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Abstract

Quantum lattice models with large local Hilbert spaces emerge across various fields in
quantum many-body physics. Problems such as the interplay between fermions and
phonons, the BCS-BEC crossover of interacting bosons, or decoherence in quantum simu-
lators have been extensively studied both theoretically and experimentally. In recent years,
tensor network methods have become one of the most successful tools to treat such lattice
systems numerically. Nevertheless, systems with large local Hilbert spaces remain challeng-
ing. Here, we introduce a mapping that allows to construct artificial U(1) symmetries for
any type of lattice model. Exploiting the generated symmetries, numerical expenses that
are related to the local degrees of freedom decrease significantly. This allows for an efficient
treatment of systems with large local dimensions. Further exploring this mapping, we re-
veal an intimate connection between the Schmidt values of the corresponding matrix-prod-
uct-state representation and the single-site reduced density matrix. Our findings motivate
an intuitive physical picture of the truncations occurring in typical algorithms and we give
bounds on the numerical complexity in comparison to standard methods that do not ex-
ploit such artificial symmetries. We demonstrate this new mapping, provide an implemen-
tation recipe for an existing code, and perform example calculations for the Holstein model
at half filling. We studied systems with a very large number of lattice sites up to L = 501
while accounting for Nph = 63 phonons per site with high precision in the CDW phase.
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1 Introduction

Large local Hilbert spaces appear in various kinds of problems in quantum many-body
physics. Prominent examples arise in the field of ultra-cold quantum gases. Systems
such as interacting bosons in a one-dimensional lattice [1, 2] or trapped ion quantum
simulators [3–5] have been studied extensively, fertilizing a rapid theoretical and exper-
imental progress. Another typical problem featuring large local Hilbert spaces is the
interplay between lattice fermions and phonons. For instance, the formation and stability
of (Bi-)Polarons is a central problem and considerable effort has been taken for its inves-
tigation [6–15]. A broad class of different methods such as quantum Monte Carlo [16,17],
density-functional theory [18], density-matrix embedding theory [19], or dynamical mean-
field theory [20–22] has been explored to study its various aspects. Evidently, the task to
numerically describe such low-dimensional, strongly correlated quantum systems has been
subject to a vast development. In particular, the capabilities of tensor-network methods
have improved a lot in the past two decades. Here, matrix-product states (MPSs) have
become the fundament for flexible, numerically unbiased and in principle exact methods
allowing for the study of not only ground-state properties but also of out-of-equilibrium
dynamics of quantum many-body systems [23–33].

In (time-dependent) density-matrix renormalization group (DMRG) methods, the com-
putationally limiting factor is the bond dimension of the tensors when performing tensor
contractions [26–28, 30, 31, 33]. For instance, using MPS, one is mostly concerned with
matrix-matrix contractions, which scale with the third power of the dimensions of the
involved matrices. However, these operations can be rendered cheaper if the system under
consideration conserves global symmetries. Being able to exploit (non-)abelean symmetries
is an important feature of tensor networks in general [34–37], as a large bond dimension
is related to the amount of entanglement and decay of correlation functions [29, 38, 39].
Aiming to describe strongly correlated systems, large bond dimensions can be required
and thereby exploiting as many symmetries of the system as possible is highly desired.

Another important contribution to the numerical expenses of MPS algorithms is the
dimension of the local Hilbert spaces Hj . For instance, when considering systems with
large spin or bosonic degrees of freedom, a local dimension dimHj ≡ dj ∼ O(10) −
O(100) can yield drastic restrictions on the maximum possible bond dimensions as typical
contractions usually scale with d2j or even d3j . In order to overcome such restrictions,
approaches such as the pseudo site (PS) and the local-basis optimization (LBO) method [6,
40–42] were developed. These methods have proven to be successful tools for treating
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fermion-phonon couplings in the Holstein model, even out of equilibrium and at finite
temperature [6, 10,13,14].

In this paper, we introduce an alternative approach to simulate systems with large
local Hilbert spaces efficiently and in a flexible framework. In order to treat these kinds
of systems efficiently with MPS, we exploit the fact that global U(1) symmetries reduce
effective local block dimensions drastically [34–36]. The starting point of our method is a
thermofield doubling of the many-body Hilbert space, which is an established procedure in
finite-temperature DMRG [43–45]. Then, introducing a new representation for operators in
a particular subspace of the doubled Hilbert space allows us to show that global operators
breaking U(1) symmetries can be identified with projected purified operators that conserve
the corresponding symmetries1. Thereby, challenging general lattice systems breaking
global U(1) symmetries with dj ∼ O(10)−O(100) can always be mapped into numerically
more feasible systems. Importantly, this mapping requires only minor changes in existing
codes and is completely general.

The paper is organized as follows: At first, we present the relevant aspects of our ap-
proach in Sec. 2 in a less detailed fashion and provide an implementation recipe, in Sec. 3,
which captures the changes in actual codes. In Sec. 4, we introduce the projected purifica-
tion in great detail and show how to construct corresponding operators. In Secs. 5 and 6,
we present the representation in terms of MPS and discuss the connection between the
Schmidt values on the newly emerging auxiliary bonds and the diagonal elements of the
1RDM. We illustrate our mapping in Sec. 7 with an exemplary application of our map-
ping to the Holstein model and present numerical results demonstrating its computational
capabilities. Finally, we conclude and discuss further applications in Sec. 8. Additional
technical details related to both, the method and applications can be found in the appen-
dices.

2 General Concept

The general idea of our mapping is to exploit global U(1)-symmetries, where the system
under consideration does not conserve them in the first place. In the tensor-network
framework, states can be constructed so that they transform under a global symmetry, i.e.,
they are eigenstates of the corresponding symmetry generator. Let us consider a system
with a global particle number operator N̂ that, for now, is not a conserved quantity of
the system. Eigenstates |N〉 of N̂ are labeled by their irreducible representations N and
(ignoring degeneracies) any state can be decomposed in terms of these eigenstates

|ψ〉 =
∑

N

ψN |N〉 . (1)

Now, we can perform a doubling of the original Hilbert space and construct states of the
form

|ψ〉PB =
∑

N,N ′
ψN,N ′ |N〉P ⊗ |N ′〉B , (2)

where we introduced labels P,B to distinguish the different Hilbert spaces. We restrict
the allowed coefficients N ′ such that each state |N〉 can be mapped uniquely to a state

1A side note: The construction is closely related to the formulation of supersymmetry in high-energy
physics. Even though, supersymmetry itself is not possible for lattice systems by construction, the general
prescriptions of our method show striking similarities [46].
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|N〉P ⊗ |N0 −N〉B with a properly chosen N0:

|N〉 7−→ |N〉P ⊗ |N0 −N〉B . (3)

The transformed wavefunctions

|ψ〉 7−→
∑

N

ψN,N0
|N〉P ⊗ |N −N0〉B (4)

are eigenstates of the new, global symmetry N̂P +N̂B with eigenvalue N0 and can therefore
be represented efficiently by symmetric MPS. The subspace P spanned by all states |N〉P⊗
|N0 −N〉B has the same dimension as the original Hilbert space so that no additional
complexity is generated with this new representation.

An important observation is that the coefficients ψN,N0
can be recast into a block-N×N

matrix ψN,N ′ and each block can be factorized using a singular-value decomposition (SVD)

|ψ〉 ≡
∑

N

ψN,N0
|N〉P ⊗ |N −N0〉B =

∑

N,N ′
ψN,N ′δ(N

′ − (N −N0)) |N〉P ⊗ |N ′〉B

=
∑

N

ΛNψP ;N |N〉P ⊗ ψB;N |N −N0〉B . (5)

Here, ψP/B;N are left-/right-orthonormal matrices that are obtained by factorizing the

degenerated blocks ψN,N0
for fixed N and ΛN are diagonal matrices. Normalization of the

overall state demands
∑

N Tr Λ2
N = 1 so that

ρ̂ = TrB |ψ〉 〈ψ| =
∑

N

ψP ;NΛ2
Nψ
†
P ;N |N〉P P 〈N | (6)

is a density operator, which describes the mixture of the different irreducible represen-
tations labeled by N . Note that ρN = Tr Λ2

N , i.e., the diagonal elements of ρ̂, specify
the mixing of symmetry sectors in the state |ψ〉. As an example consider a nearly U(1)-
symmetry conserving state that is characterized by a dominating diagonal element ρN ≈ 1.
The remaining, quickly decaying elements ρN allow us to truncate the state representation
so that a compression scheme in the subspace P can be formulated, which is in complete
accordance to the canoncial truncation scheme used in DMRG. Importantly, the same
considerations can be applied to the local degrees of freedom, constituting the many-body
Hilbert space.

