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Abstract

Recent transport experiments in spatially modulated quasi-1D structures cre-
ated on top of LaAlO3/SrTiO3 interfaces have revealed some interesting fea-
tures, including phenomena conspicuously absent without the modulation. In
this work, we focus on two of these remarkable features and provide theoret-
ical analysis allowing their interpretation. The first one is the appearance of
two-terminal conductance plateaus at rational fractions of e2/h. We explain
how this phenomenon, previously believed to be possible only in systems with
strong repulsive interactions, can be stabilized in a system with attraction
in the presence of the modulation. Using our theoretical framework we find
the plateau amplitude and shape, and characterize the correlated phase which
develops in the system due to the partial gap, namely a Luttinger liquid of
electronic trions. The second observation is a sharp conductance dip below a
conductance of 1×e2/h, which changes its value over a wide range when tuning
the system. We theorize that it is due to resonant backscattering caused by
a periodic spin-orbit field. The behavior of this dip can be reliably accounted
for by considering the finite length of the electronic waveguides, as well as
the interactions therein. The phenomena discussed in this work exemplify the
intricate interplay of strong interactions and spatial modulations, and reveal
the potential for novel strongly correlated phases of matter in system which
prominently feature both.
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1 Introduction

Low dimensional electronic systems with strong interactions present unique opportunities
for the implementation and study of highly correlated quantum matter. Prominent exam-
ples are the fractional quantum Hall effect [1–3], high-Tc superconductors [4], non-Fermi
liquids [5–7], quantum spin liquids [8,9], and the correlated states in single and multi wall
carbon nanotubes [10–13].

The two dimensional interface between the polar insulator LaAlO3 and the non-polar
SrTiO3 features some interesting strong correlation effects, including metal-insulator tran-
sitions [14] and tunable superconductivity [15]. Recent advances in atomic force mi-
croscopy (AFM) and electron lithography have enabled confinement of these surface elec-
trons to quasi-1D waveguides [16]. Electric conductance experiments in these heterostruc-
tures have revealed ballistic transport, and apparent strong attractive interactions between
the charge carriers which lead to formation of composite few-electron particles [17,18].

Recent experiments in these quasi-1D structures have explored the introduction of
an additional feature, namely spatially periodic modulation of the waveguide. This may
be done in a “vertical” way, i.e., by modulating the voltage applied by the AFM tip
during the patterning of the wire, which creates an effective Kronig–Penney landscape
for the electrons [19]. Alternatively, one may consider “lateral” modulation, where a
serpentine shape is etched at a constant AFM potential [20]. The experimental results
suggest that these kind of modulations may lead to a much richer phase diagram of the
electron waveguide.

Transport measurements in the vertical case have revealed a regime in which a plateau
in the two-terminal conductance appears at rational fractions of the quantum of conduc-
tance [19]. Such phenomena have been previously observed in 1D constrictions [21], yet
it was commonly believed strong repulsion is needed to stabilize the fractional phase [22].
In Sec. 2 we address this discrepancy, by extending the theoretical model presented in
Ref. [22] to cases where the interaction has a dominant spatially periodic component. We
explain the possible origin of such a form of interaction, and demonstrate that in such
scenarios it is possible to measure fractional conductance in the presence of strong attrac-
tive interactions, provided two electronic modes have fillings approximately commensurate
with one another. The presented theory is thus consistent with the total absence of such a
fractional feature in the straight wires fabricated with the same technique, as we conjecture
that the periodic interaction originates in the modulated patterning. Our analysis allows
us to reliably recreate the plateau behavior observed in experiments, and to understand
the intriguing many-body correlated phase which develops “on the plateau”. We also find
that another intriguing effect observed in the vertically modulated waveguides, namely
an enhanced electron pairing regime, may also be accounted for by the spatially periodic
attraction.
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In the laterally modulated waveguides we address a different anomaly in the transport
data, namely the emergence of a conductance dip. Interestingly, this dip seems to de-
velop and deepen continuously with change of experimental parameters, i.e., gate voltage
and magnetic field [20]. In contrast to the conductance plateau in the vertical case, the
conductance changes over a much wider range. Moreover, this feature is adjacent to a
conductance plateau of e2/h. These differences indicate that a different mechanism is at
work here. In Sec. 3 we theorize this feature may be accounted for by the presence of
a modulation-induced spin-orbit interaction, leading to an effective periodic potential felt
by the electrons. Matching the modulation wave vector and the electron Fermi momenta
leads to a resonance condition for suppressed conductivity. We show that the interplay
of strong interactions in the waveguide and the short length of the conductor results in
the sensitivity of the conductance dip shape and location to external parameters. More-
over, we explain how can this feature be used as a powerful probe on the strength of the
interactions in the system.

2 Vertical modulation: fractional conductance plateau and
1-2-trion phase

As will be later shown in this Section, some of the more remarkable results in the vertically
modulated waveguides can be accounted for by considering spatially modulated electron-
electron interactions. It was recently established [23] that the strength of interactions, as
well as their sign (repulsion or attraction) may be tuned in exactly such one-dimensional
LaAlO3/SrTiO3 waveguides, by variation of the electronic density. This variation sup-
posedly induces a kind of Lifshitz transition [23, 24], modifying the orbital nature of the
charge carriers, along with the effective interactions.

We conjecture that the same sort of mechanism may be at play when the “depth”
of the waveguide is modulated by the varying AFM potential. As the strength and sign
of interactions oscillate along the wire, the interaction becomes peaked in Fourier space,
along the corresponding modulation wavevector. The consequences and significance of
this modulation will become apparent in the following discussion.

