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Why space must be quantised on a different scale to matter
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Abstract1

The scale of quantum mechanical effects in matter is set by Planck’s con-2

stant, h̄. This represents the quantisation scale for material objects. In this3

article, we give a simple argument why the quantisation scale for space, and4

hence for gravity, cannot be equal to h̄. Indeed, assuming a single quantisation5

scale for both matter and geometry leads to the ‘worst prediction in physics’,6

namely, the huge difference between the observed and predicted vacuum ener-7

gies. Conversely, assuming a different quantum of action for geometry, β 6= h̄,8

allows us to recover the observed density of the Universe. Thus, by measur-9

ing its present-day expansion, we may in principle determine, empirically, the10

scale at which the geometric degrees of freedom must be quantised.11

1 Wave–particle duality and h̄12

Classical mechanics is deterministic [1]. If its initial conditions are known, the probability13

of finding a particle at a given point on its trajectory, at the appropriate time t, is 100%.14

The corresponding state is described by a delta function, δ3(x − x′), with dimensions of15

(length)−3. This is the probability density of the particle located at x = x′.16

In quantum mechanics (QM), probability amplitudes are fundamental. Position eigen-17

states, |x〉, are the rigged basis vectors of an abstract Hilbert space, where 〈x|x′〉 =18

δ3(x − x′). These have dimensions of (length)−3/2 and more general states may be con-19

structed by the principle of quantum superposition [2]. The resulting wave function, ψ(x),20

represents the probability amplitude for finding the particle at each point in space, and21

the corresponding probability density is |ψ(x)|2 [3].22

Since ψ(x) can also be decomposed as a superposition of plane waves, eik.x, an imme-23

diate consequence is the uncertainty principle ∆ψx
i∆ψkj ≥ (1/2)δij , where i, j ∈ {1, 2, 3}24

label orthogonal Cartesian axes. This is a purely mathematical property of ψ that follows25

from elementary results of functional analysis [4]. In canonical QM, we relate the particle26

momentum p to the wave number k via Planck’s constant, following the proposal of de27

Broglie, p = h̄k. It follows that28

∆ψx
i∆ψpj ≥ (h̄/2)δij . (1)

This is the familiar Heisenberg uncertainty principle (HUP). We stress that the HUP is a29

consequence of two distinct physical assumptions:30

1. the principle of quantum superposition, and31

2. the assumption that h̄ determines the scale of wave–particle duality.32
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Let us also clarify the meaning of the word ‘particle’. We stress that canonical QM33

treats all particles as point-like, so that eigenstates with zero position uncertainty may34

be realised, at least formally. However, gravitational effects are expected to modify the35

HUP by introducing a minimal length, ∆x > 0 [5,6]. Next, we discuss how this relates to36

theoretical predictions of the vacuum energy.37

2 Minimal length and the vacuum energy38

In canonical QM, the background space is fixed and classical. Individual points are sharply39

defined and the distances between them can be determined with arbitrary precision [7].40

By contrast, thought experiments in the quantum gravity regime suggest the existence41

of a minimum resolvable length scale of the order of the Planck length, ∆x ' lPl, where42

lPl =
√
h̄G/c3 ' 10−33 cm [5]. Below this, the classical concept of length loses meaning,43

so that perfectly sharp space-time points cannot exist [6].44

This motivates us to take lPl as the UV cut off for vacuum field modes, but doing so45

yields the so-called ‘worst prediction in physics’ [8], namely, the prediction of a Planck-46

scale vacuum density:47

ρvac '
h̄

c

∫ kPl

kdS

√
k2 +

(mc
h̄

)2
d3k ' ρPl =

c5

h̄G2
' 1093 g . cm−3 . (2)

Unfortunately, the observed vacuum density is more than 120 orders of magnitude lower,48

ρvac ' ρΛ =
Λc2

8πG
' 10−30 g . cm−3 . (3)

In Eq. (2), the mass scale m� mPl = h̄/(lPlc) ' 10−5 g is set by the Standard Model49

of particle physics [10] and the limits of integration are kPl = 2π/lPl, kdS = 2π/ldS, where50

ldS =
√

3/Λ is the de Sitter length. This is comparable to the present day radius of the51

Universe, rU ' 1028 cm, which may be expressed in terms of the cosmological constant,52

Λ ' 10−56 cm−2 [9].53

More detailed calculations alleviate this discrepancy [11], but our naive calculation54

highlights the problem of treating lPl and mPl as interchangeable cutoffs. We now discuss55

an alternative way to obtain a minimum length of order lPl without generating unfeasibly56

high energies.57

3 Wave–point duality and β 6= h̄58

Clearly, one way to implement a minimum length is to discretise the geometry, as in loop59

quantum gravity and related approaches [12]. However, in general, quantisation is not60

discretisation [13]. The key feature of quantum gravity is that it must allow us to assign a61

quantum state to the background, giving rise to geometric superpositions, and, therefore,62

superposed gravitational field states [14]. The associated spectrum may be discrete or63

continuous, finite or infinite.64

But how to assign a quantum state to space itself? A simple answer is that we must65

first assign a quantum state to each point in the classical background. Individual points66

then map to superpositions of points and the unique classical geometry is mapped to a67

superposition of geometries, as required [15]. In effect, we apply our quantisation procedure68

point-wise, and, in the process, eliminate the concept of a ‘point’ from our description of69

physical reality.70
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This can be achieved by first associating a delta function with each coordinate ‘x’. We71

then note that δ3(x − x′) is obtained as the zero-width limit of a Gaussian distribution,72

|g(x − x′)|2, with standard deviation ∆gx. Taking ∆gx > 0 therefore ‘smears’ sharp73

spatial points over volumes of order ∼ (∆gx)3, giving rise to a minimum observable length74

scale [15]. Motivated by thought experiments [5], we set ∆gx ' lPl.75

Since g may also be expressed as a superposition of plane waves, an immediate conse-76

quence is the wave-point uncertainty relation, ∆gx
i∆gkj ≥ (1/2)δij . This is an uncertainty77

relation for delocalised ‘points’, not point-particles in the classical background of canonical78

