L′

eit[λ
2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb]

− 8

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
i
i 6=b
|λi|<Λ

(2πn
L′ )2

(λa − λb)(λi − λb)
eit[λ

2
a−λ2

a,n+λ2
b−λ

2
i ]+ix′[λa,n−λa+λi−λb]

− 8

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

(2πn
L′ )2

(λa − λb)(2πn
L′ + λa − λb)

eit[λ
2
a−2λ2

a,n+λ2
b]+ix

′[2λa,n−λa−λb] . (150)

In the first two lines of (150) the sums over n are regular. The first line involves only
sums of the form (43), while the second line is of the form (49) and the thermodynamic
limit can be worked out using (57). The third term, after splitting the sum over n as sums
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over vacancies minus particles is seen to be negligible in L. Hence we obtain

Σ2 =
8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)2Bx′,t(λ)eit(λ

2−µ2)+ix′(µ−λ)

+
8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)2

[
π2

3
ρ(λ)3 − γ−2(λ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+O(Λ−1L0) +O(L−1) , (151)

where Bx,t(λ) is defined in terms of principal value integrals by

Bx,t(λ) = −
∫ ∞
−∞

du−
∫ ∞
−∞

dv
ρ(u)ρh(v)

(v − u)(λ− u)
eit(u

2−v2)+ix(v−u) . (152)

5.2.4 Third term Σ3

In this subsection we take the thermodynamic limit of

Σ3 =
4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

2
n

m
eit[λ

2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb] . (153)

Expressing the sum over m as the difference of sums over vacancies and particles Σ3

reduces to terms of the form (43) that can be readily expressed as integrals over root
densities. We obtain

Σ3 =
8Cx′,t
c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(µ− λ)eit(λ

2−µ2)+ix′(µ−λ) +O(Λ−1L0) +O(L−1) ,

(154)

where we have defined

Cx,t =

∫ ∞
−∞

du−
∫ ∞
−∞

dv
ρ(u)ρh(v)

v − u
eit(u

2−v2)+ix(v−u) . (155)

5.2.5 Fourth term Σ4

The next contribution is given by

Σ4 =
4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

2
λa − λb

2πm
L′

eit[λ
2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb] ,

(156)

and can be treated in complete analogy with Σ3. We obtain

Σ4 =
8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(λCx′,t−Dx′,t)e

it(λ2−µ2)+ix′(µ−λ) +O(Λ−1L0) +O(L−1) ,

(157)
where we have defined

Dx,t =

∫ ∞
−∞

du−
∫ ∞
−∞

dv u
ρ(u)ρh(v)

v − u
eit(u

2−v2)+ix(v−u) . (158)
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5.2.6 Fifth term Σ5

The final contribution to CΛ
2 (x, t) is

Σ5 = − 4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m

∀i, λb,m 6=λi
λb,m 6=λa,n
|λb,m|<Λ

(λa − λb)2

2πm
L′ (λa − λb + 2πn

L′ )

× eit[λ
2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb] . (159)

In order to take the thermodynamic limit we rewrite this as

Σ5 = − 4

c2L4

∑
a6=b

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
m 6=0
|λb,m|<Λ

(λa − λb)2 eit[λ
2
a−λ2

a,n+λ2
b−λ

2
b,m]+ix′[λa,n−λa+λb,m−λb]

2πm
L′ (λa − λb + 2πn

L′ )

+
4

c2L4

∑
a6=b

∑
n

λa,n 6=λb
|λa,n|<Λ

∑
i
i 6=b
|λi|<Λ

(λa − λb)2 eit[λ
2
a−λ2

a,n+λ2
b−λ

2
i ]+ix′[λa,n−λa+λi−λb]

(λi − λb)(λa − λb + 2πn
L′ )

− 4

c2L4

∑
a6=b

∑
k
k 6=b
|λk|<Λ

∑
i
i 6=b
|λi|<Λ

(λa − λb)2 eit[λ
2
a−λ2

k+λ2
b−λ

2
i ]+ix′[λi+λk−λa−λb]

(λi − λb)(λk − λb)

+
4

c2L4

∑
a6=b

∑
n

λa,n 6=λb
|λa,n|<Λ

(λa − λb)2

(λa − λb + 2πn
L′ )2

eit[λ
2
a−2λ2

a,n+λ2
b]+2ix′[2λa,n−λa−λb]

− 4

c2L4

∑
a6=b

∑
k
k 6=b
|λk|<Λ

(λa − λb)2

(λk − λb)2
eit[λ

2
a−2λ2

k+λ2
b]+ix

′[2λk−λa−λb] . (160)

The first two lines are of type (43) while the third and fifth lines are of types (49) and

(32) respectively. Finally, in the fourth line we use that
∑

n6=0
1
n2 = π2

3 to arrive at

Σ5 =
4

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)

[
(µ− 2λ)Cx′,t +Dx′,t − (λ− µ)2Bx′,t(µ)

]
× eit(λ2−µ2)+ix′(µ−λ)

+
4

c2

∫ ∞
−∞

dλρ(λ)

∫ ∞
−∞

dµ(λ− µ)2

[
π2

3
ρ(µ)3 +

π2

3

ρ(µ)

(2π)2
− 2γ−2(µ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+O(Λ−1L0) +O(L−1) . (161)
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5.2.7 Result for the contribution from two particle-hole excitations

Combining the results of sections 5.2.2-5.2.6 we arrive at the following expression for the
two particle-hole contribution to the density-density correlation function

CΛ
2 (x, t) = ΩΛ

2 +
4

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)

[
(µ− λ)2[Ax′,t + 2Bx′,t(λ)−Bx′,t(µ)]

+ (3µ− 2λ)Cx′,t −Dx′,t

]
eit(λ

2−µ2)+ix′(µ−λ)

+
8

c2

∫ ∞
−∞

dλρ(λ)

∫ Λ

−Λ
dµρh(µ)(λ− µ)2

[
π2

3
ρ(λ)3 − γ−2(λ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+
4

c2

∫ ∞
−∞

dλρ(λ)

∫ ∞
−∞

dµ(λ− µ)2

[
π2

3
ρ(µ)3 +

ρ(µ)

12
− 2γ−2(µ)

]
eit(λ

2−µ2)+ix′(µ−λ)

+O(Λ−1L0) +O(L−1) , (162)

where ΩΛ
2 has been defined in (148).

5.3 Density-density correlations in arbitrary macro states for all x and
t at order O(c−2)

5.3.1 Compensation of divergent parts

As explained above, the O(c−2) contributions due to one- and two particle-hole excitations
are individually divergent in the thermodynamic limit. The divergent parts are given in
(138) and (148) respectively. Their difference is

ΩΛ
1 − ΩΛ

2 =
4

c2L4

∑
a

∑
n

∀k, λa,n 6=λk
|λa,n|<Λ

∑
i,j

i 6=j, j 6=a
|λj |>Λ

1

(λi − λj)2
eit[λ

2
a−λ2

a,n]+ix′[λa,n−λa] . (163)

Crucially this vanishes for the class of root densities we use in our Λ-regularization dis-
cussed in Section 4.3.3, i.e. ρ(λ) = 0 for |λ| > Λ. Indeed, the second sum is zero whenever
all the roots satisfy |λj | < Λ. We conclude that within our regularization scheme all
divergences cancel at order O(c−2), but they do so in a non-trivial fashion: divergent
contributions from intermediate states with one particle-hole excitation precisely cancel
those arising from intermediate states with two particle-hole excitations.

5.3.2 Compensation of contributions that depend on the choice of represen-
tative state

As we have seen above, the contributions from both one- and two-particle-hole excitations
in the thermodynamic limit individually depend on the choice of the representative state
through the pair distribution function γ−2(λ). Importantly, these contributions exactly
cancel one another and the full correlation function does not depend on the representative
state.

5.3.3 Λ-regularized correlation function

Combining the results for the one and two particle-hole excitations we obtain the following
result for the dynamical density-density correlator in the Λ-regularization
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〈σ(x, t)σ(0, 0)〉Λ =D2 +

∫ ∞
−∞

dλ

∫ Λ

−Λ
dµfx′,t(λ, µ)eit(λ

2−µ2)+ix′(µ−λ)

+O(Λ−1L0) +O(L−1) , (164)

where the integrand is given by

fx,t(λ, µ) = χ
(1)
x,t(λ, µ) +

χ
(2)
x,t(λ, µ)

c2
+O(c−3) . (165)

Here the contributions due to one and two particle-hole excitations are respectively

χ
(1)
x,t(λ, µ) =(1 + 2D

c )2ρ(λ)ρh(µ)

[
1− 4

c
(µ− λ)(ρ̃(µ)− ρ̃(λ)) +

8

c2
(µ− λ)2(ρ̃(µ)− ρ̃(λ))2

+
4π2

c2
(µ− λ)2ρ(µ)ρh(µ)

]
,

χ
(2)
x,t(λ, µ) =4ρ(λ)ρh(µ)

[
(µ− λ)2[Ax,t + 2Bx,t(λ)−Bx,t(µ)] + (3µ− 2λ)Cx,t −Dx,t

]
.

(166)

The function ρ̃(λ) is defined in (114) and the four functions Ax,t, Bx,t(λ), Cx,t and Dx,t

are given in (147), (152), (155) and (158) respectively.

Some comments on the term 4π2

c2
(µ−λ)2ρ(λ)ρ(µ)ρh(µ)2 are in order. This term arises

from the sum of the contributions involving the pair distribution function γ−2(λ) in both
CΛ

1 (x, t) and CΛ
2 (x, t). Strictly speaking it therefore involves two particle-hole excitations

as well one particle-hole excitations. Since it does not involve double integrals, as is the
case for the other contributions from CΛ

2 (x, t), we have chosen to include it entirely in

χ
(1)
x,t(λ, µ). It can be interpreted as a “dressing” of contributions arising from one particle-

hole excitations by two particle-hole excitations.

5.3.4 Dynamical correlations

The result (164) gives the thermodynamic limit of the Λ-regularized correlation function.
We now remove the cutoff dependence by taking the limit Λ→∞. The resulting ill-defined
integrals (92) are to be understood as distributions following (96). To express the limit
Λ → ∞ in terms of well-defined integrals we consider the expansion of fx,t(λ, µ) around
µ→∞

fx,t(λ, µ) = µ2ϕ
(2)
x,t(λ) + µϕ

(1)
x,t(λ) + ϕ

(0)
x,t(λ) + o(µ0) . (167)

Defining

f̃x,t(λ, µ) =
[(

x
2t

)2
+ 1

2it − µ
2
]
ϕ

(2)
x,t(λ) +

[
x
2t − µ

]
ϕ

(1)
x,t(λ) + fx,t(λ, µ) , (168)

it follows from (96) that we can express the limit Λ→∞ of (164) as a function of x and
t 6= 0

〈σ (x, t)σ (0, 0)〉 = D2 +

∫ ∞
−∞

∫ ∞
−∞

f̃x′,t(λ, µ)eit(λ
2−µ2)+ix′(µ−λ)dλdµ+O(L−1) . (169)

For the energy of a macro state to be well-defined we need ρ(µ) = o(µ−2) for µ → ∞.
From this we have
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ϕ
(2)
x,t(λ) = 4

(1 + 2D
c )3

2πc2
ρ(λ)

[
2ρ̃(λ)2 +Ax′,t + 2Bx′,t(λ)

]
,

ϕ
(1)
x,t(λ) = 4

(1 + 2D
c )3

2πc
ρ(λ)

[
ρ̃(λ)−

4λρ̃(λ)2 + 4Dρ̃(λ) + 2λAx′,t + 4λBx′,t(λ)− 2Cx′,t
c

]
,

ϕ
(0)
x,t(λ) = 4

(1 + 2D
c )3

2πc
ρ(λ)

[
−D − λρ̃(λ) +

1

c

[
2D2 + 8Dλρ̃(λ) + 2λ2ρ̃(λ)2

+ λ2Ax′,t + 2λ2Bx′,t(λ)− 2Dx′,t − 4λCx′,t

]]
. (170)

Alternatively, one can also write, using (97)

〈σ(x, t)σ(0, 0)〉 =D2 + lim
ε→0+

∫ ∞
−∞

∫ ∞
−∞

fx′,t(λ, µ)eitλ
2−i(t−iε)µ2+ix′(µ−λ)dλdµ+O(L−1) .

