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Abstract

We extend our exploration of nonstandard continuum quantum field theories in 2 + 1

dimensions to 3 + 1 dimensions. These theories exhibit exotic global symmetries, a pe-

culiar spectrum of charged states, unusual gauge symmetries, and surprising dualities.

Many of the systems we study have a known lattice construction. In particular, one of

them is a known gapless fracton model. The novelty here is in their continuum field

theory description. In this paper, we focus on models with a global U(1) symmetry

and in a followup paper we will study models with a global ZN symmetry.
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1 Introduction

Common lore states that the low-energy behavior of every lattice system can be described

by a continuum quantum field theory. However, some recently found lattice constructions,

including theories of fractons (for reviews, see e.g. [1, 2] and references therein), violate this

lore.

Our study was motivated by the question: how can the framework of continuum quantum

field theory accommodate these examples?

This paper is the second in a series of three papers addressing this question. The first

paper [3] focused on models in 2 + 1 dimensions, while this paper and [4] study 3 + 1-

dimensional systems. Here we limit ourselves to system whose global symmetry is continuous,

and in particular U(1), while [4] will discuss systems based on ZN . (A followup paper [5]

explores additional models.)

Our discussion here (and in [3, 4]) uses a number of new ingredients:

• Not only are these quantum fields theories not Lorentz invariant, they are also not

rotational invariant. In [3], the 2+1-dimensional systems preserve only the Z4 subgroup

of the SO(2) rotation group, while here and in [4] only the S4 subgroup of the SO(3)

rotations is preserved. S4 is the cubic group generated by 90 degree rotations.

• We continue the investigation of [6, 3], emphasizing the global symmetries of these

systems. As always, the discussion of the symmetries is more general than the specific

models. The symmetries here are not the usual global symmetries; we refer to them

as exotic global symmetries. We also gauge these global symmetries.

• Perhaps the most significant new element is that we consider discontinuous fields. The

underlying spacetime is continuous, but we allow discontinuous field configurations.

Starting at short distances with a lattice, all the fields are discontinuous there. In

standard systems, the fields in the low-energy description are continuous. Here, they

are more continuous than at short distances, but some discontinuities remain.

Throughout this paper we will consider only flat spacetime. Space will be either R3 or

a rectangular three-torus T3. The signature will be either Lorentzian or Euclidean. And

when it is Euclidean we will also consider the case of a rectangular four-torus T4. We will

use xi with i = 1, 2, 3 to denote the three spatial coordinates, x0 for Lorentzian time, and

τ for Euclidean time. The spatial vector index i can be freely raised and lowered. When

specializing to a particular component of an expression, we will also use (t, x, y, z) to denote

the coordinates with t ≡ x0, x ≡ x1, y ≡ x2, z ≡ x3. When we consider tensors, e.g. Aij, we

will denote specific components as Axy, etc.
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When space is a three-torus, the lengths of its three sides will be denoted as `i (or

explicitly, `x , `y , `z). When we take an underlying lattice into account the number of sites

in the three directions are Li = `i

a
(or explicitly, Lx , Ly , Lz).

Summary of [3]

Since this paper is a continuation of [3], we will simply review its main results here and

refer the interested reader to [3] for the details.

Most of the discussion in [3] focused on the XY-plaquette model [7], whose 2 + 1-

dimensional continuum Lagrangian is [7–13] (related Lagrangians appeared in [14–16])

L =
µ0

2
(∂0φ)2 − 1

2µ
(∂x∂yφ)2

φ ∼ φ+ 2π .

(1.1)

A key fact about the model (1.1) is that the dispersion relation is

ω2 =
1

µ0µ
(kxky)

2 . (1.2)

This means that the low-energy theory includes modes with arbitrarily large kx, provided ky
is small enough. Similarly, it includes modes with arbitrarily large ky, provided kx is small

enough. This is an intriguing UV/IR mixing and it underlies many of the peculiarities of

the system.

This model has two dipole global symmetries [3]. They are subsystem symmetries; i.e.

they act separately at fixed x or separately at fixed y. We referred to these two different

symmetries as momentum and winding symmetries. The model and its symmetries are

summarized in Table 1.

An essential part of the analysis was the use of discontinuous field configurations. Clearly,

we must consider discontinuous fields whose action is finite. More interestingly, we also en-

tertained some discontinuous fields, whose action diverges.1 For that we had in mind a lattice

with lattice spacing a. This turns out to be meaningful because these field configurations

carry a conserved charge and they lead to the lowest energy states carrying this charge.

Our analysis in [3] concluded that all the states carrying momentum and winding charges

have energies of order 1
a
. A conservative approach simply discards them. Yet, we found it

interesting to explore their properties as they follow the Lagrangian (1.1). We did emphasize

1It is well known that the Euclidean path integral is dominated by discontinuous configurations with
infinite action. We do not see a relation between this fact and the phenomena we study here.
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Lagrangian µ0
2

(∂0φ)2 − 1
2µ

(∂x∂yφ)2 µ̃0
2

(∂0φ
xy)2 − 1

2µ̃
(∂x∂yφ

xy)2

dipole symmetry momentum winding
(10,12) (J0 = µ0∂0φ, J

xy = − 1
µ
∂x∂yφ) (J0 = 1

2π
∂x∂yφ

xy, Jxy = 1
2π
∂0φ

xy)

currents ∂0J0 = ∂x∂yJ
xy

charges Qx(x) =
∮
dyJ0 =

∑
αN

x
αδ(x− xα)

Qy(y) =
∮
dxJ0 =

∑
β N

y
βδ(y − yβ)∮

dxQx(x) =
∮
dyQy(y)

energy O(1/a)

number of sectors Lx + Ly − 1

dipole symmetry winding momentum
(12,10) (Jxy0 = 1

2π
∂x∂yφ, J = 1

2π
∂0φ) (Jxy0 = µ̃0∂0φ

xy, J = − 1
µ̃
∂x∂yφ

xy)

currents ∂0J
xy
0 = ∂x∂yJ

charges Qxy
x (x) =

∮
dyJxy0 =

∑
αW

x
αδ(x− xα)

Qxy
y (y) =

∮
dxJxy0 =

∑
βW

y
β δ(y − yβ)∮

dxQxy
x (x) =

∮
dyQxy

y (y)

energy O(1/a)

number of sectors Lx + Ly − 1

duality map µ0 = µ̃
4π2 µ = 4π2µ̃0

Table 1: Global symmetries and their charges in the 2 + 1-dimensional scalar theories φ and
φxy. The energies of states that are charged under these global symmetries are of order 1/a.
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in [3] that this analysis is not universal and can be contaminated by certain higher deriva-

tive corrections to the minimal Lagrangian (1.1), but these corrections do not change the

qualitative behavior.

The momentum and winding states have energy of order 1
`a

, with ` the physical size of the

system. This means that if we take the large volume limit `→∞ before the continuum limit

a→ 0, these states have zero energy. They correspond to different superselection sectors in

this infinite volume limit. However, if we take the continuum limit a → 0 at fixed volume

(with or without taking later the large volume limit `→∞), then these states are heavy.

Surprisingly, the theory based on (1.1) is self-dual. The Lagrangian of the dual field φxy

is

L =
µ̃0

2
(∂0φ

xy)2 − 1

2µ̃
(∂x∂yφ

xy)2

φxy ∼ φxy + 2π

µ̃0 =
µ

4π2
, µ̃ = 4π2µ0 .

(1.3)

As in standard T-duality in 1 + 1 dimensions, the role of the momentum and winding

symmetries is exchanged by the duality. See Tables 1 for details.

Our earlier paper [3] also considered the gauge theory based on the global symmetry of

(1.1). This gauge theory had been studied in [17, 8, 18, 19, 10, 11, 20]. (Related models were

discussed in [21–28, 15, 29, 16, 30, 31, 13].) The gauge fields are A0 and Axy with the gauge

transformation
A0 → A0 + ∂0α ,

Axy → Axy + ∂x∂yα

α ∼ α + 2π .

(1.4)

There are no Axx, Ayy components. This theory has a gauge invariant electric field

Exy = ∂0Axy − ∂x∂yA0 (1.5)

and no magnetic field. Its Lagrangian is

1

g2e
E2
xy +

θ

2π
Exy . (1.6)

In many ways it is similar to an ordinary U(1) gauge theory in 1 + 1 dimensions. It has

a θ-parameter and no local excitations.

Its spectrum includes excitations with energy of order g2e`a with a the lattice spacing and

` the physical size of the system. In the continuum limit, we take a→ 0 with fixed `. Then

these states have zero energy. Alternatively, if we take the large volume limit `→∞ before
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(2 + 1)d Lagrangian spectrum

scalar theory φ µ0
2

(∂0φ)2 − 1
2µ

(∂x∂yφ)2 gapless local excitations

charged states at order 1
µ`a

, 1
µ0`a

U(1) tensor gauge theory A 1
g2e
E2
xy + θ

2π
Exy no local excitations – gapped

charged states at order g2e`a

ZN tensor gauge theory N
2π
φxyExy no local excitations – gapped

large vacuum degeneracy

Table 2: Spectra of the continuum field theories discussed in [3]. Depending on the order of
limits a→ 0 or `→∞, the energy of the charged states goes to zero or infinity.

the continuum limit, they have infinite energy.

In [3] we also considered certain charged states with order 1/a different nonzero charges.

Such states have energy of order one and the precise value of their energy can be contaminated

by higher derivative corrections to the minimal Lagrangian (1.6).

A ZN version of the tensor gauge theory was found by Higgsing the U(1) gauge theory

using a scalar field φ (as in (1.1)) with charge N . We dualized φ to φxy (as in (1.3)) to find

a BF -type description
N

2π
φxyExy (1.7)

of the ZN tensor gauge theory.

The resulting theory turned out to be dual to a non-gauge theory of ZN spins interacting

around a plaquette [3]. These theories are known as Ising-plaquette theories and they had

been studied extensively (see [32] for a review and references therein).

Just as its parent U(1) theory is similar to an ordinary U(1) gauge theory in 1 + 1

dimensions, this theory is similar to an ordinary ZN gauge theory in 1 + 1 dimensions.

We summarize the theories studied in [3] and their spectra in Table 2.

Outline
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The goal of this paper (and of the later paper [4]) is to extend the discussion in [3] to

3+1 dimensions. Here we will focus on models with continuous global symmetries analogous

to (1.1) and (1.4) and in [4] we will consider ZN theories analogous to those of [3].

In Section 2, we will discuss the global symmetries of these systems. Unlike the 2 + 1-

dimensional systems of [3], here we will have more options for the representations of the

spatial rotation group and they lead to several interesting exotic symmetries.

Section 3 will analyze the 3 + 1-dimensional version of (1.1). We will refer to it as the

φ-theory. The discussion will be similar to that of the 2 + 1-dimensional theory. The main

difference between them is that the 3 + 1-dimensional φ-theory is not selfdual. As in 2 + 1

dimensions, we will find momentum and winding states with energy of order 1
a
.

In Section 4, we will consider another non-gauge theory. We will refer to it as the φ̂-

theory. This theory differs from the φ-theory in two crucial ways. First, the dynamical

field φ̂ is not invariant under rotations. It is in a two-dimensional representation of the

cubic group (see Appendix A). Second, unlike the φ-theory, its Lagrangian is second order

in spatial derivatives. Again, we will find momentum and winding exotic symmetries and a

rich spectrum of states charged under them. The momentum states have energy of order 1
a

(as in the φ-theory). But the winding states have energies of order a. This is unlike the case

in the φ-theory, where they are both at 1
a
, and it is also different from the winding states of

an ordinary compact scalar whose energies are of order one.

In Sections 5 and 6, we will consider gauge theories associated with the global momentum

symmetries of the φ-theory (Section 3) and the φ̂-theory (Section 4), respectively. Therefore,

we will denote the gauge fields by A and Â, and we will refer to the theories as the A-theory

and the Â-theory.

Certain aspects of the gauge theory of A have been discussed in [17, 8, 18, 19, 9, 12] (see

[21–28,15,29,16,30,10,11,31,13,20] for related tensor gauge theories). The gauge theory of

Â is related to gauge theories discussed in [8,12]. These two gauge theories have new exotic

global symmetries, analogous to the electric and the magnetic generalized global symmetries

of ordinary U(1) gauge theories [33]. And they have subtle excitations carrying these global

electric and magnetic charges.

We will show that the A-theory is dual to the φ̂-theory and the Â-theory is dual to the

φ-theory. In every one of these dual pairs the global symmetries and the spectra match

across the duality. (See Table 3 and Table 4.) This is particularly surprising given the subtle

nature of the states that are charged under the momentum and winding symmetries of the

non-gauge systems and the subtle nature of the states that are charged under the magnetic

and the electric symmetries of the gauge systems.

These two dual pairs of theories, A/φ̂ and Â/φ, will be the building blocks of the ZN
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Lagrangian µ̂0
12

(∂0φ̂
i(jk))2 − µ̂

2
(∂kφ̂

k(ij))2 1
2g2e
EijE

ij − 1
2g2m

B[ij]kB
[ij]k

Eij = ∂0Aij − ∂i∂jA0

B[ij]k = ∂iAjk − ∂jAik

(2,3′) momentum magnetic

tensor symmetry (J
[ij]k
0 = µ̂0∂0φ̂

[ij]k, J ij = µ̂∂kφ̂
k(ij)) (J

[ij]k
0 = 1

2π
B[ij]k, J ij = 1

2π
Eij)

currents ∂0J
[ij]k
0 = ∂iJ jk − ∂jJ ik

charges Q[xy](z) =
∮
dx
∮
dyJ

[xy]z
0 =

∑
γWz γδ(z − zγ)

(4.38) (5.60)
∮
dzQ[xy] +

∮
dxQ[yz]x +

∮
dyQ[zx]y = 0

energy (4.40) (5.61) O(1/a)

number of sectors Lx + Ly + Lz − 1

(3′,2) winding electric

tensor symmetry (J ij0 = 1
2π
∂kφ̂

k(ij), Jk(ij) = 1
2π
∂0φ̂

k(ij)) (J ij0 = 2
g2e
Eij, J [ki]j = 2

g2m
B[ki]j)

currents ∂0J
ij
0 = ∂k(J

[ki]j + J [kj]i)

∂i∂jJ
ij
0 = 0

charges Qz(x, y) =
∮
dzJxy0 = W x

z (x) +W y
z (y)

(4.42) (5.45) (W x
z (x),W y

z (y)) ∼ (W x
z (x) + 1,W y

z (y)− 1)

energy (4.45) (5.42) O(a)

number of sectors 2Lx + 2Ly + 2Lz − 3

duality map µ̂0 = g2m
8π2 µ̂ = g2e

8π2

Table 3: Global symmetries of the U(1) tensor gauge theory A and its dual φ̂. Above we
have only shown charges for some directions, while the others admit similar expressions.
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Lagrangian µ0
2

(∂0φ)2 − 1
4µ

(∂i∂jφ)2 1
2ĝ2e
ÊijÊ

ij − 1
ĝ2m
B̂2

Êij = ∂0Â
ij − ∂kÂk(ij)0

B̂ = 1
2
∂i∂jÂ

ij

(1,3′) momentum magnetic

dipole symmetry (J0 = µ0∂0φ, J
ij = − 1

µ
∂i∂jφ) (J0 = 1

2π
B̂, J ij = 1

2π
Êij)

currents ∂0J0 = 1
2
∂i∂jJ

ij

charges Qxy(z) =
∮
dx
∮
dyJ0 =

∑
γWz γδ(z − zγ)

(3.27) (6.59)
∮
dzQxy(z) =

∮
dyQzx(y) =

∮
dxQyz(x)

energy (3.28) (6.60) O(1/a)

number of sectors Lx + Ly + Lz − 2

(3′,1) winding electric

dipole symmetry (J ij0 = 1
2π
∂i∂jφ, J = 1

2π
∂0φ) (J ij0 = − 2

ĝ2e
Êij, J = 2

ĝ2m
B̂)

currents ∂0J
ij
0 = ∂i∂jJ

∂iJ jk0 = ∂jJ ik0

charges Q(Cxyi , z) =
∮
Cxyi ∈(x,y)

( dxJzx0 + dyJzy0 ) =
∑

γW
z
i γδ(z − zγ)

(3.30) (6.50)
∮
dzQ(Cxyx , z) =

∮
dxQ(Cyzz , x)

energy (3.32) (6.51) O(1/a)

number of sectors 2Lx + 2Ly + 2Lz − 3

duality map µ0 = ĝ2m
8π2

1
µ

= ĝ2e
8π2

Table 4: Global symmetries of the U(1) tensor gauge theory Â and its dual φ. Here Ciji is
a curve on the ij plane that wraps around the i cycle once but not the j cycle. Above we
have only shown charges for some directions, while the others admit similar expressions.
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tensor gauge theory in [4], which is the continuum field theory for the X-cube model [34].

More specifically, the ZN continuum field theory can arise from Higgsing the U(1) gauge

group of A by a charge N matter field φ, or from Higgsing the U(1) gauge group of Â by a

charge N matter field φ̂. The two descriptions are equivalent to each other at long distances.