QM [15]. A key question we must then address is, what is the momentum of a geometry79

wave? For matter waves, p = h̄k, but we have no a priori reason to believe that space must80

be quantised on the same scale as material bodies. In fact, setting ∆gx ' lPl and p = h̄k81

yields ∆gp ' mPlc, giving a vacuum density of order ρvac ' (∆gp)/(∆gx)3c ' c5/(h̄G2).82

This is essentially the same calculation as that given in Eq. (2), which results from the83

same physical assumptions. Hence, we set84

∆gx
i∆gpj ≥ (β/2)δij , (4)

where β 6= h̄ is the fundamental quantum of action for geometry.85

Smearing each point in the background convolves the canonical probability density86

with a Planck-width Gaussian. The resulting total uncertainties are87

∆ΨX
i =

√
(∆ψxi)2 + (∆gxi)2 , ∆ΨPj =

√
(∆ψpj)2 + (∆gpj)2 , (5)

for each i, j ∈ {1, 2, 3}, where Ψ := ψg denotes the composite wave function of a particle88

in smeared space [15]. Finally, we note that the existence of a finite cosmological horizon89

implies a corresponding limit on the particle momentum, which may be satisfied by setting90

∆gp ' h̄
√

Λ/3. The resulting quantum of action for geometry is91

β ' h̄
√
ρΛ

ρPl
' h̄× 10−61 . (6)

The new constant β sets the Fourier transform scale for g(x−x′), whereas the matter92

component ψ(x) transforms at h̄ [15]. However, this does not violate the existing no-go93

theorems for the existence of multiple quantisation constants. These apply only to species94

of material particles [16], and still hold in the smeared-space theory, undisturbed by the95

quantisation of the background [17].96

4 The vacuum energy, revisited97

The introduction of a new quantisation scale for space radically alters our picture of the98

vacuum, including our naive estimate of the vacuum energy. This must be consistent with99

the generalised uncertainty relations (5). Expanding ∆ΨX
i with ∆gx

i ' lPl gives the100

generalised uncertainty principle (GUP) and expanding ∆ΨPj with ∆gpj ' h̄
√

Λ/3 yields101

the extended uncertainty principle (EUP), previously considered in the quantum gravity102

literature [18,19].103

Equations (5) may also be combined with the HUP, which holds independently for104

ψ [15], to give two new uncertainty relations of the form ∆ΨX
i ∆ΨPj ≥ · · · ≥ (h̄+β)/2 . δij .105

The central terms in each relation depend on either ∆ψx
i or ∆ψpj , exclusively. Minimising106

the product of the generalised uncertainties, ∆ΨX
i ∆ΨPj , we obtain the following length107

and momentum scales:108

(∆ψx)opt ' lΛ :=
√
lPlldS ' 0.1 mm ,

(∆ψp)opt ' mΛc :=
√
mPlmdSc ' 10−3 eV/c , (7)
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where mdS = h̄/(ldSc) ' 10−66 g is the de Sitter mass. This gives a vacuum energy of109

order110

ρvac '
3

4π

(∆ψp)opt

(∆ψx)3
optc
' ρΛ =

Λc2

8πG
' 10−30 g . cm−3 , (8)

as required. Taking kΛ = 2π/lΛ as the UV cut off in Eq. (2), with m = mΛ, also gives111

the correct value order of magnitude, ρvac ' ρΛ [15].112

In this model, vacuum modes seek to optimise the generalised uncertainty relations113

induced by both h̄ and β, yielding the observed vacuum energy. Any attempt to excite114

higher-order modes leads to increased pair-production of neutral dark energy particles,115

of mass mΛ ' 10−3 eV/c2, together with the concomitant expansion of space required to116

accommodate them, rather than an increase in energy density [17]. The vacuum energy117

remains approximately constant over large distances, but exhibits granularity on scales118

of order lΛ ' 0.1 mm [15, 20]. It is therefore intriguing that tentative evidence for small119

oscillations in the gravitational force, with approximately this wavelength, has already120

been observed [21,22].121

5 Summary122

This simple analysis shows that, if space-time points are delocalised at the Planck length,123

∆x ' lPl, the associated momentum uncertainty cannot be of the order of the Planck124

momentum, ∆p 6= h̄/∆x ' mPlc. We are then prompted to ask: is it reasonable to125

assume that quantised waves of space-time carry the same momentum as matter waves?126

Though a common assumption, underlying virtually all attempts to quantise gravity that127

utilise a single action scale, h̄, we note that it has, a priori, no theoretical justification.128

We have shown that relaxing this stringent requirement by introducing a new quantum129

of action for geometry, β 6= h̄, leads to interesting possibilities, with the potential to open130

brand new avenues in quantum gravity research [23, 24]. These include the proposal that131

the observed vacuum energy is related to the quantisation scale of space itself [15, 17].132
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