Guided by this idea we will show in the following sections that there is a simple
prescription to transform operators so that they are acting in P only. Using balancing

operators β̂
(†)
B;j (which are introduced in Eqs. (19) and (20)), global operators Ô that

break the global U(1) symmetry generated by N̂ can be mapped into operators conserving
the global U(1) symmetry generated by N̂P + N̂B. This is achieved by replacing ladder

operators b̂
(†)
j in the original Hilbert space:

b̂j 7−→ b̂P ;j ⊗ β̂
†
B;j

b̂†j 7−→ b̂†P ;j ⊗ β̂B;j . (7)

The detailed mapping, containing also the intermediate step of doubling the Hilbert space,
is shown in Fig. 1. Note that our mapping is also valid for fermionic degrees of freedom,
e.g., electrons with a pairing term that breaks U(1) symmetry. Nevertheless, the general

definition of the bosonic balancing operators β̂
(†)
B;j remains unchanged even in this case.
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b̂j

b̂†j

b̂P ;j ⊗ 1̂B;j

b̂†P ;j ⊗ 1̂B;j

b̂P ;j ⊗ β̂
†
B;j

b̂†P ;j ⊗ β̂B;j

H HPBP

doubling

doubling

projection

projection

Figure 1: Mapping of local operators b̂j and b̂†j acting on H into projected purified local

operators b̂P ;j β̂
†
B;j and b̂†P ;j β̂B;j acting on P. This transformation is the central, necessary

modification for existing codes in order to use our method.

Recapitulating this short description of the general ideas of our mapping it should
be noted that the states mapped to P are pure states in P but describe mixed states
with respect to the orthogonal decomposition of H in terms of the eigenstates of N̂ . This
is in close reminiscence to the purification procedure [43–45] that is commonly used to
represent mixed states with respect to H. However, there is also an important difference:
Restricting the allowed states by a projection into the subspace P of the doubled Hilbert
space, the complexity of the state’s representation is conserved, i.e., our mapping does not
add additional degrees of freedom to the problem under consideration.

3 Implementation Recipe

Next, we provide a short recipe, for how to implement the previously described projected
purified DMRG (ppDMRG) for ground-state searches and time-evolution methods, in-
cluding prerequirements. Note that this recipe is particularly short, because the necessary
changes are small.

Prerequirements In order to incorporate ppDMRG into an existing framework, it is
necessary that the framework can handle Hamiltonians with more than nearest-neighbor
interactions.

Necessary changes The existing set of local operators needs to be extended with bal-
ancing operators that act on the bath sites, as introduced in Eqs. (19) and (20). In
particular, for every species of local creation and annihilation operators corresponding
balancing operators are needed when changing a global U(1) quantum number. Those
operators shall only have zero and one as elements and always commute with every other

operator. Additionally, for each species of creation- and annihilation operators b̂
(†)
j , a

parity-operator P̂b̂j = eiπb̂
†
j b̂j might be useful. A scenario in which the action of P̂b̂j is

necessary is discussed in Sec. 7.

Usage Following these changes, all existing tools can be used as usual, but with a dou-
bled system size where physical and bath sites alternate, which is a common technique in
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finite-temperature DMRG. Hence, local observables are now evaluated via two neighbor-
ing operators. Note that there is no need to map the state back into the original Hilbert
space since the physical and the original Hilbert space are isomorphic to each other, as
we show in Sec. 4. However, care must be taken that the MPS represents states in P, i.e.,
the L local gauge constraints defined in Eq. (18) have to be fulfilled. Fortunately, since
projected purified operators manifestly act on P only, it suffices to ensure that the initial
state of any algorithm is in P. For instance, using the previous conventions, an initial
state for a ground-state search is given by the product state

|ψ) = |nP ;1 = 0〉 ⊗ |nB;1 = σ − 1〉 ⊗ · · · |nP ;L = 0〉 ⊗ |nB;L = σ − 1〉 . (8)

Clearly, for typical ground-state calculations this state is a bad initial guess. However, it
can be used as a starting point to create more suitable initial guess states by applying
sequences of projected purified operators. Additionally, our numerical experiences gained
so far suggest that the convergence of ground state calculations can benefit from a careful
use of the subspace expansion [47].

4 General Models and Bath Sites

We consider a lattice system of L ∈ N degrees of freedom, each of which being described
within a Hilbert space Hσ of local dimension σ ∈ N spanning the system’s overall tensor-
product Hilbert space H = H⊗Lσ . A state |ψ〉 ∈ H can be expressed in terms of all local
degrees of freedom |σ1 · · ·σL〉 ∈ H:

|ψ〉 =
∑

σ1,...,σL

ψσ1...σL |σ1, . . . , σL〉 , (9)

with, in general, complex coefficients ψσ1...σL ∈ C.

Let Ô be an operator acting on this tensor product Hilbert space H and let N̂ =
∑

j n̂j
be another operator with local operators n̂j : Hσ 7−→ Hσ fulfilling the commutation
relations [n̂j , n̂k] = 0. We denote the ladder operators spanning the algebra of local

operators by b̂
(†)
j that obey canonical commutation relations

[
b̂j , b̂

†
k

]
ε

= δj,k and ε = ±
distinguishes between the commutator or anticommutator. Without loss of generality,
we choose the spectrum of the local operators n̂j to be nj ∈ {0, 1, . . . , σ − 1}2. Let us

assume furthermore that Ô contains summands with ladder operators b̂
(†)
j that are not

paired up with their Hermitian conjugates breaking the global U(1) symmetry generated
by N̂ . For instance, in the Holstein model (see Sec. 7) such contributions are given by the
fermion-phonon interactions

Ô = −
∑

j

n̂fj

(
b̂†j + b̂j

)
⇒

[
N̂ , Ô

]
6= 0 . (10)

Note that in this example N̂ =
∑

j b̂
†
j b̂j is the operator counting the number of phonons

and n̂fj measures the local fermion density.
Next, we introduce a thermofield doubling of this Hilbert space. The new double

Hilbert space HPB = HP ⊗HB consists of two copies of the original Hilbert space, which
we denote as the physical Hilbert space HP and the bath Hilbert space HB (see first arrow
in Fig. 2). Correspondingly, we denote the density operators n̂P ;j and n̂B;j , which have
exactly the same properties as the density operators n̂j in the original Hilbert space. In

2In fact, the following discussion is valid for any labeling of the irreducible representations of the U(1)
symmetries.
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H HP HB

HPB

doubling

HPB

P
projection

I

projection

Figure 2: Starting from some Hilbert space H, a thermofield doubling is performed to
obtain the combined Hilbert space HPB = HP ⊗HB. Applying the projection as discussed
in the main text yields the subspace P, in which the global U(1) symmetry is restored.
Finally, upon acting with I as introduced in Eq. (14), states in P are identified with states
in H.

particular, the basis states |nP/B;1〉 ⊗ · · · ⊗ |nP/B;L〉 ≡ |nP/B;1 · · ·nP/B;L〉 span a complete
orthonormal basis of HP/B.

Here, we leave the framework of finite-temperature DMRG by considering the subspace
P ⊂ HPB = HP ⊗HB of the doubled system that is spanned by all states

|nP ;1, . . . , nP ;L) = |nP ;1, . . . , nP ;L〉P ⊗ |g(nP ;1), . . . , g(nP ;L)〉B (11)

= |nP ;1, . . . , nP ;L, g(nP ;1), . . . , g(nP ;L)〉PB , (12)

with nP ;j ∈ [0, σ − 1] and g(x) = σ − 1 − x (see second arrow in Fig. 2). Note that
for convenience we have labeled the kets in the physical and bath system by subscripts
and introduced rounded kets to indicate states in the subspace P ⊂ HPB, which depend
only on a reduced number of coefficients nP ;1, . . . , nP ;L. This subspace is contained in the
subspace with NP +NB = (σ − 1) · L, i.e.,

(N̂P + N̂B) |nP ;1, . . . , nP ;L) = (σ − 1) · L |nP ;1, . . . , nP ;L) , (13)

so that all states in the subspace P transform symmetrically under the action of the global
U(1) symmetry generated by N̂P + N̂B. Furthermore, note that by counting the number
of basis states spanning P it follows that dimH = dimP.