2.1 Model

Our theoretical framework consists of a 1D system hosting two modes of spinless fermions,
see Fig 1a. These modes represent the two lowest-lying electronic modes of the waveguide
at a given magnetic field, as the magnetic field significantly modifies the non-interacting
band structure, through both Zeeman and orbital effects [17]. The spin label of these two
modes and their spatial distribution in the cross-section of the waveguide is immaterial
for the purposes of this work, as long as these are two distinct modes. We consider the
Hamiltonian (setting h̄ = 1)

H =

∫
dxΨ†i (x)

(
− 1

2mi
∂2
x − µi

)
Ψi (x)

+

∫
dx

∫
dy ρi (y) Uij (|x− y|) ρj (x) , (1)

where Ψi (x) annihilates a fermion of mode i at position x, mi and µi are the mass and

chemical potential of the i-th mode, ρi ≡ Ψ†iΨi, U is an interaction matrix, and summation
over repeated indices is implicit. Of particular interest will be the case where U has a
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contribution which is periodically modulated in space. This will manifest in the Fourier
transform of the interaction Uij

q =
∫
dxeiqxUij (x), which will become peaked around a

specific q∗ corresponding to the modulation wavevector. Notice that the form of interaction
in Eq. (1) is written in a momentum conserving manner.

The low-energy physics of the model Eq. (1) may be described by linearizing the
fermionic spectra near their respective Fermi momenta ki,F , and writing the Hamiltonian in
terms of right- and left-moving modes. The Hamiltonian is comprised of two contributions.
The “free” part describing the linearly dispersing chiral movers,

H0 = ivi

(
ψ†i,R∂xψi,R − ψ

†
i,L∂xψi,L

)
, (2)

where ψi,R/L annihilates a right/left moving fermion of mode i, and vi are the Fermi
velocities. The electron-electron interactions are described by

Hint = giρi,Rρi,L + g⊥ (ρ1,Rρ2,L + ρ2,Rρ1,L)

+ gbs

(
ψ†1,Rψ

†
2,Lψ2,Rψ1,L + h.c.

)
, (3)

where ρi,r ≡ ψ†i,rψi,r (r = R,L), and we have omitted the so-called “g4 interactions” of the

form ρ2
r , which only renormalize the velocities later on. The different coupling coefficients

may be extracted from the different momentum components of the interaction matrix,

gi = Uii
0 −Uii

2ki,F
, g⊥ = U12

0 , gbs = U12
2k1,F

δk1,F ,k2,F . (4)

The backscattering interaction gbs conserves momentum (and is thus relevant) only when
the Fermi momenta of the two waveguide modes are identical.

We now consider a scenario where the Fermi momentum of one mode is nearly an
integer multiple of the other,

k1,F = nk2,F , (5)

facilitating a higher order backscattering term,

Hλ = λψ†1,Rψ1,L

(
ψ†2,Lψ2,R

)n
+ h.c. , (6)

which conserves momentum and is therefore potentially relevant. For the sake of clarity,
we will focus our discussion on the case n = 2 (illustrated in Fig. 1b), which is the
simplest possible scenario. The arguments we present here may be generalized to higher
n in a straightforward manner [22].

The interacting model we have presented here, captured by the effective Hamiltonian
density

H = H0 +Hint +Hλ, (7)

can best be analyzed in the framework of abelian bosonization [5,25,26]. This is done by
expressing the chiral fermionic operators in terms of new bosonic variables,

ψi,r ∼
ηi,r√
2πα

exp [iθi − ir (φi + ki,Fx)] , (8)

with r = ± corresponding to R,L, α is the short-distance cutoff of our continuum model,
ηi,r are Klein factors ensuring fermionic commutation relations such that {ηµ, ην} = 2δµν ,
and the bosonic fields obey the algebra [φi (x) , ∂xθj (x′)] = iπδ (x− x′) δi,j . Before writing
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Figure 1: Schematic of the system we analyze: (a) Two non-interacting leads are attached
to the strongly interacting two-mode (purple and yellow) electronic waveguide (center).
The smooth broadening of the waveguide occurs on a length scale much larger than the
Fermi wavelength, preventing interface reflections. (b) Qualitative dispersion of the two
electronic modes in the waveguide. The dotted red line marks the Fermi level, b1 and b2
denote the bands bottoms and the Fermi momenta ±k1,F ,±k2,F are indicated. The figure
illustrates the multi-particle backscattering process we focus on: a right moving mode-1
particle (purple) backscatters off two left moving mode-2 particles (yellow). This process
and its conjugate conserve momentum if k1,F = 2k2,F . This condition is satisfied when
the Fermi level is at the critical chemical potential µc.

down our bosonized model, we perform one final step: a canonical transformation on the
bosons implementing a change of basis,

φg =
φ1 − 2φ2√

5
, φf =

2φ1 + φ2√
5

, (9)

with the same transformation for the θ operators. In this new basis, the bosonized Hamil-
tonian density may be written in the Luttinger liquid form,

H =
∑
j=f,g

uj
2π

[
1

Kj
(∂xφj)

2 +Kj (∂xθj)
2

]
+

1

2π
(Vφ∂xφf∂xφg + Vθ∂xθf∂xθg)

+
λ

4 (πα)3 cos
(

2
√

5φg

)
. (10)

The explicit general form of the different parameters in the Hamiltonian (10) in terms of
the different interaction strengths are given in Appendix A. Notice that we have omitted
the gbs interaction term, as it violates momentum conservation near the range of validity
of Eq. (5).