Appendix A will review the representations of the cubic group and our notation.

2 Exotic U(1) Global Symmetries

2.1 Ordinary U(1) Global Symmetry and Vector Global Symmetry

Consider a 3 + 1-dimensional quantum field theory with an ordinary U(1) global symmetry

that is associated with a Noether current Jµ. The current conservation equation is

∂µJµ = 0 , (2.1)

or in non-relativistic notation

∂0J0 = ∂iJi , (2.2)

where i = 1, 2, 3 is a vector index of SO(3).

This can be generalized to currents in other representations of the rotation group.

One example is the vector global symmetry whose currents are (J i0, J
ji) [6]. The SO(3)

representations for the time and space components of the currents are R time = 3 and R space =

1⊕ 3⊕ 5, respectively. The current obeys the conservation equation

∂0J
i
0 = ∂jJ

ji . (2.3)

The currents (J i0, J
ji) can be further restricted by an algebraic condition such as J ij =

−J ji, so that (R time,R space) = (3,3). The conserved charge is

Q(C) =

∮
C
niJ

i
0 , (2.4)

where C is a closed two-dimensional spatial manifold and ni is the normal vector to C. This

is a non-relativistic one-form global symmetry [6]. If the currents further obey a differential

condition

∂iJ
i
0 = 0 , (2.5)

then the dependence of Q(C) on C becomes topological. This is a relativistic one-form global

symmetry [33].
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Alternatively, we can restrict R space to a singlet 1, and the currents obey

∂0J
i
0 = ∂iJ . (2.6)

The conserved charge is

Q(C) =

∮
C
dxi J i0 (2.7)

with C a closed one-dimensional spatial curve. An example realizing the (R time,R space) =

(3,1) current is a compact boson Φ in the continuum, Φ ∼ Φ + 2π. The current

J i0 = ∂iΦ , J = ∂0Φ (2.8)

satisfies the conservation equation (2.6) trivially and the charge Q(C) =
∮
C dx

i∂iΦ is the

winding charge. In this case the currents satisfy a differential condition

∂iJ j0 = ∂jJ i0 , (2.9)

making the dependence of Q(C) on C topological.

In the following we will consider more general currents with R time in a tensor represen-

tation of SO(3) or a subgroup thereof.

2.2 U(1) Tensor Global Symmetry

Let the time component of the current be J I0 , where the index I is in the representation R time

of the rotation group. Denote the spatial component of the current as J iI . The currents

obey a conservation equation

∂0J
I
0 = ∂iJ

iI . (2.10)

We could impose further algebraic constraints on J iI so that it is in a representation R space

of the rotation group. We will call the symmetry generated by the currents (J I0 , J
iI) the

(R time,R space) tensor global symmetry.

The global symmetry charge is obtained by integrating J I0 over the entire space

QI =

∫
space

J I0 , (2.11)

or a closed subspace C
Q(C) =

∮
C
J0 (2.12)

where the index I is contracted with the integral measure and is suppressed. The subspace
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is chosen such that the charge is conserved

∂0Q(C) =

∮
C
∂0J0 =

∮
C
∂iJ

i = 0 , (2.13)

where again the index I is contracted and is suppressed.

Often the time component of the current satisfies some differential condition (such as

∂iJ
i
0 = 0). This can restrict the dependence on C. Then, Q(C) can be independent of certain

changes in C or even be completely topological. Algebraically, this condition performs a

quotient of the space of charges.

As an example, let us take the time component of the current J
(ij)
0 to be a symmetric

tensor of SO(3), i.e. R time = 1⊕5.2 For the spatial component Jk(ij), we impose an algebraic

condition

J (kij) = 0 , (2.14)

to restrict its representation R space to 3⊕ 5.3

The currents (J
(ij)
0 , Jk(ij)) with (R time,R space) = (1 ⊕ 5,3 ⊕ 5) obey the conservation

equation

∂0J
(ij)
0 = ∂kJ

k(ij) . (2.16)

Using the algebraic equation (2.14) and the conservation law

G ≡ ∂i∂jJ
(ij)
0 (2.17)

is conserved

∂0G = ∂0∂i∂jJ
(ij)
0 = ∂i∂j∂kJ

k(ij) = 0 . (2.18)

In some applications we also set

G ≡ ∂i∂jJ
(ij)
0 = 0 . (2.19)

We will be particularly interested in a more general case where only the cubic symmetry

S4 subgroup of the full rotation symmetry SO(3) is preserved. The vector representation 3

2In this discussion with the SO(3) rotation symmetry, the vector indices i, j, k can be the same. In other
parts of the paper where the rotation group is the cubic group S4, the indices i, j, k are never equal, i 6= j 6= k.

3In general, a tensor T i(jk) is in 3⊗ (1⊕ 5) = 3⊕ 3⊕ 5⊕ 7 of SO(3). The algebraic condition sets the
totally symmetric combination in (3 ⊗ 3 ⊗ 3)S = 3 ⊕ 7 to zero, and then the current Jk(ij) only includes
3⊕ 5. More explicitly, the 3 and 5 components of Jk(ij) are

J (3)i = δjkJ
i(jk) , J (5)i(jk) = J i(jk) − 1

3
δjkJ (3)i . (2.15)
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of SO(3) reduces to the standard representation 3 of S4. On the other hand, the traceless,

symmetric representation 5 of SO(3) decomposes into 2⊕ 3′, where 3′ is the tensor product

of 3 and the sign representation 1′ of S4.

The symmetric traceless tensor current (5,5) of SO(3) splits into several currents under

S4. We will be interested in symmetries with the currents (3′,2) and (2,3′) of S4 and will

impose a variant of (2.19). These symmetries will be realized in Section 4 and Section 5.

(2,3′) Tensor Symmetry

Let us consider a case where we have only one of these two currents. Consider the tensor

global symmetry with currents (J
[ij]k
0 , J ij) in the (2,3′) representations (see Appendix A).

We label the components of the representation 3′ by two symmetric indices ij with i 6= j.

The current conservation equation is

∂0J
[ij]k
0 = ∂iJ jk − ∂jJ ik . (2.20)

We define a conserved charge operator by integrating over the ij-plane:

Q[ij](xk) =

∮
dxidxj J

[ij]k
0 , (no sum in i, j) . (2.21)

Note that these charges are not independent. Since J
[ij]k
0 + J

[jk]i
0 + J

[ki]j
0 = 0 (see Appendix

A), ∮
dxkQ[ij] +

∮
dxiQ[jk] +

∮
dxjQ[ki] = 0 . (2.22)

On a lattice, there are Lx+Ly +Lz−1 such charges where the −1 comes from the condition

on their sum.

(3′,2) Tensor Symmetry

Next, consider a different tensor global symmetry with currents (J ij0 , J
[ij]k) in the (3′,2)

representations (see Appendix A). The currents obey the conservation equation

∂0J
ij
0 = ∂k(J

[ki]j + J [kj]i) , (2.23)

and we impose the differential constraint

G ≡ ∂i∂jJ
ij
0 = 0 . (2.24)
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For every point (xj, xk) on the jk-plane, we define a charge operator by integrating along

the xi direction:

Qi(xj, xk) =

∮
dxi J jk0 . (2.25)

The charge operator is conserved ∂0Q
i(xj, xk) = 0 because of the conservation equation

(2.23) and the fact that the three indices of Jkij are all different.4

How does the charge operator, say, Qz(x, y) depend on the coordinates x, y? Consider

the double derivative

∂x∂yQ
z(x, y) =

∮
dz ∂x∂yJ

xy
0 = 0 , (2.26)

where we have used the differential condition (2.24) ∂x∂yJ
xy
0 = −∂z(∂xJxz0 + ∂yJ

yz
0 ). This

means that

Qz(x, y) = Qz
x(x) +Qz

y(y) (2.27)

and only the sum of their constant modes is physical. Similar statements are true for the

other Qi(xj, xk).

On the lattice, there are Lx+Ly−1 conserved charges Qz (where the −1 comes from the

zero mode), rather than LxLy of them. Adding all three directions the number of charges is

2Lx + 2Ly + 2Lz − 3.

2.3 U(1) Multipole Global Symmetry

Next, we further generalize the tensor global symmetry (2.10). Consider a continuum field

theory with operators (J I0 , J
K) where the index I and K are respectively in representation

R time and R space of the spatial rotation group. We assume that the operators satisfy the

following identity5

∂0J
I
0 = ∂j1∂j2 · · · ∂jnJKf

j1j2···jn , I
K , (2.30)

4If we do not have the differential condition (2.24), G ≡ ∂i∂jJ
ij
0 is still conserved at every point, i.e.

∂0G = 0. If it is spontaneously broken, we have many soft modes. If it is unbroken, then we have a separate
conserved charge at every point in space.

5It might happen that the operator identity (2.30) can be integrated to

∂0Ĵ
i, I
0 = ∂j Ĵ

[ji], I + ∂j1∂j2 · · · ∂jn−1J
Kf

j1j2···jn−1i, I
K

(2.28)

with well-defined Ĵ i, I0 and Ĵ [ji], I . A necessary condition for that is

JI0 = ∂iĴ
i, I
0 . (2.29)

This has the effect of reducing the number of spatial derivatives in the right hand side from n to n− 1, but
adds another operator Ĵ [ji], I , which is not present in (2.30). We will focus on the case (2.30) and assume
that it cannot be integrated.
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where f j1j2···jn , IK is an invariant tensor. There might be further differential conditions on

these operators. We will refer to the symmetry generated by the currents (J I0 , J
K) the

(R time,R space) multipole global symmetry.

Our characterization of the global symmetry is in terms of the currents and their local

conservation equations. This formulation of the symmetry is independent of the global

topology of the spacetime. This is to be contrasted with the perspectives in, for example,

[15,16], where the emphasis was on the symmetry charges defined in infinite space.

We now discuss two dipole global symmetries that are compatible with the cubic group

S4. These two symmetries will be realized in Section 3 and Section 6.

(1,3′) Dipole Symmetry

Consider currents (J0, J
ij) in the (R time,R space) = (1,3′) of S4. We label the components

of the representation 3′ by two symmetric indices ij with i 6= j. They obey

∂0J0 =
1

2
∂i∂jJ

ij

= ∂x∂yJ
xy + ∂z∂xJ

zx + ∂y∂zJ
yz ,

(2.31)

where the factor 1
2

comes from the index contraction of ij. There are three kinds of conserved

charges, each integrated over a plane:

Qij(x
k) =

∮
dxi
∮
dxjJ0 . (2.32)

They obey the constraint:∮
dxQyz(x) =

∮
dyQzx(y) =

∮
dzQxy(z) . (2.33)

On a lattice, we have Lx + Ly + Lz − 2 such charges.

(3′,1) Dipole Symmetry

The second dipole symmetry is generated by currents (J ij0 , J) with (R time,R space) =

(3′,1) of S4. They obey the conservation equation:

∂0J
ij
0 = ∂i∂jJ , (2.34)

and a differential condition

∂iJ jk0 = ∂jJ ik0 . (2.35)
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For any closed curve Cxy on the xy-plane, there is a conserved charge

Q(Cxy, z) =

∮
Cxy∈(x,y)

( dxJzx0 + dyJzy0 ) . (2.36)

The differential condition (2.35) implies that the charge Q(Cxy, z) is independent of small

deformation of the curve Cxy, but depends on the z coordinate. Therefore, on the xy-plane,

the conserved charges are generated by Q(Cxyx , z) and Q(Cxyy , z). Here Cxyx is a closed curve

that wraps around the x direction once but not the y direction, and vice versa. There are

similar charges on the xz and yz planes.

Finally, there are constraints among these charges:∮
dzQ(Cxyx , z) =

∮
dxQ(Cyzz , x) ,∮

dzQ(Cxyy , z) =

∮
dyQ(Cxzz , y) ,∮

dxQ(Cyzy , x) =

∮
dyQ(Cxzx , y) .

(2.37)

On a lattice, we have 2Lx + 2Ly + 2Lz − 3 such charges.

2.4 Gauging Global Symmetries

Let us gauge the multipole global symmetries (2.30) (which include the tensor global sym-

metries (2.10) as special cases). We couple the currents J I0 and JK to background fields.

Since for n > 1 this is not a standard conserved current, this is not ordinary gauging of

a global symmetry. We introduce gauge fields (A0, I , AK) and add to the Lagrangian the

minimal coupling

A0, IJ
I
0 + (−1)nAKJ

K . (2.38)

Because of (2.30), the terms (2.38) are unchanged when the gauge fields transform as

A0, I → A0, I + ∂0λI ,

AK → AK + ∂j1∂j2 · · · ∂jnλI f
j1j2···jn , I
K .

(2.39)

This means that there is a redundancy in the fields A0, I and AK , which generalizes ordinary

gauge symmetry (or better stated, ordinary gauge redundancy). We will refer to (2.39) as

the gauge symmetry of the system.

Note that the gauge parameter λI is in the representation Rtime. If J I0 is subject to a

differential condition, then integrating by parts shows that some deformations of λI do not
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act on the gauge fields. This means that λI is itself a gauge field. This is familiar in the case

of higher-form global symmetries and their corresponding higher-form gauge fields.

3 The φ-Theory

In this section we discuss a 3 + 1-dimensional continuum field theory of φ with dipole global

symmetries (2.31) and (2.34). The φ-theory is the continuum limit of the 3 + 1-dimensional

version of the XY-plaquette model in [7, 3]. Certain aspects of this continuum field theory

have been discussed in [7–13].

3.1 The Lattice Model

The XY-plaquette model is defined on a three-dimensional spatial, cubic lattice with a phase

variable eiφs at every site s = (x̂, ŷ, ẑ). Let Lx, Ly, Lz be the numbers of sites in the x, y, z

directions, respectively. We label the sites by s = (x̂, ŷ, ẑ), with integer x̂i = 1, · · · , Li. Let

a be the lattice spacing. When we take the continuum limit, we will use xi = ax̂i to label

the coordinates and `i = aLi to denote the physical size of the system.

The variable φs is 2π-periodic at each site, φs ∼ φs + 2π. Let πs be the conjugate

momentum of φs. They obey the commutation relation [φs, πs′ ] = iδs,s′ . The 2π-periodicity

of φs implies that the eigenvalues of πs are integers. The Hamiltonian is

H =
u

2

∑
s

(πs)
2 −K

∑
i<j

∑
s

cos(∆ijφs) , (3.1)

where ∆xyφs ≡ φs − φs+(1,0,0) − φs+(0,1,0) + φs+(1,1,0) and similarly for ∆xzφs and ∆yzφs. The

second term in the Hamiltonian is a sum over all the plaquettes in the three-dimensional

lattice.

This lattice system has a large number of U(1) global symmetries that grows linearly

in the size of the system [7]. For every point x̂0 in the x direction, there is a U(1) global

symmetry that acts as

U(1)x̂0 : φs → φs + ϕ , ∀ s = (x̂, ŷ, ẑ) with x̂ = x̂0 , (3.2)

where ϕ ∈ [0, 2π). Similarly we have U(1)ŷ0 and U(1)ẑ0 associated with the y and z di-

rections, respectively. There are two relations among these symmetries. The composition

of all the U(1)x̂0 transformations with the same ϕ is the same as the composition of all

the U(1)ŷ0 transformations with the same ϕ, and the same as the composition of all the
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U(1)ẑ0 transformations with the same ϕ. This composition rotates all the φs’s on the three-

dimensional lattice simultaneously. In total, we have Lx + Ly + Lz − 2 independent U(1)

global symmetries.

3.2 Continuum Lagrangian

The continuum limit of the XY-plaquette model is a real scalar field theory with Lagrangian

L =
µ0

2
(∂0φ)2 − 1

4µ
(∂i∂jφ)2

=
µ0

2
(∂0φ)2 − 1

2µ

[
(∂x∂yφ)2 + (∂z∂xφ)2 + (∂y∂zφ)2

]
,

(3.3)

where µ0 has dimension 2 and µ is dimensionless. This is the 3 + 1-dimensional version of

the φ-theory (1.1) in [3].

The equation of motion is

µ0∂
2
0φ = − 1

µ

(
∂2x∂

2
yφ+ ∂2z∂

2
xφ+ ∂2y∂

2
zφ
)
. (3.4)

Locally, the field φ is subject to the gauge symmetry

φ(t, x, y, z) ∼ φ(t, x, y, z) + 2πwx(x) + 2πwy(y) + 2πwz(z) , (3.5)

where wi(xi) ∈ Z [3]. Because of this gauge identification, the operators ∂iφ are not gauge-

invariant, while eiφ, ∂i∂jφ with i 6= j are well-defined operators. Globally, the field φ is not

a single-valued function, but a section over a nontrivial bundle with transition functions of

the form (3.5). An example of such a nontrivial configuration on a spatial 3-torus is

φ(t, x, y, z) = 2π
[ x
`x

Θ(y − y0) +
y

`y
Θ(x− x0)−

xy

`x`y

]
. (3.6)

We refer the readers to [3] for more discussions on the global issues of the φ field.