(171)

5.3.5 Static correlations

The result (169) is singular for t → 0 since it behaves as 1√
t
e−x

2/t. However, in a distri-

bution sense we have 1√
t
e−x

2/t → 0 when t→ 0. Defining

f̃x,0(λ, µ) = lim
t→0

[
−µ2ϕ

(2)
x,t(λ)− µϕ(1)

x,t(λ)− ϕ(0)
x,t(λ) + fx,t(λ, µ)

]
, (172)

we have the following representation of the static correlator as a function of x

〈σ (x, 0)σ (0, 0)〉 = D2 +

∫ ∞
−∞

∫ ∞
−∞

f̃x′,0(λ, µ)eix
′(µ−λ)dλdµ+O(L−1) . (173)

Alternatively, one can also write

〈σ(x, 0)σ(0, 0)〉 =D2 + lim
ε→0+

∫ ∞
−∞

∫ ∞
−∞

fx′,0(λ, µ)e−εµ
2+ix′(µ−λ)dλdµ+O(L−1) . (174)

5.4 Dynamical structure factor in arbitrary macro states for all ω, q at
order c−2

Given the correlation function (169) for all x and t we can determine the dynamical
structure factor (DSF) S(q, ω) by taking the Fourier transform

S(q, ω) =

∫ ∞
−∞

∫ ∞
−∞

[
lim
L→∞

〈σ(x, t)σ(0, 0)〉
]
eiωt−iqxdxdt . (175)

It is convenient to decompose S(q, ω) in terms of the contributions of one and two particle-
hole excitations, which we denote by S(1)(q, ω) and S(2)(q, ω) respectively:

S(q, ω) = D2δ(q)δ(ω) + S(1)(q, ω) + S(2)(q, ω) +O(c−3) . (176)

In practice we determine the dynamical structure factor by first computing the Fourier
transform (175) of the Λ-regularized correlator (164) and then taking the limit Λ → ∞,
which turns out to be straightforward.
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5.4.1 One particle-hole contributions to the dynamical structure factor

The contribution of the one particle-hole excitations to the DSF S(1)(q, ω) is obtained
from the relation∫ ∞

−∞
dteiωt

∫ ∞
−∞

dxe−iqx
∫ ∞
−∞

dλeitλ
2−ixλ

∫ Λ

−Λ
dµe−itµ

2+ixµf(λ, µ) =

2π2

|q|
f(ω−q

2

2q , ω+q2

2q )111
|ω+q2

2q |<Λ
. (177)

The Λ→∞ limit of (177) is straightforward and yields at order O(c−2)

S(1)(q, ω) =2π2
(
1 +

2D

c

)
ρ(ω

′−q′2
2q′ )ρh(ω

′+q′2

2q′ )

[
1

|q′|
− 4 sgn (q′)

c
(ρ̃(ω

′+q′2

2q′ )− ρ̃(ω
′−q′2
2q′ ))

+
8|q′|
c2

(ρ̃(ω
′+q′2

2q′ )− ρ̃(ω
′−q′2
2q′ ))2 +

4π2|q′|
c2

ρ(ω
′+q′2

2q′ )ρh(ω
′+q′2

2q′ )

]
, (178)

where we have defined

q′ =
q

1 + 2D
c

, ω′ = ω − 4δ

c(1 + 2D
c )
q . (179)

5.4.2 Two particle-hole contributions to the dynamical structure factor

The two particle-hole contributions involve the functions Ax,t, Bx,t(λ), Cx,t and Dx,t given
in (147), (152), (155) and (158) respectively. Their simple dependence on x and t allows
for a straightforward computation of their contribution to the DSF. For example, by first
integrating over x, then over v, then over t and finally over u we find∫ ∞

−∞
dt

∫ ∞
−∞

dxeiωt−iqx
∫ ∞
−∞

dλ

∫ Λ

−Λ
dµρ(λ)ρh(µ)(3µ− 2λ)Cx′,te

it(λ2−µ2)+ix′(µ−λ)

= 2π2

∫ ∞
−∞

dλ

∫ Λ

−Λ
dµ ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)

3µ− 2λ

(q′ + λ− µ)|q′ + λ− µ|
. (180)

Here we have set

λ̄ =
ω′ + λ2 − µ2 − (q′ + λ− µ)2

2(q′ + λ− µ)
, µ̄ =

ω′ + λ2 − µ2 + (q′ + λ− µ)2

2(q′ + λ− µ)
. (181)

The limit Λ→∞ of this expression is again routine. It is however not immediately obvious
that the double integral over λ and µ in (180) is well-defined, since one of the factors in
the integrand exhibits a non-integrable singularity. A closer inspection reveals that this
singularity is cancelled by the product of root densities. We will show below by means of
a change of variable that the double integral is indeed well-defined.

All other terms involving the functions Bx,t(λ), Bx,t(µ) and Dx,t can be computed
analogously. The term involving Ax,t however requires a slightly modified approach, since
following through the same steps as before would split the 1/v2 term into a sum of two
quantities that are individually divergent. In order to circumvent this problem we replace
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the 1/v2 by 1
v2+ε2

and send ε→ 0 in the final result. We obtain∫ ∞
−∞

dt

∫ ∞
−∞

dxeiωt−iqx
∫ ∞
−∞

dλ

∫ Λ

−Λ
dµρ(λ)ρh(µ)(λ− µ)2Ax′,te

it(λ2−µ2)+ix′(µ−λ) (182)

= 2π2

∫ ∞
−∞

dλ

∫ Λ

−Λ
dµ

1

|q′ + λ− µ|3

[
ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)(λ− µ)2

− |q′(λ− µ)|ρ(λ̄)ρh(µ̄)ρ(ω
′−q′2
2q′ )ρh(ω+q′2

2q′ )

]
. (183)

Putting everything together we obtain the following result for the contribution of two
particle-hole excitations to the DSF

S(2)(q, ω) =
8π2

c2

∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)

2(λ−µ)2

λ−λ̄ − (λ−µ)2

µ−λ̄ + 3µ− 2λ− λ̄
(q′ + λ− µ)|q′ + λ− µ|

dλdµ

+
8π2

c2

∫ ∞
−∞

∫ ∞
−∞

1

|q′ + λ− µ|3
[
ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄)(λ− µ)2

− |q′(λ− µ)|ρ(λ̄)ρh(µ̄)ρ(ω
′−q′2
2q′ )ρh(ω

′+q′2

2q′ )
]
dλdµ

+O(c−3) . (184)

In order to make the convergence of this integral explicit we perform a change of variables
from λ, µ to

z = 1 + λ−µ
q , p = ω′−q′(λ+µ)

2q′z , (185)

and define

q1 = ω′−2q′zp−q′2(1−z)
2q′ , q2 = ω′−2q′zp+q′2(1−z)

2q′ ,

q3 = ω′+2q′p(1−z)−q′2z
2q′ , q4 = ω′+2q′p(1−z)+q′2z

2q′ . (186)

In terms of the new variables we have

S(2)(q, ω) =
8π2

c2

∫ ∞
−∞

∫ ∞
−∞

h(q, ω, z, p)dzdp+O(c−3) ,

h(q, ω, z, p) =
2

q′z
ρ(q1)ρh(q2)ρ(q3)ρh(q4)

[
5q′

4
− q′z − p

2
+

2q′2(1− z)2

(2z − 1)q′ − 2p
− (1− z)2q′2

q′ − 2p

]

+
ρ(q3)ρh(q4)

z2

[
(1− z)2ρ(q1)ρh(q2)− |1− z|ρ

(ω′−q′2
2q′

)
ρh
(ω′+q′2

2q′

)]
. (187)

The integral over p only has singularities that are integrable in a principal value sense,
and after the integral over p has been carried out the integral over z only has a singularity
that is integrable in a principal value sense. We conclude that (187) is well defined and
can be straightforwardly evaluated numerically.

6 Numerical evaluation of the dynamical structure factor

In this section we numerically evaluate the integral representations (178), (187) in order to
determine S(q, ω) for the two examples of root densities introduced in Section 3.4, namely
thermal states and the non-equilibrium steady state after a quantum quench from the
ground state at c = 0.
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6.1 Zero temperature

We first consider the zero temperature case for density D = 0.404 and c = 3 in (106). The
value D/c ≈ 0.13 is well within the expected range of validity of the 1/c-expansion. The
same holds true for all other cases considered below. In Figure 3 we present numerical
results for the DSF at order c−2 as well as for the one particle-hole contribution S(1)(q, ω).
It is well known that at zero temperature the one particle-hole contribution to the DSF
is non-zero only in a certain region of the q, ω plane for kinematic reasons, and exhibits
(not necessarily divergent) singularities at the edges of its support [30,32,39,77]. We note
that although the DSF is expected to diverge near the upper threshold, the divergence
near the lower thresholds is a consequence of the 1/c expansion, that produces logarithms
instead of a finite behaviour with a fractional c-dependent exponent. Comparing the full
result (left panel) to S(1)(q, ω) (right panel) we observe that the contributions due to two
particle-hole excitations significantly modify the numerical values of the DSF within this
region. S(2)(q, ω) is also non-zero outside the region, but this effect is barely visible in the
plot.

Figure 3: S(q, ω) (left panel) and S(1)(q, ω) (right panel) as functions of q and ω at zero
temperature and D = 0.404, c = 3 in (106). The color scale is the same for both plots.

6.2 Finite temperature

We next turn to the DSF at finite temperatures. Figure 4 presents numerical results for
the full DSF S(q, ω) at order c−2 for thermal states with β = 5, c = 4 and D = 0.396.
For comparison we also plot the one particle-hole contribution S(1)(q, ω). Like in zero
temperature case, for these parameter values the one particle-hole contribution already
gives a fairly good account of the full DSF. The two-particle-hole contribution modifies
some details that become increasingly significant for q > 2qF . The main difference to the
zero temperature case is the emergence of spectral weight at negative frequencies and the
“washing out” of the threshold singularities.

In Figure 5 we consider the DSF for a different thermal state characterized by a higher
temperature β = 1 and D = 0.38, c = 4. The differences between the S(q, ω) and
S(1)(q, ω) are difficult to discern in these plots. In order to get a more precise notion of
the relative contributions of S(1)(q, ω) and S(2)(q, ω) to the DSF for these values of D, c
and β, we show a number of “constant momentum cuts”, i.e. plots of S(q, ω) as a function
of ω for fixed q, in Figs 6 and 7. Fig 6 gives representative results at “small” momenta,
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Figure 4: S(q, ω) (left panel) and S(1)(q, ω) (right panel) as functions of q and ω for a
thermal state with β = 5, D = 0.396 and c = 4. The color scale is the same for both plots.

Figure 5: Left panel: DSF S(q, ω) as a function of q and ω for a thermal state at inverse
temperature β = 1, D = 0.38 and c = 4. Right panel: Same for the one particle-hole
contribution S(1)(q, ω). The color scale is the same for both plots.

defined as q . qF . We see that the contribution from two particle-hole excitations is
negligibly small. This is in perfect agreement with observations made in Ref. [72] based
on comparisons with numerical computations for a finite number of particles. Our results
makes this observation fully quantitative in the thermodynamic limit in the framework of
a 1/c-expansion.