2.2 Fractional conductance in the strong backscattering limit

The physics we are interested in concerns the fate of the φg cosine term. Specifically, we
begin by considering the limit λ→∞. We will now show that this enables us to relate the
experimental signature of a fractional two-terminal conductance plateau to a gap opening
in the g sector.
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For the sake of completeness, we briefly give here the derivation for the fractional
conductance, along the lines described in Ref. [22] and its Supplementary Materials. We
adiabatically attach non-interacting leads to the electronic waveguide (see Fig. 1a), and
consider the scattering problem of incoming and outgoing currents in both modes. These
currents are related by (

OR
OL

)
=

(
T 1− T

1− T T

)(
IR
IL

)
, (11)

where OR.L and IR,L are chiral outgoing and incoming current vectors of length N , the
number of modes in the waveguide, and T is a N × N matrix. In the case two-mode
discussed here, N = 2 1. In terms of the φ1,2 bosonic variables, their elements are

IR,i =
e

2π
∂t
θi − φi√

2
|x=L

2
, IL,i =

e

2π
∂t
θi + φi√

2
|x=−L

2
, (12)

OR,i =
e

2π
∂t
θi − φi√

2
|x=−L

2
, OL,i =

e

2π
∂t
θi + φi√

2
|x=L

2
. (13)

In the asymptotic limit we are considering, λ→∞, φg is pinned throughout the system,
and we have the boundary condition ∂tφ1 − 2∂tφ2 = 0. Taken at opposite ends of the
system, this boundary condition is equivalent to

nTg T = 0, (14)

with ng = 1√
5

(1,−2)T , defined in accordance to Eq. (9). The unobstructed propagation

of the φf mode through the system leads to the boundary conditions 2OR/L,1 +OR/L,2 =
2IR/L,1 + IR/L,2, or equivalently,

nTf T = nTf , (15)

and nf = 1√
5

(2, 1)T , which forms an orthonormal set with ng. The solution to Eqs.

(14),(15) can be readily found to be T = 1− ngn
T
g .

The total current flowing through the system in both modes may be expressed as J =
(1, 1) · (IR −OL). Assuming incoming right movers emanate from a reservoir at potential

V and the left movers from a reservoir with zero potential, we set IR = e2

h V (1, 1)T , and

IL = (0, 0)T . The two-terminal conductance of the waveguide can then be extracted,

G

e2/h
= (1, 1) T (1, 1)T =

9

5
. (16)

A robust conductance plateau as a function of external gate voltage at ∼ 9/5 was
experimentally observed in Ref. [19] for a wide range of magnetic fields (3-7 T). This
remarkable agreement between theory and the experimental data strengthen our assertion
that the observed plateaus originate in high order backscattering interactions, enabled by
approximately commensurate fillings of the two modes. We further note that for the n = 3
case, the conductance is predicted to be G = 8

5
e2

h . A plateau at this value of conductance,
albeit much fainter than 9

5 on, is also present in Ref. [19] at magnetic fields ∼ 9 T.
The appearance of fractional conductance plateaus at a certain range of magnetic fields,

as well as the possible plateau “evolution” with magnetic field, are both consistent with the
well-understood role of the field in determining the band structure [17]. The magnetic field
shifts the low-lying modes in energy, such that the commensurability condition Eq. (5) is

1The generalization to arbitrary N , as well as an arbitrary backscattering process, is straightforward,
and appears in Ref. [22].
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Figure 2: Two-terminal conductance in the presence of a gap in the φg sector, calculated
from Eq. (19) and Eq. (20). The different traces correspond to an increasing gap ∆
(from left to right), from 2µeV to 20µeV, in 1µeV steps. Consecutive traces are shifted
horizontally by 8.5µeV for clarity. Notice that as the gap increases, the plateau approaches
its asymptotic value (marked by the dashed line). We use the parameters b1 = 10µeV,
b2 = 14µeV, µc = 26µeV, and T = 25 mK for all traces.

made possible at a certain gate voltage. The magnetic field thus plays the role of a control
parameter enabling and disabling particular many-body scattering processes.

Experimental verification of the backscattering-induced fractional conductance is pos-
sible by measuring the tunneling shot-noise “on the plateau” [22,27]. We find that for the
n = 2 case one expects a Fano factor e∗/e = 3/5, whereas in the n = 3 case one should
find e∗/e = 2/5 [22].

In the next section, we will explain how the varying magnetic field affects which mo-
mentum conserving backscattering interaction becomes relevant, and consequently which
plateaus consequently emerge.

2.3 Spatially modulated interactions

As was previously discussed in Ref. [22], the relevance of the λ perturbation, and hence the
formation of the φg gap and fractional plateau, hinge on very strong repulsive interactions
between the 1D electrons. However, there is strong evidence for attractive interactions in
the electron waveguide devices patterned on the LaAlO3/SrTiO3 interface [17, 18]. The
key to understanding this apparent discrepancy may lie in another intriguing observation,
namely that fractional conductance features were altogether absent from such straight
non-modulated waveguides [17]. This hints at the possibility that the periodic modulation
helps facilitate the formation of a partial gap.

To gain a qualitative understanding of how φg can become gapped even in the pres-
ence of attractive interactions, we examine the renormalization group (RG) flow of the
Hamiltonian Eq. (10).

At each step of the RG, short-distance (or high-momentum “fast”) degrees of freedom
are integrated out, and the short-distance cutoff is rescaled α→ α (1 + d`). This generates
new terms in the Hamiltonian, leading to a modification of the coupling constants [28].
Treating λ, Vφ, Vθ terms as perturbations of the Luttinger liquid Hamiltonian, The second
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order RG equations are given by

d

d`
λ̃ = (2− 5Kg) λ̃, (17a)

d

d`
K−1
g =

5

4
λ̃2, (17b)

with ` the RG flow parameter, and the dimensionless coupling constant λ̃ ≡ λ/
(
2π2αug

)
.