Now, we define the map

I : P −→ H
|ψ) 7−→ |ψ〉 , (14)

identifying states |ψ) ∈ P in the subspace of the doubled system with states |ψ〉 ∈ H
in the original Hilbert space as shown in Fig. 2. Since g(x) is invertible and dimP =
dimHP = dimH, it follows that I is invertible. Next, we define the projected purified
operator ÔPP : P −→ P by

Ô = IÔPP I
−1 . (15)

Assuming ÔPP exists, this definition implies in particular that

〈n1, . . . , nL|Ô|n′1, . . . , n′L〉 = (nP ;1, . . . , nP ;L|ÔPP |n′P ;1, . . . , n
′
P ;L) , (16)

that is, the matrix representations of Ô and ÔPP in the local basis sets {|n1, . . . , nL〉}
and {|nP ;1, . . . , nP ;L)} are identical. We can, hence, work with ÔPP in the subspace P
instead of Ô. In order to show that ÔPP always exists, we construct it explicitly. For that
purpose, we note that the above definition of P is equivalent to

|ψ) ∈ P ⇔ (n̂P ;j + n̂B;j) |ψ) = (σ − 1) |ψ) for all j ∈ {1, . . . , L} . (17)
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But this means that each operator ÔPP has to satisfy
[
ÔPP , n̂P ;j + n̂B;j

]
= 0 for all j ∈ {1, . . . , L} . (18)

This motivates us to define balancing operators β̂B;j/β̂
†
B;j : HB,σ −→ HB,σ

B〈n′B;j |β̂B;j |nB;j〉B = δn′B;j ,nB;j+1 (19)

B〈n′B;j |β̂†B;j |nB;j〉B = δn′B;j ,nB;j−1 (20)
[
β̂
(†)
B;j , b̂

(†)
P ;k

]
= 0 . (21)

Since every operator ÔP ⊗ 1̂B acting non-trivially only on HP can be expressed as function

of a product of ladder operators b̂
[†]
P,j , we can thus map it to P through the transformations

b̂†P ;j −→ b̂†P ;j β̂B;j and b̂P ;j −→ b̂P ;j β̂
†
B;j , (22)

and imposing the local gauge fixing conditions Eq. (17). By means of this transformation,
which is shown graphically in Fig. 1, the local conservation laws Eq. (18) are fulfilled.

Note that β̂†B;j β̂B;j 6= n̂B;j .
There is also another way to introduce projected purified operators. We can define the

projection operator

P̂ =
∑

{nP ;j}
|nP ;1, . . . , nP ;L) (nP ;1, . . . , nP ;L| (23)

and look for operators satisfying P̂ ÔPP P̂ = ÔPP . Those operators are manifestly invariant
under a projection into P and therefore, ignoring zero elements, have the same matrix
elements in both H and P. Here the important observation is that restricting the ansatz
class of states |ψ〉PB ∈ HPB to P, we have found a one-to-one mapping between H and

P ⊂ HPB, and the states |ψ) = P̂ |ψ〉PB transform under the global U(1) symmetry

generated by N̂P + N̂B, obeying Eq. (17).
In the following, we explicitly derive the representation of states in P in terms of

MPS and demonstrate the capability of the introduced U(1) symmetrization to improve
the numerical efficiency of MPS calculations. For that purpose, we briefly recapitulate
U(1)-invariant MPS before digging into the technical details of the projection.

5 U(1) Symmetries in Matrix-Product States

|ψ〉 ≡ M1 M2 · · · ML

σ1 σ2 σL

→m1 m2 mL−1
M1 M2 · · · ML ≡ |ψ〉N

n1(σ1) n2(σ2) nL(σL)

Figure 3: Schematic of the tensor network of a MPS. Horizontal lines denote the internal
indices with bond dimension mj , whereas the vertical lines denote physical indices with
dimension d. Dotted lines to the left and right indicate the dummy indices m0 and mL.

Consider a state |ψ〉 as described in Eq. (9). Within the MPS formulation [31], the

coefficients ψσ1...σL are expanded into a tensor train of rank-3 tensors M
σj
j;mj−1,mj

. For
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each lattice site j, there is a set of σ matrices M
σj
j ∈ Cmj−1×mj . We refer to the matrix

dimensions mj as bond dimensions. A compact representation of |ψ〉 is then given by

|ψ〉 =
∑

σ1,...,σL

M
σ1
1 · · ·M

σL
L︸ ︷︷ ︸

ψσ1...σL

|σ1 · · ·σL〉 , (24)

where neighboring matrices are contracted over their shared bond indices: MσjMσj+1 =
∑

mj
M

σj
j;mj−1,mj

M
σj+1

j+1;mj ,mj+1
. Commonly, these contractions are represented pictographi-

cally. Each tensor is drawn as a shape with as many legs attached to it as there are indices.
Then, contractions over shared indices are indicated by connecting the corresponding legs
as shown in Fig. 3 for the case of a MPS.

In order to exploit U(1) symmetries, let us consider a Hamiltonian Ĥ : H −→ H of a
system and N̂ : H −→ H an operator generating a global U(1) symmetry of Ĥ, i.e.,

[
Ĥ, N̂

]
= 0, N̂ =

L∑

j=1

n̂j , [n̂j , n̂k] = 0 (25)

with local density operators n̂j : Hσ −→ Hσ acting only on the jth lattice site.
Since [Ĥ, N̂ ] = 0, we can diagonalize both operators Ĥ and N̂ in the same basis. Let

this basis be spanned by {|N〉} with N̂ |N〉 = N |N〉 as well as 〈N |N ′〉 = δN,N ′ . N is
called the global quantum number of the state |N〉. A state |ψ〉 ∈ H can now be expanded
in terms of the simultaneous eigenstates |n1, . . . , nL〉 ∈ H of N̂ with N =

∑
j nj and labels

nj denoting the eigenvalues of the local operators3 n̂j :

|ψ〉 =
∑

n1,...,nL

ψn1···nL |n1, . . . , nL〉 =
∑

n1,...,nL

M
n1
1 · · ·M

nL
L |n1, . . . , nL〉 , (26)

As a consequence of the Wigner-Eckart theorem, it can be shown [35,36] that the site
tensors decompose according to

(
M

nj
j;αj−1,αj

)
mj−1;αj−1

,mj;αj

= M
nj
j;αj−1,mj−1;αj−1︸ ︷︷ ︸

aj−1

,αj ,mj;αj︸ ︷︷ ︸
aj

= T
nj
j;aj−1,aj

· Snjj;αj−1,αj
(27)

with

S
nj
j;αj−1,αj

= δ(nj + αj−1 − αj) , (28)

where we interpret in the following

T
nj
j;aj−1,aj

=

(
T
nj
j;αj−1,αj

)

mj−1;αj−1
,mj;αj

, hence T
nj
j;αj−1,αj

∈ Cmj−1;αj−1
×mj;αj . (29)

Here, the indices αj−1, αj are labeling irreducible representations of the U(1) symmetry

on the bond spaces. Hence, we can describe a state by its rank-5 site tensors M
nj
j;aj−1,aj

and benefit from their block structure. The matrices M
nj
j are decomposed into blocks

T
nj
j;αj−1,αj

with overall dimensions mj =
∑

αj
mj;αj

. However, matrix multiplications only

scale with the block bond dimensions mj;αj
and are thus cheaper by a factor of

(
mj
mj;αj

)3

,

i.e., typically ∼ O(10)−O(100).

3If the local operators have degenerated eigenvalues, more labels have to be used as a set to identify
each state uniquely.
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· · ·

nP ;1 nP ;2 nP ;L−1 nP ;LnB;1 nB;2 nB;L−1 nB;L

Figure 4: MPS representation in an enlarged Hilbert space with each physical site ac-
companied by a bath site.

mj−1 Mj mj

σj

aj−1 aj

nP ;j nB;j

doubling
aj−1

projection
aj

nP ;j g(nP ;j)

ñP ;j

ãj−1
γj−1

Figure 5: Decomposition of general MPS tensor (left) into U(1)-invariant physical and
bath-site tensors (center). Projection of the U(1)-invariant MPS (center) into the subspace
P (right) enforcing the local gauge condition given in Eq. (17). Decomposition of the
introduced auxiliary index ãj−1 into irreducible representation of the local conservation
law generated by n̂P ;j + n̂B;j is sketched by double bonds γj−1 → (ñP ;j , ãj−1).

6 U(1)-Invariant Matrix-Product States with Bath Sites

The introduced mapping from an operator breaking a global U(1) symmetry to one con-
serving a U(1) symmetry (see Sec. 4) can be exploited to efficiently reduce the matrix sizes
of MPS representations. The key observation is that, while purified states in the doubled
Hilbert space in general have a huge redundancy that comes with additional gauge degrees
of freedom, the projection into P fixes all these gauge degrees of freedom by the L local
gauge constraints given in Eq. (17). Here, we discuss the implications on the projection
of purified MPS into P and an important connection between the Schmidt decomposition
of the purified states and the 1RDM. The latter is being derived rigorosly in App. A and
also allows to give bounds on the numerical complexity of this mapping when allowing for
truncation (App. B). We summarize our findings at the end of this section.