3.3 Global Symmetries and Their Charges

We now discuss the exotic global symmetries of the continuum field theory.
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3.3.1 Momentum Dipole Symmetry

The equation of motion (3.4) implies the (1,3′) dipole global symmetry (2.31)

∂0J0 =
1

2
∂i∂jJ

ij (3.7)

with currents [9]

J0 = µ0∂0φ ,

J ij = − 1

µ
∂i∂jφ .

(3.8)

We will refer to this symmetry as the momentum dipole symmetry. This symmetry is the

continuum version of (3.2) on the lattice.

The conserved charges (2.32) are

Qij(x
k) = µ0

∮
dxi
∮
dxj∂0φ . (3.9)

They implement

φ(t, x, y, z)→ φ(t, x, y, z) + fx(x) + f y(y) + f z(z) . (3.10)

In (3.5), we gauge the Z part of the momentum dipole symmetry, so that the global form of

the symmetry is U(1) as opposed to R.

3.3.2 Winding Dipole Symmetry

Since ∂iφ is not a well-defined operator, we do not have the ordinary winding global sym-

metry, whose currents are J i0 = 1
2π
∂iφ, J = 1

2π
∂0φ.

Instead, we have a (3′,1) dipole global symmetry (2.34)

∂0J
ij
0 = ∂i∂jJ , (3.11)

with currents

J ij0 =
1

2π
∂i∂jφ ,

J =
1

2π
∂0φ .

(3.12)

The currents are subject to the differential condition (2.35)

∂iJ jk0 = ∂jJ ik0 . (3.13)
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We will refer to this symmetry as the winding dipole symmetry. Note that this symmetry is

not present on the lattice. This is similar to the absence of winding global symmetry in the

lattice version of the standard XY model.

The conserved charge (2.36) is

Q(Cxy, z) =
1

2π
∂z

∮
Cxy∈(x,y)

( dx∂xφ+ dy∂yφ ) , (3.14)

where Cxy is a closed curve on the xy-plane. The charges for other directions can be similarly

defined.

3.4 Momentum Modes

In this subsection we discuss states that are charged under the momentum dipole symmetry

(3.8).

We start by analyzing the plane wave solutions in R3,1:

φ = Ceiωt+ikix
i

. (3.15)

The equation of motion (3.4) gives the dispersion relation

ω2 =
1

µµ0

(
k2xk

2
y + k2zk

2
y + k2yk

2
z

)
. (3.16)

Classically, the zero-energy solutions ω = 0 are those modes with at least two of the three

ki’s vanishing. In particular, there are classical zero-energy solutions with kx = ky = 0

but arbitrarily large kz. The momentum dipole symmetry (3.8) maps one such zero-energy

classical solution to another. Therefore, we will call these modes the momentum modes.

Classically, the momentum dipole symmetry appears to be spontaneously broken, while the

winding dipole symmetry does not act on these plane wave solutions.

Similar to the φ-theory in 2+1 dimensions, this classical picture turns out to be incorrect

quantum mechanically.

Let us quantize the momentum modes of φ:

φ(t, x, y, z) = φx(t, x) + φy(t, y) + φz(t, z) , (3.17)

where φi(t, xi) is point-wise 2π-periodic. They share a common zero mode, which implies
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the following gauge symmetry parameterized by cx(t), cy(t)

φx(t, x)→ φx(t, x) + cx(t) , φy(t, y)→ φy(t, y) + cy(t) , φz(t, z)→ φz(t, z)− cx(t)− cy(t) .
(3.18)

The Lagrangian of these modes is

L =
µ0

2

∮
dxdydz

[
φ̇x(t, x) + φ̇y(t, y) + φ̇z(t, z)

]2
=
µ0

2

[
`y`z

∮
dx(φ̇x)2 + `z`x

∮
dy(φ̇y)2 + `x`y

∮
dz(φ̇z)2

+2`x
∮
dyφ̇y

∮
dzφ̇z + 2`y

∮
dxφ̇x

∮
dzφ̇z + 2`z

∮
dxφ̇x

∮
dyφ̇y

] (3.19)

The conjugate momenta are

πi(t, xi) = µ0

(
`j`k φ̇i + `k

∮
dxjφ̇j + `j

∮
dxkφ̇k

)
. (3.20)

They are the charges of the momentum dipole symmetry

Qij(x
k) = µ0

∮
dxidxj ∂0φ = πk(xk) . (3.21)

The gauge symmetry (3.18) implies that the conjugate momenta satisfy

Π ≡
∮
dxπx =

∮
dyπy =

∮
dzπz . (3.22)

The Hamiltonian is

H =
1

2µ0`x`y`z

[∑
i

`i
∮
dxi(πi)2 − 2Π2

]
. (3.23)

Minimally Charged States

The point-wise periodicity (3.5) implies that the conjugate momenta πi are linear com-

bination of delta functions with integer coefficients. The lowest energy state has,

πx = δ(x− x0) , πy = δ(y − y0) , πz = δ(z − z0) (3.24)
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with some x0, y0, z0. It corresponds to

φ̇ =
1

µ0`x`y`z
[ `xδ(x− x0) + `yδ(y − y0) + `zδ(z − z0)− 2 ] (3.25)

The minimal energy of the charged mode is

H =
1

2µ0`x`y`z
[(`x + `y + `z)δ(0)− 2] . (3.26)

We see that quantum mechanically the momentum modes have energy of order δ(0) = 1
a

(see

[3] for more discussion). The classically zero-energy configurations give rise to infinitely heavy

modes in the continuum limit. The momentum dipole global symmetry (3.8) is restored

quantum mechanically. This is qualitatively similar to the φ-theory in one dimension lower

(1.1) [3].

General Charged States

More general momentum modes have

Qyz(x) = πx(x) =
∑
α

Nxαδ(x− xα) ,

Qzx(y) = πy(y) =
∑
β

Ny βδ(y − yβ) ,

Qxy(z) = πz(z) =
∑
α

Nz γδ(z − zγ) ,

N ≡
∑
α

Nxα =
∑
β

Ny β =
∑
γ

Nz γ ,

(3.27)

where the N ’s are integers and {xα}, {yβ}, {zγ} are a finite set of points on the x, y, z axes,

respectively. On a lattice, there are Lx +Ly +Lz − 2 different charged sectors. The minimal

energy with these charges is

H =
1

2µ0`x`y`z

[
`xδ(0)

∑
α

N2
xα + `yδ(0)

∑
β

N2
y β + `zδ(0)

∑
γ

N2
z γ − 2N2

]
, (3.28)

which is of order 1
a
.

3.5 Winding Modes

Next, we discuss states that are charged under the winding dipole symmetry (3.12).
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The winding configurations can be obtained from linear combinations of (3.6):

φ(t, x, y, z) = 2π

[
x

`x

∑
β

W y
x β Θ(y − yβ) +

y

`y

∑
α

W x
y α Θ(x− xα)−W xy xy

`x`y

]

+ 2π

[
x

`x

∑
γ

W z
x γ Θ(z − zγ) +

z

`z

∑
α

W x
z α Θ(x− xα)−W zx zx

`z`x

]

+ 2π

[
z

`z

∑
β

W y
z β Θ(y − yβ) +

y

`y

∑
γ

W z
y γ Θ(z − zγ)−W yz yz

`y`z

] (3.29)

where W i
jα ∈ Z and W ij =

∑
αW

j
i α =

∑
βW

i
j β.

The winding dipole charge is

Q(Ciji ) =
1

2π

∮
dxi∂k∂iφ =

∑
γ

W k
i γδ(x

k − xkγ) , (3.30)

where Ciji is any closed curve on the ij-torus that wraps around the i cycle once but not the

j cycle. They obey ∮
dxkQ(Ciji ) =

∮
dxiQ(Ckjk ) = W ik . (3.31)

The Hamiltonian for this winding mode can be computed in a similar way as in [3]

H =
2π2`z

µ`x`y

[
`x
∑
α

(W x
y α)2δ(0) + `y

∑
β

(W y
x β)2δ(0)− (W xy)2

]

+
2π2`x

µ`y`z

[
`y
∑
β

(W y
z β)2δ(0) + `z

∑
γ

(W z
y γ)

2δ(0)− (W yz)2

]

+
2π2`y

µ`z`x

[
`z
∑
γ

(W z
x γ)

2δ(0) + `x
∑
α

(W x
z α)2δ(0)− (W zx)2

]
.

(3.32)

We find that the winding modes have energy of order 1
a
, which diverges in the continuum

limit.

3.6 Robustness and Universality

We end this section by mentioning two subtle issues that were discussed in the 2 + 1-

dimensional version of this model in [3].
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First is the issue of robustness. As we saw, the theory has a large symmetry and in the

continuum limit, all the charged states carry high energy (of order 1/a or higher) under this

symmetry. Therefore, operators carrying charges under those symmetries are irrelevant in

the low-energy theory. As a result, the model is robust under small enough deformations

that violate this symmetry.

Second is the universality of the computation of the energies of these charged states.6

We argued in [3] that analyzing them using the minimal Lagrangian leads to correct quali-

tative conclusions, but the detailed quantitative answers could be modified by some higher

derivative terms. Since the discussion of these two issues is identical to that in [3], we will

not repeat it here.

4 The φ̂-Theory

In this section we discuss a 3 + 1-dimensional continuum field theory of φ̂ with tensor global

symmetries (2.20) and (2.23). It is the continuum limit of a lattice model that we will

introduce.

4.1 The Lattice Model

On a three-dimensional spatial, cubic lattice, there are three U(1) phases at every site

s = (x̂, ŷ, ẑ),

eiφ̂
x(yz)
s , eiφ̂

y(zx)
s , eiφ̂

z(xy)
s , (4.1)

subject to the constraint ei(φ̂
x(yz)
s +φ̂

y(zx)
s +φ̂

z(xy)
s ) = 1.

Let π
k(ij)
s be the conjugate momenta of φ̂

k(ij)
s . Here we slightly abuse the notation because

the momenta π
k(ij)
s do not sum to zero. Instead, the above constraint implies a gauge

ambiguity:

πx(yz)s ∼ πx(yz)s + c , πy(zx)s ∼ πy(zx)s + c , πz(xy)s ∼ πz(xy)s + c , (4.2)

separately at each site.

6We thank P. Gorantla and H.T. Lam for useful discussions about the universality of these models.
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The Hamiltonian is

H = û
∑
s

[
(πx(yz)s − πy(zx)s )2 + (πy(zx)s − πz(xy)s )2 + (πz(xy)s − πx(yz)s )2

]
− K̂

∑
s

[
cos(φ̂

x(yz)
s+(1,0,0) − φ̂

x(yz)
s ) + cos(φ̂

y(zx)
s+(0,1,0) − φ̂

y(zx)
s ) + cos(φ̂

z(xy)
s+(0,0,1) − φ̂

z(xy)
s )

]
.

(4.3)

This system has a large number of U(1) global symmetries. For every point ẑ0, there is

U(1)ẑ0 global symmetry that acts as

φ̂x(yz)s → φ̂x(yz)s + ϕ , φ̂y(zx)s → φ̂y(zx)s − ϕ , φ̂z(xy)s → φ̂z(xy)s ,

∀ s = (x̂, ŷ, ẑ) with ẑ = ẑ0
(4.4)

where ϕ ∈ [0, 2π). Similarly we have U(1)x̂0 and U(1)ŷ0 for every point x̂0 and ŷ0, respectively.

Note that the composition of all the U(1)x̂0 , U(1)ŷ0 , U(1)ẑ0 is trivial. Therefore on a lattice,

we have Lx + Ly + Lz − 1 such U(1) global symmetries.

4.2 Continuum Lagrangian

The continuum limit of the lattice model discussed above is a theory of φ̂i(jk) in the 2 of S4

with Lagrangian

L =
µ̂0

12
(∂0φ̂

i(jk))2 − µ̂

4
(∂kφ̂

k(ij))2 , (4.5)

subject to the constraint φ̂x(yz) + φ̂y(zx) + φ̂z(xy) = 0. Here the coefficient µ̂0, µ̂ have mass

dimension 1.

A field in the 2 can also be expressed as φ̂[ij]k (see Appendix A). It is related to φ̂k(ij) by:

φ̂k(ij) = φ̂[ki]j + φ̂[kj]i ,

φ̂[ij]k =
1

3
(φ̂i(jk) − φ̂j(ki)) .

(4.6)

We have φ̂i(jk)φ̂
i(jk) = 3φ̂[ij]kφ̂

[ij]k. In the φ̂[ij]k basis, the Lagrangian is

L =
µ̂0

4
(∂0φ̂

[ij]k)2 − µ̂

4

[
∂k(φ̂

[ki]j + φ̂[kj]i)
]2

=
µ̂0

2

[
(∂0φ̂

[xy]z)2 + (∂0φ̂
[yz]x)2 + (∂0φ̂

[zx]y)2
]

− µ̂

2

{[
∂z(φ̂

[zx]y − φ̂[yz]x)
]2

+
[
∂y(φ̂

[yz]x − φ̂[xy]z)
]2

+
[
∂x(φ̂

[xy]z − φ̂[zx]y)
]2}

,

(4.7)
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subject to the constraint φ̂[xy]z + φ̂[yz]x + φ̂[zx]y = 0. For clarity, we will write many of our

expressions in both the φ̂i(jk) and the φ̂[ij]k bases below.

The fields φ̂i(jk) are point-wise 2π-periodic in a way compatible with the constraint φ̂x(yz)+

φ̂y(zx) + φ̂z(xy) = 0. Locally, we impose the following three gauge symmetries:7

φ̂x(yz) ∼ φ̂x(yz) , φ̂y(zx) ∼ φ̂y(zx) + 2πwx(x) , φ̂z(xy) ∼ φ̂z(xy) − 2πwx(x) ,

φ̂x(yz) ∼ φ̂x(yz) − 2πwy(y) , φ̂y(zx) ∼ φ̂y(zx) , φ̂z(xy) ∼ φ̂z(xy) + 2πwy(y) ,

φ̂x(yz) ∼ φ̂x(yz) + 2πwz(z) , φ̂y(zx) ∼ φ̂y(zx) − 2πwz(z) , φ̂z(xy) ∼ φ̂z(xy) ,

(4.9)

where wi(xi) ∈ Z is a discontinuous, integer-valued function in xi. It follows that while

eiφ̂
k(ij)

, ∂kφ̂
k(ij) are well-defined, operators such as ∂zφ̂

x(yz) are not. Note that these iden-

tifications leave the Lagrangian invariant and are compatible with the constraint φ̂x(yz) +

φ̂y(zx) + φ̂z(xy) = 0.

4.3 Global Symmetries and Their Charges

We now discuss the global symmetries in the continuum φ̂-theory.

4.3.1 Momentum Tensor Symmetry

The equation of motion in the φ̂i(jk) basis8

µ̂0∂
2
0 φ̂

i(jk) = µ̂
[
2∂2i φ̂

i(jk) − ∂2j φ̂j(ki) − ∂2kφ̂k(ij)
]
, (no sum in i, j, k) (4.10)

or in the φ̂[ij]k basis

µ̂0 ∂
2
0 φ̂

[ij]k = µ̂
[
∂2i (φ̂

[ij]k + φ̂[ik]j)− ∂2j (φ̂[ji]k + φ̂[jk]i)
]
. (4.11)

7In the φ̂[ij]k basis, this gauge symmetry becomes

φ̂[yz]x ∼ φ̂[yz]x +
4π

3
wx(x) , φ̂[zx]y ∼ φ̂[zx]y − 2π

3
wx(x) , φ̂[xy]z ∼ φ̂[xy]z − 2π

3
wx(x) . (4.8)

and so on.
8It is important to take the constraint φ̂i(jk) + φ̂j(ki) + φ̂k(ij) = 0 into account when deriving the equation

of motion.
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These are recognized as the conservation equation (2.20) for the tensor global symmetry

(5.29) whose current is in (2,3′):

J
i(jk)
0 = µ̂0 ∂0φ̂

i(jk) ,

J ij = µ̂ ∂kφ̂
k(ij) .

(4.12)

or
J
[ij]k
0 = µ̂0 ∂0φ̂

[ij]k ,

J ij = µ̂ ∂k(φ̂
[ki]j + φ̂[kj]i) .

(4.13)

We will refer to the symmetry generated by this current as the momentum tensor sym-

metry. This is the continuum version of the symmetry (4.4) on the lattice.

The charge operator is

Q[ij](xk) = µ̂0

∮
dxi
∮
dxj ∂0φ̂

[ij]k , (no sum in i, j) . (4.14)

Note that
∮
dzQxy +

∮
dxQyz +

∮
dyQxz = 0. Q[xy](z) implements

φ̂x(yz) → φ̂x(yz) + f z(z) , φ̂y(zx) → φ̂y(zx) − f z(z) , φ̂z(xy) → φ̂z(xy) . (4.15)

The integer part of the momentum tensor global symmetry is gauged (4.9), so that the global

form of the symmetry is U(1) as opposed to R.