We note that Vφ/θ modify the scaling dimension of λ̃ only to second order in Vφ,θ/uf,g,
and thus introduce third-order (and higher) perturbative corrections to Eq. (17a). It is
clearly evident from Eq. (17) that Kg is the crucial parameter determining the fate of the
φg sector. Neglecting its flow (which is justified if the bare λ̃ is sufficiently small), we find
that the condition for a gap to open in this sector is Kg < Kg,c = 2

5 .
Let us now consider the consequence of a peaked Uq, specifically around q∗ = 2k2,F ,

such that the dominant coupling coefficient is U22
2k2,F

. For simplicity, we assume all other

intra-mode interaction matrix elements are of comparable strength, U11
0 ≈ U22

0 ≈ U11
2k1,F

≡
U . Under these assumptions,

Kg =

√√√√ 5
2πv + U22

2k2,F
+ U12

0 − U
5
2πv −U22

2k2,F
−U12

0 + U
. (18)

(See Appendix A for the full general expression.) Keeping in mind that the interactions
are attractive, hence the couplings are all negative, one finds that with strong interactions,
sufficiently dominant U22

2k2,F
indeed greatly diminishes the value of Kg and may possibly

bring it below the critical Kg,c. This is a central observation of this work, which identifies
the modulated interaction as an important ingredient in the fractional plateau puzzle.

2.4 Relation to experimental results

In the vicinity of K∗g = 1
5 , which corresponds to strong interactions in the waveguide,

we may supplement our asymptotic calculation Eq. (16) by an exact re-fermionization
solution, extensively described in Ref. [22]. The point Kg = K∗g represents a generalization
of the exactly solvable Luther-Emery point [29] of attractive spin-degenerate electrons in
a quantum wire.

We emphasize that although a Luttinger parameter much smaller than 1 usually corre-
sponds to strong repulsive interaction, a modulated interaction may indeed lead to Kg � 1
for an attractive interaction as well. (See Eq. (18).)

In the limit where the length of the waveguide L is sufficiently long, L � ∆
ug

with ∆
the gap opened in the φg sector, one recovers the finite temperature linear conductance

G (µ, T ) =
e2

h

∫
dε

T (ε)

4T cosh2
( ε−µ

2T

) , (19)

with µ a global chemical potential controlled by a gate voltage, T the temperature, and
the transmission function, which depends on the energies of the bottom of the two bands
b1,2 (see Fig. 1), and on the critical commensurate chemical potential µc (see Fig. 1b),

T (ε) =



0, ε < b1

1, b1 ≤ ε < b2

2, b2 ≤ ε < µc − ∆
2

9
5 , µc − ∆

2 ≤ ε < µc + ∆
2

2, µc + ∆
2 ≤ ε

. (20)
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In Fig. 2 we show an example of the predicted conductance with different sizes of
∆. A striking resemblance to the data shown in Fig. 3E of Ref. [19] is evident. Even a
“pre-plateau” conductance peak feature that was seen in experiments is recreated: it is
attributed to a region with transmission of 2 preceding the fractional regime, which at finite
temperature does not allow the conductance to reach all the way up to its integer value.
We note that the sometimes-missing plateaus at integer values of 1 and 2 in the experiment
can be accounted for by an interplay between the size of the gap, the temperature and
the inter-band separations. (in Fig. 2 for example, the plateau at 1, which is outside the
plotted range, is smeared out for our choice of parameters.)

We may gain further qualitative insight by examining the gap ∆ itself. Its size may
be approximated by integrating Eq. (17a) up to λ̃ ∼ O (1),

∆ ≈W
(
λ

W

) 1
2−5Kg

, (21)

with W = ug/α0 a typical bandwidth parameter (α0 is the bare short-distance cutoff). As
expected, ∆ becomes larger as Kg is reduced. According to our theory, in the experiment
the value of q∗ around which the interaction is peaked, remains constant. However, as the
external magnetic field is modified, the energy dispersions of the two populated modes
change, and the value of k2,F at the gate voltage corresponding to the commensurate
condition (5) depends on the magnetic field. As 2k2,F drifts further away from q∗, U22

2k2,F
becomes less dominant, and Kg grows. Thus, the mechanism we present to account for the
fractional plateaus in the system is entirely consistent with ∆ depending on the magnetic
field, and thus has remarkable agreement with the experimental variations. The same
reasoning accounts for the appearance of a 9/5 plateau in one regime, and of a 8/5 plateau
in another one, corresponding to n = 2 and n = 3, respectively.

We will now argue that our analysis suggests that the fractional features in the system
we study, with modulated attractive interactions, are more robust as compared to the
uniform repulsion case. This happens because scattering from impurities is less relevant
in the former, and sometimes become irrelevant in the RG sense.

Consider the situation where φg is gapped and the only gapless sector is φf . Then, the
relevance of any impurity scatterer term will depend only on Kf (times a numerical factor
of O (1) determined by how the impurity impacts the two original modes). Employing an
additional simplification U12

0 ≈ U we may write

Kf =

√√√√2πv + 1
5U22

2k2,F
− U

2πv − 1
5U22

2k2,F
+ U

, (22)

such that even for relatively dominant U22
2k2,F

one would still expect Kf to be controlled

by the interaction U and thus be significantly larger than in the repulsive case (remember
U < 0). Large Kf causes the impurities to be less relevant [30, 31], and the viability of
the fractional conductance plateau with a value close to its asymptotic rational value rises
substantially, even in a non-ideal “dirty” system. We note that the relevance of impurities
in the modulated system, and hence the size of Kf , can be experimentally probed by
introducing imperfections to the quasi-1D waveguide in its writing process. If the effect
of these impurities on the conductance increases steeply with temperature, one may infer
that Kf is much larger than 1.

We note here that for the same reasons larger Kf is expected to render proximity
induced superconductivity in the residual sector much more relevant. This may possibly
enable the stabilization of fractional Majorana zero modes at the edges of the waveguide
[32] at more accessible temperature and proximity strength regimes.
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Figure 3: Strong coupling limit of the two commensurate waveguide modes, cf. Fig.1. At-
tractive interactions with wave-vector 2k2,F (solid black line at the bottom) corresponding
to the less populated mode (mode 2), tend to induce a charge density wave commensurate
with that wave vector in each mode. The inter-mode attraction (wiggly green lines) then
“locks” the phases of the two density waves together. This locking corresponds to pinning
φg, whereas a composite 1-2-trion φf can propagate along the waveguide.