Let again |ψ〉 ∈ H and consider its single-site representation

|ψ〉 =
∑

mj−1,mj ,nj

M
nj
j;mj−1,mj

|mj−1〉 ⊗ |nj〉 ⊗ |mj〉 , (30)

with 〈mj−1|m′j−1〉 = δmj−1,m
′
j−1

and 〈mj |m′j〉 = δmj ,m′j . Following the previous considera-

tions, we take this state representation into the subspace P of the enlarged Hilbert space
HPB with NP + NB = (σ − 1) · L. We represent the MPS in HPB by interpreting the
single-site representation of |ψ〉 as a two-site representation in HPB,

|ψ〉PB =
∑

mj−1,mj
nP ;j ,nB;j

M
nP ;j ,nB;j

j;mj−1,mj
|mj−1〉 ⊗ |nP ;j , nB;j〉PB ⊗ |mj〉 . (31)

Then, we apply the projection into the subspace P by enforcing the local gauge condi-
tion Eq. (17). Pursuing these two steps at all sites j ∈ {1, . . . , L}, the resulting state

10
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representation is in the subspace P of the enlarged Hilbert space HPB

|ψ) =
∑

mj−1,mj
nP ;j ,nB;j

M
nP ;j ,nB;j

j;mj−1,mj
δnB;j ,g(nP ;j) |mj−1〉 ⊗ |nP ;j , nB;j〉PB ⊗ |mj〉 . (32)

Then, the site tensors decompose under the global U(1) symmetry as

M
nP ;j ,nB;j

j;mj−1,mj
≡MnP ;j ,nB;j

j;aj−1,aj
= T

nP ;j ,nB;j

j;aj−1,aj
δ(nP ;j + nB;j + αj−1 − αj) , (33)

where again we combine block and matrix indices (αj ,mj;αj ) ≡ aj as introduced in Eq. (27).

A matrix factorization of the decomposed site tensors M
nP ;j ,nB;j

j =
⊕

Nj
T
nP ;j ,nB;j

j;Nj
in each

symmetry block nP ;j +αj−1 = Nj = nB;j −αj yields the MPS representation of |ψ) in the
subspace P of the enlarged Hilbert space

T
nP ;j ,nB;j

j;Nj
≡ TnP ;j ,nB;j

j;αj−1,αj
=
∑

cj−1

T
nP ;j

j;αj−1,cj−1
T
nB;j

j;cj−1,αj
(34)

⇒ |ψ) =
∑

aj−1,nP ;j ,
cj−1

T
nP ;j

j;aj−1,cj−1
δ(nP ;j + αj−1 − γj−1) |aj−1〉 ⊗ |nP ;j〉×

∑

aj ,nB;j

T
nB;j

j;cj−1,aj
δ(nB;j + γj−1 − αj )δnB;j ,g(nP ;j) |nB;j〉 ⊗ |aj 〉 . (35)

In Eq. (34), we introduce the index cj−1 as a result of the factorization in each tensor
block. Then, we again employ the notation introduced in Eq. (27) to extend this index to
also contain U(1) block labels γj : (γj ,mj;γj ) ≡ cj .

The MPS constructed in this way is shown in Fig. 4 and consists of alternating physical
and bath sites, which are labeled by the physical and bath degrees of freedom nP ;j and
nB;j , respectively. The delta function δnB;j ,g(nP ;j) in the last line of Eq. (35) is again
the manifestation of the L gauge-fixing conditions imposed in Eq. (17). It motivates the
introduction of the auxiliary U(1) irreducible representation (irrep) labels ηj enumerating
the irreducible representations of each locally conserved quantity between the physical
and bath sites. In this way the U(1)-irrep labels γj−1 can be decomposed into labels
γj−1 → (ηj , νj−1), which need to fulfill ηj + νj−1 = nP ;j + αj−1. Note that we focus only
on the labels for the symmetry blocks and – for convenience – in the following, neglect
the bond dimension m, which is part of the label a. From the local conservation laws
and the gauge fixing, we can furthermore conclude that the bond label νj−1 has only one
non-vanishing block with respect to the global U(1) symmetry, which is characterized by a
quantum number (j−1)·(σ−1) ≡ αj−1. Accordingly, there is only one non-vanishing block
αj to the right of the bath site, which is characterized by a quantum number j ·(σ−1) ≡ αj .
In tensor notation, this can be expressed by a reformulation of the local conservation laws
at every site, introducing for brevity Nj = (σ − 1) · (j − 1),

∑

cj−1

T
nP ;j

j;αj−1,cj−1
T
nB;j

j;cj−1,αj
δnB;j ,g(nP ;j)

=
∑

ηj ,νj−1

T
nP ;j

j;αj−1,(ηj ,νj−1)
δ(Nj − αj−1)TnB;j

j;(ηj ,νj−1),αj
δ(Nj+1 − αj)δnB;j ,g(nP ;j) . (36)

Therefore, we find that there is a unique decomposition of the auxiliary bond label
γj−1 = (ηj , νj−1) given by identifying ηj ≡ nP ;j and thus also νj−1 ≡ αj−1. This can

11
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be summarized by decomposing the site tensors as

∑

cj−1

T
nP ;j

j;αj−1,cj−1
T
nB;j

j;cj−1,αj
δnB;j ,g(nP ;j)

=
∑

ñP ;j ,α̃j−1

T
nP ;j

j;αj−1,(α̃j−1ñP ;j)
T
nB;j

j;(α̃j−1ñP ;j),αj
δαj−1,α̃j−1δnP ;j ,ñP ;jδnB;j ,g(nP ;j) , (37)

which is exemplified in Fig. 5 and presumed from now on. Note that this rather cum-
bersome notation is important to derive the correct connection between the site tensors
T
nP ;j

j;αj−1,(α̃j−1ñP ;j)
and the 1RDM. However, in what follows we summarize the results of

this discussion in a condensed notation and refer the interested reader to App. A.
Now, we consider the 1RDM, which is the central object of the LBO method [13,40,42].

The expectation value of the local density operators in the original Hilbert space can be
written in terms of the 1RDM ρ̂j = Trk 6=j ρ̂,

〈n̂j〉 = Trj
{
ρ̂jn̂j

}
=
∑

nj

〈nj |ρ̂jn̂j |nj〉 =
∑

nj

ρnj ,njnj . (38)

Note that the diagonal elements ρnj ,nj determine the probability to find nj particles occu-
pying the jth physical degree of freedom. After doubling the system, the diagonal elements
of the 1RDM ρ̂P ;j for states in a mixed-canonical MPS with center of orthogonality at the
physical site j can be written as

ρnP ;j ,nP ;j
=

∣∣∣∣T
nP ;j

j;αj−1,(ñP ;j ,α̃j−1)
δnP ;j ,ñP ;j

∣∣∣∣
2

≡
∣∣∣TnP ;j

∣∣∣
2
. (39)

Here, the important observation is that the auxiliary bond label ñP ;j is connected to the
label of the physical degree of freedom nP ;j by the Kronecker-δ. It is then straightforward
to derive an important connection between the occupation probabilities ρnP ;j ,nP ;j

of the

local degrees of freedom and the Schmidt spectrum Λj for a cut between the physical and

bath site. In particular, in App. A, we show that the singular values Λ
nP ;j

j;τ obtained by

factorizing the tensor block TnP ;j via a SVD fulfill

∑

τ

(
Λ
nP ;j

j;τ

)2

= ρnP ;j ,nP ;j
, (40)

where τ runs over all singular values in the factorized tensor block TnP ;j . This relation is
the key to understand the numerical behavior of the introduced mapping from an intuitive
physical picture. As an example, we assume a system that is characterized by a 1RDM
whose diagonal elements ρnP ;j ,nP ;j

are sharply peaked around some nP ;j ≡ n0. Let us

denote the probability to find n0 particles at site j by ρn0,n0
≡ 1 − δ with some small

0 ≤ δ � 1. Then, Eq. (40) tells us that we can discard all tensor blocks TnP ;j 6=n0

while maintaining an approximative description of the quantum state with precision δ.
More precisely, if |ψ) is the exact state and |ϕ) the state with all tensor blocks TnP ;j 6=n0

discarded, then the Hilbert-Schmidt distance fulfills (ψ|ϕ) = 1 − δ. By choosing the
truncation threshold δ more carefully and allowing for truncations in the tensor blocks,
the approximation quality can be improved. Notably, the canonical procedures intrinsic
to most of the DMRG algorithms already truncate the site tensors in exactly this way [31],

i.e., given a truncation threshold δ, singular values Λ
nP ;j

j;τ are discarded until their summed,
squared weight reaches δ.