4.3.2 Winding Tensor Symmetry

Consider the following currents in the (3′,2) in the φ̂i(jk) basis

J ij0 =
1

2π
∂kφ̂

k(ij) ,

J i(jk) =
1

2π
∂0φ̂

i(jk) ,
(4.16)

or in the φ̂[ij]k basis

J ij0 =
1

2π
∂k(φ̂

[ki]j + φ̂[kj]i) ,

J [ij]k =
1

2π
∂0φ̂

[ij]k .
(4.17)

They obey the conservation equation of the (3′,2) tensor global symmetry (2.23)

∂0J
ij
0 = ∂k(J

[ki]j + J [kj]i) . (4.18)
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Since φ̂k(ij) + φ̂i(jk) + φ̂j(ki) = 0, the current obeys the differential constraint (2.24)

∂i∂jJ
ij
0 = 0 . (4.19)

We will refer to the symmetry generated by this current as the winding tensor symmetry.

This symmetry is not present on the lattice.

The charge operator is

Qk(xi, xj) =

∮
dxk J ij0 =

1

2π

∮
dxk ∂kφ̂

k(ij) . (4.20)

The differential condition (4.19) implies that Qk(xi, xj) is a function of xi plus another

function of xj.

4.4 Momentum Modes

We now discuss states that are charged under the momentum tensor global symmetry (4.12).

We start with plane wave solutions of the equation of motions in R3,1,

φ̂[ij]k = C [ij]keiωt+ikix
i

, (4.21)

with constant C [ij]k in the 2. The dispersion relation is

µ̂2
0

µ̂2
ω4 − 2

µ̂0

µ̂
ω2(k2x + k2y + k2z) + 3(k2xk

2
y + k2xk

2
z + k2yk

2
z) = 0 , (4.22)

leading to

ω2
± =

µ̂

µ̂0

[
(k2x + k2y + k2z)±

√
(k2x + k2y + k2z)

2 − 3(k2xk
2
y + k2xk

2
z + k2yk

2
z)
]
, (4.23)

For either solution ω2
±, the fields are

φ̂[ij]k = C(k2i − k2j )
(
µ̂0

µ̂
ω2 − 3k2k

)
eiωt+ikix

i

, (4.24)

with constant C and for both signs in (4.23).

The limit where two of the components of the momenta go to zero and the third one is
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generic, say kx, ky → 0, is interesting. Here for the branch with the plus sign,

ω2
+ =

2µ̂0

µ̂
k2z , (4.25)

we can take the limit of the solution (4.24) above

φ̂[xy]z = 0 , φ̂[yz]x = −φ̂[zx]y = Ceiω+t+ikzz . (4.26)

In the branch with the minus sign, the energy is zero

ω− = 0 . (4.27)

We expand the solution (4.24) for small kx, ky and divide by some common factor to obtain

φ̂[xy]z = 2Ceikzz , φ̂[yz]x = φ̂[zx]y = −Ceikzz . (4.28)

This means that we have zero energy states with arbitrary kz as long as they have vanishing

momentum in the x and y directions. These modes are spread in x and y, but can have

arbitrary z dependence.

We can state the previous result as follows. The classical Lagrangian of the φ̂ theory

admits the following classical zero-energy solutions:

φ̂x(yz) = φ̂y(y)− φ̂z(z) ,

φ̂y(zx) = φ̂z(z)− φ̂x(x) ,

φ̂z(xy) = φ̂x(x)− φ̂y(y) ,

(4.29)

labeled by three functions φ̂i(x
i). They are time independent because they have vanishing

energy. These classical configurations are related to each other by the momentum tensor

symmetry (4.15). This explains the classical infinite degeneracy of the ground states.

In order to quantize these modes, we give them time dependence φ̂i(t, x
i) and study their

effective Lagrangian. The gauge symmetry (4.9) implies that φ̂i is pointwise 2π-periodic,

φ̂i(t, x
i) ∼ φ̂i(t, x

i) + 2πwi(xi) with wi(xi) ∈ Z. The φ̂i’s share a common zero mode, giving

rise to a gauge symmetry:

φ̂x(t, x)→ φ̂x(t, x) + c(t) , φ̂y(t, y)→ φ̂y(t, y) + c(t) , φ̂z(t, z)→ φ̂z(t, z) + c(t) . (4.30)
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The effective Lagrangian of these modes is

L =
µ̂0

6

∮
dx

∮
dy

∮
dz
[
(

˙̂
φy − ˙̂

φz)
2 + (

˙̂
φz − ˙̂

φx)
2 + (

˙̂
φx − ˙̂

φy)
2
]

=
µ̂0

3
`x`y`z

[∑
i

1

`i

∮
dxi(

˙̂
φi)

2 −
∑
i 6=j

1

2`i`j

(∮
dxi

˙̂
φi

)(∮
dxj

˙̂
φj

)]
.

(4.31)

Let us quantize these modes. The momentum conjugate to φ̂i is

πi(t, xi) =
µ̂0

3

`x`y`z

`i

(
2

˙̂
φi(t, x

i)− 1

`j

∮
dxj

˙̂
φj −

1

`k

∮
dxk

˙̂
φk

)
i 6= j 6= k . (4.32)

The gauge symmetry (4.30) implies that these momenta are not independent∮
dxπx(t, x) +

∮
dyπy(t, y) +

∮
dzπz(t, z) = 0 , (4.33)

The conserved charges are expressed simply in terms of these momenta

Q[jk](xi) = µ̂0

∮
dxjdxk∂0φ̂

[jk]i = − µ̂0

3

∮
dxjdxk(2

˙̂
φi − ˙̂

φj − ˙̂
φk) = −πi(t, xi) . (4.34)

The Hamiltonian is

H =
∑
i

∮
dxiπi

˙̂
φi − L =

3

4µ̂0`x`y`z

∑
i

[
`i
∮
dxi(πi)2 − 1

3

(∮
dxiπi

)2
]

(4.35)

This can be checked by substituting the expression (4.32) for πi in terms of
˙̂
φi.

Minimally Charged States

The point-wise periodicity φ̂i(t, x
i) ∼ φ̂i(t, x

i) + 2πwi(xi) implies that πi is a linear

combination of delta functions with integer coefficients. The lowest energy charged states

are of the form

πx = δ(x− x0) , πy = −δ(y − y0) , πz = 0 (4.36)

with energy

H =
3

4µ̂0

1

`z

[
δ(0)

`x
+
δ(0)

`y
− 2

3`x`y

]
. (4.37)

General Charged States
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More general charged states are labeled by nxα, ny β, nz γ ∈ Z:

Q[yz](x) = −πx(x) = −
∑
α

nxαδ(x− xα) ,

Q[zx](y) = −πy(y) = −
∑
β

ny βδ(y − yβ) ,

Q[xy](z) = −πz(z) = −
∑
γ

nz γδ(z − zγ) ,

(4.38)

subject to the constraint (4.33)∑
α

nxα +
∑
β

ny β +
∑
γ

nz γ = 0 . (4.39)

The minimal energy with these charges (4.38) is

H =
3

4µ̂0`x`y`z

[
δ(0)

(
`x
∑
α

n2
xα + `y

∑
β

n2
y β + `z

∑
γ

n2
z γ

)

−1

3

(∑
α

nxα

)2

+

(∑
β

ny β

)2

+

(∑
γ

nz γ

)2
 .

(4.40)

These momentum modes have energy order 1
a
, which becomes infinite in the strict continuum

limit.

4.5 Winding Modes

In this subsection we discuss states that are charged under the winding tensor symmetry

(4.16).

The gauge symmetry (4.9) gives rise to the winding modes:

φ̂x(yz) = 2π
x

`x

(
W y
x (y) +W z

x (z)
)
− 2π

W z
y (z)y

`y
− 2π

W y
z (y)z

`z
,

φ̂y(zx) = 2π
y

`y

(
W z
y (z) +W x

y (x)
)
− 2π

W x
z (x)z

`z
− 2π

W z
x (z)x

`x
,

φ̂z(xy) = 2π
z

`z

(
W x
z (x) +W y

z (y)
)
− 2π

W x
y (x)y

`y
− 2π

W y
x (y)x

`x
,

(4.41)

where we have 6 such integer-valued W i
j (x

i) ∈ Z. These winding modes realize the charges
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(4.20) of the winding tensor symmetry,

Qz(x, y) =
1

2π

∮
dz∂zφ̂

z(xy) = W x
z (x) +W y

z (y) , (4.42)

and similarly for the other two charges.

Consider two winding modes that differ by the following shift

W x
z (x)→ W x

z (x) + 1 ,

W y
z (y)→ W y

z (y)− 1 .
(4.43)

While the winding charge (4.42) is invariant under this shift, φ̂k(ij) changes by a momentum

mode φ̂z(t, z) (use (4.41) and then (4.29)):

φ̂x(yz) ∼ φ̂x(yz) + 2π
z

`z
,

φ̂y(zx) ∼ φ̂y(zx) − 2π
z

`z
,

φ̂z(xy) ∼ φ̂z(xy) .

(4.44)

Therefore, the difference between them is a mode we have already discussed and we can focus

on just one of them. On a lattice, we are left with 2Lx + 2Ly + 2Lz − 3 different winding

sectors.

Let us compute the energy of the winding modes (4.41). We will focus on W x
z (x) and

W y
z (y). Their contribution to the Hamiltonian is

H =
µ̂

2

∮
dxdydz(∂zφ̂

z(xy))2

=
2π2µ̂

`z

[
`y
∮
dxW x

z (x)2 + `x
∮
dyW y

z (y)2 + 2

∮
dxW x

z (x)

∮
dyW y

z (y)

]
.

(4.45)

There are similar contributions from the other W ’s. Since the values of W i
j (x

i) are inde-

pendent integers at every point in xi, the energy of a generic winding mode is of order a.

To see this more explicitly, we can introduce a lattice regularization with discretized space

x̂i = 1, 2, · · · , Li. Then the Hamiltonian takes the form

H =
2π2µ̂

`z

[
`ya

Lx∑
x̂=1

W x
z (x̂)2 + `xa

Ly∑
ŷ=1

W y
z (ŷ)2 + 2a2

Lx∑
x̂=1

W x
z (x̂)

Ly∑
ŷ=1

W y
z (ŷ)

]
(4.46)

If we only have order one nonzero W ’s (rather than order 1/a of them), then the energy of

such winding mode is of order a.
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The momentum and winding states of the φ-theory have energies of order 1/a (Sections

3.4 and 3.5). The same is true for the momentum modes of the φ̂-theory (Section 4.4).

Therefore, we can study the strict continuum limit in which these states are absent, or we

can also include them in the Hilbert space. Being the lowest energy states with these charges,

their analysis is meaningful.

This is not the case for the winding states of the φ̂-theory of this section. Their energy is

or order a – it vanishes in the continuum limit. Therefore, the spectrum of the theory must

include these winding states.

An Important Comment

The fact that the winding states have energy of order a, which vanishes in the continuum

limit, leads us to an important comment.

Consider the configuration

φ̂x(yz) = −φ̂z(xy) = 2π
[ x
`x

Θ(y − y0) +
y

`y
Θ(x− x0)−

xy

`x`y

]
φ̂y(xz) = 0 .

(4.47)

It seems like a valid configuration in our continuum field theory, because it is periodic when

φ̂ is circle-valued. We are going to argue that it is not a valid configuration of the continuum

theory.

The configuration (4.47) has

∂xφ̂
x(yz) = 2π

[
1

`x
Θ(y − y0) +

y

`y
δ(x− x0)−

y

`x`y

]
. (4.48)

The existence of the delta function means that its energy is of order 1/a. Furthermore, its

winding tensor charge (4.20)

Qx =
1

2π

∮
dx∂xφ̂

x(yz) = Θ(y − y0) (4.49)

is not single-valued along the y direction. This reflects the fact that the underlying lattice

theory violates the winding tensor symmetry at energies of order 1/a.

Configurations like (4.47) are not present in the strict continuum limit. Their infinite

action makes them irrelevant. Furthermore, we argue that we should not consider states in

the Hilbert space constructed on top of such configurations because they do not carry a new

conserved charge. In this respect, states built on top of these configurations are different from
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the momentum and winding states of the φ-theory (Sections 3.4 and 3.5) and the momentum

states of the φ̂-theory (Section 4.4).

Note that we did not have such a subtlety in the φ-theory (see Section 3). There, the

winding dipole symmetry (3.12) was also absent on the lattice and was present only in the

continuum limit. However, there the lowest states charged under the winding symmetry

were at order 1/a. Therefore, they were meaningful.

There is another way to state why a configuration like (4.47) should not be considered in

the continuum field theory. We imposed on our continuum field theory the gauge symmetry

(4.9) and then studied field configurations twisted by this gauge symmetry. The gauge

symmetry on the lattice is larger. It includes arbitrary 2π shifts at every spacetime point

preserving φ̂
x(yz)
s + φ̂

y(zx)
s + φ̂

z(xy)
s = 0. The configuration (4.47) is a twisted configuration

by this larger gauge symmetry, but it is not a twisted configuration of the smaller gauge

symmetry (4.9). To see that, note that the transition function at y = `y

φ̂x(yz)(t, x, y = `y, z) = φ̂x(yz)(t, x, y = 0, z) + 2πΘ(x− x0) , (4.50)

is not one of the identifications in (4.9).

4.6 Robustness and Universality

Let us discuss deformations of the minimal Lagrangian (4.5) of the φ̂-theory.

We start with the issue of robustness. Without imposing any global symmetry, we can

perturb the theory by the local operator eiφ̂
i(jk)

. Naively, such a term gives the field φ̂ a mass

and gaps the system. But since this local operator is charged under the momentum tensor

symmetry (4.15), it creates a momentum mode with energy of order 1/a (see Section 4.4).

As a result, this operator is irrelevant in the low-energy theory. Therefore, in the continuum

limit (a→ 0 with fixed system size `i), the model is robust under such small deformations.

Next, let us discuss the universality of our computations for the energy of various charged

states. For example, we can add to the minimal Lagrangian

g(∂x∂0φ̂
z(xy))2 . (4.51)

Since it has two more derivatives than the leading term (∂0φ̂
z(xy))2, we should scale g ∼ a2.

Therefore it has no effects on a generic plane wave mode.

However, such a higher derivative term does affect the momentum modes. For these

modes, π ∼ ∂0φ̂ is a sum of delta functions and the additional derivatives in (4.51) are not

suppressed. More precisely, the term (4.51) shifts the energy of the momentum modes by
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g/a3 ∼ 1/a. Therefore, the quantitative value of the energy of the momentum modes in

Section 4.4 is not universal and receives 1/a correction from the higher derivative terms.

However, their qualitative behavior is universal. This similar to the momentum modes in

the φ-theory of Section 3 and in [3].

Next, consider the following higher derivative term

g(∂x∂zφ̂
z(xy))2 (4.52)

with g of order a2. Again, such a term has negligible effects on the generic plane waves, but

it does affect the winding modes. For example, consider the following winding mode

φ̂x(yz) = 0 ,

φ̂y(zx) = −2π
z

`z
W (x) ,

φ̂z(xy) = 2π
z

`z
W (x)

(4.53)

where W (x) is an integer-valued function. If W (x) is nonzero only at finitely many points,

then the energy of this state is order a. The term (4.52) shifts this energy by g/a ∼ a.

Therefore, the energy of these states remain zero in the continuum limit a → 0 (with fixed

`i). States with order 1/a nonzero W (x) have energy of order one and they receive corrections

of order one from terms like (4.52). Therefore, the computation of their energy using the

original Lagrangian (4.5) is not universal. To sum up, while the zero-energy states are

not lifted by these higher derivative terms, the finite energy states do receive quantitative

corrections. Nonetheless, the qualitative features of these charged modes are universal. This

is similar to the electric states in the 2 + 1-dimensional U(1) gauge theory of A in [3]. In

Section 5, we will see that this is also similar to the electric states of the 3 + 1 dimensional

A-theory, which is in fact dual to this theory (see Section 5.8).

5 The A Tensor Gauge Theory

In this section we gauge the (R time,R space) = (1,3′) dipole global symmetry (2.31). We will

focus on the pure gauge theory without matter, which is one of the gapless fracton models.

The gauge fields (A0, Aij) are in the (1,3′) representations of S4. The gauge transforma-

tion is

A0 → A0 + ∂0α , Aij → Aij + ∂i∂jα , (5.1)

where α is a point-wise 2π-periodic scalar. The gauge parameter α takes values in the same

bundle as φ and requires nontrivial transition functions (see Section 3).
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We define the gauge invariant electric and magnetic field strengths Eij and B[ij]k as

Eij = ∂0Aij − ∂i∂jA0 ,

B[ij]k = ∂iAjk − ∂jAik ,
(5.2)

which are in the 3′ and 2 of S4, respectively.