2.5 Strong coupling – the 1-2-Trion phase

It is worth pointing out that the expressions we have found for the Luttinger parameters
[see Eq. (18)], and their dependence on the interaction matrix elements are correct only
for weak coupling, i.e., when the typical bandwidth of the two modes W is sufficiently
larger than the size of the elements comprising the interaction matrix U. Furthermore,
our RG arguments regarding the relevance of the multi-particle backscattering term were
also perturbative. For very strong interactions, the functional dependence of, e.g., the size
of the gap (or its existence), may vary.

We claim, however, that qualitatively one should reach the same conclusions in the
strong interaction limit. To understand why, consider the limit of negligible electron
hopping and only interactions of the kind we have discussed, see Fig. 3. If the intra-
mode attractive interaction has a dominant component modulated with a spatial frequency
matching the density of the less populated mode U22

2k2,F
, the most energetically favored

state would be a charge density wave with the corresponding wave vector, which will
maximize the attraction. Then, the subdominant inter-mode attraction will tend to “glue”
a mode-2 particle to two mode-1 particles. This corresponds to the free φf mode left in the
waveguide in the language of our previous discussion. According to Eq. (9) it is composed
of 2 bosonic modes from mode-1 and one from mode-2. Notice that in the expression for
Kg, Eq. (18), from which we determine the fate of φg, the weak coupling dependence on the
coupling constants U22

2k2,F
,U12

0 reflects in essence the strong coupling heuristic description,

as large attractive (with negative amplitudes) interaction tend to make Kg small and pin
φg. We note that the above argument is not specific to n = 2, and generally holds, with
proper modifications, for arbitrary n.

We now comment on the state of the electrons in the waveguide “on the plateau”, i.e.,
deep in the φg gapped phase. Let us consider the operator

Ψ1-2-trion (x) ≡ Ψ1 (x) Ψ1 (x+ α) Ψ2 (x)

∝ e−i
√

5θf cos

(
φf√

5
+ k2,Fx

)
, (23)

which creates a three-particle fermionic excitation, as in Fig. 3. The offset by α in the
second annihilation operator is crucial in order to create a local pair due to the fermionic
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nature of Ψ1. This is the lowest order operator one can construct that does not contain the
dual variable θg, which strongly oscillates in the fractional phase leading to exponentially
decaying correlation functions of all operators containing it. We may then examine trion-
density-density and trion-pair correlations,

〈ρ1-2-trion (x) ρ1-2-trion (0)〉 ∝ cos (2k2,Fx)x−
2Kf
5 , (24)

〈
∆†1-2-trion (x) ∆1-2-trion (0)

〉
∝ x

− 10
Kf , (25)

respectively, with ρ1-2-trion (x) = Ψ†1-2-trion (x) Ψ1-2-trion (x), and ∆1-2-trion (x) =
Ψ1-2-trion (x) Ψ1-2-trion (x+ α). The value of Kf determines which of these two will be
the dominant order in the gapped system: for Kf < 5 charge density wave order of com-
posite trions will dominate, whereas trion pairing will have the leading susceptibility if
Kf > 5.

2.6 Enhanced pairing

Another remarkable phenomenon observed in the vertically modulated waveguides is an
extended regime where electrons form bound pairs [19]. We now demonstrate that this
experimental signature is entirely consistent with the conjectured periodic attractive in-
teraction.

We examine the Hamiltonian density H0 + Hint [Eqs. (2) and (3)] around the com-
mensurability point k1,F = k2,F ≡ kF . Thus, gbs is a relevant perturbation, whereas
Hλ is not (and thus omitted). For simplicity, we assume the difference between the
various intra- and inter-mode interactions are negligible, i.e., U11

0 ≈ U22
0 ≈ U12

0 , and
U11

2kF
≈ U22

2kF
≈ U12

2kF
≡ U2kF . Simplifying further, v1 ≈ v2 ≡ v, we find that the

bosonized Hamiltonian density can be written as

Hpair =
∑
η=+,−

uη
2π

[
1

Kη
(∂xφη)

2 +Kη (∂xθη)
2

]
+

U2kF

2 (πα)2 cos
(√

8φ−

)
, (26)

with φ± = φ1±φ2√
2

, and an identical transformation is applied for θ±. (The parameters u+,

u−, and K+ are not important for our discussion and are given in Appendix A.) Crucially,
we find [25]

K− =

√
1 + U2kF / (2πv)

1− U2kF / (2πv)
, (27)

which is smaller than 1 for attractive interactions, making the cosine term relevant in
the RG sense. When this term flows to strong coupling, φ− gets pinned, and only pairs
with one electron from each mode (corresponding to the φ+ channel) remain gapless.
Integrating the RG flow up to strong coupling, we can estimate the pairing gap [similarly
to Eq. (21)],

∆pair ≈W
(
U2kF

W

) 1
2−2K−

. (28)

We now consider the impact of modulated attractions, such that Uq peaks near q =
2kF . Clearly, this leads to a significant enhancement of |U2kF | as compared to the more
generic short-range or power-law decaying interactions. This in turn increases the size of
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the gap ∆pair, as it makes K− smaller and the ratio U2kF /W larger. An enhancement of the
pairing region as compared to the non-modulated case (cf. Ref. [17]) can thus be attributed
to the modulated attractive interaction. This conjectured form of interaction can thus
account for both of the most prominent features observed in the vertically modulated
waveguides.

3 Lateral modulation: Gap opening and Reduction of con-
ductance

The effect of lateral modulation of the electron waveguide may be captured by an alter-
nating electric field in the lateral direction with wave vector Q, E = E cos (Qx) ŷ, felt by
the electrons having momenta k = kx̂. An effective modulated Rashba spin-orbit field
α in the out-of-plane direction is thus expected, as α ∝ k × E = kE cos (Qx) ẑ. In this
Section, we explore the consequences of a modulated spin-orbit interaction in the high
(out-of-plane) magnetic field regime.