12
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We investigate the dependency of the probability distributions of the single-site oc-
cupations nj given by the diagonal elements of the 1RDM on the previously described
truncation scheme in App. B. For simplicity, we assumed strictly exponentially decay-

ing singular values Λ
nP ;j

j;τ ∼ e
−τAn

P ;j . Interestingly, already in the case of moderately
large tensor-block dimensions mj ∼ O(100), we find that the overall increase of the bond
dimension between the physical and bath site, compared to the bond dimension in the orig-
inal system, is practically independent on the exponent AnP ;j

. Moreover, in this regime

the growth in the bond dimension decays exponentially with the occupation probabilities
ρnP ;j ,nP ;j

. Combining both results, we find a strong argument that this mapping allows

the efficient simulation of systems with large local Hilbert spaces and without global U(1)
conservation, if the 1RDM is peaked around some single-site occupation. Numerical sim-
ulations and estimations from the exact analysis in App. B showed that, typically, the
growth in bond dimension is ∼ O(1) and becomes ∼ 10 only in drastic situations such

as coherent states ρnj ,nj
∝ z

nj

nj !
e−z. Note also that if the state accidentally conserves the

global U(1) symmetry, there will be only one non-vanishing tensor block per site and no
growth of the total bond dimension at all.

In summary, taking MPS to their projected purified counterparts, we find that the
occupation probabilities ρnP ;j ,nP ;j

, i.e., the diagonal elements of the 1RDM of the physical

system, control the numerical efficiency of the state representations. Specifying a certain
truncated weight δ and applying the canonical DMRG truncation scheme then yields an
approximation to the 1RDM with an error ∼ δ with respect to the 1-norm. Hence, having
quickly decaying occupation probabilities, which is typically the case in physical systems,
the projected purification provides an efficient approximation scheme.

7 The Holstein Model: Example Calculations

In this section, we provide numerical results for the Holstein model. The Hubbard model
with superconducting (SC) terms is discussed in App. C where we focus on some technical
issues arising from the anti-commutation relations of the electronic ladder operators.

The Holstein model [48] is given by

Ĥ = −t
∑

j

(
ĉ†j ĉj+1 + h.c.

)
+ ω0

∑

j

b̂†j b̂j + γ
∑

j

n̂fj

(
b̂†j + b̂j

)
, (41)

in which ĉ
(†)
j denotes spinless fermion annihilation (creation) operators, n̂fj = ĉ†j ĉj the

corresponding particle number operators, and b̂
(†)
j the bosonic annihilation (creation) op-

erators. The parameters of this model are the hopping amplitude t, the phonon frequency
ω0, and the electron-phonon coupling γ. Here, the total number of spinless fermions∑

j n̂
f
j is conserved, while the total number of phonons

∑
j b̂
†
j b̂j is not. Owing to the

fermion-phonon interaction, the number of phonons per lattice site can become very large,
rendering this model very challenging for DMRG, in particular in the charge-density wave
(CDW) phase at half filling [6, 7], for which we also present some numerical results.

We restore the conservation of the global phonon number by adding balancing operators

β̂
(†)
B;j , according to the procedure described in Sec. 4. The projected purified Hamilton

operator then reads

ĤPP = −t
∑

j

(
ĉ†P ;j ĉP ;j+1 + h.c.

)
+ ω0

∑

j

b̂†P ;j b̂P ;j + γ
∑

j

n̂fj

(
b̂†P ;j β̂B;j + b̂P ;j β̂

†
B;j

)
.

(42)
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Note that the local phonon-density operators transform as b̂†j b̂j → b̂†P ;j b̂P ;j , which follows
directly from the specific definition of the balancing operators in Eqs. (19) and (20).

Numerical results in the CDW phase
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Figure 6: Weight wo of optimal modes do as a function of the maximal bond dimension at
the auxiliary bond γ25 using the projected purification. Data is extracted from the 1RDM
ρn25,n

′
25

at the center site (j = 25) in the calculated ground state of the half-filled Holstein
model with L = 51 sites and N = 25 fermions, ω/t = 1.0, γ/t = 2.0. The inset shows the
diagonal elements ρn25,n25

indicating the immediate effect of truncations. For comparison,
the phonon-excitation probabilities obtained for t = 0 are overlayed, indicated by yellow
crosses.

In order to illustrate the numerical properties of the mapping introduced in this paper,
we performed calculations in the CDW phase of the half-filled Holstein model [7, 40, 49].
This phase is characterized by the formation of bound electron-phonon states (polarons)
and a Fermi wave vector kF = π, i.e., in a physical image every second lattice site is
occupied by a polaron. In the atomic limit t → 0, there is an analytic expression for the
probability Pph(nj) to measure nj phonons at occupied lattice sites j, which is given by

Pph(nj) =
γ2nj

ω
2nj
0 nj !

e
− γ2
ω20 . (43)

Note that the excitation probabilities are given by the diagonal elements of the 1RDM.
Hence, they can be evaluated directly numerically. Another important quantity is the oc-
cupation w0 of the optimal modes of the 1RDM ρ̂j , which is also mentioned in App. A. The
optimal modes |do〉 are the eigenstates of ρ̂j and their occupations are the corresponding
eigenvalues

ρ̂j =
∑

do

wo |do〉 〈do| . (44)

As discussed elsewhere [13,40,42], these constitute an important measure for the quality of
the approximation of the phonon states. In our framework, the full 1RDM can be extracted
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directly from the projected purified state |ψ) in a mixed canonical representation when
contracting physical and bath site tensors TnP/B;j over their auxiliary bond index γj−1
(see Eq. (31)):

ρ̂j;nj ,n′j = Trk 6=j |ψ) (ψ| = Tr

{[
Tn
′
P ;jTn

′
B;j

]†
TnP ;jTnB;j

}
, (45)

where we used the mapping I to identify nP ;j ≡ nj (see also Eq. (51)).
For our calculations, we set ω0/t = 1.0 and γ/t = 2.0 so that the model is in the CDW

phase. In Fig. 6, the optimal modes of a system with L = 51 sites and N = 25 fermions are
displayed for the ground-state and on an occupied lattice site (j = 25). The truncation was
performed by allowing a maximum discarded weight of δ = 10−14 per auxiliary bond while
restricting the total bond dimension to mj ≤ 2000. The color-coded graphs correspond to
calculations with different, maximally allowed total bond dimensions.

The immediate effect of the truncation on the auxiliary bonds between physical and
bath site tensors can be seen as a suppression of the occupation wo of optimal modes
when wo becomes small. Upon increasing the total bond dimension mj , the distribution
wo(do) becomes stationary once mj > 1200. In the inset, the diagonal elements of the
1RDM are shown as a function of mj and overlayed with the occupation probabilities
Pph(nj) (Eq. (43)) in the atomic limit. The discarded diagonal elements of ρ̂j can be
deduced from the intersection of the vertical lines with the horizontal axis. Comparing
the magnitude at which diagonal elements of ρ̂j are discarded as a function of mj to the
plateaus of the optimal mode occupation in the main plot, we find a clear correspondence
between both. This can be related to the discussion in App. A, where we show that w.r.t.
to the 1-norm the quality of the approximation of the projected purified state is bounded
by the occupation of the optimal modes of ρ̂j , which are not treated correctly. Thus, a
scaling analysis in the bond dimension mj only is sufficient to obtain converged results
for the phonon system. Finally, we find that, in accordance with the system being deep
in the CDW phase, the diagonal elements ρj;nj ,nj are already very close to the excitation
probabilities Pph(nj) in the atomic limit. Even though the bond dimensions mj ≤ 2000
may appear very large, the fact that we are able to exploit global U(1) symmetries for both
the fermionic and bosonic system allows us to perform these calculations very efficiently.

We also performed a finite-size scaling of the ground-state energy Eδ as a function of
the discarded weight to prove the capability of our approach to deal with large system
sizes. Here, we applied a scaling analysis in the numerical precision, tuning the maximal
discarded weight per bond from δ = 10−4 to δ = 10−10 and extrapolated E0 towards
δ → 0. The number of lattice sites was increased from L = 51 sites up to L = 501 sites.
In Fig. 7, we show the extrapolations and the scaling of the intensive energy density E0/L
as a function of 1/L. We fit the ground-state energy densities as a function of the number
of lattice sites using the ansatz

E0

L
=
A

L
+ ε∞ . (46)

Here, lim
L→∞

E0/L = ε∞ is the extrapolated ground-state energy density in the thermody-

namic limit yielding

ε∞ = −2.14628340± 4 · 10−8 . (47)

Note that the given uncertainty is obtained from propagating the errors of the scaling
w.r.t. to the discarded weight per bond, which was done for each lattice size L. Since
bond observables are evaluated with errors whose absolute values are bounded by the
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Figure 7: Finite-size scaling for the ground-state energy of the Holstein model at half filling
using the projected purification and a two-site DMRG solver. The model is evaluated for
parameters ω/t = 1.0, γ/t = 2.0 at nearly half filling and a maximum discarded weight
per bond δ = 10−10. We chose system sizes L = 51, 101, 151, 201, 251, 301, 401, 501 and
electron fillings Nel = (L−1)/2. The inset shows the total CPU time for the ground-state
search as a function of the number of lattice sites L.

discarded weight per bond, this is a numerically exact error bound. Additionally, in the
inset of Fig. 7, we plot the total CPU time of a ground-state search running until the
convergence threshold Lδ with δ = 10−8 for the relative change in the ground-state energy
after a completed sweep was reached. Using two cores of an Intel® Xeon® Gold 6150
CPU @ 2.70GHz, the largest systems with L = 501 converged after ∼ 12 hours.