Let space be a 3-torus with lengths `x, `y, `z. Below, we will repeatedly consider a large

gauge transformation of the form (3.6)

α = 2π
[ x
`x

Θ(y − y0) +
y

`y
Θ(x− x0)−

xy

`x`y

]
(5.3)

which gives rise to the gauge transformation

Axy(t, x, y, z) ∼ Axy(t, x, y, z) + 2π

[
1

`x
δ(y − y0) +

1

`y
δ(x− x0)−

1

`x`y

]
. (5.4)

5.1 Lattice Tensor Gauge Theory

Let us discuss the lattice version of the U(1) tensor gauge theory of A [17, 8, 18, 19, 9, 12].

Instead of simply reviewing these papers, we will present here a Euclidean lattice version of

these systems.

We start with a Euclidean lattice and label the sites by integers (τ̂ , x̂, ŷ, ẑ). As in standard

lattice gauge theory, the gauge transformations are U(1) phases on the sites η(τ̂ , x̂, ŷ, ẑ) =

eiα(τ̂ ,x̂,ŷ,ẑ). The gauge fields are U(1) phases placed on the (Euclidean) temporal links Uτ
and on the spatial plaquettes Uxy, Uxz, Uyz. We also write Uτ = eiaAτ and Uij = eia

2Aij

where a is the lattice spacing. It is clear that Uτ is in the trivial representation of the cubic

group and the plaquette elements Uij are in 3′ – the two indices are symmetric rather than

antisymmetric. Note that there are no diagonal components of the gauge fields Uxx, Uyy, Uzz
associated with the sites. This theory is sometimes called the “hollow rank-2 U(1) gauge

theory” [19].

The gauge transformations act on them as

Uτ (τ̂ , x̂, ŷ, ẑ)→ Uτ (τ̂ , x̂, ŷ, ẑ)η(τ̂ , x̂, ŷ, ẑ)η(τ̂ + 1, x̂, ŷ, ẑ)−1 ,

Uxy(τ̂ , x̂, ŷ, ẑ)→ Uxy(τ̂ , x̂, ŷ, ẑ)η(τ̂ , x̂, ŷ, ẑ)η(τ̂ , x̂+ 1, ŷ, ẑ)−1η(τ̂ , x̂+ 1, ŷ + 1, ẑ)η(τ̂ , x̂, ŷ + 1, ẑ)−1 ,
(5.5)

and similarly for Uxz and Uyz. The Euclidean time-like links have standard gauge transfor-

mation rules and the plaquette elements are multiplied by the 4 phases around the plaquette.

The lattice action can include many gauge invariant terms. The simplest ones are asso-
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ciated with cubes in the time-space-space directions and in the space-space-space directions

Lxyτ (τ̂ , x̂, ŷ, ẑ) = Uτ (τ̂ , x̂, ŷ, ẑ)Uτ (τ̂ , x̂+ 1, ŷ, ẑ)−1Uτ (τ̂ , x̂+ 1, ŷ + 1, ẑ)Uτ (τ̂ , x̂, ŷ + 1, ẑ)−1

Uxy(τ̂ , x̂, ŷ, ẑ)−1Uxy(τ̂ + 1, x̂, ŷ, ẑ)

L[zx]y(τ̂ , x̂, ŷ, ẑ) = Uxy(τ̂ , x̂, ŷ, ẑ + 1)Uxy(τ̂ , x̂, ŷ, ẑ)−1Uyz(τ̂ , x̂+ 1, ŷ, ẑ)−1Uyz(τ̂ , x̂, ŷ, ẑ)
(5.6)

and similarly for the other directions. Terms of the first kind, which involve the time direction

are the analogs of the square of the electric field and terms of the second kind are analogs

of the square of the magnetic field.

In addition to the local gauge-invariant operators (5.6), there are other non-local, ex-

tended ones. One example is a “strip” along the x direction:

Lx∏
x̂=1

Uxz(τ̂ , x̂, ŷ, ẑ) , (5.7)

More generally, the strip (5.7) can be made out of plaquettes extending between ẑ and

ẑ + 1 and zigzagging along a path on the xy-plane. Similar operators exist using the other

directions.

In the Hamiltonian formulation, we choose the temporal gauge to set all the Uτ ’s to 1.

We introduce the electric field Ep such that 2
g2e
Ep is conjugate to the phase of the plaquette

Up, where ge is the electric coupling constant. 2
g2e
Ep has integer eigenvalues. This definition

of the lattice electric field differs from the continuum definition by a power of the lattice

spacing, which can be added easily on dimensional grounds.

Gauss law is imposed as an operator equation

G(x̂, ŷ, ẑ) =
∑

p3(x̂,ŷ,ẑ)

εpEp = 0 (5.8)

where the sum is an oriented sum (εp = ±1) over the 12 plaquettes p that share a common

site (x̂, ŷ, ẑ).

One example of such a Hamiltonian is

H =
1

g2e

∑
plaquettes

E2
p +

1

g2m

∑
cubes

(L[xy]z + L[yz]x + L[zx]y + c.c) . (5.9)

Instead of imposing Gauss law as an operator equation, we can alternatively impose it

energetically by adding a term
∑

sitesG
2 to the Hamiltonian.

The lattice model has an electric tensor symmetry whose conserved charge is proportional
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to
Lz∑
ẑ=1

Exy(x̂0, ŷ0, ẑ) , (5.10)

for each point (x̂0, ŷ0) on the xy-plane. There are similar charges along the other direc-

tions. This charge commutes with the Hamiltonian. The electric tensor symmetry rotates

the phases of the plaquette variables Uxy at (x̂0, ŷ0) for all ẑ. Using Gauss law (5.8), the

dependence of the conserved charge on p is a function of x̂0 plus a function of ŷ0.

5.2 Continuum Lagrangian

The Lagrangian for the pure tensor gauge theory without matter is

L =
1

2g2e
EijE

ij − 1

2g2m
B[ij]kB

[ij]k . (5.11)

Note that the coupling constants ge, gm have mass dimension 1. The equations of motion

are
1

g2e
∂0Eij =

1

g2m
∂k(B[ki]j +B[kj]i) ,

∂i∂jE
ij = 0 ,

(5.12)

where the second equation is Gauss law.

From the definition (5.2) of the electric and magnetic fields, we have

∂0B[ki]j = ∂kEij − ∂iEkj , (5.13)

which is analogous to the Bianchi identity in standard gauge theories.

5.3 Fluxes

Let us put the theory on a Euclidean 4-torus with lengths `τ , `x, `y, `z. Consider gauge field

configurations with a nontrivial transition function at τ = `τ :

g(τ) = 2π
[ x
`x

Θ(y − y0) +
y

`y
Θ(x− x0)−

xy

`x`y

]
. (5.14)

We have Axy(τ + `τ , x, y, z) = Axy(τ, x, y, z) + ∂x∂yg(τ). Such configurations have nontrivial,

quantized electric fluxes

exy(x1, x2) ≡
∮
dτ

∫ x2

x1

dx

∮
dyExy ∈ 2πZ . (5.15)
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In particular, the flux can be nontrivial when the integral is over the whole (τ, x, y) spacetime.

The Bianchi identity (5.13) implies that

∂zexy(x1, x2) = 0 . (5.16)

Therefore, the flux exy only depends on x1, x2.

The magnetic flux is realized in a bundle with transition functions g(x) = 0 at x = `x,

g(y) = 0 at y = `y, and

g(z) = 2π
[ y
`y

Θ(x− x0) +
x

`x
Θ(y − y0)−

xy

`x`y

]
(5.17)

at z = `z. This means that

Aij(τ, x, y, z = `z) = Aij(τ, x, y, z = 0) + ∂i∂jg(z) (5.18)

and Aij periodic around the other directions. The only nonperiodic boundary condition is

Axy(τ, x, y, z = `z) = Axy(τ, x, y, z = 0) + 2π

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
(5.19)

and therefore∮
dzdxB[zx]y = 2π

∮
dx

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
= 2πδ(y − y0) ,∮

dydzB[yz]x = −2π

∮
dy

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
= −2πδ(x− x0) ,∮

dxdyB[xy]z = 0 .

(5.20)

By taking linear combinations of similar bundles with transition functions in other direc-

tions, we realize the more general magnetic flux

b[yz]x(x1, x2) ≡
∫ x2

x1

dx

∮
dy

∮
dz B[yz]x ∈ 2πZ , (5.21)

and similarly for the other components of the magnetic field. In particular, the flux can be

nontrivial when integrated over the whole space (x, y, z). The Bianchi identity (5.13) implies

that

∂τb[yz]x(x1, x2) = 0 . (5.22)

Therefore, the flux b[yz]x depends only on x1, x2. It is conserved.
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The magnetic symmetry is absent on the lattice. However, the flux quantization of the

continuum theory can be traced to the lattice. It is associated with products of observables

that are constrained to be one on the lattice and the quantized value in the continuum arises

from writing them as e2πin. It is crucial that the integer n is meaningful in the continuum.

The magnetic flux (5.21) corresponds to the product
∏

ŷ,ẑ L[yz]x = 1 on the lattice. Similarly,

the electric flux (5.15) corresponds to the product
∏

τ̂ ,ŷ Lxyτ = 1 on the lattice.

5.4 Global Symmetries and Their Charges

We now discuss the global symmetries of this continuum tensor gauge theory.

5.4.1 Electric Tensor Symmetry

Let us define a current with (R time,R space) = (3′,2) as

J ij0 =
2

g2e
Eij ,

J [ki]j =
2

g2m
B[ki]j .

(5.23)

The equations of motion for Aij and A0 (5.12) are recognized as the conservation equation

(2.23) and the differential condition (2.24) for the (3′,2) tensor global symmetry, respectively.

The symmetry generated by (5.23) will be called the electric tensor symmetry.

The conserved charge for the electric tensor global symmetry is

Qk(xi, xj) =
2

g2e

∮
dxk Eij (5.24)

and the symmetry operator is

Uk(β;xi, xj) = exp
[
iβ Qk(xi, xj)

]
= exp

[
i
2β

g2e

∮
dxkEij

]
. (5.25)

Naively, the charge generates Aij → Aij + c(xi, xj), but combining it with a gauge transfor-

mation Aij → Aij + ∂i∂jα, we can let it generate

Aij → Aij + ciij(x
i) + cjij(x

j) . (5.26)

The electric tensor global symmetry maps one configuration of Aij to another with the same

electric and magnetic field strengths. This is similar to the electric one-form global symmetry
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in the U(1) Maxwell theory, which shifts the gauge field by a flat U(1) connection [33].

The charged objects under the electric tensor symmetry are the gauge-invariant strip

operators

W (z1, z2, Cxy) = exp

[
i

∫ z2

z1

dz

∮
Cxy

(dxAxz + dy Ayz)

]
, (5.27)

where Cxy is a closed curve in the xy-plane. This is the continuum version of the gauge-

invariant operator (5.7) on the lattice. We will refer to this operator as the Wilson strip.

Under the gauge transformation (5.4), only integer powers of the Wilson strip are gauge

invariant. Similarly we define W (xk1, x
k
2, Cij) for the other directions with Cij a curve on the

ij-plane. (Recall our convention, i 6= j 6= k.)

At a fixed time, the line operator Ux(β; y0, z0) and the strip operator obey the equal-time

commutation relation

Ux(β; y0, z0)W (z1, z2, Cxy) = eiβ I(C
xy ,y0)W (z1, z2, Cxy)Ux(β; y0, z0) , if z1 < z0 < z2 ,

(5.28)

and they commute otherwise. Here I(Cxy, y0) is the intersection number between the curve

Cxy and the y = y0 line on the xy-plane. The exponent β is 2π-periodic, since the charged

objects have integral charges. This means that the global structure of the electric tensor

global symmetry is U(1) rather than R. Similar commutation relations hold true for U and

W in the other directions.

5.4.2 Magnetic Tensor Symmetry

Let us define

J
[ij]k
0 =

1

2π
B[ij]k ,

J ij =
1

2π
Eij .

(5.29)

Then the Bianchi identity (5.13) is recognized as the conservation equation (2.20) for the

(2,3′) tensor global symmetry. We will refer to this symmetry as the magnetic tensor

symmetry.

While the continuum theory has both the electric and magnetic tensor global symmetries,

the latter is absent on the lattice.

The conserved charge operator for the magnetic tensor global symmetry is

Q[ij](xk) =
1

2π

∮
dxi
∮
dxj B[ij]k , (no sum in i, j) . (5.30)
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The symmetry operator is

U ij(β;xk1, x
k
2) = exp

[
i
β

2π

∫ xk2

xk1

dxk
∮
dxi
∮
dxj B[ij]k

]
(no sum in i, j, k) . (5.31)

It is a “slab” of width xk2 − xk1, which extends along the i, j directions.

The magnetically charged objects under the magnetic tensor global symmetry are point-

like monopole operators. The monopole operator eiφ̂
k(ij)

can be written in terms of the dual

field φ̂k(ij). See Section 5.8.

5.5 Defects as Fractons

Having discussed various extended operators defined at a fixed time, we now turn to observ-

ables that also extend in the time direction, i.e., defects. In the U(1) tensor gauge theory

where Gauss law is imposed as an operator equation, there is no dynamical charged particle

in the spectrum. The defects capture in the low energy theory the physics of probe charged

particles that are infinitely heavy. Constraints about the motion of particles are captured

by constraints on the spacetime trajectories of the defects. Here these constraints arise from

the gauge symmetry. In particular, we will see that the defects exhibit the characteristic

behaviors of fractons.

The simplest defect is a single particle of gauge charge +1 at a fixed point in space

(x, y, z). It is captured by the gauge-invariant defect

exp

[
i

∫ ∞
−∞

dtA0(t, x, y, z)

]
. (5.32)

Importantly, a single particle cannot move in space by itself – it is immobile – because of

gauge invariance. This is the hallmark of a fracton.

While a single particle cannot move in isolation, a pair of them with opposite charges –

a dipole – can move collectively. Consider two particles with charges ±1 at fixed x1 and x2
moving in time along a curve C in the (y, z, t) spacetime. This motion is described by the

gauge-invariant defect

W (x1, x2, C) = exp

[
i

∫ x2

x1

dx

∫
C

( dt∂xA0 + dyAxy + dzAxz )

]
(5.33)

Note that the integrand
∫
C ( dt∂xA0 + dyAxy + dzAxz ) is gauge-invariant for any curve C

without endpoints, e.g. running from the far past to the far future. More generally, we can
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have a pair of particles moving in directions transverse to their separation. The operators

(5.27) are special cases of these defects where C is a closed curve independent of time.

By combining two defects of the form (5.33), one separated in the x direction and the

other in the y direction, we can have two particles with charges ±1 at (x1, y1) and (x2, y2)

moving together along the z direction. They are represented by the defect

exp

[
i

∫
strip

( ∂xA0 dxdt+ ∂yA0 dydt+ Ayz dydz + Axz dxdz )

]
(5.34)

where the strip is a direct product of line segments C between (x1, y1) to (x2, y2) on the

xy-plane and a curve z(t) on the zt-plane. More generally, by combining more defects of

the kind (5.33), the line segments C can be replaced by a continuous curve extending from

(x1, y1) to (x2, y2) on the xy-plane.

Finally, while a single fracton cannot move by itself, it can move at the price of creating

several more fractons. For example, consider the following defect

exp

[
i

∫ τ

−∞
dtA0(t, x0, y0, z0)

]
× exp

[
−i
∫ x1

x0

∫ y1

y0

dxdy Axy(τ, x, y, z0)

]
× exp

[
i

∫ ∞
τ

dtA0(t, x1, y0, z0)

]
exp

[
i

∫ ∞
τ

dtA0(t, x0, y1, z0)

]
exp

[
−i
∫ ∞
τ

dtA0(t, x1, y1, z0)

]
.

(5.35)

The defect in the first line represents a single fracton of charge +1 as (x0, y0, z0). Then, at

time τ it is acted upon by the an operator, written in the second line. The result is three

fractons; two charge +1 fractons at (x1, y0, z0) and (x0, y1, z0) and a charge −1 fracton at

(x1, y1, z0). Their motion is described by the defect in the third line.

5.6 Electric Modes

In this section we analyze the perturbative spectrum of the theory.

Let us consider plane wave mode in R3,1 in the temporal gauge A0 = 0:

Aij = Cij e
iωt+ikix

i

, (5.36)

with constant Cij in the 3′. The equations of motion give the dispersion relation [17,12]

ω2

[
g4m
g4e
ω4 − 2

g2m
g2e
ω2(k2x + k2y + k2z) + 3(k2xk

2
y + k2xk

2
z + k2yk

2
z)

]
= 0 , (5.37)
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There are three solutions for ω2:

ω2
± =

g2e
g2m

[
(k2x + k2y + k2z)±

√
(k2x + k2y + k2z)

2 − 3(k2xk
2
y + k2xk

2
z + k2yk

2
z)
]
,

ω2
0 = 0 .

(5.38)

For generic ki, the ω0 = 0 solution can be gauged away by a residual, time-independent

gauge transformation with α ∼ eikxx+ikyy+ikzz and it should not be considered physical. The

other solutions with generic ki lead to a Fock space of states – “photons.”