Focusing on the lowest-lying spinfull mode in the waveguide, we describe it by an
Hamiltonian H =

∫
dxΨ† [H0 +HQ] Ψ, where Ψ = (ψ↑, ψ↓)

T is a spinor of electron anni-
hilation operators, and H0 describes the system without modulation,

H0 = − ∂2
x

2m
− µ+ VZσz − α0i∂xσz, (29)

with m being the electron mass, µ is the chemical potential, VZ is the Zeeman energy, α0

is the non-modulated component of the spin-orbit interaction, and σz is a Pauli operator.
The modulated spin-orbit interaction is described by

HQ = αQ {−i∂x, cos (Qx)}σz, (30)

with αQ the strength of the modulated spin-orbit coupling, and the anti-commutator
ensures the hermiticity of the Hamiltonian. Such a form of spin-orbit interaction was
considered in Ref. [33], where a metal-insulator transition was studied. Considering here

the regime VZ � µ +
mα2

0
2 (taking VZ positive without loss of generality), we may limit

our discussion to the low-energy σz = −1 sector, as depicted in Fig. 4a. Linearizing
the spectrum of H0 around k = ±kF + kSO, with kF =

√
2m (µ+ VZ) +m2α2

0, and
kSO = mα0, we expand

ψ↓ ≈ ei(kF +kSO)xψR + e−i(kF−kSO)xψL, (31)

with ψL/R being chiral fermionic operators. The total Hamiltonian density projected to
the σz = −1 sector may then be expressed as

H = iv
(
ψ†R∂xψR − ψ

†
L∂xψL

)
+ αQkSO

(
ψ†RψLe

−i(2kF−Q)x + h.c.
)
, (32)

where we have omitted rapidly oscillating terms, and v = kF /m. It is apparent from Eq.
(32) that in our parameter regime of interest the system is equivalent to one of spinless
fermions subjected to a spatially periodic potential. This periodic potential is due to the
“dc” and periodic components of the spin-orbit interaction conspiring together. Perform-

ing a unitary transformation ψR/L → ψR/Lexp
(
±i2kF−Q

2 x
)

, and once more neglecting
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Figure 4: (a) Top: Schematic dispersion forH0, Eq. (29), with uniform spin orbit coupling
and Zeeman field. Different colors represent opposite out-of-plane spin projections, and
the vertical offset is due to an out of plane Zeeman magnetic field term. Bottom: Zoom-in
on the dashed square of the left panel presenting a schematic dispersion of a 1D single
spin fermion without (dashed line) and with (solid line) a periodic potential, originating in
the spatially modulated spin-orbit interaction, Eq. (30). When Q, the lateral modulation
wave vector, matches 2kF , µ̃ = 0, Eq. (33). Then the Fermi level (dashed black line) is
within the induced gap. (b) Two-terminal conductance of a mode subjected to a spatially
periodic potential. We use Eq. (19) and Eqs. (34)–(35) to calculate the conductance. The
different traces correspond to different values of TL = v/L (from left to right) between
30 µeV and 10 µeV in steps of 1 µeV. (We expect that experimentally the application of
magnetic field will affect the velocity of the mode, v, in the wire as discussed in Ref. [20].)
For clarity, we mark the direction of increasing TL by an arrow, and consecutive traces
are shifted horizontally by 14 µeV. We use the parameters T = 25 mK, ∆Q = 10kBT , and
µQ = 12 µeV for all traces. (c) Similar to (b), but now varying the temperature between
2–6 µeV in steps of 0.2 µeV, and keeping TL = 20 µeV constant. For clarity, we mark the
direction of increasing T , and consecutive traces are shifted horizontally by 14 µeV. Here
we use ∆Q = 20 µeV and µQ = 12 µeV for all traces.

spatially oscillating terms (which are unimportant for system lengths QL� 1), Eq. (32)
becomes

H̃ = iv
(
ψ†R∂xψR − ψ

†
L∂xψL

)
− µ̃

(
ψ†RψR + ψ†LψL

)
+ ∆Q

(
ψ†LψR + ψ†RψL

)
, (33)

where µ̃ = v
2 (2kF −Q), and ∆Q = αQkSO.

3.1 Conductance

When the spin-orbit spatial frequency Q exactly matches 2kF , so that µ̃ = 0, the impact
of ∆Q is maximal, as is illustrated in Fig. 4a. The transmission coefficient for a (non
interacting) system of length L at the center of the gap is given by, (see Appendix B):

TL =
1

cosh2
(

∆Q

v L
) , (34)
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and thus we can use Landauer’s two-terminal conductance formula in Eq. (19) to calculate
the conductance with the approximated transmission function

T (ε) =


0, ε < 0

1, 0 ≤ ε < µQ −∆Q

TL, µQ −∆Q ≤ ε < µQ + ∆Q

1, µQ + ∆Q ≤ ε

, (35)

with µQ = Qv
2 . (Notice that at µ = µQ, µ̃ → 0, which gives the resonance condition.) In

Eq. (35) we have simplified the transmission function, such that the transmission within
the gap is approximately constant, and outside the gap it is unity. This simplified form
is sufficient to capture the experimental features. The accurate transmission coefficient of
the effective scattering problem may be found in Appendix B.

Calculating the conductance, with temperature of 25 mK ≈ 2.15 µeV that is compa-
rable to the experimental temperature, ∆Q ten times larger, and TL ≡ v/L that varies
between about 15 to 5 T , we obtain the conductance depicted in Fig. 4b. A “shoulder” at
the conductance around 0.6e2/h for large TL develops to a pronounced dip for small TL.
Similar behavior is observed in the experiment, (see Fig. 2 of Ref. [20]) when the out of
plane magnetic field is varied. We expect that the magnetic field will affect the velocity
of the modes in the wire as can be ascertained from our expression for kF , and hence TL
is expected to vary, as we plot in Fig. 4b.