Figure 7 shows how the relative magnitude of S(2)(q, ω) evolves at larger values of
momentum. We see that it grows with q and for the values shown is no longer negligible.
We further note that while the DSF is expressed as a spectral sum with only positive
terms, the contribution S(2)(q, ω) can be negative. The explanation of this behaviour is
that the contributions of one and two particle-hole excitations include terms that arise from
cross-cancellations of divergences occurring in their ’bare’ spectral sum. Stated differently,
each of them incorporates contributions due to one and two particle-hole excitations so
as to have well-defined thermodynamic limits. If we consider the spectral sum in a large
finite volume, the bare (without cross-cancelling divergences) one and two particle-hole
contributions are indeed separately positive in the following sense: The leading c0 term
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Figure 6: S(q, ω) (red) and S(1)(q, ω) (blue, dotted) as functions of ω for q = 0.42qF (left
panel) and q = 0.84qF (right panel). The parameters are the same as in Figure 5.
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Figure 7: Same as Figure 6 but for q = 1.68qF (left panel) and q = 3.35qF (right panel).

of the bare contribution of one particle-hole excitations is positive, and we see from (148)
that the same holds true for the divergent part of the leading c−2 term of the two particle-
hole excitations. The interpretation of the resulting contributions as one or two-particle-
hole excitations is imposed by whether they are expressed as a double integral (one for
the particle and one for the hole) or a quadruple integral (two particles and two holes).
Finally, we note that the fact that S(2)(q, ω) can be negative is an inherent feature of the
1/c expansion as can be seen by considering the zero temperature limit. Here the successive
terms of the 1/c expansion of the DSF exhibit a singularity with negative spectral weight,
see Section 7.2.2, although at finite c all the higher order terms exponentiate into a positive
spectral weight.

6.3 DSF in a non-equilibrium steady state

In Figure 8 we show numerical results for S(q, ω) and S(1)(q, ω) for the root density given
in Section 3.4.2. The latter describes the stationary state reached for the interaction
quench of Refs [97, 99, 100], where the system is initialized in the ground state at c = 0
and density D = 1/π and time-evolved with the Lieb-Liniger Hamiltonian at c = 4. We
observe that the two particle-hole contributions lead to a slight narrowing of the DSF for
q > qF .
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Figure 8: S(q, ω) (left panel) and one particle-hole contribution S(1)(q, ω) (right panel) as
functions of q, ω for the steady state root density (62) with c = 4 and D = 1/π. The color
scale is the same for both plots.

7 Analysis of the result in limiting cases

In this section we report a detailed analysis of our results for the density-density correlation
function (171), (166) and the dynamical structure factor (178), (187). The details of the
derivations of the results in this section are reported in Appendix C.

7.1 Density-density correlation function

7.1.1 Asymptotics of equal-time correlations at zero temperature

At zero temperature with the root density (106), we obtain the following asymptotic
behaviour at large x and at order c−2

〈σ(x, 0)σ(0, 0)〉 =D2 −
1 + 4D

c + 4D2

c2

2π2x2

+A
cos(2qFx)

x2

[
1−

(
8D
c + 8D2

c2

)
log[2qF e

γEx] + 32D2

c2
log2[2qF e

γEx]
]

(188)

+ o(x−2) , (189)

where

A =
1 + 4D

c

2π2
+O(c−2) , (190)

and γE is Euler’s constant. This expression is the large x behaviour of the 1/c expansion
of the correlation functions, hence one has c large first and then x large.

Combining CFT/Luttinger liquid theory with exact results provides the following pre-
diction for the correlations at large x at fixed c [26–29,39]

〈σ(x, 0)σ(0, 0)〉 = D2 − K

2π2x2
+A1

cos(2qFx)

x2K
+ · · · , (191)

with K given in (107), and with A1 a known constant [34,35,40]. If one wishes to compare
this expression with (189), one is a priori faced with two problems:
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(i) If one expands (191) in powers of c−1 one has to take first x large and then c large,
which is the reverse of (189). Hence comparing (189) and (191) entails to commute
two limits. This commutation is possible if our expansion in c−1 (189) is uniform in
space.

(ii) There could be corrections to (191) that are subleading in x at fixed c, but become
of the same order as the dominant term once expanded in c−1 (i.e. give rise to log(x)
terms). An example would be a term ∝ x−4K+2. These corrections would be visible
in (189), but not in (191).

In the case of density correlations in the Lieb-Liniger model it follows from the exact large
x expansion at fixed c [39] that there are no subleading corrections with the property
described in (ii). We thus expand (191) in powers of c−1. Since K → 1 when c→∞ the
power-law x−2K becomes x−2 corrected by logarithms and we find

〈σ(x, 0)σ(0, 0)〉 = D2 −
1 + 4D

c + 4D2

c2

2π2x2

+A1
cos(2qFx)

x2

[
1−

(
8D
c + 8D2

c2

)
log x+ 32D2

c2
log2 x

]
+O(c−3) . (192)

The coefficient A1 depends on c but as its representation is rather complicated [34, 35]
(with approximations in [115, 116]) we left calculating its c−1 expansion for future work.
We see that it agrees with (189) if we identify

A1 = A(2qF e
γE)2−2K +O(c−2) . (193)

In particular the critical exponents are reproduced at order c−2. This both provides a
check of our formula, and shows that our 1/c expansion is uniform in space.

7.1.2 Dynamical correlations asymptotics at zero temperature

At zero temperature (with the root density (106)) we can evaluate the asymptotic be-
haviour of the dynamical correlation function at large x, t at fixed

α =
x

2t
. (194)

It is convenient to define

α′ =
x′

2t
=
(
1 +

2D

c

)
α , (195)

and set

s =

{
1 if |α| > qF

−1 if |α| < qF
. (196)

We obtain

〈σ(x, t)σ(0, 0)〉 = D2 +
∑
σ=±

Bσ
eist(Q+σα′)2

|t|3/2

[
1− νσ log(i$σt) +

ν2
σ

2
log2(i$σt)

]
(197)

+ o(t−3/2), (198)
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with

Bσ =
sgn (t)e−s

iπ
4

sgn (t)(1 + 2D
c )4

8iπ
3
2 (Q+ σα′)

+O(c−2),

νσ =

(
1 +

2Q

πc

)
2(Q+ σα′)

πc
+

2(Q+ σα′)2

π2c2
+O(c−3) ,

$σ =sσ4Q
(Q+ σα′)2

|Q− σα′|
eγE . (199)

Ref. [39] derived the full asymptotic expansion at large x, t for any value of c at
zero temperature. The c−1 expansion of this result at order c−2 (without expanding
the prefactors) is in agreement with (197). In particular the critical exponents ν± are
reproduced at order c−2. This both provides a check of our calculation and shows that our
1/c expansion is uniform in time as well, since the large x, t and large c limits commute.

7.1.3 Asymptotics of dynamical correlations for a generic root density and
Generalized Hydrodynamics

For a generic continuous root density ρ in the large x, t regime at fixed α (194) we obtain
the following asymptotic behaviour

〈σ(x, t)σ(0, 0)〉 =D2 +
π(1 + 2D

c )2ρ(α′)ρh(α′)

|t|
+
iπ(1 + 2D

c )2 [ρ′′(α′)ρh(α′)− ρ(α′)ρ′′h(α′)]

4t|t|

+
π2

t2c2

[
12(ρρh)2(α′) + 8(ρρh)′(α′)

∫ ∞
−∞

sgn (α′ − ζ)ρ(ζ)ρh(ζ)dζ

+ 2(ρρh)′′(α′)

∫ ∞
−∞
|α′ − ζ|ρ(ζ)ρh(ζ)dζ

]
+ o(t−2) , (200)

where we recall the definition of α′ in (195). The first line arises from one particle-hole
contributions, while the second and third lines are two particle-hole contributions. If the
root density is not continuous the leading term in 1/t is still correct, but the higher order
corrections may change.

GHD [85,86] makes predictions for the coefficient of the 1/t term in the density-density
correlator for any value of c [89, 90]. For the sake of completeness we summarize the 1/c-
expansion of the GHD results in Appendix C.1.4. The leading term proportional to 1/|t|
of (200) is in perfect agreement with the order c−2 expansion of the GHD results. To
the best of our knowledge this constitutes the most non-trivial check to date of GHD
predictions in an interacting integrable model.

Importantly, we can assess the accuracy of the GHD approximation outside the asymp-
totic large space and time regime by comparing it to the full correlations at order c−2.
In Figure 9 we show our results for the real part and the modulus of 〈σ(x, t)σ(0, 0)〉 for
two thermal states at c = 4 together with the GHD approximation. We see that at high
temperature β = 1 the GHD approximation is surprisingly good even at short times. At
lower temperatures β = 3 the correlation is still very well approximated by GHD, but is
seen to display damped oscillations in the absolute value that arise from the imaginary
part of the correlations that decay as t−2 and is not accounted for by GHD.

In Figure 10 we present the analogous comparison for a non-equilibrium steady state
with root density (62). This root density is “less regular” than thermal densities in the
sense that it has a narrower peak at zero. As a consequence, we expect higher Fourier-like
corrections to the oscillatory integral, whereas GHD describes saddle-point-like corrections
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Figure 9: Correlation function C(x, t) ≡ 〈σ(x, t)σ(0, 0)〉 in a thermal state for x = 2αt
as a function of t at c = 4, for β = 1 and D = 0.38 (left) and β = 3 and D = 0.386
(right). The three curves depict the real part (red), the modulus (green) and the GHD
approximation (dashed blue).

only. We indeed observe a more pronounced discrepancy for short or intermediate times,
but the agreement at later times is still excellent, and globally remains very good.
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Figure 10: Correlation function C(x, t) ≡ 〈σ(x, t)σ(0, 0)〉 in the non-equilibrium steady
state (62) for x = 2αt as a function of t at c = 4, for D = 1/π (left) and D = 1/(2π)
(right). The three curves depict the real part (red), the modulus (green) and the GHD
approximation (dashed blue).

7.2 Dynamical structure factor

7.2.1 A simplified expression at zero temperature

Equations (178), (187) for the DSF can be simplified at zero temperature. The one
particle-hole contribution can be written as

S(1)(q, ω) =

(
1 + 2D

c

)4
2|q|

[
1− 2q

πc
log

∣∣∣∣ω2 − ω2
+

ω2 − ω2
−

∣∣∣∣+
2q2

π2c2
log2

∣∣∣∣ω2 − ω2
+

ω2 − ω2
−

∣∣∣∣] 111ω−<ω<ω+

+O(c−3) , (201)

where we have defined
ω±(q) =

∣∣∣q′2 ± 2|q′|Q
∣∣∣ . (202)

46



SciPost Physics Submission

The contribution from two particle-hole excitations can be simplified by carrying out the
integral over p in (187)

S(2)(q, ω) =
1

4π2q′c2

∫ ∞
−∞

[
1

z

[
(5− 4z)q′(Z+ − Z−) + Z2

− − Z2
+ + 2q′(1− z)2Z+ − Z−

z

+ 2q′2(1− z)2 log

∣∣∣∣q′ − 2Z+

q′ − 2Z−

∣∣∣∣− 4q′2(1− z)2 log

∣∣∣∣(2z − 1)q′ − 2Z+

(2z − 1)q′ − 2Z−

∣∣∣∣ ]111Z−<Z+

− 2q′min(|q′z|, 2Q)

z2
111ω−(q)<ω<ω+(q)

]
dz . (203)

Here we have defined

Z+(z) =


min

[
ω+2q′Q+q′2(z−1)

2q′z , ω−|2q
′Q−q′2z|

2q′(z−1)

]
if z ≥ 1

min
[
ω−|2q′Q−q′2(1−z)|

2q′z , −ω+2q′Q+q′2z
2q′(1−z)

]
if 0 ≤ z ≤ 1

min
[
ω−2q′Q−q′2(1−z)

2q′z , −ω−|2q
′Q+q′2z|

2q′(1−z)

]
if z ≤ 0 ,

(204)

and

Z−(z) =


max

[
ω+|2q′Q−q′2(z−1)|

2q′z , ω−2q′Q−q′2z
2q′(z−1)

]
if z ≥ 1

max
[
ω−2q′Q−q′2(1−z)

2q′z , −ω+|−2q′Q+q′2z|
2q′(1−z)

]
if 0 ≤ z ≤ 1

max
[
ω−|2q′Q−q′2(1−z)|

2q′z , −ω−2q′Q+q′2z
2q′(1−z)

]
if z ≤ 0 .