The situation is more subtle as we take some of the kis to zero. For example, consider

plane waves with kx = ky = 0. The equations of motion reduce to

g2m
g2e

∂20Axy = 2∂2zAxy , ∂20Ayz = ∂20Axz = 0 . (5.39)

Restricting to the zero-energy solution ω = 0, we find two independent plane wave solutions

with arbitrary Cyz and Cxz. Equivalently, in position space, there are two families of solutions

that are independent of x, y:

Axy = 0 , Ayz = F z
yz(z) , Axz = F z

xz(z) , (5.40)

for any functions F z
yz(z) and F z

xz(z). They can be thought of as the kx, ky → 0 limit of the

ω− solution and the ω0 solution. However, when kx = ky = 0, neither solution (5.40) can be

gauged away by a residual, time-independent gauge transformation (with finite support in

R3).

Similarly, we have two families of zero-energy solutions for each of the x and y directions.

All in all, we have six zero-energy solutions F x
xy(x), F y

xy(y), F y
yz(y), F z

yz(z), F x
xz(x), F z

xz(z), each

a function of one spatial coordinate.

These zero-energy solutions are a consequence of the electric tensor global symmetry

(5.26), which maps one solution to another, while leaving the electric and magnetic fields

invariant. For this reason we will refer to these modes as the electric modes.

We now quantize these classically zero-energy configurations on a spatial 3-torus with

lengths `x, `y, `z. For later convenience, we will normalize these modes as

Aij =
1

`j
f iij(x

i) +
1

`i
f jij(x

j) . (5.41)

Let us focus on Axy(t, x, y, z) = 1
`y
fxxy(t, x) + 1

`x
f yxy(t, y). The quantization of the other 4

functions f iij can be done in parallel.
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The quantization of these modes proceeds as in the 2+1-dimensional tensor gauge theory

A (1.4). See Section 6.6 of [3]. In the end, the Hamiltonian for these modes is

H =
g2e
4`z

[
`y
∮
dx(Π̄x

xy)
2 + `x

∮
dy(Π̄y

xy)
2 + 2

∮
dx Π̄x

xy

∮
dy Π̄y

xy

]
, (5.42)

where Π̄x
xy(x), Π̄y

xy(y) are the conjugate momenta.9 They have integer eigenvalues, Π̄x
xy(x), Π̄y

xy(y) ∈
Z at each point x and y. Furthermore, they are subject to an ambiguity(

Π̄x
xy(x) , Π̄y

xy(y)
)
∼
(
Π̄x
xy(x) + 1 , Π̄y

xy(y)− 1
)
. (5.44)

In fact, the charge of the electric tensor symmetry (5.24) is the sum of Π̄’s

Qz(x, y) =
2

g2e

∮
dzExy = Π̄x

xy(x) + Π̄y
xy(y) . (5.45)

Including the charges from the other directions, we have 2Lx + 2Ly + 2Lz − 3 such charges

on a lattice.

Let us discuss the energy of these modes. Since Π̄i
xy(x

i) have independent integer eigen-

values at each point xi, a generic electric mode has energy order a, which goes to zero in

the continuum limit. This is similar to the electric modes of the tensor gauge theory (1.4)

in 2 + 1 dimensions [3].

5.7 Magnetic Modes

In this subsection we explore gauge field configurations in nontrivial bundles characterized by

transition functions g(i). These configurations realize the magnetic tensor symmetry charges

(5.30).

Minimally Charged States

The simplest nontrivial bundle with minimal magnetic tensor symmetry charges is char-

acterized by the transition function in (5.17). Let us find the lowest energy configuration in

9More precisely, Π̄x
xy(x), Π̄y

xy(y) are the conjugate momenta for

f̄xxy(t, x) = fxxy(t, x) +
1

`x

∮
dyfyxy(t, y) , f̄yxy(t, y) = fyxy(t, y) +

1

`y

∮
dxfxxy(t, x) . (5.43)

See [3] for more details.
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this bundle. We start with a simple example of a gauge field in this bundle

Axy = 2π
z

`z

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
,

Ayz = Axz = 0 .

(5.46)

Its magnetic field is

B[zx]y = −B[yz]x =
2π

`z

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
, B[xy]z = 0 . (5.47)

which realizes one unit of the (2,3′) tensor global symmetry charge (5.30). Its energy is

1

g2m

∮
dxdydz

(
B2

[zx]y +B2
[yz]x +B2

[xy]z

)
=

8π2

g2m

1

`x`y`z
[(`x + `y)δ(0)− 1] . (5.48)

Every other configuration in this bundle can be written as a sum of (5.46) and another

gauge field in the trivial bundle aij:

Axy = 2π
z

`z

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
+ axy ,

Axz = axz , Ayz = ayz .

(5.49)

The energy of this configuration is

1

g2m

∮
dxdydz

[
(∂xayz − ∂yaxz)2 +

(
∂yaxz −

2π

`z

(
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

))2

+

(
∂xayz −

2π

`z

(
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

))2
]
,

(5.50)

where we assumed that at the minimum aij are independent of z. The minimization of this

energy is determined by the equation of motion for aij

∂x

[
2∂xayz − ∂yaxz −

2π

`z

(
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

)]
= 0 ,

∂y

[
2∂yaxz − ∂xayz −

2π

`z

(
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

)]
= 0 .

(5.51)
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This is solved by

ayz =
π

`z`y

[
Θ(x− x0)−

x

`x

]
+ f yyz(y) ,

axz =
π

`z`x

[
Θ(y − y0)−

y

`y

]
+ fxxz(x) ,

(5.52)

where fxxz(x) and f yyz(y) are two periodic functions that can be absorbed into the electric

modes that we have already quantized in Section 5.6.

We conclude that up to a gauge transformation and additive zero energy configurations,

the minimum energy configuration in this bundle is

Axy = 2π
z

`z

[
1

`y
δ(x− x0) +

1

`x
δ(y − y0)−

1

`x`y

]
,

Axz =
π

`z`x

[
Θ(y − y0)−

y

`y

]
,

Ayz =
π

`z`y

[
Θ(x− x0)−

x

`x

]
.

(5.53)

Its energy is
6π2

g2m

1

`x`y`z

[
(`x + `y)δ(0)− 2

3

]
, (5.54)

which is indeed smaller than the energy (5.48).

Note that the energy of this magnetic mode is of order 1
a

and diverges in the continuum

limit.

General Charged States

Next, we consider linear combinations of the configurations in (5.53) with those in the

other directions:

Aij = 2π
xk

`k

[
1

`j

∑
α

W ij
i αδ(x

i − xiα) +
1

`i

∑
β

W ij
j βδ(x

j − xjβ)− W ij

`i`j

]

+
π

`i`j

[∑
γ

W jk
k γΘ(xk − xkγ)−W jkx

k

`k

]
+

π

`j`i

[∑
γ

W ik
k γΘ(xk − xkγ)−W ikx

k

`k

]
,

W ij =
∑
α

W ij
i α =

∑
β

W ij
j β .

(5.55)
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The transition function g(k) as we go along the xk direction is

g(k) = 2π

[∑
α

xj

`j
W ij
i αΘ(xi − xiα) +

∑
β

xi

`i
W ij
j βΘ(xj − xjβ)−W ij x

ixj

`i`j

]
,

W ij =
∑
α

W ij
i α =

∑
β

W ij
j β .

(5.56)

Not all these bundles are inequivalent. Consider a gauge transformation

α(t, x, y, z) = 2π
xy

`x`y

∑
γ

wzγΘ(z − zγ) + 2π
xz

`x`z

∑
β

wyβΘ(y − yβ)

+ 2π
yz

`y`z

∑
α

wxαΘ(x− xα)− 4πw
xyz

`x`y`z
,

(5.57)

with w ≡
∑

αw
x
α =

∑
β w

y
β =

∑
γ w

z
γ and all the w’s are integers. This gauge parameter

does not have the appropriate transition functions discussed in Section 3. Rather it changes

the transition functions by shifting the W ’s by

W xy
xα → W xy

xα + wxα , W xy
y β → W xy

y β + wyβ ,

W xz
xα → W xz

xα + wxα , W xz
z γ → W xz

z γ + wzγ ,

W yz
y β → W yz

y β + wyβ , W yz
z γ → W yz

z γ + wzγ .

(5.58)

Hence two sets of W ’s label the same bundle if they are related by (5.58).

The underlying lattice theory does not have the magnetic symmetry and does not have

well-defined such bundles. These bundles and the corresponding symmetry are present only

in the continuum theory. Yet, we can consider the points xiα to be chosen from a lattice

with Li sites in the xi direction. Then, we have 2Lx + 2Ly + 2Lz − 3 integers W ’s, and

Lx +Ly +Lz − 2 integer w’s. Therefore the number of distinct bundles is Lx +Ly +Lz − 1.

The magnetic field of (5.55) is

B[ij]k =
π

`i

[
1

`k

∑
β

W jk
j βδ(x

j − xjβ) +
2

`j

∑
γ

W jk
k γδ(x

k − xkγ)−
W jk

`j`k

]

− π

`j

[
1

`k

∑
α

W ik
i αδ(x

i − xiα) +
2

`i

∑
γ

W ik
k γδ(x

k − xkγ)−
W ik

`i`k

]

+
π

`k

[
1

`j

∑
α

W ij
i αδ(x

i − xiα)− 1

`i

∑
β

W ij
j βδ(x

j − xjβ)

] (5.59)
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The magnetic tensor symmetry charge is

Q[ij](xk) =
1

2π

∮
dxi
∮
dxjB[ij]k =

∑
γ

(
W jk
k γ −W

ik
k γ

)
δ(xk − xkγ)

≡ −
∑
γ

Wk γδ(x
k − xkγ) ,

(5.60)

where we have defined Wk γ ≡ W ik
k γ−W

jk
k γ with i, j, k cyclically ordered. The minimal energy

with these charges is

H =
6π2

g2m`
x`y`z

∑
i

[
`i
∮
dxi
(
Q[jk]

)2 − 1

3

(∮
dxiQ[jk]

)2
]

=
6π2

g2m`
x`y`z

[
δ(0)

(
`x
∑
α

W 2
xα + `y

∑
β

W 2
y β + `z

∑
γ

W 2
z γ

)

−1

3

(∑
α

Wxα

)2

+

(∑
β

Wy β

)2

+

(∑
γ

Wz γ

)2
 .

(5.61)

5.8 Duality Transformation

In this subsection we perform a duality transformation on the tensor gauge theory of A. We

will arrive at the φ̂ theory of Section 4. This duality is similar to the duality between an

ordinary 2 + 1-dimensional gauge field Aµ and a compact real scalar ϕ.

The duality we present below is a continuum duality. It is related to the lattice duality

in [17] in the same way as the continuum T-duality of the compact scalar in 1+1 dimensions

is related to the duality of the lattice 1+1-dimensional XY-model. Our dual field φ̂ is circle-

valued rather than an integer on the lattice. Also, φ̂ is in the two-dimensional representation

of S4 and hence the sum of its three components vanishes, while in the lattice version, the

three components are subject to a gauge identification.

We work in Euclidean signature and denote the Euclidean time as τ . We start with the

Euclidean Lagrangian

LE =
1

2g2e
EijE

ij +
1

2g2m
B[ij]kB

[ij]k

+
i

2(2π)
B̃ij (∂τAij − ∂i∂jAτ − Eij) +

i

2(2π)
Ẽ[ij]k

(
∂iAjk − ∂jAik −B[ij]k

)
,

(5.62)

where Eij, B[ij]k, B̃ij, Ẽ[ij]k are independent fields in the appropriate representation of S4.
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They are not constrained by any differential condition. If we integrate out these fields, we

find the original Lagrangian in terms of (Aτ , Aij).

Instead, we integrate out only Eij and B[ij]k to obtain Eij = ig2e
4π
B̃ij and B[ij]k = ig2m

4π
Ẽ[ij]k.

The Lagrangian then becomes

LE =
g2e

32π2
B̃ijB̃

ij +
g2m

32π2
Ẽ[ij]kẼ

[ij]k +
i

2(2π)
B̃ij (∂τAij − ∂i∂jAτ ) +

i

2(2π)
Ẽ[ij]k (∂iAjk − ∂jAik) .

(5.63)

Next, we integrate out the original gauge fields (Aτ , Aij) to find the constraints

∂τ B̃
ij = −∂k(Ẽ[ki]j + Ẽ[kj]i) ,

∂i∂jB̃
ij = 0 .

(5.64)

They are solved locally in terms of a field φ̂[ij]k in the representation 2 of S4:

B̃ij = −∂k(φ̂[ki]j + φ̂[kj]i) ,

Ẽ[ij]k = ∂τ φ̂
[ij]k .

(5.65)

The tensor gauge theory Lagrangian can now be written in terms of φ̂[ij]k:

LE =
g2m

32π2
(∂τ φ̂

[ij]k)2 +
g2e

32π2

[
∂k(φ̂

[ki]j + φ̂[kj]i)
]2
, (5.66)

subject to the constraint φ̂[xy]z + φ̂[yz]x + φ̂[zx]y = 0. Importantly, there is no gauge field in

this dual description of the tensor gauge theory.

The nontrivial fluxes of Eij, B[ij]k (see Section 5.3) mean that the periods of B̃ij, Ẽ[ij]k

are quantized, corresponding to the periodicities of φ̂ in (4.9).

Going back to the Lorentzian signature, we have

Eij =
g2e
4π
∂k(φ̂

[ki]j + φ̂[kj]i) ,

B[ij]k =
g2m
4π
∂0φ̂

[ij]k

(5.67)

The Lorentzian Lagrangian is

L =
g2m

32π2
(∂0φ̂

[ij]k)2 − g2e
32π2

[
∂k(φ̂

[ki]j + φ̂[kj]i)
]2
. (5.68)
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Comparing with (4.5), the duality maps

µ̂0 =
g2m
8π2

, µ̂ =
g2e

8π2
. (5.69)

Under the duality between the A and the φ̂ theories, the winding modes of φ̂ are mapped

to the electric modes in the A theory. Indeed, their charges, (4.42) and (5.45), and their

energies, (4.45) and (5.42), agree. Similarly, the momentum modes of φ̂ are mapped to the

magnetic modes in the A theory. Again, their charges, (4.38) and (5.60), and their energies,

(4.40) and (5.61), agree. As in every duality transformation, the quantum effects on one

side – the energies of the momentum modes of φ̂ and of the electric modes of A – appear

classically on the other side.

Finally, we summarize the analogy between the 3 + 1-dimensional A tensor gauge theory

and 2 + 1-dimensional ordinary gauge theory in Table 5.

5.9 Robustness and Universality

Since the U(1) A-theory is dual to the φ̂-theory of Section 4, the issues of robustness and

universality for the φ̂-theory in Section 4.6 directly applies to the U(1) A-theory.

Let us comment more on the robustness issue. The microscopic global symmetry GUV is

the electric tensor symmetry (5.23). By contrast, the global symmetry GIR of the continuum

field theory not only has GUV , but also includes the magnetic tensor symmetry (5.29). The

latter is absent on the lattice.

In the continuum field theory, there is a GUV -invariant, local (monopole) operator vio-

lating the magnetic symmetry. In the dual description using the φ̂ field, this local operator

can be written as eiφ̂
i(jk)

. Naively, as in the famous Polyakov mechanism in 2+1-dimensional

U(1) gauge theory [35], perturbations by this local operator would ruin the robustness of

this gauge theory. However, this is not the case here, because this operator is irrelevant. One

way to see this is that the magnetic modes created by this operator carry energy of order

1/a (see Section 4.4 and 5.7). Therefore the operator eiφ̂
i(jk)

is irrelevant in the continuum

limit (a→ 0 with fixed system size `i). We conclude that the U(1) A-theory is robust under

small perturbation by this local operator.10

10Note that this conclusion depends crucially on the continuum limit we consider here. For example, the
authors of [17] considered a different limit and argued that the lattice gauge theory of A is not robust against
perturbations by the monopole operator.
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(2 + 1)d (3 + 1)d
U(1) gauge theory U(1) tensor gauge theory A

gauge Aµ → Aµ + ∂µα A0 → A0 + ∂0α
symmetry Aij → Aij + ∂i∂jα

field strength Ei = ∂0Ai − ∂iA0 Eij = ∂0Aij − ∂i∂jA0

Bxy = ∂xAy − ∂yAx B[ij]k = ∂iAjk − ∂jAik

Lagrangian 1
g2
EiE

i − 1
g2
BxyB

xy 1
2g2e
EijE

ij − 1
2g2m

B[ij]kB
[ij]k

flux
∮
dτ
∮
dxiEi ∈ 2πZ

∮
dτ
∫ xi2
xi1
dxi
∮
dxjEij ∈ 2πZ∮

dx
∮
dyBxy ∈ 2πZ

∫ xi2
xi1
dxi
∮
dxj

∮
dxkB[jk]i ∈ 2πZ

Gauss law ∂iEi = 0 ∂i∂jE
ij = 0

eom ∂0Ei = ∂jBij
1
g2e
∂0Eij = 1

g2m
∂k(B[ki]j +B[kj]i)

Bianchi ∂0Bxy = ∂xEy − ∂yEx ∂0B[ij]k = ∂iEjk − ∂jEik
identity

electric electric 1-form electric tensor

symmetry exp
[
i2β
g2

∮
dxiEj

]
exp

[
i2β
g2e

∮
dxk Eij

]
magnetic magnetic 0-form magnetic tensor

symmetry exp
[
i β
2π

∮
dx
∮
dyBxy

]
exp

[
i β
2π

∫ xi2
xi1
dxi
∮
dxj

∮
dxk B[jk]i

]
electrically Wilson line Wilson strip

charged object exp
[
i
∮
dxiAi

]
exp

[
i
∫ xk2
xk1
dxk

∮
C (dxiAik + dxjAjk)

]
magnetically monopole monopole

charged object exp [iϕ] exp
[
iφ̂k(ij)

]

Table 5: Analogy between the 3+1-dimensional U(1) tensor gauge theory A and the ordinary
2 + 1-dimensional U(1) gauge theory.
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6 The Â Tensor Gauge Theory

In this section we gauge the (R time,R space) = (2,3′) tensor global symmetry (2.20). We will

focus on the pure gauge theory without matter. Certain aspects of this tensor gauge theory

have been discussed in [8].