8 Conclusion

Numerically studying strongly correlated quantum many-body systems with a large num-
ber of local degrees of freedom is a challenging problem, in particular for tensor-network
methods [6, 7, 40–42]. In this paper we address the problem by introducing a mapping
(projected purification) to construct artificial, global U(1) symmetries for models without
a generic U(1) symmetry. For any given operator acting on a tensor-product Hilbert space
H, we derived a construction scheme that generates its projected purified representation
in a subspace of the thermofield doubling of H. We show that both operators can be
identified with each other by an isomorphism, but the projected purified representation
manifestly conserves global U(1) symmetries. Additionally, we derive a projected purified
representation of MPS exploiting the fact that the isomorphism is obtained from a gauge
fixing of the additional degrees of freedom introduced by the doubling. Here, the tensors
representing the projected purified state can exploit the restored global U(1) symmetry
which, for instance, immediately reduces the effective local dimension in each tensor block
to 1 providing a significant speedup during numerical calculations when the local Hilbert
space dimension is large. We characterize this representation and reveal an intimate re-
lation between the Schmidt values of projected purified MPS and the 1RDM that allows
us to estimate the numerical expenses of our representation in comparison to calculations
without symmetries.
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The mapping into a projected purified representation of operators and states is mostly
independent of the underlying implementation. Thereby, it can be used without much
effort with already existing toolkits, which we demonstrated by performing numerical
calculations [50] on the one-dimensional Holstein model at half filling [7, 10, 49, 51]. The
large number of local degrees of freedom that have to be taken into account (we allow
up to Nph = 63 phonons per lattice site) typically renders large scale calculations very
challenging. We perform a finite-size scaling in the CDW phase taking into account a
maximum number of L = 501 lattice sites while maintaining a high numerical precision
and keeping up to mmax = 2000 states per bond. Importantly, we showed that convergence
in the U(1)-symmetry breaking phonon system can be achieved by a scaling in the bond
dimension while converging the discarded weight, only. There are no further numerical
control parameter, as, for instance, in the LBO, which simplifies both, implementation
and numerical simulations.

Due to the reduction of the effective local dimension of the MPS blocks, two-site solvers
with a larger numerical complexity can be used [30,31,37,52], as we did in the ground-state
calculations of the Holstein model. Therefore, the projected purification allows to apply
two-site time-dependent variational principle (2TDVP) [32, 53] as time evolution method
to treat systems out of equilibrium. So far, existing methods to tackle such problems
mostly [54] use time-evolving block decimation (TEBD) as time stepper, only, due to the
high numerical costs when performing two-site updates on systems with a large number of
local degrees of freedom [13]. However, TEBD typically requires a much smaller time step
to achieve a certain precision, compared to 2TDVP [33]. We thus anticipate that using
the presented mapping, out of equilibrium and finite-temperature calculations of such
highly complicated systems can become cheaper, more reliable, and straight forward to
realize. For instance, we expect this mapping to enable the efficient application of tensor-
network algorithms to address questions about lattice electrons coupled to phonons out
of equilibrium [22,55,56], numerically unbiased. Furthermore, our mapping is compatible
with common matrix-product operator (MPO)-based time-evolution methods, e.g., the
aforementioned TEBD as well as the MPO W I,II methods [57]. Exhibiting a scaling of
the numerical complexity that is at least quadratic in the local dimension [33], these time-
evolution schemes should also benefit from taking operators to their projected purified
representation.
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A Connection to 1RDM

The projected purification introduced above is closely related to the 1RDM. We consider
the expectation value of the local density operators in the original Hilbert space written
in terms of the 1RDM ρ̂j = Trk 6=j ρ̂,

〈n̂j〉 = Trj
{
ρ̂jn̂j

}
=
∑

nj

〈nj |ρ̂jn̂j |nj〉 =
∑

nj

ρnj ,njnj . (48)

Expanding the expectation value of n̂P ;j in terms of the physical system’s 1RDM ρ̂P ;j for
states |ψ) ∈ P and a mixed-canonical MPS with center of orthogonality at the physical
site j yields

(n̂P,j) = TrP ;j

{
ρ̂P ;jn̂P ;j

}
=
∑

nP ;j

(nP ;j |ρ̂P ;jn̂P ;j |nP ;j) =
∑

nP ;j

ρnP ;j ,nP ;j
nP ;j (49)

=
∑

nP ;j ,n
′
P ;j ,

ñP ;j ,α̃j−1,

αj−1

nP ;j

(
T
n′P ;j

j;αj−1,(ñP ;j ,α̃j−1)
δn′P ;j ,ñP ;j

)∗
T
nP ;j

j;αj−1,(ñP ;j ,α̃j−1)
δnP ;j ,ñP ;j

=
∑

nP ;j

nP ;j

∑

ñP ;j ,α̃j−1,

αj−1

∣∣∣∣T
nP ;j

j;αj−1,(ñP ;j ,α̃j−1)
δnP ;j ,ñP ;j

∣∣∣∣
2

, (50)

where we made use of the fact that the local symmetry generators n̂P ;j are one-dimensional
representations of the local U(1) symmetry (see Fig. 8). From Eq. (16) it follows that
Eq. (49) and Eq. (48) are completely equivalent so that

ρnj ,nj
= ρnP ;j ,nP ;j

, (51)

and thus, comparing to Eq. (50),

ρnj ,nj
=

∣∣∣∣T
nP ;j

j;αj−1,(ñP ;j ,α̃j−1)
δnP ;j ,ñP ;j

∣∣∣∣
2

. (52)

We hence find that the 1RDM of the physical part of P has the same diagonal elements
as the original one. They are given by the trace over the absolute square of the symmetry
blocks of the mixed-canonical site tensors. However, the symmetry conservation in P
implies that ρ̂P ;j is diagonal whereas ρ̂j in general is not. We can write the distance with
respect to the 1-norm of these two operators by means of the mapping I:

‖ρ̂j − Iρ̂P ;jI
−1‖1 = Trj

{
ρ̂j
}
− Trj

{
ÎρP ;jI

−1
}

= Trj
{
ρ̂j
}
−
∑

nP ;j

∣∣∣∣T
nP ;j

j;αj−1,(ñP ;j ,α̃j−1)
δnP ;j ,ñP ;j

∣∣∣∣
2

. (53)

Here, we link to the LBO method, which expresses ρ̂j in its eigenbasis (optimal modes)
with diagonal elements wnj so that

‖ρ̂j − Iρ̂P ;jI
−1‖1 =

∑

nj

wnj −
∑

nP ;j

∣∣∣∣T
nP ;j

j;αj−1,(ñP ;j ,α̃j−1)
δnP ;j ,ñP ;j

∣∣∣∣
2

. (54)
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Figure 8: Expectation value of the local density 〈n̂P ;j〉, which by Eq. (52) can be directly
related to the diagonal elements of the 1RDM in the eigenbasis n̂P ;j .
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ρnP ;j ,n
′
P ;j
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δn′
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′
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nP ;j

n′P ;j

=

Uj

U†
j
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Λj

Λ†
j
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j

γj−1nP ;j

α̃j−1
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Figure 9: For a given nP ;j , the diagonal entry of the 1RDM is given by the singular values
of the decomposed physical site. Note that we make extensive use of the tensor notation,
in particular implicit deltas, which was introduced in [58].

Let us now consider the Schmidt decomposition of a state |ψ〉 at the auxiliary bond
γj−1 = (ñP ;j , α̃j−1). Because αj is fixed for every j, a block for a given nP ;j of a physical
site can be decomposed individually to

T
nP ;j

j;αj−1,γj−1
= U

nP ;j

j;αj−1,γ̃j−1
Λ
j;γ̃j−1,˜̃γj−1

V
j;˜̃γj−1,γj−1

δ˜̃γj−1,γ̃j−1
δ
γ̃j−1,γj−1

. (55)

The sum over the squared singular values is identified with the corresponding (diagonal)
entry of the 1RDM

∑

τ

(
Λj;γj−1,τ,γ̃j−1,τ

)2
= ρnP ;j ,nP ;j

. (56)

Note that we implicitly accounted for all constraints arising from the projection into P
and wrote the γj−1 on the left only for completeness, as all α are fixed and the nP ;j is
chosen. In Fig. 9, the argument is given diagrammatically.