(205)

7.2.2 Behaviour near the thresholds at zero temperature

At zero temperature, the DSF exhibits divergences at certain threshold energies ωth(q). In
our case, at order O(c−2), the two thresholds occur at ω±(q) defined in (202). For q < 2Q
we find the following singular behaviour of the one particle-hole DSF near them

S(1)(q, ω+ + δω) =

(
1 + 2D

c

)2
2|q|

(
1− 2q

πc
log
∣∣∣δω 2ω+

ω2
+−ω2

−

∣∣∣+
2q2

π2c2
log2

∣∣∣δω 2ω+

ω2
+−ω2

−

∣∣∣) 111δω<0

S(1)(q, ω− + δω) =

(
1 + 2D

c

)2
2|q|

(
1 +

2q

πc
log
∣∣∣δω 2ω−

ω2
+−ω2

−

∣∣∣+
2q2

π2c2
log2

∣∣∣δω 2ω−
ω2

+−ω2
−

∣∣∣) 111δω>0 .

(206)

The analogous results for the two particle-hole contribution are

S(2)(q, ω+ + δω) =
( q

2π2c2
log |δω|

)
111δω<0 −

( q

2π2c2
log |δω|

)
111δω>0 ,

S(2)(q, ω− + δω) =
( q

π2c2
log |δω|

)
111δω>0 . (207)

These limiting behaviours are obtained at large c first, and then ω close to ω±.
At fixed c non-linear Luttinger liquid theory predicts the exponent of the power-law

divergence near these thresholds [30–34,39]

S(q, ω+ + δω) = C0|δω|µ+ 111δω>0 + C1|δω|µ+ 111δω<0 + C2 + . . .

S(q, ω− + δω) = C3(δω)µ− 111δω>0 + C4 111δω>0 + . . . . (208)

Here C0,1,2,3,4 are c-dependent constants and the exponents µ± have simple expressions
that depend on c. Results for the non-universal prefactors C0,1,2,3,4 at finite c are available
in the literature [34]. The dots encompass less singular pieces |δω|µ with a c-dependent
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exponent µ > µ±, and regular pieces C5δω + O((δω)2). In the framework of the 1/c
expansion these power-laws give rise to logarithms

|δω|µ+ = 1− 2q

πc
log |δω|+ 2q2

π2c2
log2 |δω|+ 2q2

π2c2
log |δω|+O(c−3)

|δω|µ− = 1 +
2q

πc
log |δω|+ 2q2

π2c2
log2 |δω|+ 2q2

π2c2
log |δω|+O(c−3) . (209)

These expansions are valid if we take ω close to ω± first and then consider the large-
c limit, and in order to compare with our result we have to commute these two limits.
Importantly, the less singular pieces that are subleading in δω can also produce logarithms
if their exponent goes to 0 when c→∞. However, it follows from our asymptotic analysis
in real space that there are no such terms. Comparing (208) with (206) and (207) we
find that our result is in agreement with the non-linear Luttinger liquid predictions if we
identify

C0 =
1

4πc
+O(c−2)

C1 =
(1 + 2D

c )2

2|q|

(
2ω+

ω2
+ − ω2

−

)µ+

+
1

4πc
+O(c−2)

C2 = − 1

4πc
+O(c−2)

C3 =
(1 + 2D

c )2

2|q|

(
2ω−

ω2
+ − ω2

−

)µ−
+O(c−2)

C4 = 0 +O(c−2) . (210)

In particular we obtain the correct exponents at order c−2. This provides a check of our
result for the DSF and shows that it is uniform in q and ω.

7.2.3 Sum rule at zero temperature

The f-sum rule for the dynamical structure factor in equilibrium states reads [113]∫ ∞
−∞

S(q, ω)ωdω = 2πDq2 . (211)

In our calculation, this sum rule has to be perfectly satisfied at order c−2. It is a stringent
test of validity of our formula since it has to be satisfied for all q and encompasses every
single piece of the DSF. At zero temperature we obtain from Equation (201) that∫ ∞

−∞
S(1)(q, ω)ωdω = 2πDq2 +

4

3c2
q4Q+O(c−3) . (212)

This means that the two-particle-hole DSF (203) S̄(2)(q, ω) ≡ c2S(2)(q, ω) evaluated at
c =∞, must satisfy ∫ ∞

−∞
S̄(2)(q, ω)ωdω = −4

3
q4Q . (213)

We computed this integral numerically from (203) for several values of q. We find that
(213) is indeed satisfied within the numerical accuracy of our calculation. The relative
deviations of our results from (213) are around 10−4, which is quite satisfactory.
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7.2.4 Detailed balance for thermal states

The dynamical structure factor of a thermal state at inverse temperature β should satisfy
the detailed balance relation for all values of q, ω

S(q,−ω) = e−βωS(q, ω) . (214)

In our calculation the detailed balance relation for S(q, ω) should be perfectly satisfied
at order c−2. We note it is a very stringent test of validity of our formulas for S(q, ω),
given that a thermal state at finite temperature corresponds to a generic root density
with a complicated c dependence, while for an arbitrary root density there is no particular
relation between S(q,−ω) and S(q, ω).

In order to check that our formulas for the DSF satisfy detailed balance at order c−2,
we need to evaluate (214) with ρ(λ) given at order c−2 in (103). We found convenient to
define

S̃(1)(q, ω) = S(1)(q, ω)− 8π4|q′|
c2

ρ(ω
′−q′2
2q′ )ρ(ω

′+q′2

2q′ )ρh(ω
′+q′2

2q′ )2 , (215)

i.e. the one-particle-hole DSF without the dressed piece coming from two particle-hole
excitations. We recall that ω′ and q′ were previously defined in (179). It is straightforward
to check numerically that S̃(1)(q, ω) satisfies detailed balance at order c−2

S̃(1)(q,−ω) = e−βωS̃(1)(q, ω) +O(c−3) . (216)

Hence the following quantity

S̃(2)(q, ω) = c2S(2)(q, ω) + 8π4|q′|ρ(ω
′−q′2
2q′ )ρ(ω

′+q′2

2q′ )ρh(ω
′+q′2

2q′ )2 , (217)

evaluated at c =∞ should also independently satisfy detailed balance

S̃(2)(q,−ω) = e−βωS̃(2)(q, ω) . (218)

We find that this indeed holds within the accuracy of our numerical computation, i.e.
within a relative error of 10−5. This is quite satisfactory.

7.2.5 Behaviour at small q, ω

At small q, ω with fixed

γ =
ω

2q
, (219)

we find the following behaviour of the DSF

S(q, ω) =
2π2
(
1 + 2D

c

)
|q′|

ρ
(
γ′ − q′

2

)
ρh

(
γ′ + q′

2

)
+

8π2

c2

∫ ∞
−∞

∫ ∞
−∞

ρ(u)ρh(u)

(γ′ − λ)2

[
sgn (u− λ)(2γ′ + u− 3λ)ρ(λ)ρh(λ) (220)

− |γ′ − u|ρ(γ′)ρh(γ′)
]
dλdu

+ o(q0) . (221)

We have set

γ′ =
ω′

2q′
. (222)
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Here the term proportional to 1/|q| arises only from the one particle-hole contribution,
while the constant term is due to two particle-hole excitations. This result can again be
compared to GHD predictions, which at order c−2 give [85,86,90]

SGHD(q, ω) =
2π2
(
1 + 2D

c

)2
|q|

ρ
(
γ(1 +

2D

c
)
)
ρh

(
γ(1 +

2D

c
)
)
. (223)

This is indeed in agreement with the leading term in (221) at small q. It would be
interesting to see whether the subleading terms in (221) can be obtained by considering
corrections to GHD following Ref. [114].

7.2.6 High frequency tail

Finally we consider the large-ω behaviour of the DSF S(q, ω) (at fixed q) in an arbitrary
eigenstate |λλλ〉 with a root density ρ(λ) that decays faster than any power law |λ|−n at
infinity. For such states we find

S(q, ω) =
32
√

2q′4

c2ω′7/2
(εD − δ2) +O(ω′

−9/2
) , (224)

where ε =
∫
u2ρ(u)du is the energy of the state and δ its momentum defined in (89). The

result (224) arises entirely from the two particle-hole contribution since the one particle-
hole contribution decays faster than any power in ω for ω → ∞. The corrections to this
leading behaviour can all be computed and expressed as a series in ω′−1/2. For example
the next term is

4
√

2q′4

c2ω′9/2

∫ ∞
−∞

∫ ∞
−∞

(u− v)2[(u− v)2 + 14q′(u− v) + 15q′
2

+ 28q′v]ρ(u)ρ(v)dudv

+O(ω′
−11/2

) . (225)

For eigenstates |λλλ〉 corresponding to root densities that instead decay like a power law
at infinity it is straightforward to see that the one particle-hole contribution to the DSF
decays at large ω with the same power-law. For such root densities the large-ω expansion
of the two particle-hole contribution breaks down at some order because the coefficients
would diverge.

It has been shown some time ago that the large ω behaviour of the DSF S(q, ω) in
equilibrium states is universal, with a decay ∝ q4ω−7/2 for quantum fluids with short-range
interactions [117–119]. This behaviour was also observed to be in good agreement with
scattering experiments [118]. Our result (224) is in perfect agreement with these findings,
which again confirms that our 1/c expansion is indeed uniform in q, ω.

8 Conclusions

In this work we have introduced and developed an ab initio expansion of dynamical density-
density correlation functions in the Lieb-Liniger model that can be performed within any
energy eigenstate. It is a combined expansion in 1/c and in the number of particle-hole
excitations taken into account in the spectral representation of the dynamical correlation
function. The expansion has a well-defined thermodynamic limit and is uniform in all
x and t, or equivalently all ω and q. We have obtained fully explicit and readily usable
expressions for both the correlator and the dynamical structure factor at order O(c−2)
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which take into account all one- and two particle-hole excitations, Equations (171), (166),
(178) and (187).

The main obstacle we faced in deriving these results occurs at order O(c−2). Indeed,
the leading O(c0) term of the expansion is simply the result for impenetrable bosons,
which can be straightforwardly obtained using the mapping to free fermions [3, 120]. In
terms of the form factor expansion the only non-zero form factors are those involving a
single particle-hole excitation, and they are all equal. The O(c−1) term is almost as simple
since its form factor expansion is identical to the impenetrable limit case albeit with a
root density dependent numerical modification of the form factors. In contrast the O(c−2)
contribution comes with a number of complications.

As is well-known the form factor expansion generally exhibits non-integrable singu-
larities whenever two rapidities coincide. In the framework of the 1/c expansion these
first arise at order O(c−2) for contributions involving both one- and two particle-hole ex-
citations. The presence of such singularities precludes directly taking the thermodynamic
limit and expressing the spectral sum as integrals over root densities in a simple way.
Indeed, we find that the contributions from both one- and two particle-hole excitations
are individually divergent in the thermodynamic limit, but their sum is not. Even after
compensating the divergent parts they individually depend on the particular choice of rep-
resentative state and cannot be expressed in terms of the root densities. But remarkably,
and reassuringly, their sum – and thus the correlation function – is representative-state-
independent, i.e. depends only on the root density. These cancellations eventually leave a
piece that can be interpreted as a dressing of the contribution due to one particle-hole ex-
citations by two particle-hole excitations. Although this vanishes for the zero-temperature
ground state as well as for any zero-entropy states it is non-zero in general and is crucial for
detailed balance to be satisfied in thermal states. Such a fine-tuned “regularisation” of the
divergences could only be achieved with a careful treatment of the thermodynamic limit
of the exact spectral sum in a finite volume. Anticipating that for other quantities the
representative-state-dependent parts may not always compensate one another we derived
a formula for their average over all representative states for a given root density.

We have verified that our results are in full accord with known results including CFT
and (non-linear) Luttinger liquid theory predictions for zero-temperature critical expo-
nents, thresholds singularities, sum rules, detailed balance relations and high frequency
behaviour. We have also recovered the order O(c−2) GHD predictions for Euler scale den-
sity correlations in finite entropy states. This constitutes the most non-trivial verification
of GHD in an interacting integrable model. We have also determined corrections to GHD
and compared the GHD result to the full correlator at order O(c−2) outside the asymptotic
regime. We found that GHD provides a rather good description of the correlator even at
short times and distances.