The gauge fields are (Â
i(jk)
0 , Âij) in the (2,3′) of S4. The gauge transformations are

Â
i(jk)
0 → Â

i(jk)
0 + ∂0α̂

i(jk) ,

Âij → Âij + ∂kα̂
k(ij) .

(6.1)

where the gauge parameters α̂i(jk) are in the 2. The gauge parameters α̂i(jk) are point-wise

2π-periodic, subject to the constraint that α̂x(yz) + α̂y(zx) + α̂z(xy) = 0. Globally, this implies

that the transition functions can have their own transition functions (see Section 6.3).

The gauge-invariant field strengths are

Êij = ∂0Â
ij − ∂kÂk(ij)0 ,

B̂ =
1

2
∂i∂jÂ

ij ,
(6.2)

which are in the 3′ and 1 of S4, respectively.

6.1 Lattice Tensor Gauge Theory

In this subsection we discuss the U(1) lattice tensor gauge theory of Â. We will present both

the Lagrangian and Hamiltonian formulations of this lattice model.

For each site (τ̂ , x̂, ŷ, ẑ) on a Euclidean lattice, there are three gauge parameters η̂i(jk)(τ̂ , x̂, ŷ, ẑ) =

eiα̂
i(jk)(τ̂ ,x̂,ŷ,ẑ) (with i 6= j 6= k) satisfying η̂x(yz)η̂y(zx)η̂z(xy) = 1 at every site. This means that

the gauge parameter is in the 2 of S4 in the notation of Appendix A.

The gauge fields are placed on the links. Associated with each temporal link, there are

three gauge fields Û
i(jk)
τ (τ̂ , x̂, ŷ, ẑ) satisfying Û

x(yz)
τ Û

y(zx)
τ Û

z(xy)
τ = 1, i.e. they are the 2 of S4.

Associated with each spatial link along the k direction, there is a gauge field Û ij in the 3′.

The gauge transformations act on them as

Û i(jk)
τ (τ̂ , x̂, ŷ, ẑ)→ Û i(jk)

τ (τ̂ , x̂, ŷ, ẑ) η̂i(jk)(τ̂ , x̂, ŷ, ẑ) η̂i(jk)(τ̂ + 1, x̂, ŷ, ẑ)−1 ,

Ûxy(τ̂ , x̂, ŷ, ẑ)→ Ûxy(τ̂ , x̂, ŷ, ẑ) η̂z(xy)(τ̂ , x̂, ŷ, ẑ) η̂z(xy)(τ̂ , x̂, ŷ, ẑ + 1)−1 ,
(6.3)

and similarly for Ûyz and Û zx.
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Let us discuss the gauge invariant local terms in the action. The first kind is a plaquette

on the τz-plane:

L̂τz(τ̂ , x̂, ŷ, ẑ) = Ûxy(τ̂ , x̂, ŷ, ẑ) Û z(xy)
τ (τ̂ , x̂, ŷ, ẑ + 1) Ûxy(τ̂ + 1, x̂, ŷ, ẑ)−1 Û z(xy)

τ (τ̂ , x̂, ŷ, ẑ)−1

(6.4)

and similarly for L̂τx and L̂τy. This term becomes the square of the electric field in the

continuum limit. The second kind is a product of 12 spatial links around a cube in space at

a fixed time:

L̂(τ̂ , x̂, ŷ, ẑ) = Ûyz(τ̂ , x̂, ŷ, ẑ) Û zx(τ̂ , x̂+ 1, ŷ, ẑ)−1 Ûyz(τ̂ , x̂, ŷ + 1, ẑ)−1 Û zx(τ̂ , x̂, ŷ, ẑ)

× Ûyz(τ̂ , x̂, ŷ, ẑ + 1)−1 Û zx(τ̂ , x̂+ 1, ŷ, ẑ + 1) Ûyz(τ̂ , x̂, ŷ + 1, ẑ + 1) Û zx(τ̂ , x̂, ŷ, ẑ + 1)−1

× Ûxy(τ̂ , x̂, ŷ, ẑ) Ûxy(τ̂ , x̂+ 1, ŷ, ẑ)−1 Ûxy(τ̂ , x̂+ 1, ŷ + 1, ẑ) Ûxy(τ̂ , x̂, ŷ + 1, ẑ)−1 .
(6.5)

This term becomes the square of the magnetic field in the continuum limit. The Lagrangian

for this lattice model is a sum over the above terms.

In addition to the local, gauge-invariant operators (6.5), there are other non-local, ex-

tended ones. For example, we have a line operator along the xk direction.

Lk∏
x̂k=1

Û ij . (6.6)

As in Section 5.1, in the Hamiltonian formulation, we choose the temporal gauge to set

all the Û
i(jk)
τ ’s to 1. We introduce the electric field Êij such that 2

ĝ2e
Êij is conjugate to the

phase of the spatial variable Û ij with ĝe the electric coupling constant. It differs from the

electric field in the continuum by a power of the lattice spacing, which can be added easily

on dimensional grounds.

At every site, we impose Gauss law

Ĝ[zx]y(x̂, ŷ, ẑ) = Êxy(x̂, ŷ, ẑ + 1)− Êxy(x̂, ŷ, ẑ)− Êyz(x̂+ 1, ŷ, ẑ) + Êyz(x̂, ŷ, ẑ) = 0 (6.7)

and similarly Ĝ[xy]z = 0 and Ĝ[yz]x = 0.

The Hamiltonian is a sum of (Êij)2 over all the links plus a sum of L̂ over all the cubes,

with Gauss law imposed by hand. Alternatively, we can impose Gauss law energetically by

adding a term
∑

sites[(Ĝ
[xy]z)2 + (Ĝ[zx]y)2 + (Ĝ[yz]x)2] to the Hamiltonian.

The lattice model has an electric dipole symmetry whose conserved charges are propor-

55



tional to
Lx∑
x̂=1

Êzx(x̂, ŷ0, ẑ0) ,
Ly∑
ŷ=1

Êzy(x̂0, ŷ, ẑ0) . (6.8)

There are 4 other charges associated with the other directions. They commute with the

Hamiltonian. These two electric dipole symmetries rotate the phases of Û ij along a strip on

the zx and yz planes, respectively.

6.2 Continuum Lagrangian

The 3 + 1-dimensional Lagrangian for the pure tensor gauge theory of Â is

L =
1

2ĝ2e
ÊijÊ

ij − 1

ĝ2m
B̂2 . (6.9)

Note that ĝe has mass dimension 0 and ĝm has mass dimension 1. The equations of motion

are
1

ĝ2e
∂0Ê

ij = − 1

ĝ2m
∂i∂jB̂ ,

∂kÊij − ∂iÊkj = 0 .

(6.10)

Equivalently, the second equation, which is Gauss law, can be written as 2∂kÊij − ∂iÊkj −
∂jÊki = 0.

There is also a Bianchi identity

∂0B̂ =
1

2
∂i∂jÊ

ij . (6.11)

6.3 Fluxes

Let us put the theory on a Euclidean 4-torus with lengths `τ , `x, `y, `z. Consider a bundle

with transition functions ĝ(τ) at τ = `τ :

ĝ
z(xy)
(τ) = −ĝx(yz)(τ) =

2πz

`z
, ĝ

y(zx)
(τ) = 0 . (6.12)

This means that

Âxy(τ = `τ , x, y, z) = Âxy(τ = 0, x, y, z) + ∂zĝ
z(xy)
(τ) . (6.13)
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Such gauge field configurations realize a nontrivial electric flux:

êxy(x, y) ≡
∮
dτ

∮
dz Êxy ∈ 2πZ . (6.14)

The Bianchi identity (6.11) implies that

∂x∂yê
xy(x, y) = 0 (6.15)

and therefore the electric flux can be written as

êxy(x, y) = êxyx (x) + êxyy (y) . (6.16)

Electric fluxes along the other directions are realized in similar bundles.

To realize the magnetic flux, we consider a bundle whose transition function at x = `x is

ĝ
x(yz)
(x) = −2π

[ z
`z

Θ(y − y0) +
y

`y
Θ(z − z0)−

yz

`y`z

]
,

ĝ
y(zx)
(x) = 0 ,

ĝ
z(xy)
(x) = −ĝx(yz)(x) ,

(6.17)

the transition function at y = `y is

ĝ
x(yz)
(y) = 0 ,

ĝ
y(zx)
(y) = −2π

[ z
`z

Θ(x− x0) +
x

`x
Θ(z − z0)−

xz

`x`z

]
,

ĝ
z(xy)
(y) = −ĝy(zx)(y) ,

(6.18)

and there is no nontrivial transition function at z = `z, i.e. ĝ
k(ij)
(z) = 0. This means that as

we go around the x direction, the gauge field changes by

Âij(τ, x = `x, y, z) = Âij(τ, x = 0, y, z) + ∂kĝ
k(ij)
(x) , (6.19)

and similarly for the y, z directions.

We should make some comments about the transition functions (6.17) and (6.18).

First, these transition functions have their own transition functions. For example, the

transition functions ĝ
k(ij)
(x) on the yz-plane have their own transition functions at y = `y:

ĝ
x(yz)
(x) → ĝ

x(yz)
(x) − 2πΘ(z − z0) , ĝy(zx)(x) → ĝ

y(zx)
(x) , ĝ

z(xy)
(x) → ĝ

z(xy)
(x) + 2πΘ(z − z0) . (6.20)
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Such a need for transition functions for transition functions is standard in higher form gauge

theories.

Second, we argued in Section 4.5 that the configuration (4.47) should not be included

in the φ̂ continuum field theory. Its energy is of order 1/a and it is not protected by any

global symmetry. In fact, it violates the global winding tensor symmetry of the light modes.

However, here the transition functions (6.17) and (6.18) are similar to (4.47). Why should

we include them? The point is that unlike the φ̂-theory, here these transition functions

do not violate any global symmetry. Furthermore, as we will see below, the energy of the

configurations with these transition functions are of the same order, 1/a, and they are the

lightest states carrying the global symmetry charge. We conclude that when studying singu-

lar configurations in the continuum Â gauge theory, we must consider gauge transformations

and transition functions that are not important in the continuum φ̂-theory.

Third, as always, the transition functions can change by performing non-periodic gauge

transformations. For example, the transformation

α̂x(yz) = −α̂z(xy) = 2π
[ yz
`y`z

Θ(x− x0) +
zx

`z`x
Θ(y − y0) +

xy

`x`y
Θ(z − z0)− 2

xyz

`x`y`z

]
,

α̂y(zx) = 0
(6.21)

exchanges x with z in (6.17) and (6.18). While changing the transition functions, this does

not change the bundle.

Using the transition functions (6.17) and (6.18)∮
dy

∮
dzB̂ =

∮
dz∂x∂zĝ

z(xy)
(y) = 2πδ(x− x0) ,∮

dx

∮
dyB̂ =

∮
dy∂y∂zĝ

z(xy)
(x) = 2πδ(z − z0) ,∮

dz

∮
dxB̂ =

∮
dz∂y∂zĝ

z(xy)
(x) = 2πδ(y − y0) .

(6.22)

By taking linear combinations of such bundles, we realize the general magnetic flux

b̂x ≡
∫ x2

x1

dx

∮
dy

∮
dzB̂ ∈ 2πZ , (6.23)

and similarly for the other directions. The Bianchi identity (6.11) implies that

∂τ b̂ = 0 . (6.24)

Hence the magnetic flux is constant in time.
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These fluxes correspond to operators that multiply to 1 on the lattice. The electric flux

(6.14) corresponds to the product
∏

τ̂ ,ẑ L̂
τz = 1 on the lattice. Similarly, the magnetic flux

(6.23) corresponds to the product
∏

ŷ,ẑ L̂ = 1 on the lattice.

6.4 Global Symmetries and Their Charges

We now discuss the global symmetries of the tensor gauge theory of Â.

6.4.1 Electric Dipole Symmetry

The equation of motion (6.10) is recognized as the current conservation equation

∂0J
ij
0 = ∂i∂jJ (6.25)

with currents

J ij0 = − 2

ĝ2e
Êij ,

J =
2

ĝ2m
B̂ .

(6.26)

The second equation of (6.10) is an additional differential equation

∂kJ ij0 − ∂iJ
kj
0 = 0 , (6.27)

imposed on J ij0 . We will refer to (6.26) as the electric dipole symmetry. This is the continuum

version of the lattice symmetry (6.8).

The charges are

Q(Cxy, z) = − 2

ĝ2e

∮
Cxy∈(x,y)

(
dxÊzx + dyÊzy

)
(6.28)

where Cxy is a closed curve on the xy-plane. The differential condition (6.27) implies that

the charge is independent of small deformations of the curve Cxy. The symmetry operator

is a strip operator:

U(β; z1, z2, Cxy) = exp

[
−i2β

ĝ2e

∫ z2

z1

dz

∮
Cxy

(
dx Êzx + dy Êyz

)]
. (6.29)

Here the strip is the direct product of the segment [z1, z2] and the curve Cxy on the xy-plane.

Similarly, we have operators along the other directions. The electric dipole symmetry acts
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on the gauge fields as
Âxy → Âxy + ĉxyx (x) + ĉxyy (y) ,

Âzx → Âzx + ĉzxz (z) + ĉzxx (x) ,

Âyz → Âyz + ĉyzy (y) + ĉyzz (z) ,

(6.30)

parametrized by six functions ĉiji (xi) of one variable.

The electrically charged operator is a line operator

Ŵ k(xi, xj) = exp

[
i

∮
dxk Âij

]
. (6.31)

This is the continuum version of the gauge-invariant operator (6.6) on the lattice. U and

Ŵ k obeys the following equal-time commutation relation

U(β; z1, z2, Cxy) Ŵ x(y0, z0) = e−iβ I(C
xy ,y0) Ŵ x(y0, z0)U(β; z1, z2, Cxy) , if z1 < z0 < z2 ,

(6.32)

and they commute otherwise. Here I(Cxy, y0) is the intersection number between the curve

Cxy and the y = y0 line on the xy-plane.

Only integer powers of Ŵ k are invariant under the large gauge transformation α̂k(ij) =

−α̂i(jk) = 2πxk

`k
, α̂j(ki) = 0. It then follows that the exponent β is 2π-periodic. Therefore, the

global structure of the electric multipole global symmetry is U(1) not R.

We also have gauge invariant strip operators:

P̂ (z1, z2, C) = exp

[
i

∫ z2

z1

dz

∮
C

(
∂zÂ

yzdx− ∂zÂzxdy − ∂yÂxydy
)]

, (6.33)

where C is a closed curve on the xy-plane.

6.4.2 Magnetic Dipole Symmetry

The Bianchi identity (6.11) is recognized as the current conservation equation

∂0J0 =
1

2
∂i∂jJ

ij (6.34)

with currents

J0 =
1

2π
B̂ ,

J ij =
1

2π
Êij .

(6.35)

60



We will refer to (6.35) as the magnetic dipole symmetry. This symmetry is absent on the

lattice.

The conserved charge operator of the magnetic dipole global symmetry is

Qij(x
k) =

1

2π

∮
dxi
∮
dxj B̂ . (6.36)

The symmetry operator is a slab with finite width in the k direction

Uij(β;xk1, x
k
2) = exp

[
iβ

∫ xk2

xk1

dxkQij(x
k)

]
= exp

[
i
β

2π

∫ xk2

xk1

dxk
∮
dxi
∮
dxj B̂

]
. (6.37)

The magnetically charged objects under the magnetic dipole global symmetry are point-

operators. They are monopole operators. The monopole operator eiφ can be written in

terms of the dual field φ. See Section 6.8.