3.2 Interactions

The discussion of the lateral modulation so far does not include a key ingredient of the
experimental system, strong electron-electron interactions. We shall account for this by
using, similar to the vertical case, the bosonization technique. At µ̃ = 0, the bosonized
Hamiltonian of the system in question, connected to infinite non-interacting leads at both
its ends, may be written in the form

H =
ṽ

2π

[
1

K (x)
(∂xφ)2 +K (x) (∂xθ)

2

]
+w (x)

VQ
2πα

cos (2φ) , (36)

where VQ = αQkSO, w (x) is unity within the region 0 < x < L and zero outside of it,
and K (x) = K within that same region and K (x) = 1 in the leads. The effects of the
interaction are captured by the modification v → ṽ, and by K, and for simplicity we
neglect the effect of different Fermi velocities in different regions of the system.

In contrast to our discussion in Sec. 2, in the laterally modulated case we do not
assume a modulated interaction, and thus K > 1 corresponds to attractive interactions
and K < 1 for repulsive interactions, as usual.

The lowest order RG equation for the flow of VQ is

d

d`
VQ = (2−K)VQ, (37)

showing that the periodic perturbation may be relevant even for moderately strong attrac-
tive interactions, as long as K < 2. We consider the regime in which T � TL > VQ, such
that the RG flow is cut off by the length scale of the system. Thus, at energy scales below
TL we are left with the Hamiltonian of a simple backscattering impurity center embedded
in a interaction-free Luttinger liquid (the leads connected to the system). The strength
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of this effective impurity as compared to VQ depends on the nature of interactions in the

system. Since the scaling of the gap in such a regime goes as ∆Q = ∆0
Q

(
L
α0

)1−K
, with

∆0
Q the bare gap value, the transmission coefficient from Eq. (34) may be replaced by the

approximation (which is valid in the vicinity of K ≈ 1)

T ∗L =
1

cosh2

[
∆0

Q

W

(
L
α0

)2−K
] , (38)

and once again W = ṽ/α0 is the bandwidth parameter. By measuring the conductance
of identical systems with varying length, Eq. (38) provides a probe on the interaction
strength in the modulated waveguide, as well as its nature (attraction or repulsion).

We finally comment on the effect of temperature in such a regime. As long as the
system remains in the regime T < TL, a change of temperature will have a negligible
impact on the transmission coefficient, as the model still reduces to an effective impurity
backscattering center problem in a non-interacting system (i.e., the infinite leads). Thus,
the value of the conductance dip around µ̃ = 0 should not change with temperature, yet
its shape would be blurred (and eventually vanish) when the system is heated up. This is
precisely the trend observed in Fig. 3 of Ref. [20], and is recreated with sensible parameters
in our Fig. 4c. This is strong evidence supporting our conclusions regarding the parameter
regime, as well as the origin of the finite transmission plateau at low densities.

4 Conclusions

Electron waveguides created on LaAlO3/SrTiO3 interfaces have proven themselves in re-
cent years to be new and exciting platforms to study highly correlated electrons physics.
The experiments addressed in this work, Refs. [19, 20], explored the effect of waveguide
modulation on the electron transport. Two novel features were found for the two different
kinds of modulation.

For the vertical case, where the “writing” potential oscillated along the wire, plateaus in
the two-terminal conductance as a function of gate voltage appeared at fractional values of
the quantum of conductance. The appearance of these plateaus depended on the magnetic
field as well as the fillings of the modes. With lateral modulation, creating a serpentine-
like trajectory for the electrons, an intriguing conductance dip emerged in the supposedly
singly-occupied-mode regime. This dip appeared to vary its value, and to some extent its
shape, when the external magnetic field was swept.

In this manuscript, we have presented theoretical frameworks which can account for
these unusual transport phenomena. We have argued that the experimental data for the
vertically modulated waveguides is consistent with the existence of two strongly interacting
electronic modes, whose filling is commensurate with one another. An asymptotic theo-
retical analysis of the conductance for 2:1 filling ratio yields a plateau with conductance
of 9/5 e2/h for a certain range of magnetic filed. Similarly a 3:1 ratio yields conductance
of 8/5 e2/h.

Remarkably, these two filling scenarios were previously predicted to be the most suscep-
tible to the opening of a partial gap in the system, and thus to stabilization of fractional
conductance signatures [22]. The shapes of the conductance plateaus were calculated
using a re-fermionization technique in a strongly coupled regime (akin to a generalized
Luther-Emery point [29]), and were found to bare qualitative resemblance to the reported
experiments.
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In the current work we have further argued that the spatial modulation is indispens-
able to the stabilization of the high-order backscattering gap in the presence of attractive
interactions. We conjecture that the main role of the modulation is in making the in-
teraction itself oscillate and peak at a specific wavevector q∗, through the mechanism
discussed in Refs. [23, 24]. We have shown here that such an interaction indeed supports
the formation of a gap leading to fractional plateaus, both in the weak-coupling RG sense,
and in the strong coupling picture. We have demonstrated that the second remarkable
feature observed in these wave guides, an enhancement of the electron pairing, may also
be explained by the the same modulated interaction. This lends credence to our claim
that vertical modulation of the electronic waveguide can lead to a periodic interaction felt
by the electrons.

The appearance of two-terminal conductance plateaus at rational fractions of the quan-
tum of conductance e2/h with the introduction of periodic modulation to the system has
profound implications. We have demonstrated that in such a scenario, contrary to previous
studies concerning this fractional phenomenon, the partial gap due to strong interactions
may be stabilized by electron-electron attraction. This suggests that the fractional con-
ductance anomaly is perhaps more ubiquitous than it is currently believed to be, and may
be realized at certain parameter regimes in other experimental platforms.