The framework developed in this work is not restricted to density correlations in the
Lieb-Liniger model but is expected to apply to any local operator in any integrable model
that has a well-behaved expansion around a strong coupling limit. One example is the
large anisotropy regime of the spin-1/2 Heisenberg XXZ chain [121, 122]. A significant
complication that occurs in that case is the presence of string solutions to the Bethe Ansatz
equations. The restriction to local operators is crucial as the spectral representation of
two-point functions of semi-local operators such as the field ψ(x) are dominated by a
completely different set of excited states [78] and does not allow for an expansion in the
number of particle-hole-excitations.

Our work opens up several interesting lines of further enquiry. First, our analysis
should be extended to higher orders in the expansion. The O(c−3) term still involves
at most two particle-hole excitations, but the expansions of the Bethe equations and the
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determinant in the expression for the form factors become more involved. Second, the
repulsive Lieb-Liniger model is particularly simple in that the Bethe equations have only
real roots. It would be very interesting to extend our analysis to a model with complex
roots, e.g. the spin-1/2 Heisenberg XXZ chain. Third, our framework is readily generalized
to quench dynamics [123] by combining it with the quench action approach [91,92]. Here
the novel feature is that the spectral sum involves “overlaps” that multiply the form
factors. Finally, it would be interesting to recover results obtained from the 1/c-expansion
considering corrections to GHD as well as the thermodynamic bootstrap program [124].
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A Double principal values

A.1 Proof of Equation (53)

We start by recalling that a single principal value can be expressed as a regular integral

−
∫
F (λ, µ)

λ− µ
dλ =

1

2

∫
F (λ, µ)− F (−λ+ 2µ, µ)

λ− µ
dλ . (226)

Hence successive principal value triple integrals can be written as

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν =

1

4

∫∫∫ [
F (λ, µ, ν)− F (2µ− λ, µ, ν)

(λ− µ)(µ− ν)
− F (λ, µ, 2µ− ν)− F (2µ− λ, µ, 2µ− ν)

(λ− µ)(µ− ν)

]
dλdµdν .

(227)

If G(λ, µ, ν) is a function without singularities, then we have∫∫∫
G(λ, µ, ν)dλdµdν = lim

L→∞

1

L3

∑
i,j,k

G(xi, xj , xk) , (228)

where

xi =
i

L
, (229)

and i, j, k range e.g. between −L2 and L2. In (228) one has the freedom to exclude some
values, e.g. consider i 6= j, since this only amounts to subleading corrections in L that
vanish when taking the limit. The integrand of (227) is of this type. Hence one can write

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν =

1

4
lim
L→∞

1

L3

∑
i,j,k
i 6=j
j 6=k

[F (xi, xj , xk)− F (−xi + 2xj , xj , xk)

(xi − xj)(xj − xk)

− F (xi, xj , 2xj − xk)− F (2xj − xi, xj , 2xj − xk)
(xi − xj)(xj − xk)

]
. (230)

Separating the four sums and changing variables so that the argument of f is always
xi, xj , xk leads to

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν = lim

L→∞

1

L3

∑
i,j,k
i 6=j
j 6=k

F (xi, xj , xk)

(xi − xj)(xj − xk)
. (231)
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Finally we turn this into a simultaneous principal value integral by adding the condition
i 6= k

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν = =

∫
F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν− lim

L→∞

1

L3

∑
i,j
i 6=j

F (xi, xj , xi)

(xi − xj)2
. (232)

Using
∑

i 6=0
1
i2

= π2

3 , we have

lim
L→∞

1

L3

∑
i,j
i 6=j

F (xi, xj , xi)

(xi − xj)2
=
π2

3

∫
F (x, x, x)dx , (233)

and obtain Equation (53).

A.2 Proof of Equation (56)

We note that formulae (55) are direct consequences of Equation (56), as can be seen by
interchanging the dummy variables.

We start with representation (227). As the integrand is regular one can impose that
|λ − µ| > ε and |µ − ν| > ε′ with an error O(ε) + O(ε′). This allows one to separate the
integral into four pieces and make appropriate changes of variables so that the argument of
F is always λ′, µ′, ν ′. One sees that in the four cases one has |λ′−µ′| > ε and |µ′−ν ′| > ε′.
Hence

−
∫

F (λ, µ, ν)

(λ− µ)(µ− ν)
dλdµdν =

∫
|λ′−µ′|>ε
|ν′−µ′|>ε′

F (λ′, µ′, ν ′)

(λ′ − µ′)(µ′ − ν ′)
dλ′dµ′dν ′ +O(ε) +O(ε′) ,

(234)
which is precisely (56).

B Proof of Equation (41)

B.1 Reduction to a combinatorial problem

For a given solution to the Bethe equations {λi}i ∈ SL we define the set of pairs of
rapidities that belong to the same bin

B =
{

(λi, λj)
∣∣∣ i 6= j , ∃k ∈ {1, ..., nL}, λi, λj ∈ [xL,k, xL,k+1]

}
, (235)

We have

1

L3

∑
i 6=j

f(λi, λj)

(λi − λj)2
=

1

L3

∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2
+

1

L3

∑
(λi,λj)/∈B

f(λi, λj)

(λi − λj)2
. (236)

Let us show that when the pairs of rapidities are not in B, the sum is negligible. We
observe that

1

L3

∑
λi∈[xL,k,xL,k+1]
λj∈[xL,p,xL,p+1]

|f(λi, λj)|
(λi − λj)2

≤ (LεL)2

(|k − p| − 1)2L3

maxλ,λ′ |f(λ, λ′)|
C2

0ε
2
L

, (237)

provided that |k − p| > 1, i.e. if the bins to which λi and λj belong are not adjacent.
Here C0 = miny[ρ(y)]−1 is a constant independent of the representative state and of the
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bins. Indeed, in this case we have |λi − λj | > (|k− p| − 1)C0εL and there are (LεL)2 pairs
of roots. Since there are D/εL bins, by summing over p and k these contributions are
O( 1

LεL
), and since LεL →∞, they are negligible in the thermodynamic limit.

If the bins are adjacent we have

1

L3

∑
λi∈[xL,k,xL,k+1]
λj∈[xL,k+1,xL,k+2]

|f(λi, λj)|
(λi − λj)2

≤ C1

L3

∑
0≤n,m≤LεL
n+m 6=0

1

(n+m)2/L2
= O( log(LεL)

L ) ,
(238)

with C1 another constant independent of the representative state and of the bins. Since
there are D/εL bins and LεL →∞, these contributions are also negligible in the thermo-
dynamic limit. Hence we have

1

L3

∑
i 6=j

f(λi, λj)

(λi − λj)2
=

1

L3

∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2
+ o(L0) , (239)

with the o(L0) being independent of the representative state. Hence we also have

lim
L→∞

1

|SL|
∑

{λi}i∈SL

1

L3

∑
i 6=j

f(λi, λj)

(λi − λj)2
= lim

L→∞

1

|SL|
∑

{λi}i∈SL

1

L3

∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2
. (240)

Writing ∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2
=

nL∑
k=1

∑
i 6=j

λi,λj∈[xL,k,xL,k+1]

f(λi, λj)

(λi − λj)2
, (241)

we have

1

|SL|
∑

{λi}i∈SL

1

L3

∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2
=

nL∑
k=1

1

|SL|
∑

{λi}i∈SL

1

L3

∑
i 6=j

λi,λj∈[xL,k,xL,k+1]

f(λi, λj)

(λi − λj)2
.

(242)
To go further and decouple the average over the representative states one needs to ensure
that the modification of rapidities in one bin does not notably affect the distance between
rapidities in another bin. From the Bethe equations, a modification of order εL of DL
rapidities modifies the distance between two rapidities i, j in the same bin by an order
1
LDLεL(λi−λj), which is indeed subleading compared to λi−λj . Hence one can assume at
leading order in L that the rapidities decouple, and given a bin k, sum over the rapidities
of the other bins without modifying the values of the rapidities inside bin k. Thus one
can write

1

|SL|
∑

{λi}i∈SL

1

L3

∑
i 6=j

λi,λj∈[xL,k,xL,k+1]

f(λi, λj)

(λi − λj)2

=
1(KL,k
bLεLc

) ∑
{λi}i∈SkL

1

L3

∑
i 6=j

λi,λj∈[xL,k,xL,k+1]

f(λi, λj)

(λi − λj)2
+ o(L0) , (243)

with Sk
L ⊂ SL the subset of SL containing states whose rapidities outside the bin

[xL,k, xL,k+1] are fixed to those of an arbitrary representative state, and

KL,i = bL(xL,i+1 − xL,i)(ρ(xL,i) + ρh(xL,i))c . (244)
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is the number of vacancies in [xL,i, xL,i+1]. Since around λ two consecutive vacancies are
separated by 1

L(ρ(λ)+ρh(λ)) at leading order in L, we can write λi − λj as an integer times
1

L(ρ(xL,k)+ρh(xL,k)) , for λi and λj in the same bin [xL,k, xL,k+1]. This yields

1

|SL|
∑

{λi}i∈SL

1

L3

∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2
=

1

L

nL∑
k=1

f(xL,k, xL,k)(KL,k
bLεLc

) (ρ(xL,k) + ρh(xL,k))
2

∑
I⊂{1,...,KL,k}
|I|=bLεLc

∑
i,j∈I
i 6=j

1

(i− j)2

+ o(L0) . (245)

This reduces the problem to evaluating the large K,M limit at fixed K/M of the following
combinatorial quantity

CM,K =
∑

I⊂{1,...,K}
|I|=M

∑
i,j∈I
i 6=j

1

(i− j)2
. (246)

B.2 The generating functions

To simplify the expression of CM,K , we would like to recast the sum over pairs of integers
into a sum over (next-nearest-)neighbouring integers. We exactly rewrite CM,K in the form

CM,K = 2
M∑
m=1

m∑
j=1

∑
a1<...<aM
∈{1,...,K}

∑
i≥0

j+(i+1)m≤M

1

(aj+im − aj+(i+1)m)2
. (247)

Introducing

C
[m]
M,K =

∑
a1<...<aM
∈{1,...,K}

∑
i≥0

(i+1)m≤M

1

(aim − a(i+1)m)2
(248)

with a0 = 0, we have

CM,K = 2

M∑
m=1

m∑
j=1

K∑
a=j

(
a− 1

j − 1

)
C

[m]
M−j,K−a . (249)

Let us now determine the asymptotic behaviour of C
[m]
M,K for large K,M at fixed K/M .

Summing separately over a1, ..., am, one obtains the following recurrence relation

C
[m]
M,K =

K−M+m∑
am=m

(
am − 1

m− 1

)[(K−am
M−m

)
a2
m

+ C
[m]
M−m,K−am

]
, (250)

where we use conventions such that C
[m]
M,K = 0 if K < M or M < m. Indeed, the factor(

am−1
m−1

)
counts the number of possibilities for the first m−1 particles between 1 and am−1,

while the factor
(
K−am
M−m

)
counts the number of times this 1/a2

m term will appear in all the
subsequent configurations for am+1, ..., aM . Introducing the generating functions

C [m](x, y) =
∑

M,K≥0

C
[m]
M,Kx

MyK , S[m](x, y) =
∑

M,K≥0

K−M+m∑
a=m

(
a− 1

m− 1

)(K−a
M−m

)
a2

xMyK ,

(251)
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this recurrence relation implies that

C [m](x, y) = S[m](x, y) +
xmym

(1− y)m
C [m](x, y) . (252)

Expressing S[m](x, y) as

S[m](x, y) =
xm

1− y(1 + x)

∑
a≥1

(
a−1
m−1

)
a2

ya , (253)

we obtain the following generating function

C [m](x, y) =
xm(1− y)m

(1− y(1 + x))2
∑m−1

k=0 (xy)k(1− y)m−1−k

∑
a≥1

(
a−1
m−1

)
a2

ya . (254)

B.3 Asymptotics of the coefficients

We now use Ref. [84] which shows how to determine the asymptotic behaviour of combina-
torial coefficients from the analytic behaviour of their generating function2. One obtains

C
[m]
M,K = M

(
K

M

)(
M/K

1−M/K

)m 1

m

∑
a≥1

(1−M/K)a

a2

(
a− 1

m− 1

)
+O(

(
K

M

)
) . (257)

This implies that

C
[m]
M−j,K−a = (MK )j(1− M

K )a−jC
[m]
M,K +O(

(
K

M

)
) , (258)

and substituting this into (249) we obtain at leading order

CM,K =

[
2

∞∑
m=1

mC
[m]
M,K

]
(1 +O(M−1)) . (259)

Using the asymptotics (257) one then finds in the limit M,K →∞ at fixed K/M

CM,K =
π2

3
M
M

K

(
K

M

)
+O(

(
K

M

)
) . (260)

2Specifically, in order to have only a simple pole in the generating function as in [84], we define

C̄ [m](x, y) =

∫ x

0

C [m](u, y)du . (255)

We then integrate by parts

C̄ [m](x, y) =
xm(1 − y)m

(1 − y(1 + x))
∑m−1
k=0 (xy)k(1 − y)m−1−k

∑
a≥1

(
a−1
m−1

)
a2

ya−1

−
∫ x

0

du
1

1 − y(1 + u)

d

du

um(1 − y)m∑m−1
k=0 (uy)k(1 − y)m−1−k

∑
a≥1

(
a−1
m−1

)
a2

ya−1 .