6.5 Defects as Lineons

There are three species of particles, each associated with a spatial direction. A charge +1,

static particle associated with the xi direction is described by the following defect11

exp

[
i

∫ ∞
−∞

dtÂ
i(jk)
0

]
. (6.38)

A particle of species xi can move in the xi-direction by itself. This motion is captured

by the following line defect in spacetime

Ŵ i(xj, xk, C) = exp

[
i

∫
C

(
Â
i(jk)
0 dt+ Âjkdxi

)]
, (6.39)

where C is a spacetime curve on the (t, xi)-plane representing the motion of a particle along

the xi-direction. The particle by itself cannot turn in space; it is confined to move along the

xi-direction. This particle is the probe limit of the lineon.

A pair of lineons of species, say, x with gauge charges ±1 separated in the z direction

can move collectively not only in the x direction, but also the y direction. This motion is

11We can study the Euclidean version of this defect and let it wind around the Euclidean time direction.
Then, invariance under the large gauge transformation α̂i(jk) = −α̂j(ki) = 2π τ

`τ , α̂
k(ij) = 0 quantizes the

charge.
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captured by the defect

P̂ (z1, z2, C) = exp

[
i

∫ z2

z1

dz

∫
C

(
∂zÂ

x(yz)
0 dt+ ∂zÂ

yzdx− ∂zÂzxdy − ∂yÂxydy
)]

(6.40)

where C is a spacetime curve in (t, x, y). We will refer to this dipole of lineons as a planon

on the (x, y)-plane.

In the special case when C is at a fixed time, then the defects (6.39) and (6.40) reduce

to the operators (6.31) and (6.33), respectively.

6.6 Electric Modes

In this subsection we study states that are charged under the electric dipole symmetry (6.26).

Consider plane wave modes in R3,1 in the temporal gauge Â
i(jk)
0 = 0:

Âij = Ĉij eiωt+ikix
i

, (6.41)

with Ĉij in the 3′. The dispersion relation is

ω4

[
ĝ2m
ĝ2e

ω2 − k2xk2y − k2xk2z − k2yk2z
]

= 0 . (6.42)

There are three solutions for ω2.

Consider first the case of generic momenta. Two of the solutions have zero energy ω2 = 0.

They are the two residual pure gauge modes. The remaining one is

ω2 =
ĝ2e
ĝ2m

(
k2xk

2
y + k2xk

2
z + k2yk

2
z

)
. (6.43)

It leads to a Fock space of “photons.”

When two of the momenta, say kx and ky, vanish, the energy is zero for all kz. Let us

study it in more detail. In this case, the equations of motion become degenerate, and we

have three solutions for ω2 all having ω2 = 0.

The analysis of the gauge modes is different than for generic momenta. In order to

preserve kx = ky = 0, the gauge transformation parameter must be independent of x, y, t

and therefore it leads to a single pure gauge mode

Âxy = ∂zα̂
z(xy) , Âyz = Âxz = 0 . (6.44)
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In position space, the remaining two zero-energy solutions are

Âxy = 0 , Âyz = F̂ yz
z (z) , Âxz = F̂ xz

z (z) , (6.45)

for any functions F̂ yz
z (z), F̂ xz

z (z). Combining all three directions, we have 6 zero-energy

solutions, each a function of one variable.

These modes are acted by the electric dipole symmetry (6.30). Therefore we will refer to

them as the electric modes.

Let us quantize these modes on a 3-torus with lengths `x, `y, `z:

Âij =
1

`k
f̂ iji (t, xi) +

1

`k
f̂ ijj (t, xj) . (6.46)

We will focus on Âxy; the analysis of the other two components is similar. The Lagrangian

for these momentum modes is

L =
1

ĝ2e

1

`z

[
`y
∮
dx(

˙̂
fxyx )2 + `x

∮
dy(

˙̂
fxyy )2 + 2

∮
dx

˙̂
fxyx

∮
dy

˙̂
fxyy

]
. (6.47)

The quantization of these modes is identical to that of the momentum modes of the 2 + 1-

dimensional φ-theory (1.1). See Section 4.1 of [3] for details.

The conjugate momenta are

πxyx (t, x) =
2

ĝ2e`
z

(
`y

˙̂
fxyx (t, x) +

∮
dy

˙̂
fxyy (t, y)

)
,

πxyy (t, y) =
2

ĝ2e`
z

(
`x

˙̂
fxyy (t, y) +

∮
dx

˙̂
fxyx (t, x)

)
.

(6.48)

They are subject to the constraint:∮
dxπxyx (x) =

∮
dyπxyy (y) . (6.49)

The point-wise periodicity of f̂xyi implies that their conjugate momenta πxyi are linear com-

binations of delta functions with integer coefficients:

Q(Cxyy , x) = −πxyx (x) =
∑
α

Nx
αδ(x− xα) , Q(Cxyx , y) = −πxyy (y) =

∑
β

Ny
βδ(y − yβ) ,

Nxy ≡
∑
α

Nx
α =

∑
β

Ny
β , Nx

α , N
y
β ∈ Z .

(6.50)
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Here {xα} and {yβ} are a finite set of points on the x and y axes, respectively. Cxyi is a

closed curve on the xy-plane that wraps around the xi direction once and does not wrap

around the other direction. Note that the momenta are the charges Q(Cxyy , x), Q(Cxyx , y) of

the electric dipole symmetry.

The minimal energy with these charges is

H =
ĝ2e`

z

4`x`y

[
`x
∑
α

(Nx
y α)2δ(0) + `y

∑
β

(Ny
x β)2δ(0)− (Nxy)2

]
, (6.51)

which is order 1
a
. The charges and energies of the modes πiji associated with the other

directions can be computed similarly.

6.7 Magnetic Modes

In this subsection we discuss states that are charged under the magnetic dipole symmetry

(6.35).

Minimally Charged States

The bundle realizing the minimal magnetic dipole symmetry charge is characterized by

the transition functions in (6.17) and (6.18). The minimum energy configuration in this

bundle is:

Âxy = 2π
[ y

`y`z
Θ(x− x0) +

x

`x`z
Θ(y − y0) +

xy

`x`y
δ(z − z0)− 2

xy

`x`y`z

]
,

Âyz = Âzx = 0 .
(6.52)

Its magnetic field is

B̂ =
2π

`x`y`z
[`xδ(x− x0) + `yδ(y − y0) + `zδ(z − z0)− 2] . (6.53)

As a check, note that it is consistent with (6.22).

The energy of this minimally charged state is

H =
1

ĝ2m

∮
dx

∮
dy

∮
dzB̂2 =

4π2

ĝ2m`
x`y`z

[(`x + `y + `z)δ(0)− 2] , (6.54)

which is of order 1
a
.
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General Charged States

A more general gauge field configuration carrying the magnetic dipole charges is

Âxy = 2π

[
y

`y`z

∑
α

WxαΘ(x− xα) +
x

`x`z

∑
β

Wy βΘ(y − yβ) +
xy

`x`y

∑
γ

Wz γδ(z − zγ)−
2Wxy

`x`y`z

]
,

Âyz = Âzx = 0 ,

Wx, α,Wy β,Wz γ ∈ Z , W ≡
∑
α

Wxα =
∑
β

Wy β =
∑
γ

Wz γ .

(6.55)

Its bundle is characterized by the following transition functions. The transition functions at

x = `x are

ĝ
x(yz)
(x) = −2π

[
z

`z

∑
β

Wy βΘ(y − yβ) +
y

`y

∑
γ

Wz γΘ(z − zγ)−W
yz

`y`z

]
,

ĝ
y(zx)
(x) = 0 ,

ĝ
z(xy)
(x) = −ĝx(yz)(x)

(6.56)

The transition functions at y = `y are

ĝ
x(yz)
(y) = 0 ,

ĝ
y(zx)
(y) = −2π

[
z

`z

∑
α

WxαΘ(x− xα) +
x

`x

∑
γ

Wz γΘ(z − zγ)−W
xz

`x`z

]
,

ĝ
z(xy)
(y) = −ĝy(zx)(y) .

(6.57)

And the transition functions at z = `z are trivial, i.e. ĝ
k(ij)
(z) = 0. The bundle is labeled by

the integers Wx, α,Wy β,Wz γ.

As in the A theory, the underlying lattice theory here also does not have the magnetic

symmetry and such bundles. Nonetheless, we can consider the points xiα to be chosen from

a lattice with Li sites in the xi direction. Then, we have Lx + Ly + Lz − 2 distinct bundles

where the −2 comes from the constraints in (6.55).

The magnetic field is

B̂ =
2π

`x`y`z

[
`x
∑
α

Wxαδ(x− xα) + `y
∑
β

Wy βδ(y − yβ) + `z
∑
γ

Wz γδ(z − zγ)− 2W

]
(6.58)
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This realizes the general magnetic dipole symmetry charges

Qyz(x) =
1

2π

∮
dy

∮
dzB̂ =

∑
α

Wxαδ(x− xα) ,

Qzx(y) =
1

2π

∮
dz

∮
dxB̂ =

∑
β

Wy βδ(y − yβ) ,

Qxy(z) =
1

2π

∮
dx

∮
dyB̂ =

∑
γ

Wz γδ(z − zγ) .

(6.59)

(6.55) is the the minimum energy configuration with these charges. Its energy is

H =
4π2

ĝ2m`
x`y`z

[
`xδ(0)

∑
α

W 2
xα + `yδ(0)

∑
β

W 2
y β + `zδ(0)

∑
γ

W 2
z γ − 2W 2

]
, (6.60)

which is of order 1
a
.

6.8 Duality Transformation

In this subsection we will perform a duality transformation on the U(1) tensor gauge theory

of Â and show that it is dual to the non-gauge theory of φ in Section 3.

Let us rewrite the Euclidean Lagrangian as

LE =
1

2ĝ2e
ÊijÊ

ij +
1

ĝ2m
B̂2

+
i

2(2π)
B̌ij

(
∂τ Â

ij − ∂kÂk(ij)τ − Êij
)

+
i

2π
Ě

(
1

2
∂i∂jÂ

ij − B̂
) (6.61)

where now Êij, B̂, B̌ij, Ě are independent fields.

If we integrate out the Lagrange multipliers B̌ij, Ě, we recover the original Lagrangian

(6.9). Instead, we integrate out Êij, B̂ to obtain Êij = i ĝ
2
e

4π
B̌ij and B̂ = i ĝ

2
m

4π
Ě. The La-

grangian becomes

LE =
ĝ2e

32π2
B̌ijB̌ij +

ĝ2m
16π2

Ě2

+
i

2(2π)
B̌ij

(
∂τ Â

ij − ∂kÂk(ij)τ

)
+

i

2(2π)
Ě∂i∂jÂ

ij .
(6.62)
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Next, we integrate out Â
i(jk)
τ , Âij to find the constraints

∂τ B̌ij = ∂i∂jĚ ,

∂kB̌ij − ∂iB̌kj = 0 .
(6.63)

These constraints are locally solved by a real scalar φ

B̌ij = ∂i∂jφ ,

Ě = ∂τφ .
(6.64)

The Euclidean Lagrangian written in terms of φ is then

LE =
ĝ2m

16π2
(∂τφ)2 +

ĝ2e
32π2

(∂i∂jφ)2 . (6.65)

The nontrivial fluxes of Êij, B̂ (see Section 6.3) mean that the periods of B̌ij, Ě are quantized,

corresponding to the periodicities of φ in (3.5).

When we Wick rotate to the Lorentzian signature, we have

Êij = − ĝ
2
e

4π
∂i∂jφ ,

B̂ =
ĝ2m
4π
∂0φ ,

(6.66)

and the Lagrangian is

L =
ĝ2m

16π2
(∂0φ)2 − ĝ2e

32π2
(∂i∂jφ)2 . (6.67)

Comparing with (3.3), the duality map is

µ0 =
ĝ2m
8π2

,
1

µ
=

ĝ2e
8π2

. (6.68)

Under the duality, the momentum modes of φ are mapped to the magnetic modes of

Â. Indeed, their charges (3.27) and (6.59) and their energies (3.28) and (6.60) match. The

winding modes of φ are mapped to the electric modes of Â. Again, their charges (3.30) and

(6.50) and their energies (3.32) and (6.51) match.

Finally, we summarize the analogy between the 3 + 1-dimensional Â tensor gauge theory

and 2 + 1-dimensional ordinary gauge theory in Table 6.
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(2 + 1)d (3 + 1)d

U(1) gauge theory U(1) tensor gauge theory Â

gauge Aµ → Aµ + ∂µα Â
k(ij)
0 → Â

k(ij)
0 + ∂0α̂

k(ij)

symmetry Âij → Âij + ∂kα̂
k(ij)

field strength Ei = ∂0Ai − ∂iA0 Êij = ∂0Â
ij − ∂kÂk(ij)0

Bxy = ∂xAy − ∂yAx B̂ = 1
2
∂i∂jÂ

ij

Lagrangian 1
g2
EiE

i − 1
g2
BxyB

xy 1
2ĝ2e
ÊijÊ

ij − 1
ĝ2m
B̂2

flux
∮
dτ
∮
dxiEi ∈ 2πZ

∮
dτ
∮
dxkÊij ∈ 2πZ∮

dx
∮
dyBxy ∈ 2πZ

∫ xi2
xi1
dxi
∮
dxj

∮
dxkB̂ ∈ 2πZ

Gauss law ∂iEi = 0 ∂kÊij − ∂iÊkj = 0

eom ∂0Ei = ∂jBij
1
ĝ2e
∂0Ê

ij = − 1
ĝ2m
∂i∂jB̂ ,

Bianchi ∂0Bxy = ∂xEy − ∂yEx ∂0B̂ = 1
2
∂i∂jÊ

ij

identity

electric electric 1-form electric dipole

symmetry exp
[
i2β
g2

∮
dxiEj

]
exp

[
−i2β

ĝ2e

∫ xk2
xk1
dxk

∮
C

(
dxiÊki + dxjÊkj

) ]
magnetic magnetic 0-form magnetic dipole

symmetry exp
[
i β
2π

∮
dx
∮
dyBxy

]
exp

[
i β
2π

∫ xi2
xi1
dxi
∮
dxj

∮
dxk B̂

]
electrically Wilson line Wilson line

charged object exp
[
i
∮
dxiAi

]
exp

[
i
∮
dxkÂij

]
magnetically monopole monopole
charged object exp [iϕ] exp [iφ]

Table 6: Analogy between the 3+1-dimensional U(1) tensor gauge theory Â and the ordinary
2 + 1-dimensional U(1) gauge theory.
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6.9 Robustness and Universality

As we saw in Section 6.8, the U(1) Â gauge theory is dual to the φ-theory of Section 3.

Therefore the same conclusions on robustness and universality in Section 3.6 hold true for

the Â theory as well.
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A Cubic Group and Our Notations

The symmetry group of the cubic lattice (up to translations) is the cubic group, which

consists of 48 elements. We will focus on the group of orientation-preserving symmetries of

the cube, which is isomorphic to the permutation group of four objects S4.

The irreducible representations of S4 are the trivial representation 1, the sign represen-

tation 1′, a two-dimensional irreducible representation 2, the standard representation 3, and

another three-dimensional irreducible representation 3′. 3′ is the tensor product of the sign

representation and the standard representation, 3′ = 1′ ⊗ 3.

It is convenient to embed S4 ⊂ SO(3) and decompose the known SO(3) irreducible

representations in terms of S4 representations. The first few are

SO(3) ⊃ S4

1 = 1

3 = 3

5 = 2⊕ 3′

7 = 1′ ⊕ 3⊕ 3′

9 = 1⊕ 2⊕ 3⊕ 3′

(A.1)
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We will label the components of S4 representations using SO(3) vector indices as follows.

The three-dimensional standard representation of S4 carries an SO(3) vector index i, or

equivalently, an antisymmetric pair of indices [jk].12 Similarly, the irreducible representations

of S4 can be expressed in terms of the following tensors:

1 : S

1′ : T(ijk) , i 6= j 6= k

2 : B[ij]k , i 6= j 6= k , B[ij]k +B[jk]i +B[ki]j = 0

Bi(jk) , i 6= j 6= k , Bi(jk) +Bj(ki) +Bk(ij) = 0

3 : Vi

3′ : Eij , i 6= j , Eij = Eji

(A.2)

In the above we have two different expressions, B[ij]k and Bi(jk), for the irreducible repre-

sentation 2 of S4. In the first expression, B[ij]k is the component of 2 in the tensor product

3⊗ 3 = 1⊕ 2⊕ 3⊕ 3′. In the second expression, Bi(jk) is the component of 2 in the tensor

product 3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′. The two bases of tensors are related as13

Bi(jk) = B[ij]k +B[ik]j ,

B[ij]k =
1

3

(
Bi(jk) −Bj(ik)

)
.

(A.3)

In most of this paper, the indices i, j, k in every expression are not equal, i 6= j 6= k

(see (A.2) for example). Equivalently, components of a tensor with repeated indices are set

to be zero, e.g. Eii = 0 and Bijj = 0 (no sum). The indices i, j, k can be freely lowered

or raised. Repeated indices in an expression are summed over unless otherwise stated. For

example, EijE
ij = 2E2

xy + 2E2
yz + 2E2

xz. As in this expression, we will often use x, y, z both

as coordinates and as the indices of a tensor.
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