Truncating the singular values according to a certain threshold 0 < δ � 1, so that
∑

nP ;j

∑
τ

(
Λ
nP ;j

j;τ

)2

< 1 − δ implies a rescaling of the diagonal elements of the 1RDM

(nP ;j |ρ̂P ;j |nP ;j), which is governed by the decay of the singular values Λ
nP ;j

j,τ in each
block. If we assume that the optimal modes of ρ̂j are truncated in the same way, so
that

∑
nj
wnj < 1 − δ, we can compare this expression with Eq. (54). Then, using the

invariance of the trace, a truncation of the bond index γj−1 by means of the usual MPS
truncation routine yields an equivalently precise approximation to ρ̂j as the truncation
occurring in the LBO. In addition, performing the truncation in the projected purified
representation automatically favors those eigenvalues of ρ̂j that have the largest weight
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without the necessity of constructing the 1RDM at all. This is an important improvement
as it prevents the repeated constructions of ρ̂j in contrast to the LBO.

B Characterization of numerical expenses

The previous considerations enable us to compare the numerical complexity of typical
tensor contractions arising from the MPS representation of states |ψ) ∈ P with those
of MPS representations without the expansion of the Hilbert space. At first, we point
out again that due to the local conservation laws and the gauge fixing, the bond labels

αj−1, αj of the MPS site tensors T
nP ;j

j;αj−1,γj−1
and T

nB;j

j;γj−1,αj
have only one non-vanishing

entry; each of which is given by αj−1 = Nj , αj = Nj+1 withNj as defined above. Therefore,
without truncation, the bond dimensions mj−1,mj are identical to those of the site tensors

M
nj
j;αj−1,αj

representing the same state in the physical Hilbert space H only. There is

no additional complexity arising from the representation of |ψ) ∈ P on these indices.
Furthermore, without truncation the effective bond dimensions on the γ-bonds are given
by mj;γ = nP ;j ·min(mj−1,mj). In what follows, we analyze two truncation schemes on
these bonds for states in the enlarged Hilbert space HPB. Thereafter, we discuss in which
situations these yield a reduced numerical complexity of the most expensive operation
during ground-state calculations, i.e., the application of a MPO to a state.

A physically motivated truncation can be defined by exploiting Eq. (40) and discarding
all single-site occupations of ρ̂j , whose sum is below a given threshold δ > 0. More

precisely, let D ⊂
{

0, · · · , nP ;j − 1
}

be a set for which
∑

nP ;j∈D ρnP ;j
< 1 − δ. Since ρ̂j

is a reduced density matrix, its trace is normalized, and by sorting the diagonal elements

such a set can always be defined. Then, all tensor blocks T
nP ;j

j;αj−1,α̃j−1ñP ;j
with nP ;j /∈ D

are discarded so that the total number of kept states on the auxiliary bond is bounded
by mj;γ ≤ |D|min(mj−1,mj). The physical interpretation is straightforward: All tensor

blocks TnP ;j that have a negligible single-site occupation
∣∣∣TnP ;j

∣∣∣
2

= ρ̂nP ;j
are discarded,

i.e., empty modes do not contribute to the physics. However, we can give a tighter estimate
by considering the explicit distribution of the singular values in each block.

Motivated by the numerical evidence that often the singular values decay exponentially
in ground states of one-dimensional (1D) gaped systems [25, 29, 39], we assume such a

decay in each block T
nP ;j

j;αj−1,α̃j−1ñP ;j
(nP ;j ∈ D). That means, in the decomposition shown

in Fig. 9,

Λ
nP ;j

j;τ = e
−an

P ;j
τ
,

mj∑

τ=1

e
−2an

P ;j
τ

= ρnP ;j
, (57)

for some anP ;j
> 0 and we abbreviated mj ≡ min(mj−1,mj). Note that nP ;j only specifies

one block (due to the implicit δnP ;j ,ñP ;j
) and that we neglected the constant αj for brevity.

Normalization to the single-site occupation yields

ρnP ;j
= e
−2an

P ;j

mj−1∑

τ=0

(
e
−2an

P ;j

)τ
=
e
−2an

P ;j − e−2anP ;j
(mj+1)

1− e−2anP ;j

. (58)

Defining anP ;j
= −1

2 logXnP ;j
with 0 < XnP ;j

< 1, we can rewrite Eq. (58) into

X
mj+1

nP ;j
= XnP ;j

(1 + ρnP ;j
)− ρnP ;j

. (59)
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Figure 10: Left (purple) and right (green) hand sides of Eq. (59), XnP ;j
values at inter-

sections are solutions for distinct pairs of (ρnP ;j
,mj).

Since δ ≤ ρnP ;j
≤ 1 and mj ≥ 1, this equation has only one solution for XnP ;j

in the given

domain, even though there is no closed expression (see Fig. 10 for graphical solution at
distinct pairs (ρnP ;j

,mj)). Therefore, we consider two limiting cases that yield upper and

lower bounds on the decay of the singular values in each tensor block. The lower bound
XnP ;j ,min is obtained through the intersection of the right-hand side with the horizontal

axis and can be related to the limit mj � 1:

0 = XnP ;j ,min(1 + ρnP ;j
)− ρnP ;j

⇒ XnP ;j
≥ XnP ;j ,min =

ρnP ;j

1 + ρnP ;j

. (60)

An upper bound XnP ;j ,max can be established if the right-hand side of Eq. (59) is tangential

to the left-hand side

d

dXnP ;j

X
mj+1

nP ;j

∣∣∣∣∣
Xn

P ;j
,max

!
= 1 + ρnP ;j

⇒ XnP ;j
≤ XnP ;j ,max =

(
1 + ρnP ;j

1 +mj

)1/mj

. (61)

Combining both bounds, we find

− 1

2mnP ;j

log
1 + ρnP ;j

1 +mj
≤ anP ;j

≤ −1

2
log

ρnP ;j

1 + ρnP ;j

, (62)

which, by introducing normalization constants AnP ;j ,max/min, limits the decay of the sin-

gular values
√
AnP ;j ,min

(
XnP ;j ,min

)τ
≤ Λ

nP ;j

j;τ ≤
√
AnP ;j ,max

(
XnP ;j ,max

)τ
, (63)
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and thus can be used to fix upper and lower bounds for the matrix dimensions required
on the auxiliary bonds between physical and bath site. The normalization constants are
determined from

ρnP ;j
= AnP ;j ,η

mj∑

τ=1

(
XnP ;j ,η

)τ
= AnP ;j ,η

Xd,η

1−
(
XnP ;j ,η

)mj

1−XnP ;j ,η

⇒ AnP ;j ,η
=

1−XnP ;j ,η

XnP ;j ,η

ρnP ;j

1−
[
XnP ;j ,η

]mj , (64)

with η = min,max. We introduce a truncation threshold δ′nP ;j
for each block so that for

singular values with τ ≤ m′nP ;j ,η
≤ mj , we obtain

ρnP ;j
− δ′nP ;j

≥ AnP ;j ,η

m′
n
P ;j

,η∑

τ=1

(
XnP ;j ,η

)τ
= ρnP ;j

1−
[
XnP ;j ,η

]m′
n
P ;j

,η

1−
(
XnP ;j ,η

)mj

⇒
[
XnP ;j ,η

]m′
n
P ;j

,η ≥ 1−
(

1−
δ′nP ;j

ρnP ;j

)(
1−

(
XnP ;j ,η

)mj)
. (65)

For this inequality to hold, we necessarily need ρnP ;j
−δ′nP ;j

≥ 0, because AnP ;j ,η
, XnP ;j ,η

>

0. This is ensured by taking nP ;j ∈ D and choosing δ′nP ;j
= max( δ

|D| ,minnP ;j∈D ρnP ;j
) as

truncation scheme. Then, taking the logarithm of both sides and solving for m′nP ;j ,η
, we

divide by logXnP ;j ,η
< 0 so that

m′nP ;j ,η
≤

log
{

1−
(

1−RnP ;j

)(
1−

[
XnP ;j ,η

]mj)}

logXnP ;j ,η
, (66)

where we defined the truncation ratio RnP ;j
=

δ′
n
P ;j

ρn
P ;j

≤ 1. Imposing equality between the

left and right side, we finally obtain an estimation for the upper and lower bounds of the
required bond dimension m′nP ;j ,η

in each block. Introducing the relative change of the

number of kept states Fη(mj , ρnP ;j
) =

m′
n
P ;j

,η

mj
, we show the bounds in Fig. 11 for varying

mj and ρnP ;j
. For the upper bound there are two regimes: In the limit of small truncation

ratio RnP ;j
� 1 we have FnP ;j ,max(mj , ρnP ;j

) ≈ 1, whereas for RnP ;j
→ 1 there is a sharp

drop towards zero. The transition regime between both asymptotics is governed by the
physical bond dimension mj and shifts towards larger values of ρnP ;j

as mj increases. The

lower bound exhibits a power-law decay over several magnitudes of ρnP ;j
and saturates

towards one if mj is small (Fig. 11). Finally, from Fig. 10 we can deduce that if mj � 1,
the lower bound becomes an increasingly better approximation for the bond dimension
m′nP ;j ,j

.