(256)

and use Theorem 1.3 and Corrolary 3.21 of [84] on the first term, where in their notations x = M/K
1−M/K

and y = 1 −M/K. The second term gives negligible contributions because the x integral will give rise to
a multiplicative factor M−1.
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B.4 Conclusion

Coming back to (245), we have when L→∞

M ∼ LεL , K ∼ LεL
ρ(xL,k) + ρh(xL,k)

ρ(xL,k)
, (261)

which yields

1

|SL|
∑

{λi}i∈SL

1

L3

∑
(λi,λj)∈B

f(λi, λj)

(λi − λj)2

= εL
π2

3

nL∑
k=1

f(xL,k, xL,k)(ρ(xL,k) + ρh(xL,k))ρ(xk,L) + o(L0) .

(262)

In the limit L→∞ we then arrive at the result (41)

lim
L→∞

1

|SL|
∑

{λi}i∈SL

1

L3

∑
i 6=j

f(λi, λj)

(λi − λj)2
=
π2

3

∫ ∞
−∞

f(λ, λ)(ρ(λ) + ρh(λ))ρ(λ)2dλ . (263)

C Derivations of the results presented in Section 7

C.1 Correlation functions

C.1.1 Asymptotics of static correlators at zero-temperature

The study of the asymptotic behaviour of (173) at large x at zero temperature reduces to
the asymptotics of the Fourier transform

f̂(x) =

∫ ∞
−∞

f(u)e−ixudu , (264)

of a given function f(u). These asymptotics depend on the regularity of the integrand,
hence at leading order on points of non-analyticity of f on the real axis. We have the
following behaviours.

• If f(u) has a discontinuity ∆ = f(u+
0 )− f(u−0 ) at u0 and is otherwise regular, then

for x→∞
f̂(x) = ∆

e−ixu0

ix
+O(x−2) . (265)

This is straightforwardly obtained with an integration by part.

• If f(u) ∼ ∆ logn |u− u0| for u > u0 and is regular and bounded for u < u0, then

f̂(x) =

{
−∆ e−ixu0

ix (log |x|+ p1) + o( 1
x) if n = 1

∆ e−ixu0

ix

(
log2 |x|+ 2p1 log |x|+ p2

)
+ o( 1

x) if n = 2 .
(266)

Here the constants p1,2 are given by

p1 = γE +
iπ

2
sgn (x)

p2 = γ2
E + iπγE sgn (x)− π2

12
,

(267)
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where γE is Euler’s gamma constant. If f(u) ∼ ∆ logn |u − u0| for u < u0 and is
regular and bounded for u > u0, then the result is multiplied by −1 and p1, p2 are
changed to their complex conjugates p∗1, p

∗
2.

These relations are obtained from the relation∫ ∞
0

e−ixuuαdu = Γ(1 + α)[i(x− i0)]−1−α , (268)

expanded around α = 0.

• If f(u) ∼ ∆ logn |u− u0| for both u < u0 and u > u0, then we have

f̂(x) =

{
−π∆ e−ixu0

x + o( 1
x) if n = 1

2π∆ e−ixu0

x (log |x|+ γE) + o( 1
x) if n = 2 .

(269)

These equations directly follow from the previous results.

In order to determine the large x behaviour of the correlation functions, we also need
zero-temperature result for ρ̃(x) defined in (114)

ρ̃(λ) =
1 + 2D/c

2π
log

∣∣∣∣λ+Q

λ−Q

∣∣∣∣ , (270)

and the large x behaviour of the functions Ax,0, Cx,0 and Dx,0 defined in (147), (155) and
(158) respectively

Ax,0 = − log |x|
2π2

+O(x0)

Cx,0 = o(x−1)

Dx,0 = o(x−1) .

(271)

The asymptotics of Cx,0 and Dx,0 follow from (300) and (301) for a generic root density.
As for Ax,0, integrating (147) by parts we obtain for a generic root density

Ax,0 = −
∫
ρ(u)ρ′h(v)

v − u
(eix(v−u) − 1)dudv + ixCx,0 . (272)

Specializing to zero temperature at leading order in c−1, it yields

Ax,0 =
1

4π2

∫ Q

−Q

eix(Q−u) − 1

Q− u
du− 1

4π2

∫ Q

−Q

eix(−Q−u) − 1

−Q− u
du+ ixCx,0 , (273)

that is

Ax,0 =
1

4π2

∫ 2Qx

0

eiu + e−iu − 2

u
du+ ixCx,0

= − log |x|
2π2

+O(x0) .

(274)

As for the Bx,0(λ) and Bx,0(µ) terms, they require a special treatment since they cannot
be decoupled from the λ, µ integrals. The Bx,0(λ) term involves the following functions

fn(x) =

∫ ∞
−∞

ρ(λ)λnBx,0(λ)e−iλxdλ , (275)

for n = 0, 1, 2, whose we wish to determine the asymptotic behaviour at large x, by
computing its Fourier transform f̂n(q) =

∫∞
−∞ e

−iqxf(x)dx. We have (at leading order in

c−1)

f̂n(q) = 2π

∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρ(u)λn
1

2π − ρ(u+ λ+ q)

(λ+ q)(λ− u)
dudλ . (276)
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Specializing this relation to the ground state root density we obtain

f̂n(q) =
1

4π2

∫ Q

−Q

λn

|λ+ q|
log

∣∣∣∣λ+ min(Q,−Q+ |λ+ q|) sgn (λ+ q)

λ−Q sgn (λ+ q)

∣∣∣∣ dλ . (277)

We note that the non-integrable divergence near λ = q is compensated by the argument
of the log going to 1 in this limit. In the vicinity of q = Q we have for η > 0

f̂n(Q+ η) =
1

4π2

∫ Q

−Q

λn

λ+Q
log

∣∣∣∣ 2λ

λ−Q

∣∣∣∣dλ+ o(η0)

f̂n(Q− η) =
1

4π2

∫ Q

−Q

λn

λ+Q
log

∣∣∣∣ 2λ

λ−Q

∣∣∣∣dλ+
(−Q)n

4π2

∫ 1

0

1

v − 1
log

∣∣∣∣ v

2v − 1

∣∣∣∣ dv + o(η0) ,

(278)

where the last integral is
∫ 1

0
1
v−1 log

∣∣∣ v
2v−1

∣∣∣dv = −π2

12 , so that f̂n has a discontinuity at Q

of

lim
η→0

[
f̂n(Q+ η)− f̂n(Q− η)

]
=

(−Q)n

48
. (279)

Similarly we find

lim
η→0

[
f̂n(−Q+ η)− f̂n(−Q− η)

]
= −Q

n

48
, (280)

and f̂n(q) does not have discontinuities elsewhere. This implies that

f0(x) = − 1

48π

sin(Qx)

x
+ o(x−1)

f1(x) = − iQ

48π

cos(Qx)

x
+ o(x−1)

f2(x) = − Q2

48π

sin(Qx)

x
+ o(x−1) .

(281)

Then one builds the full Bx,0(λ) term from the functions (275), in particular by taking
into account the remaining oscillatory µ integral. One obtains that the Bx,0(λ) term gives
contributions that decay as cos(2qFx)/x2 and of order c−2, which are encapsulated in the
result in the O(c−2) term of the A in (190). A similar analysis shows that the Bx,0(µ)
term also gives contributions that decay as cos(2qFx)/x2.

From these various relations, it is straightforward albeit tedious to determine the
asymptotics of the static correlation functions. Putting everything together we find that

χ
(1,2)
x,0 (λ, µ) given in (166) contributes to the large-x behaviour of the density-density cor-

relator as follows:

• O(c0) contribution of χ
(1)
x,0(λ, µ)

−
1 + 4D

c + 4D2

c2

2π2x2
(1− cos(2qFx)) , (282)

• O(c−1) contribution of χ
(1)
x,0(λ, µ)

−
4D(1 + 4D

c )

cπ2

cos(2qFx)

x2
log |2qF eγEx|+ o(x−2) , (283)
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• O(c−2) contribution of χ
(1)
x,0(λ, µ)

16D2

π2c2

cos(2qFx)

x2
log2 |2qF eγEx|+O( cos 2qF x

x2 ) , (284)

• Contribution of χ
(2)
x,0(λ, µ)

− 4D2

π2c2

cos(2qFx)

x2
log |2qF eγEx|+O( cos 2qF x

x2 ) . (285)

This establishes (189).

C.1.2 Asymptotics of dynamical correlations zero temperature

The study of the asymptotic behaviour of (164) at large x, t at fixed α = x
2t at zero

temperature reduces to the study of an oscillatory integral of the type

I(x, t) =

∫ ∞
−∞

f(u)eitu
2−ix′udu . (286)

In this regime, the integral is dominated by the point where the phase has an extremum
as a function of u, which is α′ defined in (195). If f is regular and α′ in the support of f ,
then we have

I(x, t) =

√
πei sgn (t)π/4e−iα

′2t√
|t|

(
f(α′) +

i

4t
f ′′(α′)− 1

32t2
f ′′′′(α′)

)
+O(|t|−7/2) . (287)

If f has singular points one has to combine (287) with the results of Section C.1.1.
The correlation function (164) is expressed as a double integral, one over λ with a

factor ρ(λ) and one over µ with a factor ρh(µ). Because of the very particular structure
of ρ(λ) at zero temperature (106), the saddle point α necessarily lies within the support
of either ρ(λ) or ρh(µ), but not both. Hence if |α| > qF , the λ integral is dominated by
boundary effects as in the static case, while the µ integral is dominated by the saddle
point. If |α| < qF , the converse holds true.

Let us detail the case |α| > qF (the case |α| < qF is very similar). We perform a
change of variables λ→ λ+α′ and µ→ µ+α′ in (164) in order to move the saddle point
to 0, which results in shifting the arguments of the root densities by α′. The µ integral is
then simply evaluated at µ = 0, while the λ integral is dominated by the vicinities of the
points Q − α′ and −Q − α′. Using the results for (264) with x = −2t(Q − α′) we obtain

the leading contribution from Q− α′ to the integral over χ
(1)
x,t(λ, µ), with ± = sgn (t)

e−i sgn (t)π
4

(
1 + 2D

c

)4
4π

3
2 |t|

1
2

eit(Q−α
′)2

2it(Q− α′)

[
1− 4

c

1 + 2D
c

2π
(Q− α′)

[
log
∣∣4Qt(Q− α′)2

Q+ α′
∣∣+ γE ∓ i

π

2

]
+

8

c2

(
1 + 2D

c

2π

)2

(Q− α′)2
[

log
∣∣4Qt(Q− α′)2

Q+ α′
∣∣+ γE ∓ i

π

2

]2
+O(t0c−2)

]
.

(288)

The leading contribution from −Q − α′ to the integral over χ
(1)
x,t(λ, µ) is obtained
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analogously

e−i sgn (t)π
4

(
1 + 2D

c

)4
4π

3
2 |t|

1
2

eit(Q+α′)2

2it(Q+ α′)

[
1− 4

c

1 + 2D
c

2π
(Q+ α′)

[
log
∣∣4Qt(Q+ α′)2

Q− α′
∣∣+ γE ± i

π

2

]
+

8

c2

(
1 + 2D

c

2π

)2

(Q+ α′)2
[

log
∣∣4Qt(Q+ α′)2

Q− α′
∣∣+ γE ± i

π

2

]2
+O(t0c−2)

]
.