We speculate that the attractive nature of the interactions is responsible for the relative
robustness of the plateaus as compared to, e.g., the plateaus observed in Ref. [21], where
the experiments were performed in GaAs based split-gate quantum wires with repulsive
interactions. The attraction would generically make the residual impurity back scattering,
which are expected to deteriorate the transport in the repulsive scenario, less relevant.
Thus, one would expect the values of the conductance plateaus to be much closer to their
asymptotic values calculated by the method of Sec. 2.2.

As mentioned earlier, the conductance dip at certain fillings of the laterally modulated
waveguide is qualitatively distinct from the plateau observed with vertical modulation,
suggesting the two have different origins. We attribute it to an effective periodic poten-
tial felt by the propagating electrons, presumably originating in a modulation-induced
spatially-periodic spin-orbit interaction. When this spin-orbit potential provides the cor-
rect momentum for a single-particle backscattering event, i.e., when Q = 2kF , the elec-
tronic mode develops a gap. For long enough waveguides, this would lead to a total
suppression of the two-terminal conductance at low temperatures. However, as we ex-
plain, the experimental data suggests that the finite conductance found on this resonance
is due to the finite length of the system. The observed results are consistent with the
energy scale TL (which is inversely proportional to the waveguide length) and the gap
energy being of comparable sizes, while the temperature is much smaller than both.

Interactions play an important role in the lateral modulation as well. They tend to
renormalize the size of the gap and make it larger for repulsive interactions and moderately
attractive ones, or diminish it in the case of strong enough attraction. The continuous shift
of the conductance dip value as the magnetic field is swept in the experiment with lateral
modulation can thus be attributed also to a change of the effective interactions, which by
affecting the renormalized Fermi velocity or the gap, alter the ratio ∆Q/TL (defined in
Sec. 3.1 and Fig. 4). Furthermore, assuming the relevant experimental regime corresponds
to the gap renormalization being cut off by the finite system length L, varying L while
measuring the change in the conductance would allow one to ascertain the strength of the
interaction and possibly verify its attractive nature.

As we conjecture in the beginning of Sec. 3, the transport may indicate the presence of
modulated spin-orbit interactions. While these experiments [20] were conducted at high
field, the modulated spin orbit coupling may lead to interesting phenomena in the absence
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of magnetic filed. For example, tuning the modulation wavelength and shape may enable
designing high quality spin transistors with no ferromagnetic reservoirs [34].
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A Bosonized Hamiltonian parameters

In Sec. 2 we discuss the role of vertical modulation and use a bosonized formulation of
the model, see Eq. (10). For the sake of completeness, we bring here the general form of
the parameters that are used in it, in terms of the fermionic velocities and interactions
appearing in Eqs. (2)−(3). Assuming for simplicity v1 = v2 ≡ v, we find

ug = v

√
1−

(
g1 + 4g2 − 4g⊥

10πv

)2

, uf = v

√
1−

(
4g1 + g2 + 4g⊥

10πv

)2

, (39)

Kg =

√
10πv − g1 − 4g2 + 4g⊥
10πv + g1 + 4g2 − 4g⊥

, Kf =

√
10πv − 4g1 − g2 − 4g⊥
10πv + 4g1 + g2 + 4g⊥

, (40)

Vφ/θ = ∓ 2

5π

(
g2 − g1 +

3

2
g⊥

)
. (41)

The connection between the coupling constants and the interaction matrix U is given in Eq.
(4). In the main text we use the simplification U11

0 ≈ U22
0 ≈ U11

2k1,F
≡ U for Kg in Eq. (18),

and the additional assumption g⊥ ≈ U when we discussed the role of Kf in Sec. 2.4. We

note that under the same assumptions, one find the expression Vφ/θ = ∓ 1
π

(
U − 2

5U22
2k2,F

)
.

As discussed in Sec. 2.3, these cross interactions affect the scaling dimension of the φg
sector, yet in a quantitatively modest manner.

In Sec. 2.6 we discuss a modified Hamiltonian, valid around k1,F = k2,F , see Eq. (26).
The expressions for the parameters that go into it may be expressed as

u+ = v

√
1−

(
U2kF − 2U0

2πv

)2

, u− = v

√
1−

(
U2kF

2πv

)2

, (42)

K+ =

√
1 + U2kF / (2πv)− 2U0/ (2πv)

1− U2kF / (2πv) + 2U0/ (2πv)
, K− =

√
1 + U2kF / (2πv)

1− U2kF / (2πv)
, (43)

where we have used the simplifications v1 ≈ v2 ≡ v, U11
0 ≈ U22

0 ≈ U12
0 ≡ U0, and

U11
2kF
≈ U22

2kF
≈ U12

2kF
≡ U2kF .
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B Solving the scattering problem

Here we solve the scattering problem we discuss in Sec. 3. Let us rewrite Eq. (33) in a
more convenient form,

H =

∫
dxΨ†HscatΨ, with Hscat = iv∂xσz − µ̃+ ∆Qσx. (44)

Here σi are Pauli matrices and Ψ = (ψR, ψL)T . We solve the Schrodinger equation
HscatΨ = EΨ using the ansatz Ψ (x) = exp [Fx/v] Ψ (0), which is justified for a translation-
invariant Hamiltonian. One can readily find:

F = ∆Qσy − i (E + µ̃)σz. (45)

To solve the scattering problem we set the boundary conditions Ψ (0) = (1, r)T , Ψ (L) =
(t, 0)T , and find the transmission coefficient as T = |t|2. Overall, using TL ≡ v/L, we find

t =

cosh

√(
∆Q

TL

)2

−
(
E + µ̃

TL

)2

+ i
E + µ̃√

(∆Q)2 − (E + µ̃)2
sinh

√(
∆Q

TL

)2

−
(
E + µ̃

TL

)2
−1

,

(46)
from which we recover Eq. (34) for E = µ̃ = 0.
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