In summary, we found that for small physical bond dimension mj characterizing the
approximation of the state without bath sites, the bond dimension m′j,nP ;j

between phys-

ical and auxiliary sites is of the order of |D′|mj if mj is small (∼ O(1)) and D′ ={
nP ;j | ρnP ;j

> δ
}

. However, if mj � 1, the relative value of the bond dimension m′
j,nPj

per tensor block compared to mj mostly follows a power law in ρnP ;j
and quickly decays
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Figure 11: Upper and lower bounds Fmax/min(mj , ρnP ;j
) for relative change in bond

dimension
m′
n
P ;j

mj
per tensor block on bond between physical and auxiliary sites derived

from Eq. (59).

to zero. In this situation, the state can be efficiently approximated in the enlarged Hilbert
space with a moderate growth of the bond dimension, given that the occupations of the
1RDM ρnP ;j

decay fast enough.

In physical problems one is often faced with exponentially decaying occupations of
ρnP ;j

[59, 60]. Exemplary, we consider a typical, physical bond dimension mj = 100

and assume ρnP ;j
∝ e−2nP ;j with a truncation threshold of δ = 10−14 and take into

consideration a local dimension of nP ;j = 21 (i.e., permit for 20 occupied states). We use
the derived lower bound and obtain m′j ≈ mj . This estimation relies on the assumption
of strictly exponentially decaying singular values in each tensor block, which does not
necessarily need to be the case in actual calculations. However, a relative growth in the
overall bond dimension of O(1) was also found in our test calculations. Finally, we note
that due to the rapid decrease of the lower bound derived above the total local dimension
nP ;j is not a limiting factor in the first place as long as mj is large enough. In turn, the
decay of the 1RDM occupation strongly dictates the numerical expenses.

We close this section by demonstrating the numerical benefits of the above introduced
enlargement of the Hilbert space and projection into the subspace P by considering the
scaling of the most expensive calculation in a DMRG two-site ground-state search. This
algorithm scales with the application of the MPO to the MPS and has dominating numer-
ical expenses m3

j ·wj · n2P ;j if mj is sufficiently larger than wj . Assuming a typical growth
factor 2 between the physical and bath sites, this operation is 8 times more expensive
on these bonds than on the original bond between physical sites only. In order to benefit
from the introduction of U(1)-invariant state representations in the first place, we therefore
need to have a reasonably large local dimension nP ;j >

√
8, since for U(1)-invariant rep-

resentations all local generators can be chosen as one-dimensional representations. Thus,
nP ;j ≥ 3 already speeds up this contraction and the benefits will grow quadratically with
larger nP ;j . We may also consider a decomposition of the MPO bond dimension wj due
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to the U(1) symmetry, which typically is of the order of 2− 3 and thereby also generates
an additional speed-up. Finally, we note that the system size is doubled, which could also
be incorporated into the estimations. But this is only a constant factor of two and can be
compensated easily by the quadratically growing expenses in the local dimension or the
decomposition of the MPO bond dimension under the global symmetry.

C Hubbard Model with pair creation and annihilation

The Hubbard model [61–66] with additional SC terms is given by

Ĥ = −t
∑

j,σ

(
ĉ†j,σ ĉj+1,σ + h.c.

)
+ U

∑

j

n̂j,↑n̂j,↓ + ∆
∑

j

(
ĉ†j,↑ĉ

†
j,↓ + h.c.

)
, (67)

in which ĉ
(†)
j denotes spin S = 1/2 fermion annihilation (creation) operators and n̂j =

∑
σ=↑,↓

ĉ†j,σ ĉj,σ the local fermion density operator. The parameters of this model are the

hopping amplitude t, the interaction strength U , and the SC pair creation and annihilation
amplitude ∆.

In this model, the pair creation contributions ∝ ∆ break the conservation of the global
particle number conservation. We restore the corresponding global U(1) symmetry by

adding balancing operators β̂
(†)
B;j,σ with σ =↑, ↓. The projected purified Hamiltonian now

reads

ĤPP =− t
∑

j,σ

(
ĉ†P ;j,σβ̂B;j,σ ĉP ;j+1,σβ̂

†
B;j+1,σ + h.c.

)
+ U

∑

j

n̂P ;j,↑n̂P ;j,↓

+ ∆
∑

j

(
ĉ†P ;j,↑β̂B;j,↑ĉ

†
P ;j,↓β̂B;j,↓ + h.c.

)
, (68)

where local density terms remain unchanged: n̂P ;j,↑n̂P ;j,↓β̂
†
B;j,σβ̂B;j,σ = n̂P ;j,↑n̂P ;j,↓. Ex-

ploiting this representation, one of the authors studied the charge-degeneracy points of
topologically superconducting islands coupled to normal leads [67–70].

In contrast to the Holstein model, here the projected purification acts on fermions. This
causes a subtilty if the fermionic anticommutation relations are implemented in terms of
Jordan-Wigner strings [71] as is usually done, either explicitly or implicitly. For instance,

if b̂
(†)
j,↑ are annihilation (creation) operators of hardcore bosons at lattice j, then fermionic,

bilinear operators can be written in terms of parity operators P̂b̂j,↑ as

ĉ†j,↑ĉj+k,↑ = b̂†j

[
k∏

l=1

P̂
b̂j+l,↑

]
b̂j+k,↑. (69)

The operator string
∏k
l=1 P̂b̂j+l,↑

is commonly referred to as Jordan-Wigner string and a

consequence of the anticommutation relations. The problem here is that mapping such
operator strings into the purified Hilbert space, one has to ensure that they act only in the
physical Hilbert space. For instance, if the generation of the anticommutation relations is
implemented in the MPS code itself, then typically such Jordan-Wigner strings are created
automatically. If this is the case, their effect on the bath sites have to be canceled, which
can be done by placing parity operators on bath sites inside the Jordan-Wigner string, for
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instance,

ĉ†j,↑ĉj+k,↑ → ĉ†j,↑β̂B;j

[
k−1∏

l=0

P̂b̂B;j+l,↑

]
ĉj+k,↑β̂

†
B;j . (70)

D Object comparison between LBO and ppDMRG
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Figure 12: A tensor network representing a single site
consisting of an MPS, an MPO, and the adjoint MPS.
All tensors are split into several (virtual) objects in
order to be rejoined to the tensors used in the LBO
(ppDMRG) as highlighted by the red (blue) boxes that
contain virtual objects. Note that equivalent bond
labels do not indicate the same objects, but only an
implicit δ between the, for brevity not shown, different
indicies.

In this appendix, we aim to give
an overview of the relationship be-
tween the objects used in the LBO
and in the ppDMRG. Its main
purpose is to support future dis-
cussions and developments. It is
specifically not intended for im-
plementation purposes, see Sec. 3.

In Fig. 12, a complete sand-
wich MPS-MPO-MPS for a sin-
gle site is shown. In order to
show the connection between the
LBO and the ppDMRG, all ten-
sors are split into virtual objects
that are subsequently rejoined in
different fashions. On the one
hand, the objects coming from the
LBO (highlighted with red boxes)
are mainly split vertically into
parts “belonging” to the physi-
cal and the bath Hilbert space.
On the other hand, the objects
coming from the ppDMRG (high-
lighted with blue boxes) needed to
be split horizontally so that they
could be related to the different
objects in the LBO. In particu-
lar, the identities containing the
maps I and I† do not really ap-
pear within the ppDMRG.
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[71] S. Paeckel, T. Köhler and S. R. Manmana, Automated construction of U(1)-invariant
matrix-product operators from graph representations, SciPost Phys. 3, 035 (2017),
doi:10.21468/SciPostPhys.3.5.035.

30

https://doi.org/10.1103/physreva.93.063624
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1143/PTP.30.275
/oup/backfile/content_public/journal/ptp/30/3/10.1143/ptp.30.275/2/30-3-275.pdf
/oup/backfile/content_public/journal/ptp/30/3/10.1143/ptp.30.275/2/30-3-275.pdf
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1964.0019
https://doi.org/10.1098/rspa.1964.0190
https://doi.org/10.1098/rspa.1965.0124
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.21468/scipostphys.7.4.050
https://doi.org/10.21468/SciPostPhys.3.5.035

	Introduction
	General Concept
	Implementation Recipe
	General Models and Bath Sites
	U(1) Symmetries in Matrix-Product States
	U(1)-Invariant Matrix-Product States with Bath Sites
	The Holstein Model: Example Calculations
	Conclusion
	Connection to 1RDM
	Characterization of numerical expenses
	Hubbard Model with pair creation and annihilation
	Object comparison between LBO and ppDMRG
	References