(289)

In order to determine the asymptotic behaviour of the two particle-hole contribution

χ
(2)
x,t(λ, µ) we require the asymptotic behaviours of the functions A2α′t,t, C2α′t,t and D2α′t,t

defined in (147), (155) and (158) respectively. We find

A2α′t,t = − log |t|
2π2

+O(t0) ,

C2α′t,t = o(t−1) ,

D2α′t,t = o(t−1) . (290)

The results for C2α′t,t and D2α′t,t again follow from (300) and (301) for a generic root
density. As for A2α′t,t, we integrate by parts to express it in the form

A2α′t,t = −
∫
ρ(u+ α′)ρ′h(v + α′)

v − u
(eit(u

2−v2) − 1)dudv

− 2it

∫∫
ρ(u+ α′)ρh(v + α′)eit(u

2−v2)dudv − 2itD2α′t,t . (291)

A saddle point approximation on the second double integral shows that the second line is
O(t0). Specializing to zero temperature we then have at leading order in c−1

A2α′t,t =
1

4π2

∫ 2Q

0

du

u
[eit(u

2−2u(Q−α)) − 1]

+
1

4π2

∫ 2Q

0

du

u
[eit(u

2−2u(Q+α)) − 1] +O(t0) , (292)

which can be further simplified

A2α′t,t =
1

4π2

∫ 2Qt

0

du

u
[ei(u

2/t−2u(Q−α)) − 1] +
1

4π2

∫ 2Qt

0

du

u
[ei(u

2/t−2u(Q+α)) − 1] +O(t0)

= − log |t|
2π2

+O(t0) . (293)

Finally there are the contributions of the Bx,t(λ) and Bx,t(µ) terms. One can perform
an analysis similar to the static case and obtain that they are both O(t−3/2). Their
contributions are encapsulated in the result in the O(c−2) term of the B± in (197). Putting
everything together we obtain the leading contribution from the vicinity of Q− α′ to the

double integral over χ
(2)
x,t(λ, µ)

4

c2

e− sgn (t)iπ/4
(
1 + 2D

c

)4
4π3/2|t|1/2

eit(Q−α
′)2

2it(Q− α′)
(Q− α)2

[
− log |t|

2π2
+O(t0)

]
. (294)

The analogous result for the contribution from the vicinity of −Q− α′ is

4

c2

e− sgn (t)iπ/4
(
1 + 2D

c

)4
4π3/2|t|1/2

eit(Q+α′)2

2it(Q+ α′)
(Q+ α)2

[
− log |t|

2π2
+O(t0)

]
. (295)
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C.1.3 Euler scale asymptotic behaviour

In this section we will assume ρ to be continuous. If it is not continuous the leading 1/t
behaviour is unchanged, but the 1/t2 corrections might differ.

For a generic continuous root density at large x, t and fixed α = x
2t , the two integrals

over λ and µ in the correlation function (164) are both dominated by the saddle point at
α′. Applying (287) to the one particle-hole contribution gives

π
(
1 + 2D

c

)2
ρ(α′)ρh(α′)

|t|
+
iπ
(
1 + 2D

c

)2
[ρ′′(α′)ρh(α′)− ρ(α′)ρ′′h(α′)]

4t|t|
+O(t−3) . (296)

The contribution due to two particle-hole excitations is more subtle and requires de-
termining the asymptotic behaviour of oscillatory integrals with principal values, whose
saddle point falls on the singularity. The general strategy is to write each singularity as

1

λ− µ
=

t

2i

∫ ∞
−∞

sgn (ξ)eitξ(λ−µ)dξ , (297)

and then to carry out a regular asymptotic analysis of the multiple oscillatory integrals
successively. The sgn (ξ) factors introduce discontinuities which result in contributions on
top of those from the saddle points.

Let us treat the case of Cx,t in detail. We write

C2α′t,t =
t

2i

∫∫∫
ρ(α′ + u)ρh(α′ + v) sgn (ξ)eit[(u−ξ/2)2−(v−ξ/2)2]dudvdξ , (298)

and then apply a saddle point approximation to the u and v integrals using (287) to obtain

C2α′t,t =
t

2i

∫ ∞
−∞

dξ sgn (ξ)

[
π

|t|
ρ
(
α′ + ξ

2

)
ρh
(
α′ + ξ

2

)
+

πi

4t|t|

(
ρ′′
(
α′ + ξ

2

)
ρh
(
α′ + ξ

2

)
− ρ
(
α′ + ξ

2

)
ρ′′h
(
α′ + ξ

2

))]
+O(t−2) . (299)

This can be simplified by performing an integration by parts on the ξ integral of the
subleading term

C2α′t,t = iπ sgn (t)

∫ ∞
−∞

ρ(ξ)ρh(ξ) sgn (α′ − ξ)dξ

+
π

2|t|
(
ρ(α′)ρ′h(α′)− ρ′(α′)ρh(α′)

)
+O(t−2) . (300)

Similarly one finds for the Dx,t term

D2α′t,t = iπ sgn (t)

∫ ∞
−∞

ρ(ξ)ρh(ξ)ξ sgn (α′ − ξ)dξ

+
π

2|t|

[
α′(ρ(α′)ρ′h(α′)− ρ′(α′)ρh(α′))− ρ(α′)ρh(α′)

]
+O(t−2) . (301)

To deal with the Ax,t term we use that in a distributional sense

1

(λ− µ)2
= − t

2

2

∫ ∞
−∞
|ξ|eitξ(λ−µ)dξ , (302)

and then carry out a similar analysis to obtain

A2α′t,t = −2π|t|
∫ ∞
−∞

ρ(ξ)ρh(ξ)|α′ − ξ|dξ + o(t) . (303)
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This leaves us with the Bx,t(λ) term. It is not possible to determine the asymptotics of
Bx,t(λ) at fixed λ and then carry out a saddle point approximation of the resulting integral
as the asymptotic expression for Bx,t(λ) becomes singular at the saddle point λ = α′. The
full contribution involving Bx,t(λ) to the correlation function is 3

Xx,t ≡
∫

dµ−
∫

dλdudv
eit(λ

2−µ2+u2−v2)+ix(µ−λ+v−u)

(λ− u)(v − u)
(λ− µ)2ρ(λ)ρh(µ)ρ(u)ρh(v) . (304)

We rewrite this as a six-fold integral

X2α′t,t = − t
2

4

∫
· · ·
∫
ρ(α′ + λ)ρh(α′ + µ)ρ(α′ + u)ρh(α′ + v) sgn (ξ) sgn (ζ)

× (λ− µ)2eit(λ
2−µ2+u2−v2)eiξt(v−u)+iζt(λ−u)dudvdλdµdξdζ , (305)

and then perform saddle point approximations on the u, v, λ, µ integrals. This gives

X2α′t,t = −π
2

4

∫∫
ρ
(
α′ − ζ

2

)
ρh(α′)ρ

(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)ζ2

4
sgn (ξ) sgn (ζ)

× e−it
ζ2

2
−itζ ξ

2 dξdζ[1 + o(t0)] . (306)

We now carry out the integral over ξ, which does not have saddle point and is dominated
by the discontinuity of the integrand at ξ = 0 using∫

f(ξ)eisξdξ = −f(0+)− f(0−)

is
− f ′(0+)− f ′(0−)

s2
+O(s−3) , (307)

where f is a function with discontinuities only at zero. This gives

X2α′t,t = −π
2ρh(α′)2

4it

∫ ∞
−∞
|ζ|ρ

(
α′ − ζ

2

)
ρ
(
α′ + ζ

2

)
e−it

ζ2

2 dζ[1 + o(t0)] . (308)

This last integral also has a saddle point at zero, but with a coefficient that is not differ-
entiable, so that one cannot apply (287). Approximating ζ = 0 in the ρ’s at leading order
in t, one can integrate the remaining terms to obtain

X2α′t,t =
π2

2t2
ρ(α′)2ρh(α′)2 + o(t−2) . (309)

The contribution involving Bx,t(µ) is given by

Yx,t ≡
∫

dλ−
∫

dµdudv
eit(λ

2−µ2+u2−v2)+ix(µ−λ+v−u)

(µ− u)(v − u)
(λ− µ)2ρ(λ)ρh(µ)ρ(u)ρh(v) , (310)

and can be analyzed in a similar way. We start by rewriting it as a six-fold integral

Y2α′t,t = − t
2

4

∫
· · ·
∫
ρ(α′ + λ)ρh(α′ + µ)ρ(α′ + u)ρh(α′ + v) sgn (ξ) sgn (ζ)

× (λ− µ)2eit(λ
2−µ2+u2−v2)eiξt(v−u)+iζt(µ−u)dudvdλdµdξdζ , (311)

3Here and in what follows we assume that ρh(µ) is a continuous function of µ that decays to zero at
infinity so that the integral exists. The case where ρh(µ) is the actual hole density is then obtained as a
limit of the resulting expression.
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and then perform saddle-point approximations on the λ, µ, u, v integrals

Y2α′t,t ≈ −
π2

16

∫∫
sgn (ξ)ζ|ζ|ρ(α′)ρh

(
α′ + ζ

2

)
ρ
(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)
e−itξ

ζ
2 dξdζ

− π2i

64t

∫∫
sgn (ξ)|ζ|

[
ζρ′′(α′)ρh

(
α′ + ζ

2

)
ρ
(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)
− 8ρ′(α′)ρh

(
α′ + ζ

2

)
ρ
(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)
− ζρ(α′)ρ′′h

(
α′ + ζ

2

)
ρ
(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)
− 8ρ(α′)ρ′h

(
α′ + ζ

2

)
ρ
(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)
+ ζρ(α′)ρh

(
α′ + ζ

2

)
ρ′′
(
α′ + ζ+ξ

2

)
ρh
(
α′ + ξ

2

)
− ζρ(α′)ρh

(
α′ + ζ

2

)
ρ
(
α′ + ζ+ξ

2

)
ρ′′h
(
α′ + ξ

2

)]
e−itξ

ζ
2 dξdζ . (312)

We next perform the integral over ξ in the large t limit using (307). After some rearrange-
ments we obtain

Y2α′t,t =
iπ2

t
ρ(α′)ρh(α′)

∫ ∞
−∞
|α′ − ζ|ρ(ζ)ρh(ζ)dζ

− π2

4t2

∫ ∞
−∞
|α′ − ζ|

[
ρ′′(α′)ρh(α′)ρ(ζ)ρh(ζ)− ρ(α′)ρ′′h(α′)ρ(ζ)ρh(ζ)

+ ρ(α′)ρh(α′)ρ′′(ζ)ρh(ζ)− ρ(α′)ρh(α′)ρ(ζ)ρ′′h(ζ)

]
dζ

− π2

2t2
[ρ(α′)ρ′h(α′) + 2ρ′(α′)ρh(α′)]

∫ ∞
−∞

sgn (α′ − ζ)ρ(ζ)ρh(ζ)dζ

− π2

2t2
ρ(α′)ρh(α′)

∫ ∞
−∞

sgn (α′ − ζ)[ρ′(ζ)ρh(ζ) + 2ρ(ζ)ρ′h(ζ)]dζ + o(t−2) . (313)

Putting everything together we arrive at (200).

C.1.4 GHD predictions

The GHD result for the asymptotics of the density-density correlator is [89,90]

〈σ(x, t)σ(0, 0)〉 =

∫ ∞
−∞

δ
(
x− v(λ)t

)
ρ(λ)

(
1− ϑ(λ)

) [
qdr(λ)

]2
dλ , (314)

with ρ, ϑ defined in (27) and (28), and where the other functions are defined as follows:

F (λ, ν) =
1

π
arctan

(
λ− ν
c

)
+

∫ ∞
−∞

2c

c2 + (λ− λ′)2
ϑ(λ′) F (λ′, ν)

dλ′

2π
,

qdr(λ) = 1−
∫ ∞
−∞

q(λ′) ϑ(λ′) ∂λF (λ′, λ)dλ′ ,

v(λ) =
e′(λ)

2π
(
ρ(λ) + ρh(λ)

) ,
e′(λ) = 2λ−

∫ ∞
−∞

2ν ϑ(ν)∂λF (ν, λ)dν . (315)

These equations can be straightforwardly solved in a 1/c-expansion up to order O(c−2)

ρ(λ) + ρh(λ) =
1 + 2D

c

2π
, ϑ(λ) =

2πρ(λ)

1 + 2D/c
, F (λ, α) =

λ− α
πc

+
2

πc2
(δ −Dα) ,

v(λ) =
2λ− 4δ/c

1 + 2D/c
, qdr(λ) = 1 +

2D

c
, (316)

where D and δ are defined in (29) and (89). Substituting (316) back into (314) precisely
recovers the leading contribution in (200).
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C.2 Dynamical structure factor

C.2.1 Behaviour near the thresholds at zero temperature

We start from the simplified expression of the DSF (203) at zero temperature and will
assume q > 0 for simplicity. We note that when z → ±∞ we necessarily have Z+ < Z−,
so that the only possible region that can lead to a divergence of the integral is the region
z close to 0. In this region we first set

ω = q′
2

+ 2q′Q− η , (317)

with η > 0 small, and investigate the values taken by Z±. We find for z close to zero

Z+(z) =


−q′2+q′2z+η

2q′(1−z) if z > 0 ,
−q′2−4q′Q−q′2z+η

2q′(1−z) if z < 0 ,

Z−(z) =


−η+q′2z

2q′z if z > η
2q′2

,

−q′2−q′2z+η
2q′(1−z) if 0 < z < η

2q′2
,

−q′2−4q′Q+q′2z+η
2q′(1−z) if z < 0 .

(318)

We observe that for small z we have Z− < Z+ if and only if z < η
2q′2

, in which case

Z+ − Z− = q′|z|
1−z . Substituting this expression back into (203), we find that among the

contribution proportional to 111Z−<Z+ only the term Z+−Z−
z is non-integrable when z → 0.

However, its divergent part is exactly cancelled by the term in the third line of (203)
proportional to 111ω−<ω<ω+ . All other terms in the first two lines of (203) give a finite
O(η0) contribution because they are integrable for z → 0. This leaves the contribution
proportional to 111ω−<ω<ω+ for z > η

2q′2
, which leads to a logarithmic singularity in η.

Setting an arbitrary upper limit in the integral since its modification amounts to a O(η0)
correction we have

S(2)(q, ω) =
1

4π2q′c2

∫ 1

η
2q′2

[
−2q′min(|q′z|, 2Q)

z2

]
dz +O(η0)

=
q′

2π2c2
log |η|+O(η0) . (319)

We now turn to singularities above the upper threshold. Taking η > 0 to be small and
setting

ω = q′
2

+ 2q′Q+ η , (320)

we find for z ≈ 0

Z+(z) =


−q′2+q′2z−η

2q′(1−z) if z > 0 ,
η+q′2z

2q′z if − η
2q′(q′+2Q) < z < 0 ,

−q′2−4q′Q−q′2z−η
2q′(1−z) if z < − η

2q′(q′+2Q) ,

Z−(z) =

{
η+q′2z

2q′z if z > 0 ,
−q′2−4q′Q+q′2z−η

2q′(1−z) if z < 0 .
(321)

We observe that for z close to zero we have Z− < Z+ if and only if z < − η
2q′(q′+2Q) , in

which case Z+ − Z− = q′|z|
1−z . Above the threshold we have 111ω−<ω<ω+ = 0 so that the
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last term in (203) vanishes. Of the remaining terms only the one proportional to Z+−Z−
z2

diverges near z = 0, so that

S(2)(q, ω) =
1

4π2q′c2

∫ − η
2q′(q′+2Q)

−1
2q′(1− z)2Z+ − Z−

z2
dz +O(η0)

= − q′

2π2c2
log |η|+O(η0) . (322)

The behaviour near the lower threshold is obtained through a similar analysis.

C.2.2 Behaviour at small q, ω

We start by writing the two particle-hole contribution as

S(2)(q, ω) =
8π2

c2

∫ ∞
−∞

∫ ∞
−∞

ρ(q3)ρh(q4)

z2
|1− z|

[
ρ(q1)ρh(q2)− ρ

(ω′−q′2
2q′

)
ρh
(ω′+q′2

2q′

)]
dzdp

+
8π2

c2

∫ ∞
−∞

∫ ∞
−∞

2(λ−µ)2

λ−λ̄ − (λ−µ)2

µ−λ̄ + 3µ− 2λ− λ̄+ (λ−µ)2−|q′(λ−µ)|
q′+λ−µ

(q′ + λ− µ)|q′ + λ− µ|

× ρ(λ)ρh(µ)ρ(λ̄)ρh(µ̄) dλdµ ≡ 8π2

c2
(Ψ1 + Ψ2), (323)

where Ψ1,2 denote the first and second terms respectively.

The integral for Ψ1 with q, ω → 0 at fixed γ = ω′

2q′ is well-defined and finite. In this
limit we have q3 = q4 = γ+p(1−z) and q1 = q2 = γ−pz. Changing variables to v = γ−pz
and u = γ + p(1− z) we have

Ψ1 =

(∫ ∞
−∞

ρ(u)ρh(u)|u− γ|du
)(
−
∫ ∞
−∞

ρ(v)ρh(v)− ρ(γ)ρh(γ)

(v − γ)2
dv

)
+ o(q′

0
) . (324)

As for Ψ2 , we first perform a change of variables from µ to v = q + λ− µ

Ψ2 =

∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρh(q + λ− v)ρ(q′ + λ− v + q′ 2γ−2λ−q′
2v )ρh(q′ + λ+ q′ 2γ−2λ−q′

2v )

× 1

v|v|

[
2(v − q′)2

v − q′ − q′ 2γ−2λ−q′
2v

+
(v − q′)2

q′ 2γ−2λ−q′
2v

+ 2q′ − 2v

− q′ 2γ−2λ−q′
2v +

(v − q′)2 − |q′(v − q′)|
v

]
dλdv . (325)

We now observe that the four ρ factors are invariant under the change of variable

v′ = −q′ 2γ−2λ−q′
2v . (326)

We apply this change of variable to all the terms except

(v − q′)2

q′ 2γ−2λ−q′
2v

, (327)

and express the term
2v2

v − q′ − q′ 2γ−2λ−q′
2v

(328)
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as one half of itself plus one half of itself after the change of variables. We obtain for q′ > 0

Ψ2 = −2

∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρh(q′ + λ− v)ρ
(
q′ + λ− v + q′ 2γ−2λ−q′

2v

)
ρh
(
q′ + λ+ q′ 2γ−2λ−q′

2v

)
× sgn (v)

2γ − 2λ− q′

[
1− q′

v
+

2v2

2v2 − 2q′(v + γ − λ) + q′2
(329)

− 2v

2γ − 2λ− q′

(
1−

∣∣∣∣1 +
2γ − 2λ− q′

2v

∣∣∣∣)
]

dλdv . (330)

Since there are no non-integrable divergences in the integrand at small v, in this represen-
tation one can set q′ = 0 in the ρ terms as well as in the integrand, at small q′. It yields

Ψ2 = −
∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρh(λ)ρ(u)ρh(u)
sgn (λ− u)

γ − λ

[
2− λ− u

γ − λ

(
1−

∣∣∣∣γ − uλ− u

∣∣∣∣)]dλdu+o(q0) .

(331)
We obtain then the claimed result.

C.2.3 High frequency tail

We start with the representation (184) for the two particle-hole contribution to the DSF
expressed as a single double integral. We first decompose the double integral into the two
regions |q′ + λ − µ| > ε and |q′ + λ − µ| < ε and focus on the latter part. Since we have
assumed that ρ decays faster than any power law at infinity λ has to remain smaller than
any power law of ω for the integral not to vanish at any order O(ω−n). Since |q′+λ−µ| < ε
the same holds true for µ. But this implies that λ necessarily grows as ω1/2, which makes
this contribution vanish at any order O(ω−n). Hence at any given order O(ω−n) we can
impose |q′ + λ − µ| > ε. This removes all poles in the integrand of (184) and one can
consider all contributions separately. Moreover, since ρ decays faster than a power law at

infinity the term proportional to ρ(ω
′−q′2
2q′ )ρh(ω

′+q′2

2q′ ) is negligible at order O(ω−n).
We then split the µ integral into the sum of positive and negative µ parts and perform

the change of variables

z =

{
2µ− q′ − λ−

√
2ω′ if µ > 0 ,

2µ− q′ − λ+
√

2ω′ if µ < 0 .
(332)

This way the DSF can be brought to the form

S(2)(q, ω) =

∫ ∞
−∞

dλ

∫ ∞
−q′−λ−

√
2ω′

dz
[
ρ(λ)ρ

(
z + f+(z, λ, ω′)

)
g+(z, λ, ω′)

× ρh
( z+q′+λ+

√
2ω′

2

)
ρh
(
z + f+(z, λ, ω′) + q′+λ−z−

√
2ω′

2

)]
+

∫ ∞
−∞

dλ

∫ −q′−λ+
√

2ω′

−∞
dz
[
ρ(λ)ρ

(
z + f−(z, λ, ω′))g−(z, λ, ω′

)
× ρh

( z+q′+λ−√2ω′

2

)
ρh
(
z + f−(z, λ, ω′) + q′+λ−z+

√
2ω′

2

)]
+ . . . ,

(333)

where the dots indicate subleading corrections that decay faster than any inverse power
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in ω and

f±(z, λ, ω) = ±1

2

q′2 + 2q′z + 2q′λ− (λ− z)2

√
2ω ± (z − q′ − λ)

,

g±(z, λ, ω) =
16π2

c2(λ+ q′ − z ∓
√

2ω)|λ+ q′ − z ∓
√

2ω|

[
− 4λ+

(λ− q′ − z ∓
√

2ω)2

λ+ q′ − z ∓
√

2ω

+ 2
(λ+ q′ − z ∓

√
2ω)(λ− q′ − z ∓

√
2ω)2

4ω − 8q′λ− 4q′2
+ 3(λ+ q′ + z +

√
2ω)

+
−λ2 + 2λq′ + q′2 + z2 ± 2

√
2ωz

λ+ q′ − z −
√

2ω

+ 2
(λ+ q′ − z ∓

√
2ω)(λ− q′ − z ∓

√
2ω)2

λ2 + q′2 ± 2
√

2ωz + z2 + 4λq′ − 2λz ∓ 2λ
√

2ω

]
. (334)

We now observe that any part of the integral where the argument of one of the two ρ’s
grows as a power-law in ω will give contributions that decay faster than any power-law,
since ρ is assumed to decay faster than any power-law at infinity. From the expression of
f± one sees that z cannot grow faster than ω1/4. Consequently, with an error that goes
to zero faster than any power law in ω one can replace the limits of the integrals and the
arguments of the ρh’s by ±∞. This gives

S(2)(q, ω) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρ
(
z + f+(z, λ, ω′)

)
g+(z, λ, ω′)dzdλ

+
1

4π2

∫ ∞
−∞

∫ ∞
−∞

ρ(λ)ρ
(
z + f−(z, λ, ω′)

)
g−(z, λ, ω′)dzdλ+ . . . (335)

We now expand f±(z, λ, ω′) and g±(z, λ, ω′) in Laurent series in λ, λ − z and ω′−1/2,
and Taylor expand ρ(z + f±(z, λ, ω′)). This produces terms of the type ρ(λ)ρ(a)(z)λb(λ−
z)dω′−e/2 with a, b, e ≥ 0 integers and d a positive or negative integer. We integrate this by
parts a times over z so that the integrand involves only ρ(z), and then write the full result
S(2)(q, ω) as one half of itself plus one half of itself after swapping the dummy variables
λ and z. We observe that there remain only positive powers d ≥ 0, and one obtains the
first two terms of the expansion ω′−7/2, ω′−9/2 stated in the text.
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